WorldWideScience

Sample records for bone substitute materials

  1. Advances in Osteobiologic Materials for Bone Substitutes.

    Science.gov (United States)

    Hasan, Anwarul; Byambaa, Batzaya; Morshed, Mahboob; Cheikh, Mohammad Ibrahim; Shakoor, Rana Abdul; Mustafy, Tanvir; Marei, Hany

    2018-04-27

    A significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts and xenografts, and thereby serve as implant materials as bone substitutes for bone repair or remodeling. The complex biology behind the nano-microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signaling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors and gene therapies. Advantages and disadvantages of each type, particularly from the perspective of osteoinductive and osteoconductive capabilities, are discussed. Although the numerous challenges of bone regeneration in tissue engineering and regenerative medicine are yet to be entirely addressed, further advancements in osteobiologic materials will pave the way towards engineering fully functional bone replacement grafts. This article is protected by copyright. All rights reserved.

  2. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  3. Tissue reaction and material characteristics of four bone substitutes

    DEFF Research Database (Denmark)

    Jensen, S S; Aaboe, M; Pinholt, E M

    1996-01-01

    and Interpore 500 HA/CC) were implanted into 5-mm bur holes in rabbit tibiae. There was no difference in the amount of newly formed bone around the four biomaterials. Interpore 500 HA/CC resorbed completely, whereas the other three biomaterials did not undergo any detectable biodegradation. Bio......The aim of the present study was to qualitatively and quantitatively compare the tissue reactions around four different bone substitutes used in orthopedic and craniofacial surgery. Cylinders of two bovine bone substitutes (Endobon and Bio-Oss) and two coral-derived bone substitutes (Pro Osteon 500......-Oss was osseointegrated to a higher degree than the other biomaterials. Material characteristics obtained by diffuse reflectance infrared Fourier transform spectrometry analysis and energy-dispersive spectrometry did not explain the differences in biologic behavior....

  4. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  5. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  6. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    Science.gov (United States)

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Maxillary Sinus Floor Augmentation With Synthetic Bone Substitutes Compared With Other Grafting Materials

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Mordenfeld, Arne; Becktor, Jonas Peter

    2018-01-01

    OBJECTIVE: To test the hypotheses of no differences in implant treatment outcome after maxillary sinus floor augmentation (MSFA) with synthetic bone substitutes (SBS) compared with other grafting materials applying the lateral window technique. MATERIALS AND METHODS: A MEDLINE/PubMed, Embase and ...

  8. Design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite as a potential bone graft substitute material

    Science.gov (United States)

    Florschutz, Anthony Vatroslav

    Utilization of bone grafts for the treatment of skeletal pathology is a common practice in orthopaedic, craniomaxillofacial, dental, and plastic surgery. Autogenous bone graft is the established archetype but has disadvantages including donor site morbidity, limited supply, and prolonging operative time. In order to avoid these and other issues, bone graft substitute materials are becoming increasingly prevalent among surgeons for reconstructing skeletal defects and arthrodesis applications. Bone graft substitutes are biomaterials, biologics, and guided tissue/bone regenerative devices that can be used alone or in combinations as supplements or alternatives to autogenous bone graft. There is a growing interest and trend to specialize graft substitutes for specific indications and although there is good rationale for this indication-specific approach, the development and utility of a more universal bone graft substitute may provide a better answer for patients and surgeons. The aim of the present research focuses on the design, synthesis, and initial evaluation of D-glyceraldehyde crosslinked gelatin-hydroxyapatite composites for potential use as a bone graft substitutes. After initial establishment of rational material design, gelatinhydroxyapatite scaffolds were fabricated with different gelatin:hydroxyapatite ratios and crosslinking concentrations. The synthesized scaffolds were subsequently evaluated on the basis of their swelling behavior, porosity, density, percent composition, mechanical properties, and morphology and further assessed with respect to cell-biomaterial interaction and biomineralization in vitro. Although none of the materials achieved mechanical properties suitable for structural graft applications, a reproducible material design and synthesis was achieved with properties recognized to facilitate bone formation. Select scaffold formulations as well as a subset of scaffolds loaded with recombinant human bone morphogenetic protein-2 were

  9. Investigation of novel bioactive rapidly resorbable bone substitute materials and their influence on osteoblastic cell differentiation in vivo

    OpenAIRE

    Jonscher, Sebastian

    2010-01-01

    Among the various techniques to reconstruct or enlarge a deficient alveolar ridge, the concept of guided bone regeneration (GBR) has become a predictable and well-documented surgical approach. At present, autogenous bone grafts are preferably combined with barrier membranes. Using synthetic biodegradable bone substitute materials, however, is advantageous, since it avoids second-site surgery for autograft harvesting. A bone substitute for alveolar ridge augmentation must be rapidly resorbable...

  10. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    Science.gov (United States)

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  11. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  12. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  13. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  14. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  15. Novel bone substitute material in alveolar bone healing following tooth extraction: an experimental study in sheep.

    Science.gov (United States)

    Liu, Jinyi; Schmidlin, Patrick R; Philipp, Alexander; Hild, Nora; Tawse-Smith, Andrew; Duncan, Warwick

    2016-07-01

    Electrospun cotton wool-like nanocomposite (ECWN) is a novel synthetic bone substitute that incorporates amorphous calcium phosphate nanoparticles into a biodegradable synthetic copolymer poly(lactide-co-glycolide). The objectives of this study were to develop a tooth extraction socket model in sheep for bone graft research and to compare ECWN and bovine-derived xenograft (BX) in this model. Sixteen cross-bred female sheep were used. Bilateral mandibular premolars were extracted atraumatically. Second and third premolar sockets were filled (Latin-square allocation) with BX, ECWN or left unfilled. Resorbable collagen membranes were placed over BX and selected ECWN grafted sockets. Eight sheep per time period were sacrificed after 8 and 16 weeks. Resin-embedded undemineralised sections were analysed for descriptive histology and histomorphometric analyses. At 8 weeks, there were with no distinct differences in healing among the different sites. At 16 weeks, osseous healing followed a fine trabecular pattern in ECWN sites. Non-grafted sites showed thick trabeculae separated by large areas of fibrovascular connective tissue. In BX grafted sites, xenograft particles were surrounded by newly formed bone or fibrovascular connective tissue. There were no statistically significant differences in bone formation across the four groups. However, ECWN sites had significantly less residual graft material than BX sites at 16 weeks (P = 0.048). This first description of a tooth extraction socket model in sheep supports the utility of this model for bone graft research. The results of this study suggested that the novel material ECWN did not impede bone ingrowth into sockets and showed evidence of material resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Bone healing and bone substitutes.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  17. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    Science.gov (United States)

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  18. Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscle

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wang

    2016-07-01

    Conclusion: Calcium sulfate hydroxyapatite bone substitute can be used as a carrier for antibiotics or other drugs, without adverse reaction due to the fast resorption of the calcium sulfate. No bone formation was seen despite treating the bone substitute with autologous bone marrow.

  19. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes

    NARCIS (Netherlands)

    Duan, Rongquan; Barbieri, Davide; Luo, Xiaoman; Weng, Jie; Bao, Chongyun; De Bruijn, Joost D.; Yuan, Huipin

    2018-01-01

    Because of their bioactive properties and chemical similarity to the inorganic component of bone, calcium phosphate (CaP) materials are widely used for bone regeneration. Six commercially available CaP bone substitutes (Bio-Oss, Actifuse, Bi-Ostetic, MBCP, Vitoss and chronOs) as well as two

  20. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    Science.gov (United States)

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  1. Bone graft substitutes for the treatment of traumatic fractures of the extremities.

    Science.gov (United States)

    Hagen, Anja; Gorenoi, Vitali; Schönermark, Matthias P

    2012-01-01

    HEALTH POLITICAL AND SCIENTIFIC BACKGROUND: Bone graft substitutes are increasingly being used as supplements to standard care or as alternative to bone grafts in the treatment of traumatic fractures. The efficacy and cost-effectiveness of bone graft substitutes for the treatment of traumatic fractures as well as the ethical, social and legal implications of their use are the main research questions addressed. A systematic literature search was conducted in electronic medical databases (MEDLINE, EMBASE etc.) in December 2009. Randomised controlled trials (RCT), where applicable also containing relevant health economic evaluations and publications addressing the ethical, social and legal aspects of using bone graft substitutes for fracture treatment were included in the analysis. After assessment of study quality the information synthesis of the medical data was performed using metaanalysis, the synthesis of the health economic data was performed descriptively. 14 RCT were included in the medical analysis, and two in the heath economic evaluation. No relevant publications on the ethical, social and legal implications of the bone graft substitute use were found. In the RCT on fracture treatment with bone morphogenetic protein-2 (BMP-2) versus standard care without bone grafting (RCT with an elevated high risk of bias) there was a significant difference in favour of BMP-2 for several outcome measures. The RCT of calcium phosphate (CaP) cement and bone marrow-based composite materials versus autogenous bone grafts (RCT with a high risk of bias) revealed significant differences in favour of bone graft substitutes for some outcome measures. Regarding the other bone graft substitutes, almost all comparisons demonstrated no significant difference. The use of BMP-2 in addition to standard care without bone grafting led in the study to increased treatment costs considering all patients with traumatic open fractures. However, cost savings through the additional use of BMP-2

  2. 3D printing of octacalcium phosphate bone substitutes

    Directory of Open Access Journals (Sweden)

    Vladimir S. Komlev

    2015-06-01

    Full Text Available Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here we proposed a relatively simple route for 3D printing of octacalcium phosphates in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed octacalcium phosphate blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed octacalcium phosphates bone substitutes, which allowed 2.5-time reducing of defect’s diameter at 6.5 months in a region where native bone repair is extremely inefficient.

  3. Volumetric analysis of bone substitute material performance within the human sinus cavity of former head and neck cancer patients: A prospective, randomized clinical trial.

    Science.gov (United States)

    Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A

    2016-01-01

    In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.

  4. Radiographic Comparison of Bovine Bone Substitute Alone versus Bovine Bone Substitute and Simvastatin for Human Maxillary Sinus Augmentation

    Directory of Open Access Journals (Sweden)

    Amir Ali Reza Rasouli Ghahroudi

    2018-01-01

    Full Text Available Objectives: The aim of this study was to compare the efficacy of bovine bone substitute (Compact Bone B. ® alone versus bovine bone substitute and simvastatin for human maxillary sinus augmentation.Materials and Methods: This study was conducted on 16 sinuses in eight patients. Radiographic assessments were done preoperatively (T0, immediately (T1 and at nine months after sinus grafting (T2. Alveolar bone height and density were assessed on cone beam computed tomography (CBCT scans using Planmeca Romexis™ Imaging Software 2.2.Results: The change in alveolar bone height and density between T0, T1 and T2 was significant in both groups. Alveolar bone height (h0, h1, h2 and vertical height of the grafted bone (g1, g2 in three lines (anterior, middle and posterior were not significantly different between groups. The grafted bone height shrinkage (% in the anterior, middle and posterior limits of the augmented area were not significantly different between groups. The existing alveolar and grafted bone density increased significantly in both groups between T1 and T2, except for the existing alveolar bone density in the control group. There were no statistically significant differences between the alveolar bone density values obtained in TI and T2 between groups, except for the existing alveolar bone density at T1.Conclusions: This study did not show any significant positive effect for simvastatin in maxillary sinus augmentation based on radiographic examination.

  5. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes

    NARCIS (Netherlands)

    Habibovic, Pamela; Kruyt, Moyo C.; Juhl, Maria V.; Clyens, Stuart; Martinetti, Roberta; Dolcini, Laura; Theilgaard, Naseem; van Blitterswijk, Clemens

    2008-01-01

    Improvement of synthetic bone graft substitutes as suitable alternatives to a patient's own bone graft remains a challenge in biomaterials research. Our goal was to answer the question of whether improved osteoinductivity of a material would also translate to better bone-healing orthotopically.

  6. A Bone Graft Substitutes Hydroxyapatite Coated Gentamycin (Bonigent) As Drug Delivery System

    International Nuclear Information System (INIS)

    Rusnah Mustaffa; Fauziah Othman; Asmah Rahmat; Mohd Reusmaazran Yusof; Shaaban Kasim; Narimah Abu Baka; Nasani Nasrul

    2014-01-01

    Porous hydroxyapatite coated with antibiotic gentamycin for drug delivery system is namely Bonigent. In this product, antibiotic (gentamycin) is coated into the scaffolds HA porous and Would then be released slowly into the bone tissue upon implantation, this way would increase drug penetration, thus avoiding systemic infection, preventing the formation of biofilm and improved healing. When a foreign material (implants or scaffolds of bone graft substitutes) is introduced into the body, there would be normally formation of biofilm that can lead to systemic infection and cause device failure. Surgeon will use antibiotic such as gentamycin to avoid these effects. The purpose of this project is to investigate the feasibility of fabricating a drug delivery system (DDS) that serves dual functions, to combating biofilms and to enhance bone in growths. We also successfully producing a scaffold HA bone graft substitutes incorporated with antibiotic gentamycin to combating bio-film and prevent the failure medical device implant for healthy and human nation. Bone graft substitutes into porous scaffolds suitable for drug delivery; loading the scaffolds with gentamycin; and study release rate in vivo were studied. Porous bone grafts substitutes are coated with antibiotic gentamycin by immerse technique. In order to limit biofilm formation, biomaterials loaded with suitable antibiotics can be used as a preventative measure. The biomaterials hydroxyapatite (HA) is an osteoconductive space filler and is produced locally by Malaysian Nuclear Agency. Porous HA and HA/ TCP has the potential to be used as synthetic bone graft materials because it is bioactive and biocompatible with bone tissues. Development of a product as bone graft substitute (BGS) with special ability of delivering drug (gentamycin) to bone tissue for better and more effective healing process. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy Analysis (SEM) and

  7. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  8. Development of a piezoelectric bone substitute material

    International Nuclear Information System (INIS)

    Al-Bader, Yousef A.

    2000-01-01

    The thesis deals with the preparation and testing of ceramic compositions to be used as bone substitute. The proposed composition consisted of calcium enriched calcium phosphate, kaolin and barium titanate in different ratios. The homogeneous powder mixture was dry pressed at different pressures and fired at temperatures up to 1350 degC for different soaking times. The physical properties of the fired compacts that were tested are bulk density and porosity. These were determined as function of pressing pressure, firing temperature and soaking time for different compositions. The mechanical properties investigated were the ultimate compressive strength and Young's modulus, which were determined for different compositions and forming pressures. The electrical properties investigated were D.C. characteristics (resistivity) and A.C. characteristics (A.C. resistivity, dielectric constant, dielectric loss and loss tangent). The piezoelectric behaviour of the fired compacts was investigated and the piezoelectric coefficient (d) in the axial direction was obtained as a function of the percent barium titanate added. The development of piezoelectricity when barium titanate is added was interpreted, using XRD, as due to the formation of barium titanate silicate. Compositions determined as having properties comparable to those of natural bone, were tested for in vitro solubility in pure water and saline solution. The results obtained showed that the selected composition (containing 15% kaolin, 10% barium titanate, pressed at 35 MPa and fired at 1350 degC for two hours) has properties comparable to those of dry bone and a reasonable in vitro solubility. (author)

  9. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Directory of Open Access Journals (Sweden)

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  10. Osseointegration of subperiosteal implants using bovine bone substitute and various membranes

    DEFF Research Database (Denmark)

    Aaboe, Merete; Schou, S.; Hjørting-Hansen, E.

    2000-01-01

    Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits......Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits...

  11. Hard tissue regeneration using bone substitutes: an update on innovations in materials.

    Science.gov (United States)

    Sarkar, Swapan Kumar; Lee, Byong Taek

    2015-05-01

    Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.

  12. Journey of bone graft materials in periodontal therapy: A chronological review

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    2016-01-01

    Full Text Available Bone, the basic building block of the healthy periodontium, is affected in most of the periodontal diseases and can be managed either by mechanically recontouring it or by grafting techniques, which encourages regeneration where it has been lost. Bone replacement grafts are widely used to promote bone formation and periodontal regeneration. Bone grafting, placing bone or bone substitutes into defects created by the disease process, acts like a scaffold upon which the body generates its own, new bone. A wide range of bone grafting materials, including bone grafts and bone graft substitutes, have been applied and evaluated clinically, including autografts, allografts, xenografts, and alloplasts. This review provides an overview of the clinical application, biologic function, and advantages and disadvantages of various types of bone graft materials used in periodontal therapy till date with emphasis on recent advances in this field.

  13. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    International Nuclear Information System (INIS)

    He, Fupo; Zhang, Jing; Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei; Chen, Xiaoming

    2015-01-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials

  14. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin; Stuebinger, Stefan; Korzinskas, Tadas; Obreja, Karina; Landes, Constantin; Kirkpatrick, Charles J; Sader, Robert A

    2013-12-01

    In this study the de novo bone formation capacity of a nanocrystalline hydroxyapatite bone substitute was assessed 3 and 6 months after its insertion into the human sinus cavity. Sinus cavity augmentation was performed in a total of 14 patients (n = 7 implantation after 3 months; n = 7 implantation after 6 months) with severely atrophic maxillary bone. The specimens obtained after 3 and 6 months were analyzed histologically and histomorphometrically with special focus on bone metabolism within the residual bone and the augmented region. This study revealed that bone tissue formation started from the bone-biomaterial-interface and was directed into the most cranial parts of the augmented region. There was no statistically significant difference in new bone formation after 3 and 6 months (24.89 ± 10.22% vs 31.29 ± 2.29%), respectively. Within the limits of the present study and according to previously published data, implant insertion in regions augmented with this bone substitute material could be considered already after 3 months. Further clinical studies with bone substitute materials are necessary to validate these findings. © 2012 Wiley Periodicals, Inc.

  15. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute

    DEFF Research Database (Denmark)

    Stravinskas, M; Horstmann, P; Ferguson, J

    2016-01-01

    . Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. MATERIALS AND METHODS: We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery...... in patients treated surgically for chronic corticomedullary osteomyelitis. RESULTS: The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). CONCLUSIONS: This new biphasic bone...

  16. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    Science.gov (United States)

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  17. Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization

    International Nuclear Information System (INIS)

    Barbeck, Mike; Sader, Robert; Ghanaati, Shahram; Najman, Stevo; Stojanović, Sanja; Živković, Jelena M; Mitić, Žarko; Choukroun, Joseph; Kovačević, Predrag; James Kirkpatrick, C

    2015-01-01

    The present study aimed to analyze the effects of the addition of blood to the phycogenic bone substitute Algipore ® on the severity of in vivo tissue reaction. Initially, Fourier-transform infrared spectroscopy (FTIR) of the bone substitute was conducted to analyze its chemical composition. The subcutaneous implantation model in Balb/c mice was then applied for up to 30 d to analyze the tissue reactions on the basis of specialized histochemical, immunohistochemical, and histomorphometrical methods. The data of the FTIR analysis showed that the phycogenic bone substitute material is mainly composed of hydroxyapatite with some carbonate content. The in vivo analyses revealed that the addition of blood to Algipore ® had a major impact on both angiogenesis and vessel maturation. The higher vascularization seemed to be based on significantly higher numbers of multinucleated TRAP-positive cells. However, mostly macrophages and a relatively low number of multinucleated giant cells were involved in the tissue reaction to Algipore ® . The presented data show that the addition of blood to a bone substitute impacts the tissue reaction to it. In particular, the immune response and the vascularization were influenced, and these are believed to have a major impact on the regenerative potential of the process of bone tissue regeneration. (paper)

  18. Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.

    Science.gov (United States)

    Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R

    2016-12-05

    Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.

  19. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    Science.gov (United States)

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  20. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  1. Bone Regeneration Using a Mixture of Silicon-Substituted Coral HA and β-TCP in a Rat Calvarial Bone Defect Model

    Directory of Open Access Journals (Sweden)

    Jiyeon Roh

    2016-02-01

    Full Text Available The demand of bone graft materials has been increasing. Among various origins of bone graft materials, natural coral composed of up to 99% calcium carbonate was chosen and converted into hydroxyapatite (HA; silicon was then substituted into the HA. Then, the Si-HA was mixed with β-tricalcium phosphate (TCP in the ratios 100:0 (S100T0, 70:30 (S70T30, 60:40 (S60T40, and 50:50 (S50T50. The materials were implanted for four and eight weeks in a rat calvarial bone defect model (8 mm. The MBCPTM (HA:β-TCP = 60:40, Biomatalante, Vigneux de Bretagne, France was used as a control. After euthanasia, the bone tissue was analyzed by making histological slides. From the results, S60T40 showed the fastest bone regeneration in four weeks (p < 0.05. In addition, S60T40, S50T50, and MBCPTM showed significant new bone formation in eight weeks (p < 0.05. In conclusion, Si-HA/TCP showed potential as a bone graft material.

  2. Bone Graft Substitutes : Developed for Trauma and Orthopaedic Surgery

    NARCIS (Netherlands)

    J. van der Stok (Johan)

    2015-01-01

    markdownabstract__Abstract__ Bone grafting was established in the 19th century and has become a common procedure in which bone defects are filled with bone grafts or bone graft substitutes. Bone defects that require bone grafting are encountered in approximately 10% of trauma and orthopaedic

  3. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  4. Microtomographic and morphometric characterization of a bioceramic bone substitute in dental implantology

    Directory of Open Access Journals (Sweden)

    Deborah Meleo

    2012-01-01

    Full Text Available In recent years, bone tissue regeneration studies have led to a deeper knowledge of chemical and structural features of the best biomaterials to be used as replacements for lost bone structures, with the autologus bone still today the only graft material able to ostegenerate, osteinduct and/or osteoconduct. The difficulties of the small available amount of autologus bone, together with morbidity of a second surgical operation on the same patient, have been overcome using both synthetic and biologic substitute bones. The possibility of investigating morphometric characteristics of substitute bones makes it possible to evaluate the predictability of regenerative processes and, so far, a range of different methods have been used for the purpose. X-ray microtomography (micro-CT is a miniaturized form of conventional tomography, able to analyze the internal structure of small objects, performing three-dimensional images with high spatial resolution (<10 micron pixel size. For a correct analysis, samples need not be altered or treated in any way, as micro-CT is a non-invasive and non-destructive technique. It shows promising results in biomaterial studies and tissue engineering. This work shows the potential applications of this microtomographic technique by means of an in vitro analysis system, in characterizing morphometric features of human bone tissue, and contributes to the use of this technique in studies concerning biomaterials and bioscaffolds inserted in bone tissue.

  5. New description of gradual substitution of graft by bone tissue including biomechanical and structural effects, nutrients supply and consumption

    Science.gov (United States)

    Lu, Yanfei; Lekszycki, Tomasz

    2018-03-01

    A new description of graft substitution by bone tissue is proposed in this work. The studied domain is considered as a continuum model consisting of a mixture of the bone tissue and the graft material. Densities of both components evolve in time as a result of cellular activity and biodegradation. The proposed model focuses on the interaction between the bone cell activity, mechanical stimuli, nutrients supply and scaffold microstructure. Different combinations of degradation rate and stiffness of the graft material were examined by numerical simulation. It follows from the calculations that the degradation rate of the scaffold should be tuned to the synthesis/resorption rate of the tissue, which are dependent among the others on scaffold porosity changes. Simulation results imply potential criteria to choose proper bone substitute material in consideration of degradation rate, initial porosity and mechanical characteristics.

  6. Tusk or Bone? An Example of Ivory Substitute in the Wildlife Trade

    Directory of Open Access Journals (Sweden)

    Margaret E. Sims

    2011-08-01

    Full Text Available Bone carvings (and other ivory substitutes are common in the modern-day lucrative international ivory trade.  Souvenirs for unknowing travelers and market shoppers can be made of non-biological material (plastic "ivory" beads or skillfully crafted natural objects made to resemble something other than their true origin.  Many of these items are received at the U. S. National Fish and Wildlife Forensics Laboratory (NFWFL for species identification as part of law enforcement investigations.  Morphologists at the Lab often receive uniquely carved ivory items that have been imported with little or no documentation.  In recent years, analysts examined several purported ivory tusks suspected to be walrus, a protected marine mammal.  After examination, the Lab determined their origin as carved leg bones of cattle using principles and methods of zooarchaeology and ancient DNA analysis.  The naturally long and straight ungulate metapodials had been cut, carved, filled, stained, and polished to closely resemble unmodified ivory tusks.  Morphological species identification of these bones proved to be a challenge since diagnostic characters of the bones had been altered and country of origin was unknown. Genetic analysis showed that the bones originated from cattle.  While bone is commonly used as a substitute for ivory, this style of artifact was not previously documented in the wildlife trade prior to our analysis.  Archaeological ethnobiologists commonly encounter bone tools and other forms of material culture from prehistoric and historic contexts; in this case bone tools come from a modern context, thus the application of methods common in zooarchaeology are situated in wildlife forensics.  In addition, results reported here pertain to cross-cultural ivory trade and conservation science.

  7. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: Radiographic-biomechanical correlation

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; Holmes, R.E.; Tencer, A.F.; Texas Univ., Dallas; Mooney, V.

    1986-01-01

    Radiographic and biomechanical assessment of a new type of bone graft substitute derived from reef-building sea coral was performed in a canine metaphyseal defect model. Blocks of this material and autogenous iliac crest graft were implanted, respectively, into the right and left proximal tibial metaphyses of eight dogs. Qualitative and quantitative radiographic evaluation was performed in the immediate postoperative period and at 6 months after surgery. Biomechanical testing was carried out on all grafts following harvest at 6 months, as well as on nonimplanted coralline hydroxyapatite and autogenous iliac cancellous bone. In contrast to autografts, incorporation of coralline implants was characterized by predictable osseous growth and apposition with preservation of intrinsic architecture. Greater percent increase in radiography density, higher ultimate compressive strength, and lower stiffness with incorporation were documented advantages of coralline hydroxyapatite over autogenous graft. Densitometric measurements correlated moderately with strength for both types of graft material (r=0.65). These promising results have important implications to the clinical application of coralline hydroxyapatite bone graft substitutes as an alternative to autogenous grafting. (orig.)

  8. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    Science.gov (United States)

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  9. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  10. Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening β-Tricalcium Phosphate Bone Substitute: A Multicenter Case Series

    Directory of Open Access Journals (Sweden)

    Minas D. Leventis

    2016-01-01

    Full Text Available Ridge preservation measures, which include the filling of extraction sockets with bone substitutes, have been shown to reduce ridge resorption, while methods that do not require primary soft tissue closure minimize patient morbidity and decrease surgical time and cost. In a case series of 10 patients requiring single extraction, in situ hardening beta-tricalcium phosphate (β-TCP granules coated with poly(lactic-co-glycolic acid (PLGA were utilized as a grafting material that does not necessitate primary wound closure. After 4 months, clinical observations revealed excellent soft tissue healing without loss of attached gingiva in all cases. At reentry for implant placement, bone core biopsies were obtained and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological and histomorphometrical analysis revealed pronounced bone regeneration (24.4 ± 7.9% new bone in parallel to the resorption of the grafting material (12.9 ± 7.7% graft material while high levels of primary implant stability were recorded. Within the limits of this case series, the results suggest that β-TCP coated with polylactide can support new bone formation at postextraction sockets, while the properties of the material improve the handling and produce a stable and porous bone substitute scaffold in situ, facilitating the application of noninvasive surgical techniques.

  11. Clinical Application of Antimicrobial Bone Graft Substitute in Osteomyelitis Treatment: A Systematic Review of Different Bone Graft Substitutes Available in Clinical Treatment of Osteomyelitis

    Directory of Open Access Journals (Sweden)

    T. A. G. van Vugt

    2016-01-01

    Full Text Available Osteomyelitis is a common occurrence in orthopaedic surgery, which is caused by different bacteria. Treatment of osteomyelitis patients aims to eradicate infection by debridement surgery and local and systemic antibiotic therapy. Local treatment increases success rates and can be performed with different antimicrobial bone graft substitutes. This review is performed to assess the level of evidence of synthetic bone graft substitutes in osteomyelitis treatment. According to the PRISMA statement for reporting systematic reviews, different types of clinical studies concerning treatment of osteomyelitis with bone graft substitutes are included. These studies are assessed on their methodological quality as level of evidence and bias and their clinical outcomes as eradication of infection. In the fifteen included studies, the levels of evidence were weak and in ten out of the fifteen studies there was a moderate to high risk of bias. However, first results of the eradication of infection in these studies showed promising results with their relatively high success rates and low complication rates. Due to the low levels of evidence and high risks of bias of the included studies, these results are inconclusive and no conclusions regarding the performed clinical studies of osteomyelitis treatment with antimicrobial bone graft substitutes can be drawn.

  12. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  13. Marker for the pre-clinical development of bone substitute materials

    Directory of Open Access Journals (Sweden)

    de Wild Michael

    2017-09-01

    Full Text Available Thin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting. The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.

  14. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    International Nuclear Information System (INIS)

    Ehler, E; Sterling, D; Higgins, P

    2015-01-01

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology

  15. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Sterling, D; Higgins, P [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  16. Evaluation of the osteo-inductive potential of hollow three-dimensional magnesium-strontium substitutes for the bone grafting application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, Guangzhou 510010 (China); Yang, Xuan [Guangzhou University of Chinese Medicine, Guangzhou 510405 (China); Wang, Weidan [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Yu [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou military command, Guangzhou 510010 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, Yong, E-mail: yonghan@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2017-04-01

    Regeneration of bone defects is a clinical challenge that usually necessitates bone grafting materials. Limited bone supply and donor site morbidity limited the application of autografting, and improved biomaterials are needed to match the performance of autografts. Osteoinductive materials would be the perfect candidates for achieving this task. Strontium (Sr) is known to encourage bone formation and also prevent osteoporosis. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopedic applications. The present study demonstrated a new concept of developing biodegradable and hollow three-dimensional magnesium-strontium (Mg−Sr) devices for grafting with their clinical demands. The microstructure and performance of Mg−Sr devices, in vitro degradation and biological properties including in vitro cytocompatibility and osteoinductivity were investigated. The results showed that our Mg−Sr devices exhibited good cytocompatibility and osteogenic effect. To further investigate the underlying mechanisms, RT-PCR and Western Blotting assays were taken to analyze the expression level of osteogenesis-related genes and proteins, respectively. The results showed that our Mg−Sr devices could both up-regulate the genes and proteins expression of the transcription factors of Runt-related transcription factor 2 (RUNX2) and Osterix (OSX), as well as alkaline phosphatase (ALP), Osteopontin (OPN), Collagen I (COL I) and Osteocalcin (OCN) significantly. Taken together, our innovation presented in this work demonstrated that the hollow three-dimensional Mg−Sr substitutes had excellent biocompatibility and osteogenesis and could be potential candidates for bone grafting for future orthopedic applications. - Highlights: • Novel biodegradable Mg−Sr bone substitutes with the hollow and marginal design was fabricated • The Mg−Sr substitutes exhibited excellent cyto-compatibility and osteo-inductivity effects • The osteo

  17. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  18. The efficacy of poly-d,l-lactic acid- and hyaluronic acid-coated bone substitutes on implant fixation in sheep

    Directory of Open Access Journals (Sweden)

    Christina M. Andreasen

    2017-01-01

    Conclusion: This study demonstrates that HA/βTCP granules coated with PDLLA and HyA have similar bone ingrowth and implant fixation as those with allograft, and with mechanical properties resembling those of allograft in advance, they may be considered as alternative substitute materials for bone formation in sheep.

  19. World’s First Clinical Case of Gene-Activated Bone Substitute Application

    Directory of Open Access Journals (Sweden)

    I. Y. Bozo

    2016-01-01

    Full Text Available Treatment of patients with large bone defects is a complex clinical problem. We have initiated the first clinical study of a gene-activated bone substitute composed of the collagen-hydroxyapatite scaffold and plasmid DNA encoding vascular endothelial growth factor. The first patient with two nonunions of previously reconstructed mandible was enrolled into the study. Scar tissues were excised; bone defects (5–14 mm between the mandibular fragments and nonvascularized rib-bone autograft were filled in with the gene-activated bone substitute. No adverse events were observed during 12 months of follow-up. In 3 months, the average density of newly formed tissues within the implantation zone was 402.21 ± 84.40 and 447.68 ± 106.75 HU in the frontal and distal regions, respectively, which correlated with the density of spongy bone. Complete distal bone defect repair with vestibular and lingual cortical plates formation was observed in 6 and 12 months after surgery; thereby the posterior nonunion was successfully eliminated. However, there was partial resorption of the proximal edge of the autograft entailed to relapse of the anterior nonunion. Thus, the first clinical data on the safety and efficacy of the gene-activated bone substitute were obtained. Given a high complexity of the clinical situation the treatment, results might be considered as promising. NCT02293031.

  20. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  1. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute

    International Nuclear Information System (INIS)

    Wang Qi; Chen Qiang; Zhu Jianguo; Huang Chunpeng; Darvell, Brian W.; Chen Zhiqing

    2008-01-01

    A porous lead-free piezoelectric ceramic is investigated as direct bone substitute. Porous lithium sodium potassium niobate (Li 0.06 Na 0.5 K 0.44 )NbO 3 specimens were prepared by pore-forming method. Different volume fraction of ammonium oxalate monohydrate and poly(methyl methacrylate) were used as porogens to obtain different pore shape and porosity. Scanning electron microscopy showed a bicontinuous 3-3 structure of interconnected pores 150-250 μm in size. The piezoelectric constants and electromechanical coupling coefficients may be controlled by both size and shape of the porogens to tune for the best biological response. Such materials show promise for use as a piezoelectric composite bone substitute

  2. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    Science.gov (United States)

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  3. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone

    NARCIS (Netherlands)

    Bobbert, F.S.L.; Zadpoor, A.A.

    2017-01-01

    The success of bone substitutes used to repair bone defects such as critical sized defects depends on the architecture of the porous biomaterial. The architectural parameters and surface properties affect cell seeding efficiency, cell response, angiogenesis, and eventually bone formation. The

  4. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    International Nuclear Information System (INIS)

    Chen, Yirong; Zhou, Yilin; Yang, Shenyu; Li, Jiao Jiao; Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng; Zeng, Rong; Tu, Mei; Yu, Bin

    2016-01-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  5. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yirong; Zhou, Yilin [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Shenyu [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Li, Jiao Jiao [Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006 (Australia); Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Zeng, Rong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei, E-mail: tumei@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Yu, Bin, E-mail: yubinol@163.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2016-09-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  6. A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Johann Charwat-Pessler

    2015-06-01

    Full Text Available The ability of bone graft substitutes to promote new bone formation has been increasingly used in the medical field to repair skeletal defects or to replace missing bone in a broad range of applications in dentistry and orthopedics. A common way to assess such materials is via micro computed tomography (µ-CT, through the density information content provided by the absorption of X-rays. Information on the chemical composition of a material can be obtained via Raman spectroscopy. By investigating a bone sample from miniature pigs containing the bone graft substitute Bio Oss®, we pursued the target of assessing to what extent the density information gained by µ-CT imaging matches the chemical information content provided by Raman spectroscopic imaging. Raman images and Raman correlation maps of the investigated sample were used in order to generate a Raman based segmented image by means of an agglomerative, hierarchical cluster analysis. The resulting segments, showing chemically related areas, were subsequently compared with the µ-CT image by means of a one-way ANOVA. We found out that to a certain extent typical gray-level values (and the related histograms in the µ-CT image can be reliably related to specific segments within the image resulting from the cluster analysis.

  7. Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications.

    Science.gov (United States)

    Alvarez, K; Camero, S; Alarcón, M E; Rivas, A; González, G

    2002-05-01

    The search for ideal materials for bone substitution has been a challenge for many decades. Numerous natural and synthetic materials have been studied. For this application, exoskeletons of coral have been considered a good alternative given its tendency to resorption, biocompatibility and similarity to the mineral bone phase. Very few studies of these materials consider a detailed analysis of the structure-property relationship. The purpose of this work was to carry out the microstructural characterization of a coralline species named Acropora palmata and the determination of the mechanical and physico-chemical properties. Measurements of hardness, compressive strength, bulk density and apparent porosity were performed. From these results it was determined that this marine coral species could be an alternative xenograft due to its mechanical properties and osteoconductive nature.

  8. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  9. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review.

    Science.gov (United States)

    Zizzari, Vincenzo Luca; Zara, Susi; Tetè, Giulia; Vinci, Raffaele; Gherlone, Enrico; Cataldi, Amelia

    2016-10-01

    Many bone substitutes have been proposed for bone regeneration, and researchers have focused on the interactions occurring between grafts and host tissue, as the biologic response of host tissue is related to the origin of the biomaterial. Bone substitutes used in oral and maxillofacial surgery could be categorized according to their biologic origin and source as autologous bone graft when obtained from the same individual receiving the graft; homologous bone graft, or allograft, when harvested from an individual other than the one receiving the graft; animal-derived heterologous bone graft, or xenograft, when derived from a species other than human; and alloplastic graft, made of bone substitute of synthetic origin. The aim of this review is to describe the most commonly used bone substitutes, according to their origin, and to focus on the biologic events that ultimately lead to the integration of a biomaterial with the host tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Macroporous synthetic hydroxyapatite bioceramics for bone substitute applications

    CSIR Research Space (South Africa)

    Thomas, ME

    1999-08-01

    Full Text Available An improved strategy is described for the manufacture of macroporous hydroxyapatite bioceramics for bone substitute applications. This is based on a modified fugitive phase technique, which allows production of relatively open, high-strength devices...

  11. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  12. Design of ceramic-based cements and putties for bone graft substitution

    Directory of Open Access Journals (Sweden)

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  13. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  14. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  15. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae

    International Nuclear Information System (INIS)

    Li, Jiao Jiao; Roohani-Esfahani, Seyed-Iman; Dunstan, Colin R; Quach, Terrence; Zreiqat, Hala; Steck, Roland; Saifzadeh, Siamak; Pivonka, Peter

    2016-01-01

    The treatment of large bone defects, particularly those with segmental bone loss, remains a significant clinical challenge as current approaches involving surgery or bone grafting often do not yield satisfactory long-term outcomes. This study reports the evaluation of novel ceramic scaffolds applied as bone graft substitutes in a clinically relevant in vivo model. Baghdadite scaffolds, unmodified or modified with a polycaprolactone coating containing bioactive glass nanoparticles, were implanted into critical-sized segmental bone defects in sheep tibiae for 26 weeks. Radiographic, biomechanical, μ-CT and histological analyses showed that both unmodified and modified baghdadite scaffolds were able to withstand physiological loads at the defect site, and induced substantial bone formation in the absence of supplementation with cells or growth factors. Notably, all samples showed significant bridging of the critical-sized defect (average 80%) with evidence of bone infiltration and remodelling within the scaffold implant. The unmodified and modified baghdadite scaffolds achieved similar outcomes of defect repair, although the latter may have an initial mechanical advantage due to the nanocomposite coating. The baghdadite scaffolds evaluated in this study hold potential for use as purely synthetic bone graft substitutes in the treatment of large bone defects while circumventing the drawbacks of autografts and allografts. (paper)

  16. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    DEFF Research Database (Denmark)

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...... with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA......-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2...

  17. Comparison of efficacies of different bone substitutes adhered to osteoblasts with and without extracellular matrix proteins

    Directory of Open Access Journals (Sweden)

    Li-Ling Tseng

    2013-12-01

    Conclusion: The results indicated that ECM proteins increased cell attachment to bone substitutes in vitro. The preferential affinity of different bone substitutes to certain ECM proteins was evident. Cerasorb and BoneCeramic had better MG63 human osteosarcoma cell adhesion ability than Bio-Oss and MBCP.

  18. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Barbeck, Mike; Hilbig, Ulrike; Rausch, Vera; Unger, Ronald E; Kirkpatrick, Charles James; Detsch, Rainer; Ziegler, Guenter; Deisinger, Ulrike; Sader, Robert

    2012-01-01

    Bone substitute material properties such as granule size, macroporosity, microporosity and shape have been shown to influence the cellular inflammatory response to a bone substitute material. Keeping these parameters constant, the present study analyzed the in vivo tissue reaction to three bone substitute materials (granules) with different chemical compositions (hydroxyapatite (HA), beta-tricalcium phosphate (TCP) and a mixture of both with a HA/TCP ratio of 60/40 wt%). Using a subcutaneous implantation model in Wistar rats for up to 30 days, tissue reactions, including the induction of multinucleated giant cells and the extent of implantation bed vascularization, were assessed using histological and histomorphometrical analyses. The results showed that the chemical composition of the bone substitute material significantly influenced the cellular response. When compared to HA, TCP attracted significantly greater multinucleated giant cell formations within the implantation bed. Furthermore, the vascularization of the implantation bed of TCP was significantly higher than that of HA implantation beds. The biphasic bone substitute group combined the properties of both groups. Within the first 15 days, high giant cell formation and vascularization rates were observed, which were comparable to the TCP-group. However, after 15 days, the tissue reaction, i.e. the extent of multinucleated giant cell formation and vascularization, was comparable to the HA-group. In conclusion, the combination of both compounds HA and TCP may be a useful combination for generating a scaffold for rapid vascularization and integration during the early time points after implantation and for setting up a relatively slow degradation. Both of these factors are necessary for successful bone tissue regeneration.

  19. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James [Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55101 Mainz (Germany); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 14, 55128 Mainz (Germany); Thimm, Benjamin W [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland); Booms, Patrick [Leeds Institute of Molecular Medicine, Section of Medicine, Surgery and Anaesthesia, University of Leeds (United Kingdom); Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton, E-mail: ghanaati@uni-mainz.d [Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Theodor-Stein-Kai 7, 60596 Frankfurt am Main (Germany)

    2010-06-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  20. Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Kirkpatrick, Charles James; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stuebinger, Stefan; Landes, Constantin; Sader, Robert Anton

    2010-01-01

    The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute. The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.

  1. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    Science.gov (United States)

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  3. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  4. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  5. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    Science.gov (United States)

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  6. A new method to produce macroporous Mg-phosphate bone growth substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Babaie, Elham, E-mail: Elham.Babaie@rockets.utoledo.edu [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Lin, Boren [Department of Biomedical Engineering, University of Toledo, Toledo, OH 43606 (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614 (United States)

    2017-06-01

    This paper is a sequel to our previous effort in developing Mg-phosphate orthopedic cements using amorphous Mg-phosphate (AMP) as the precursor. In this paper, we report a new real-time in situ technique to create macroporous bone growth substitute (BGS). The method uses biodegradable Mg-particles as the porogen. As opposed to the conventional wisdom of providing corrosion protection layers to biodegradable Mg-alloys, the present method uses the fast corrosion kinetics of Mg to create macropores in real time during the setting of the cement. An aqueous solution of PVA was used as the setting solution. Using this technique, a macroporous cement containing up to 91% porosity is obtained, as determined by pycnometry. Due to formation of H{sub 2} gas bubbles from corrosion of Mg, the cement becomes macroporous. The pore sizes as big as 760 μm were observed. The results of SBF soaking indicated change in crystallinity as confirmed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Our in vitro cytocompatibility evaluation also revealed that the macroporous bone growth substitute composed of bobierrite is cytocompatible and can improve gene expression. - Highlights: • We report a new real time, in situ technique to fabricate macroporous bone grafts. • Self-corroding Mg granules act as porogens. • Compositions containing AMP and PVA self-set within a reasonable time. • The final bone graft substitute showed promising biocompatibility. • The results provide important information on the porosity content and bioactivity.

  7. Evaluation of Osteoconductive and Osteogenic Potential of a Dentin-Based Bone Substitute Using a Calvarial Defect Model

    Directory of Open Access Journals (Sweden)

    Ibrahim Hussain

    2012-01-01

    Full Text Available The aim of this study was to assess the osteoconductive and osteogenic properties of processed bovine dentin using a robust rabbit calvarial defect model. In total, 16 New Zealand White rabbits were operated to create three circular defects in the calvaria. One defect was left unfilled, one filled with collected autogenous bone, and the third defect was filled with the dentin-based bone substitute. Following surgery and after a healing period of either 1 or 6 weeks, a CT scan was obtained. Following sacrificing, the tissues were processed for histological examination. The CT data showed the density in the area grafted with the dentin-based material was higher than the surrounding bone and the areas grafted with autologous bone after 1 week and 6 weeks of healing. The area left unfilled remained an empty defect after 1 week and 6 weeks. Histological examination of the defects filled with the dentin product after 6 weeks showed soft tissue encapsulation around the dentin particles. It can be concluded that the rabbit calvarial model used in this study is a robust model for the assessment of bone materials. Bovine dentin is a biostable material; however, it may not be suitable for repairing large 4-wall defects.

  8. Can we improve fixation and outcomes? Use of bone substitutes.

    Science.gov (United States)

    Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V

    2009-07-01

    Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.

  9. Applications of Metals for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Kristina Glenske

    2018-03-01

    Full Text Available The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP-based substitute materials based on natural (allo- and xenografts and synthetic origins (alloplastic materials are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.

  10. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    in EB (21 and 63 days. Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion: The bone substitute (EB with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links in the structure in PVP.Keywords: bone substitute, cross-linked, nanocrystalline hydroxyapatite, rat animal model, polyvinylpyrrolidone, irradiation, silica, osseointegration

  11. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material

    Directory of Open Access Journals (Sweden)

    H. Fouad

    2018-03-01

    Full Text Available In this study, porous polyethylene scaffolds were examined as bone substitutes in vitro and in vivo in critical-sized calvarial bone defects in transgenic Sprague-Dawley rats. A microscopic examination revealed that the pores appeared to be interconnected across the material, making them suitable for cell growth. The creep recovery behavior of porous polyethylene at different loads indicated that the creep strain had two main portions. In both portions, strain increased with increased applied load and temperature. In terms of the thermographic behavior of the material, remarkable changes in melting temperature and heat fusion were revealed with increased the heating rates. The tensile strength results showed that the material was sensitive to the strain rate and that there was adequate mechanical strength to support cell growth. The in vitro cell culture results showed that human bone marrow mesenchymal stem cells attached to the porous polyethylene scaffold. Calcium sulfate–hydroxyapatite (CS–HA coating of the scaffold not only improved attachment but also increased the proliferation of human bone marrow mesenchymal stem cells. In vivo, histological analysis showed that the study groups had active bone remodeling at the border of the defect. Bone regeneration at the border was also evident, which confirmed that the polyethylene acted as an osteoconductive bone graft. Furthermore, bone formation inside the pores of the coated polyethylene was also noted, which would enhance the process of osteointegration.

  12. Primary stability of different plate positions and the role of bone substitute in open wedge high tibial osteotomy.

    Science.gov (United States)

    Takeuchi, Ryohei; Woon-Hwa, Jung; Ishikawa, Hiroyuki; Yamaguchi, Yuichiro; Osawa, Katsunari; Akamatsu, Yasushi; Kuroda, Koichi

    2017-12-01

    The purpose of this study was to compare the mechanical fixation strengths of anteromedial and medial plate positions in osteotomy, and clarify the effects of bone substitute placement into the osteotomy site. Twenty-eight sawbone tibia models were used. Four different models were prepared: Group A, the osteotomy site was open and the plate position was anteromedial; Group B, bone substitutes were inserted into the osteotomy site and the plate position was anteromedial; Group C, the osteotomy site was open and the plate position was medial; and Group D, bone substitutes were inserted into the osteotomy site and the plate position was medial. The loading condition ranged from 0 to 800N and one hertz cycles were applied. Changes of the tibial posterior slope angle (TPS), stress on the plate and lateral hinge were measured. The changes in the TPS and the stress on the plate were significantly larger in Group A than in Group C. These were significantly larger in Group A than in Group B, and in Group C than in Group D. There was no significant difference between Group B and Group D, and no significant difference between knee flexion angles of 0° and 10°. Stress on the lateral hinge was significantly smaller when bone substitute was used. A medial plate position was biomechanically superior to an anteromedial position if bone substitute was not used. Bone substitute distributed the stress concentration around the osteotomy gap and prevented an increase in TPS angle regardless of the plate position. Copyright © 2017. Published by Elsevier B.V.

  13. Bone graft substitutes for the treatment of traumatic fractures of the extremities [Knochenersatzmaterialien zur Behandlung von traumatischen Frakturen der Extremitäten

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2012-06-01

    Full Text Available [english] Bone graft substitutes are increasingly being used as supplements to standard care or as alternative to bone grafts in the treatment of traumatic fractures.The efficacy and cost-effectiveness of bone graft substitutes for the treatment of traumatic fractures as well as the ethical, social and legal implications of their use are the main research questions addressed.A systematic literature search was conducted in electronic medical databases (MEDLINE, EMBASE etc. in December 2009. Randomised controlled trials (RCT, where applicable also containing relevant health economic evaluations and publications addressing the ethical, social and legal aspects of using bone graft substitutes for fracture treatment were included in the analysis. After assessment of study quality the information synthesis of the medical data was performed using metaanalysis, the synthesis of the health economic data was performed descriptively. 14 RCT were included in the medical analysis, and two in the heath economic evaluation. No relevant publications on the ethical, social and legal implications of the bone graft substitute use were found. In the RCT on fracture treatment with bone morphogenetic protein-2 (BMP-2 versus standard care without bone grafting (RCT with an elevd high risk of bias there was a significant difference in favour of BMP-2 for several outcome measures. The RCT of calcium phosphate (CaP cement and bone marrow-based composite materials versus autogenous bone grafts (RCT with a high risk of bias revealed significant differences in favour of bone graft substitutes for some outcome measures. Regarding the other bone graft substitutes, almost all comparisons demonstrated no significant difference.The use of BMP-2 in addition to standard care without bone grafting led in the study to increased treatment costs considering all patients with traumatic open fractures. However, cost savings through the additional use of BMP-2 were calculated in a

  14. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion.

    Science.gov (United States)

    Goyal, Lata

    2014-02-01

    The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  15. Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

    Directory of Open Access Journals (Sweden)

    Lata Goyal

    2014-02-01

    Full Text Available The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

  16. Early matrix change of a nanostructured bone grafting substitute in the rat.

    Science.gov (United States)

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  17. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  18. Design and optimization of a tissue-engineered bone graft substitute

    Science.gov (United States)

    Shimko, Daniel Andrew

    2004-12-01

    formulation, and scaffold material from all preceding studies were combined and a tissue-engineered bone graft was fabricated. The graft was exposed to long-term in vitro culture, and then mechanically evaluated to determine its clinical potential. The studies contained herein constitute the first steps in the conception and development of a viable tissue-engineered bone graft substitute and establish a solid scientific foundation for future in vivo experimentation utilizing this design.

  19. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect

    Directory of Open Access Journals (Sweden)

    Ho Kwon

    2016-01-01

    Full Text Available It is essential to reduce and reconstruct bony defects adequately in large orbital floor fracture and defect. Among many reconstructive methods, alloplastic materials have attracted attention because of their safety and ease of use. We have used resorbable plates combined with artificial bone substitutes in large orbital floor defect reconstructions and have evaluated their long-term reliability compared with porous polyethylene plate. A total of 147 patients with traumatic orbital floor fracture were included in the study. Surgical results were evaluated by clinical evaluations, exophthalmometry, and computed tomography at least 12 months postoperatively. Both orbital floor height discrepancy and orbital volume change were calculated and compared with preoperative CT findings. The average volume discrepancy and vertical height discrepancies were not different between two groups. Also, exophthalmometric measurements were not significantly different between the two groups. No significant postoperative complication including permanent diplopia, proptosis, and enophthalmos was noted. Use of a resorbable plate with an artificial bone substitute to repair orbital floor defects larger than 2.5 cm2 in size yielded long-lasting, effective reconstruction without significant complications. We therefore propose our approach as an effective alternative method for large orbital floor reconstructions.

  20. Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    Directory of Open Access Journals (Sweden)

    R. V. Deev

    2015-01-01

    Full Text Available Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.

  1. Injectable calcium sulfate/mineralized collagen-based bone repair materials with regulable self-setting properties.

    Science.gov (United States)

    Chen, Zonggang; Liu, Huanye; Liu, Xi; Cui, Fu-Zhai

    2011-12-15

    An injectable and self-setting bone repair materials (nano-hydroxyapatite/collagen/calcium sulfate hemihydrate, nHAC/CSH) was developed in this study. The nano-hydroxyapatite/collagen (nHAC) composite, which is the mineralized fibril by self-assembly of nano-hydrocyapatite and collagen, has the same features as natural bone in both main hierarchical microstructure and composition. It is a bioactive osteoconductor due to its high level of biocompatibility and appropriate degradation rate. However, this material lacks handling characteristics because of its particle or solid-preformed block shape. Herein, calcium sulfate hemihydrate (CSH) was introduced into nHAC to prepare an injectable and self-setting in situ bone repair materials. The morphology of materials was observed using SEM. Most important and interesting of all, calcium sulfate dihydrate (CSD), which is not only the reactant of preparing CSH but also the final solidified product of CSH, was introduced into nHAC as setting accelerator to regulate self-setting properties of injectable nHAC/CSH composite, and thus the self-setting time of nHAC/CSH composite can be regulated from more than 100 min to about 30 min and even less than 20 min by adding various amount of setting accelerator. The compressive properties of bone graft substitute after final setting are similar to those of cancellous bone. CSD as an excellent setting accelerator has no significant effect on the mechanical property and degradability of bone repair materials. In vitro biocompatibility and in vivo histology studies demonstrated that the nHAC/CSH composite could provide more adequate stimulus for cell adhesion and proliferation, embodying favorable cell biocompatibility and a strong ability to accelerate bone formation. It can offer a satisfactory biological environment for growing new bone in the implants and for stimulating bone formation. Copyright © 2011 Wiley Periodicals, Inc.

  2. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  3. A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone

    DEFF Research Database (Denmark)

    Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner

    2016-01-01

    -the-shelf osteoinductive bone substitutes that can replace bone grafts are required. We tested the carrier properties of a biphasic, calcium sulphate and hydroxyapatite ceramic material, containing a combination of recombinant human bone morphogenic protein-2 (rhBMP-2) to induce bone, and zoledronic acid (ZA) to delay...

  4. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Histomorphometric evaluation of a calcium-phosphosilicate putty bone substitute in extraction sockets.

    Science.gov (United States)

    Kotsakis, Georgios A; Joachim, Frederic P C; Saroff, Stephen A; Mahesh, Lanka; Prasad, Hari; Rohrer, Michael D

    2014-01-01

    The objective of this study was to evaluate bone regeneration in 24 sockets grafted with a calcium phosphosilicate putty alloplastic bone substitute. A core was obtained from 17 sockets prior to implant placement for histomorphometry at 5 to 6 months postextraction. Radiographic analysis during the same postextraction healing period showed radiopaque tissue in all sockets. Histomorphometric analysis revealed a mean vital bone content of 31.76% (± 14.20%) and residual graft content of 11.47% (± 8.99%) after a mean healing period of 5.7 months. The high percentage of vital bone in the healed sites in combination with its timely absorption rate suggest that calcium phosphosilicate putty can be a reliable choice for osseous regeneration in extraction sockets.

  6. No effect of Osteoset, a bone graft substitute, on bone healing in humans: a prospective randomized double-blind study

    DEFF Research Database (Denmark)

    Petruskevicius, Juozas; Nielsen, Mette Strange; Kaalund, Søren

    2002-01-01

    We studied the effects of a newly marketed bone substitute, Osteoset, on bone healing in a tibial defect in humans. 20 patients undergoing an ACL (anterior cruciate ligament) reconstruction with bone-patella tendon-bone graft were block-randomized into 2 groups of 10 each. In the treatment group......, the tibial defect was filled manually with Osteoset pellets, in the control group the defect was left empty. CTs of the defect were taken on the first day after the operation, 6 weeks, 3 and 6 months postoperatively. We found about the same amount of bone in the defect in the Osteoset and control groups...... after 6 weeks, 3, and 6 months. In the control group, but not in the Osteoset group, the bone volume increased from 6 weeks to 3 months. The Osteoset pellets were almost resorbed after 6 weeks....

  7. Evaluation of Three Bone Substitute Materials in the Treatment of Experimentally Induced Defects in Rabbit Calvaria

    Directory of Open Access Journals (Sweden)

    M. Paknejad

    2007-12-01

    Full Text Available Objective: The aim of present study was to evaluate the quality, density and thickness of newly formed bone in experimental defects treated with Combi-Pack®, Bio-Oss® and Biostite®.Materials and Methods: Eight New Zealand white rabbits were included in this randomized,blinded study. Four equal 3×6 mm bone defects were created on the frontal and parietal bones of each animal and three were immediately grafted with Bio-Oss®, Combi-Pack® and Biostite® while one was left untreated, serving as negative control. Histologic and histomorphometric analysis was performed four weeks after surgery.Results: Histomorphometric bone area and trabecular maturity was significantly higher in the Bio-Oss® and Combi-Pack® samples as compared to the Biostite® and control cases.The amount of remaining biomaterial was almost equal in the three experimental groups at the end of the study period. Neither foreign body reaction nor severe inflammation was seen in any of the specimens except for the Biostite® samples.Conclusion: It may be suggested that implantation of Bio-Oss® particles and Combi-Pack® blocks can promote bone regeneration more effectively than Biostite®.

  8. Tailoring the degradation and biological response of a magnesium–strontium alloy for potential bone substitute application

    International Nuclear Information System (INIS)

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium–strontium (Mg–Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg–Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg–Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg–Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg–Sr alloy with coating is potential to be used for bone substitute alternative. - Highlights: • Three different statuses of Mg–Sr alloys are used to compare the efficacy for bone graft application. • The rapid degradation is due to intergranular distribution of Mg 17 Sr 2 and galvanic corrosion. • The as-cast alloy with MAO coating exhibited tailored degradation and good biocompatibility. • The in vivo compatible degradation with bone healing is observed for the as-cast alloy with coating.

  9. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  10. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: a retrospective cohort study.

    Science.gov (United States)

    Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike

    2013-06-01

    To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.

  11. Biomimetic materials for controlling bone cell responses.

    Science.gov (United States)

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  12. Histological Analysis of the Effect of Accelerated Portland Cement as a Bone Graft Substitute on Experimentally-Created Three-Walled Intrabony Defects in Dogs

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Ashraf

    2007-12-01

    Full Text Available

    Background and aims. Recent literature shows that accelerated Portland cement (APC is a non-toxic material that may have potential to promote bone healing. The objective of this study was to histologically evaluate periodontal healing focusing on new bone regeneration following implantation of APC into intra-bony defects in dogs.

    Materials and methods. Three-wall intra-bony periodontal defects were surgically created at the mesial aspect of the first molar in both sides of mandible in six dogs. One side was randomly filled with the material and other received a flap operation only. The animals were euthanized eight weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis.

    Results. Compared to control group, stimulation of growth of new bone tissue in the cavity containing APC was significantly prominent in three of six cases, showing osteoid formation with osteoblastic rimming and new bone trabeculla. New bone formation was observed just close to cavity containing APC. Connective tissue proliferation and downgrowth of epithelium were significantly less than those of control group.

    Conclusion. Our results are encouraging for the use of APC as a bone substitute, but more comprehensive study are necessary before warranting clinical use.

  13. CT assisted biomimetic artificial bone des

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-gang; ZHANG Chao-zong; GUO Zhi-ping; TIAN Jie-mo

    2001-01-01

    @@ In the recent years, bioceramic materials have been widely used in the clinics. They are mainly fabricated as the substitution of human hard tissue, such as artificial bone and false tooth. As a medical implant, those that have similar structure to human bone have better biocompatibility and osteoinductional property. So it is necessary to design bone model close to human bone.

  14. Osteoclast-like cells on deproteinized bovine bone mineral and biphasic calcium phosphate

    DEFF Research Database (Denmark)

    Jensen, Simon S; Gruber, Reinhard; Buser, Daniel

    2015-01-01

    OBJECTIVES: The occurrence of multinucleated giant cells (MNGCs) on bone substitute materials has been recognized for a long time. However, there have been no studies linking material characteristics with morphology of the MNGCs. The aim was to analyze the qualitative differences of MNGCs on two ...... osteoclasts. CONCLUSION: MNGCs demonstrated distinctly different histological features depending on the bone substitute material used. Further research is warranted to understand the clinical implications of these morphological observations....

  15. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; Weijden, B. van der; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A.

    2013-01-01

    Calcium phosphate cements (CPCs) and fibrin glue (FG) are used for surgical applications. Their combination is promising to create bone substitutes able to promote cell attachment and bone remodeling. This study proposes a novel approach to create CPC-FG composites by simultaneous CPC setting and FG

  16. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.

    Science.gov (United States)

    Tandon, Biranche; Blaker, Jonny J; Cartmell, Sarah H

    2018-04-16

    The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing

  17. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Jansen, J.A.; Mikos, A.G.

    2007-01-01

    Biodegradable polymers that can be processed into injectable hydrogel matrices are promising candidates for bone-substituting purposes. Furthermore, by incorporating degradable calcium phosphate (CaP) particles and growth factors into these hydrogel matrices, a bone construct can be designed which

  18. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings.

    Science.gov (United States)

    De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo

    2011-03-01

    Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.

  19. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  20. Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010-2015

    Science.gov (United States)

    Smith, Braeton J.; Eggert, Roderick G.

    2016-07-01

    Substitution is an important response for material users when faced with disruption to the availability or price of an essential material. In economic terms, substitution refers to the ability of firms to alter their patterns of material use in response to exogenous market shocks. Substitution comes in different forms which vary from situation to situation. This paper uses expert opinion to identify the specific forms of substitution that occurred in permanent magnets, specifically neodymium-iron-boron magnets, following the significant increase in rare earth prices in 2010-2011. The paper provides a framework for understanding the multifaceted nature of substitution and assesses the relative importance of five different types of substitution. Technology-for-element, grade-for-grade, and system-for-system substitution appear to have been more important than element-for-element and magnet-for-magnet substitution. Cost pass-through and absorption were also important responses.

  1. Bone Formation with Deproteinized Bovine Bone Mineral or Biphasic Calcium Phosphate in the Presence of Autologous Platelet Lysate: Comparative Investigation in Rabbit

    Directory of Open Access Journals (Sweden)

    Carole Chakar

    2014-01-01

    Full Text Available Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL and particles of either deproteinized bovine bone mineral (DBBM or biphasic calcium phosphate (BCP, two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P<0.001 while the residual material area was lower (60%; P<0.001 than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

  2. Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes

    International Nuclear Information System (INIS)

    Hamza, Samir; Slimane, Noureddine; Azari, Zitouni; Pluvinage, Guy

    2013-01-01

    Highlights: ► The structural and mechanical properties of coral and nacre used as bone substitute. ► The chemical composition of the nacre and coral are qualitatively similar to a bone. ► The percentage of porosity influences significantly the mechanical properties. ► A stress-life curve revealed an endurance limit to coral and nacre. - Abstract: The main objective of this work is to develop resistant compact material samples with different porosities from coral and nacre adapted to the filling of bone cavities. The characterization of materials was conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and laser granulometry. The micro-hardness and the influence of porosity on the mechanical behavior of these biomaterials under compression as well as three-points bending tests were also assessed. Both materials showed similar particles size ranging from 50 to 100 μm in diameter, distributed according to the Gauss curve. The modal particle size, the median D 50 and D 90 –D 10 are the most important parameters which allow for the distinction between coral and nacre samples. The two biomaterials showed a micro hardness (138–167 HV for coral and 261–340 HV for nacre) higher than that of bovine bones (55–70 HV). The maximum compression stresses were 32.82 MPa for coral and 37.06 MPa for nacre at 50% of porosity. S–N curve with ASME format is constructed to predict the fatigue life extended from 10 1 to 10 6 cycles, which reveals an endurance limit at a compression stress ratio of about 10.

  3. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    Science.gov (United States)

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  4. Comparing membranes and bone substitutes in a one-stage procedure for horizontal bone augmentation. A double-blind randomised controlled trial.

    Science.gov (United States)

    Merli, Mauro; Moscatelli, Marco; Mariotti, Giorgia; Pagliaro, Umberto; Raffaelli, Eugenia; Nieri, Michele

    2015-01-01

    The objective of this parallel randomised controlled trial is to compare two bone substitutes and collagen membranes in a one-stage procedure for horizontal bone augmentation: anorganic bovine bone (Bio-Oss) and collagen porcine membranes (Bio-Gide) (BB group) versus a synthetic resorbable bone graft substitute made of pure β-tricalcium phosphate (Ceros TCP) and porcine pericardium collagen membranes (Jason) (CJ group). Patients in need of implant treatment having at least one site with horizontal osseous defects at a private clinic in Rimini (Italy) were included in this study. Patients were randomised to receive either the BB or CJ treatment. Randomisation was computer-generated with allocation concealment by opaque sequentially numbered sealed envelopes. Patients and the outcome assessor were blinded to group assignment. The main outcome measures were implant failure, complications, clinical bone gain at augmented sites, and complete filling of the bone defect. Secondary outcome measures were chair-time, postoperative pain and peri-implant marginal bone level changes. Twenty-five patients with 32 implants were allocated to the BB group and 25 patients with 29 implants to the CJ group. All 50 randomised patients received the treatment as allocated and there were no dropouts up to 6-months post-loading (12 months post-surgery). There were no failures and there were three complications in the BB group and three complications in the CJ group (relative risk: 1.00, 95% CI from 0.22 to 4.49, P = 1.00). The estimated difference between treatments in the vertical defect bone gain was -0.15 mm (95% CI from -0.65 to 0.35, P = 0.5504) favouring the BB group, and the estimated difference between treatments in the horizontal defect bone gain was -0.27 mm (95%CI from -0.73 to 0.19, P = 0.3851) favouring the BB group. There was no difference in the complete filling of the defect (relative risk: 0.88, 95%CI from 0.58 to 1.34, P = 0.7688). No significant differences were

  5. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze Street 18, Novosibirsk, 630128 (Russian Federation); Komarova, E. G., E-mail: katerina@ispms.tsc.ru; Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Academicheskii Pr. 2/4, Tomsk, 634055 (Russian Federation)

    2016-08-02

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  6. Multifunctional materials for bone cancer treatment

    Directory of Open Access Journals (Sweden)

    Marques C

    2014-05-01

    Full Text Available Catarina Marques,1 José MF Ferreira,1 Ecaterina Andronescu,2 Denisa Ficai,2 Maria Sonmez,3 Anton Ficai21Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, University of Aveiro, Aveiro, Portugal; 2Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Bucharest, Romania; 3National Research and Development Institute for Textiles and Leather, Bucharest, RomaniaAbstract: The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multifunctionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative, cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin, silver nanoparticles, antibiotics (anthracyclines, geldanamycin, and/or analgesics (ibuprofen, fentanyl. The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies.Keywords: bone graft, cancer, collagen, magnetite, cytostatics, silver

  7. Accelerated bone ingrowth by local delivery of Zinc from bioactive ...

    African Journals Online (AJOL)

    Background: Synthetic bone graft substitutes such as bioactive glass (BG) material are developed in order to achieve successful bone regeneration. Zn plays an important role in the proper bone growth, development, and maintenance of healthy bones. Aims: This study aims to evaluate in vivo the performance therapy of ...

  8. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  9. Electron beam irradiation to the allogeneic, xenogenic and synthetic bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Park, Min Woo; Jeong, Hyun Oh [School of Dentistry Seoul National University, Seoul (Korea, Republic of); and others

    2013-07-01

    For the development of the biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bone were irradiated by electron beam to change the basic components and structures. For the efficient electron beam irradiating condition of these allogenic, xenogenic and artificial bone substitutes, the optimal electron beam energy and their individual dose were established, to maximize the bony regeneration capacity. Commercial products of four allogenic bones, such as Accell (ISOTIS OrthogBiologics Co., USA), Allotis (Korea Bone Bank Co., Korea), Oragraft (LifeNet Co., USA), and Orthoblast (Integra Orthobiologics Inc., USA), six xenogenic bones, such as BBP (OscoTec Co., Korea), Bio-cera (OscoTec Co., Korea), Bio-oss (Geistlich Pharma AG, Switzerland), Indu-cera (OscoTec Co., Korea), OCS-B (Nibec Co., Korea), and OCS-H (Nibec Co., Korea), and six synthetic bones, such as BMP (Couellmedi Co., Korea), BoneMedik (Meta Biomed Co., Korea), Bone plus (Megagen Co., Korea), MBCP (Biomatlante Co., France), Osteon (Genoss Co., Korea), and Osteogen (Impladent LTD., USA), were used. We used 1.0 and 2.0 MeV superconduction accelerator, and/or microtrone with different individual 60, 120 kGy irradiation dose. Different dose irradiated specimens were divided 6 portions each, so total 360 groups were prepared. 4 portions were analyzed each by elementary analysis using FE-SEM (Field Emission Scanning Microscopy) and another 2 portions were grafted to the calvarial defect of Sprague-Dawley rat, following histologic, immunohistochemical analysis and TEM study were processed at the 8th and 16th weeks, in vivo. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)

  10. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    Science.gov (United States)

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  11. Use of computational methods for substitution and numerical dosimetry of real bones

    International Nuclear Information System (INIS)

    Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R.; Vieira, J.W.; Lima, F.R.A.

    2017-01-01

    Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one

  12. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    Science.gov (United States)

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (palginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible

  13. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    El Backly, Rania M. [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Chiapale, Danilo [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Muraglia, Anita [Biorigen S.R.L., Genova (Italy); Tromba, Giuliana [Sincrotrone Trieste S.C.P.A., Trieste (Italy); Ottonello, Chiara [Biorigen S.R.L., Genova (Italy); Santolini, Federico [IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy); Cancedda, Ranieri; Mastrogiacomo, Maddalena, E-mail: maddalena.mastrogiacomo@unige.it [DIMES, University of Genova, Genova (Italy); IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova (Italy)

    2015-01-06

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  14. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    International Nuclear Information System (INIS)

    El Backly, Rania M.; Chiapale, Danilo; Muraglia, Anita; Tromba, Giuliana; Ottonello, Chiara; Santolini, Federico; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2015-01-01

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX ® ) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX ® ) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.

  15. Bone graft extenders and substitutes in the thoracolumbar spine.

    Science.gov (United States)

    Arner, Justin W; Daffner, Scott D

    2012-05-01

    Autologous iliac crest bone graft remains the gold standard for lumbar fusion. The potential for complications has led to the development of alternative bone graft materials and enhancers, including autologous growth factors, demineralized bone matrix products, osteoinductive agents, and ceramic products. The current literature centers mainly on preclinical studies, which, further complicating the situation, evaluate these products in different clinical scenarios or surgical techniques. Autologous growth factors and demineralized bone matrix products have had promising results in preclinical studies, but few strong clinical studies have been conducted. Ceramic extenders were evaluated with other substances and had good but often inconsistent results. Bone morphogenetic proteins have been extensively studied and may have benefits as osteoinductive agents. Category comparisons are difficult to make, and there are differences even between products within the same category. The surgeon must be knowledgeable about products and their advantages, disadvantages, indications, contraindications, and possible applications so that they can make the best choice for each patient.

  16. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses.

    Science.gov (United States)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; S P Singh

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO2 in Na2O-CaO-SrO-P2O5-SiO2 system. This work demonstrates that the substitution of SrO for SiO2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO2. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  18. Hydroxyapatites enriched in silicon–Bioceramic materials for biomedical and pharmaceutical applications

    Institute of Scientific and Technical Information of China (English)

    Katarzyna Szurkowska; Joanna Kolmas

    2017-01-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, abbreviated as HA) plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin), it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physico-chemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA). Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  19. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.

    Science.gov (United States)

    Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert

    2014-02-01

    Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.

  20. Foreign Body Giant Cell-Related Encapsulation of a Synthetic Material Three Years After Augmentation.

    Science.gov (United States)

    Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram

    2016-06-01

    Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.

  1. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  2. Tooth apatite as a bone substitute: an experimental study and clinical applications

    International Nuclear Information System (INIS)

    Eun-Seok Kim; Pill-Hoon Choung

    1999-01-01

    The purpose of this study is to evaluate the usefulness of calcined teeth powder as biological apatite. The animal experiment was performed in 36 rabbits aging 6 weeks and weighing 1.6 kg. In experimental group, tooth apatite powder was implanted to 10 mm bony defects in diameter made on the cranial bone of the rabbits. As control groups, synthetic porous hydroxyapatite and resorbable type calcium carbonate were implanted to the defects of same size. Each group was sacrificed in 1, 2, 4, 6, 8, 12 weeks after the surgery. Specimens were prepared for decalcified samples and observed by a light microscope. And we also performed quantitative analysis of new bone formation through image analysis using computer. In clinical applications, we used tooth apatite alone or mixed with decalcified freeze-dried bone for reconstruction of bony defects in 15 patients undergone enucleation of cyst or ameloblastoma. The obtained results were as follows; 1) The powder of the calcined teeth was called as 'tooth apatite' and it seemed to have biocompatibility in rabbits and human. 2) In group of tooth apatite, after 4 weeks of operation, new bone directly bonded to the particles was observed. And in 12 weeks of it, new bone occupied most of the bony defects. In 6 weeks, resorption of the tooth apatite particles was observed. Thus the tooth apatite was regarded as one of resorbable apatite. 3) The group of tooth apatite showed new bone formation similar to the group of porous hydroxyapatite, but they were inferior to the group of resorbable calcium carbonate. 4) In clinical application, tooth apatite had biocompatibility and new bone formation was observed without any complication except for 1 case. So we think it is a useful bone substitute with osteoconductivity

  3. 21 CFR 872.3930 - Bone grafting material.

    Science.gov (United States)

    2010-04-01

    ... of the oral and maxillofacial region. (b) Classification. (1) Class II (special controls) for bone grafting materials that do not contain a drug that is a therapeutic biologic. The special control is FDA's “Class II Special Controls Guidance Document: Dental Bone Grafting Material Devices.” (See § 872.1(e) for...

  4. Hydroxyapatites enriched in silicon – Bioceramic materials for biomedical and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Katarzyna Szurkowska

    2017-08-01

    Full Text Available Hydroxyapatite (Ca10(PO46(OH2, abbreviated as HA plays a crucial role in implantology, dentistry and bone surgery. Due to its considerable similarity to the inorganic fraction of the mineralized tissues (bones, enamel and dentin, it is used as component in many bone substitutes, coatings of metallic implants and dental materials. Biomaterial engineering often takes advantage of HA capacity for partial ion substitution because the incorporation of different ions in the HA structure leads to materials with improved biological or physicochemical properties. The objective of the work is to provide an overview of current knowledge about apatite materials substituted with silicon ions. Although the exact mechanism of action of silicon in the bone formation process has not been fully elucidated, research has shown beneficial effects of this element on bone matrix mineralization as well as on collagen type I synthesis and stabilization. The paper gives an account of the functions of silicon in bone tissue and outlines the present state of research on synthetic HA containing silicate ions (Si-HA. Finally, methods of HA production as well as potential and actual applications of HA materials modified with silicon ions are discussed.

  5. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes.

    Science.gov (United States)

    Trajkovski, Branko; Jaunich, Matthias; Müller, Wolf-Dieter; Beuer, Florian; Zafiropoulos, Gregory-George; Houshmand, Alireza

    2018-01-30

    The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties' influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone ® ), synthetic (maxresorb ® ), and allograft (maxgraft ® , Puros ® ) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone ® and maxresorb ® blocks showed a slight height decrease in wet state, whereas both maxgraft ® and Puros ® had an almost identical height increase. In addition, cerabone ® and maxresorb ® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft ® and Puros ® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone ® , Bio-Oss ® , NuOss ® , SIC ® nature graft) and synthetic DBGS granules (maxresorb ® , BoneCeramic ® , NanoBone ® , Ceros ® ). The highest level of hydrophilicity was detected in cerabone ® and maxresorb ® , while Bio-Oss ® and BoneCeramic ® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this

  6. Composites organiques-inorganiques pour la substitution et la réparation osseuse : concepts, premiers résultats et potentialités Organic-inorganic composites for bone substitute and bone repair applications: concepts, first results and potentialities

    Directory of Open Access Journals (Sweden)

    Peroglio Marianna

    2013-11-01

    Full Text Available Ce document présente un très bref aperçu de l'intérêt des matériaux composites organique – inorganique pour la substitution et la réparation osseuse. Deux types de composites sont présentés. Dans une première partie, des matériaux poreux en céramique ou bio-verre élaborés par la technologie des poudres sont imprégnés par un polymère. Cette imprégnation se traduit par une forte augmentation de l'énergie à la rupture du squelette céramique, permettant de limiter le risque de rupture fragile. L'augmentation des propriétés mécaniques des substituts osseux céramiques par une phase polymère peut être mise en regard des mécanismes de renforcement présents dans l'os et du rôle du collagène sur la ténacité de celui-ci. Dans une deuxième partie, des composites denses sont élaborés par des technologies de plasturgie, qui permettent de réaliser des produits de formes complexes. Les phases polymères et céramiques sont ici choisies pour leurs caractères respectifs résorbable et ostéo-inducteur. Ces composites permettent la création rapide d'hydroxyapatite à leur surface et accélèrent la guérison osseuse. A terme, ils sont résorbés. Ces deux exemples démontrent les potentialités de tels multi-matériaux architecturés pour la réalisation de substituts osseux plus résistants mécaniquement et apportant de nouvelles fonctionnalités, ainsi que pour la production de produits d'ostéosynthèse favorisant les processus de guérison osseuse. Here we show a brief outline of organic-inorganic composites for bone substitute and bone repair applications. Two types of composites are presented. In a first strategy, porous ceramics and bioactive glasses processed by sintering methods are impregnated by a polymer. The strong improvement of the mechanical properties of the ceramic scaffolds by a polymer phase can be linked to the one present in bone with the role of collagen on bone toughness. In a second strategy, a

  7. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  8. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  9. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  10. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    Science.gov (United States)

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Biological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Yuk Fai Lui

    2017-09-01

    Full Text Available Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in terms of flexibility. In cases of bone defect treatments, a flexible soft filler can help to establish an intimate contact with surrounding bones to provide a stable bone-material interface for cell proliferation and ingrowth of tissue. In this study, a porous filler based on segmented polyurethane incorporated with poly l-lactic acid was synthesized by a phase inverse salt leaching method. The filler was put through in vitro and in vivo tests to evaluate its potential in acting as a bone graft substitute for critical-sized bone defects. In vitro results indicated there was a major improvement in biological response, including cell attachment, proliferation and alkaline phosphatase expression for osteoblast-like cells when seeded on the composite material compared to unmodified polyurethane. In vivo evaluation on a critical-sized defect model of New Zealand White (NZW rabbit indicated there was bone ingrowth along the defect area with the introduction of the new filler. A tight interface formed between bone and filler, with osteogenic cells proliferating on the surface. The result suggested polyurethane/poly l-lactic acid composite is a material with the potential to act as a bone graft substitute for orthopedics application.

  12. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    Science.gov (United States)

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011

  13. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes

    Directory of Open Access Journals (Sweden)

    Branko Trajkovski

    2018-01-01

    Full Text Available The indication-oriented Dental Bone Graft Substitutes (DBGS selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA of xenograft (cerabone®, synthetic (maxresorb®, and allograft (maxgraft®, Puros® blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®. The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new

  14. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects

    International Nuclear Information System (INIS)

    Castilho, Miguel; Pires, Inês; Moseke, Claus; Ewald, Andrea; Gbureck, Uwe; Groll, Jürgen; Teßmar, Jörg; Vorndran, Elke

    2014-01-01

    The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials. (paper)

  15. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-01-01

    Full Text Available Bone repair materials are rapidly becoming a hot topic in the field of biomedical materials due to being an important means of repairing human bony deficiencies and replacing hard tissue. Magnesium (Mg alloys are potentially biocompatible, osteoconductive, and biodegradable metallic materials that can be used in bone repair due to their in situ degradation in the body, mechanical properties similar to those of bones, and ability to positively stimulate the formation of new bones. However, rapid degradation of these materials in physiological environments may lead to gas cavities, hemolysis, and osteolysis and thus, hinder their clinical orthopedic applications. This paper reviews recent work on the use of Mg alloy implants in bone repair. Research to date on alloy design, surface modification, and biological performance of Mg alloys is comprehensively summarized. Future challenges for and developments in biomedical Mg alloys for use in bone repair are also discussed.

  16. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization.

    Science.gov (United States)

    Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter

    2009-10-01

    The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.

  17. Hydroxyapatite reinforced with multi-walled carbon nanotubes and bovine serum albumin for bone substitute applications

    Science.gov (United States)

    Gholami, Fatemeh; Noor, Ahmad-Fauzi Mohd

    2016-12-01

    The similarity of the chemical composition of HA to the mineral phase of bone and its excellent biocompatibility meets the requirement of materials designed for bone substitute purpose. The application of HA in load bearing devices is limited by its poor mechanical properties. CNTs with outstanding stiffness, strength, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. This work aims to develop the Hydroxyapatite/Multi-walled Carbon Nanotubes/Bovine Serum Albumin (HA/MWCNTs/BSA) composites with different types of MWCNTs including hydroxylated and carboxylated MWCNTs (MWCNTs-OH, MWCNTs-COOH), and evaluation of mechanical strength and in vitro cellular response of developed composites. HA powder was mixed with de-ionized water, 15 wt.% BSA, and 0.5 wt.% of different MWCNTs* (> 95%), MWCNTs (> 99.9%), MWCNTs-OH (> 99.9%), MWCNTs-COOH (> 99.9%) to produce composites. Among all developed composites, the HA/MWCNTs-COOH/BSA shows the highest compressive strength (29.57 MPa). The cytotoxic effect of HA/MWCNTs-COOH/BSA with different concentrations (6.25 to 200 µg/ml) was evaluated by MTT assay against normal human colon fibroblast (CCD-18Co cell line). At low concentration, all developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and did not elicit cytotoxic effects on cell proliferation and the highest values of cell viability (283%) for the HA/MWCNTs-COOH/BSA composites obtained; whereas when the concentration was increased, the reduction in cell viability was observed. The novel composites showed favorable cytocompatibility with improved compressive strength which make it applicable to use in range of trabecular bone.

  18. Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs.

    Science.gov (United States)

    Jung, Ronald E; Kokovic, Vladimir; Jurisic, Milan; Yaman, Duygu; Subramani, Karthikeyan; Weber, Franz E

    2011-08-01

    The aim of the present study was to compare a newly developed biodegradable polylactide/polyglycolide/N-methyl-2-pyrrolidone (PLGA/NMP) membrane with a standard resorbable collagen membrane (RCM) in combination with and without the use of a bone substitute material (deproteinized bovine bone mineral [DBBM]) looking at the proposed tenting effect and bone regeneration. In five adult German sheepdogs, the mandibular premolars P2, P3, P4, and the molar M1 were bilaterally extracted creating two bony defects on each site. A total of 20 dental implants were inserted and allocated to four different treatment modalities within each dog: PLGA/NMP membrane only (Test 1), PLGA/NMP membrane with DBBM (Test 2), RCM only (negative control), and RCM with DBBM (positive control). A histomorphometric analysis was performed 12 weeks after implantation. For statistical analysis, a Friedman test and subsequently a Wilcoxon signed ranks test were applied. In four out of five PLGA/NMP membrane-treated defects, the membranes had broken into pieces without the support of DBBM. This led to a worse outcome than in the RCM group. In combination with DBBM, both membranes revealed similar amounts of area of bone regeneration and bone-to-implant contact without significant differences. On the level of the third implant thread, the PLGA/NMP membrane induced more horizontal bone formation beyond the graft than the RCM. The newly developed PLGA/NMP membrane performs equally well as the RCM when applied in combination with DBBM. Without bone substitute material, the PLGA/NMP membrane performed worse than the RCM in challenging defects, and therefore, a combination with a bone substitute material is recommended. © 2010 John Wiley & Sons A/S.

  19. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration

    OpenAIRE

    Paknejad, M.; Shayesteh, Y. Soleymani; Yaghobee, S.; Shariat, S.; Dehghan, M.; Motahari, P.

    2012-01-01

    Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Materials and Methods: Twelve New Zea...

  20. Maxillary sinus lift with solely autogenous bone compared to a combination of autogenous bone and growth factors or (solely) bone substitutes. A systematic review : a systematic review

    NARCIS (Netherlands)

    Rickert, D.; Slater, J. J. R. Huddleston; Meijer, H. J. A.; Vissink, A.; Raghoebar, G. M.

    Literature regarding the outcome of maxillary sinus floor elevation to create sufficient bone fraction to enable implant placement was systematically reviewed. Bone fraction and implant survival rate were assessed to determine whether grafting material or applied growth factor affected bone

  1. A biomimetic approach toward artificial bone-like materials

    OpenAIRE

    Bertozzi, Carolyn R.

    2001-01-01

    Bone consists of microcrystalline hydroxyapatite and collagen, an elastic protein matrix that is decorated with mineral-nucleating phosphoproteins. Our rational design of artificial bone-like material uses natural bone as a guide. Hydrogel and self-assembling polymers that possess anionic groups suitably positioned for nucleating biominerals, and therefore mimic the natural function of the collagen-phosphoprotein matrix in bone, were designed to direct template-driven biomimetic mineralizatio...

  2. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model.

    Science.gov (United States)

    van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P

    2017-09-01

    Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  4. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    Science.gov (United States)

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  5. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    Directory of Open Access Journals (Sweden)

    Farah Asa’ad

    2016-01-01

    Full Text Available To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration.

  6. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    Science.gov (United States)

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  8. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration

    OpenAIRE

    M. Paknejad; Y. Soleymani Shayesteh; S. Yaghobee; S. Shariat; M. Dehghan; P. Motahari

    2012-01-01

    Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influ-ence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Materials and Methods: Twelve New Ze...

  9. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    International Nuclear Information System (INIS)

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Hira, Sumit Kumar; Manna, Partha Pratim; Pyare, Ram; Singh, S.P.

    2016-01-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 system. This work demonstrates that the substitution of SrO for SiO 2 has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO 2 . The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO 2 in Na 2 O–CaO–SrO–P 2 O 5 –SiO 2 bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  10. Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arepalli, Sampath Kumar, E-mail: askumar.rs.cer11@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Tripathi, Himanshu [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Hira, Sumit Kumar; Manna, Partha Pratim [Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005 (India); Pyare, Ram; Singh, S.P. [Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-12-01

    Strontium contained biomaterials have been reported as a potential bioactive material for bone regeneration, as it reduces bone resorption and stimulates bone formation. In the present investigation, the bioactive glasses were designed to partially substitute SrO for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} system. This work demonstrates that the substitution of SrO for SiO{sub 2} has got significant benefit than substitution for CaO in the bioactive glass. Bioactivity was assessed by the immersion of the samples in simulated body fluid for different intervals. The formation of hydroxy carbonate apatite layer was identified by X-ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy. The elastic modulus of the bioactive glasses was measured and found to increase with increasing SrO for SiO{sub 2}. The blood compatibility of the samples was evaluated. In vitro cell culture studies of the samples were performed using human osteosarcoma U2-OS cell lines and found a significant improvement in cell viability and proliferation. The investigation showed enhancement in bioactivity, mechanical and biological properties of the strontia substituted for silica in glasses. Thus, these bioactive glasses would be highly potential for bone regeneration. - Highlights: • The substitution of SrO was done for SiO{sub 2} in Na{sub 2}O–CaO–SrO–P{sub 2}O{sub 5}–SiO{sub 2} bioactive glass. • Network connectivity significantly influenced on bioactivity and biocompatibility. • In vitro SBF studies showed enhanced HCA crystallinity on the glass surface. • The cell culture studies exhibited better cell compatibility and significant growth. • Density and elastic moduli increased with increasing concentration of strontia.

  11. Novel biocompatible polymeric blends for bone regeneration: Material and matrix design and development

    Science.gov (United States)

    Deng, Meng

    The first part of the work presented in this dissertation is focused on the design and development of novel miscible and biocompatible polyphosphazene-polyester blends as candidate materials for scaffold-based bone tissue engineering applications. Biodegradable polyesters such as poly(lactide-co-glycolide) (PLAGA) are among the most widely used polymeric materials for bone tissue engineering. However, acidic degradation products resulting from the bulk degradation mechanism often lead to catastrophic failure of the structure integrity, and adversely affect biocompatibility both in vitro and in vivo. One promising approach to circumvent these limitations is to blend PLAGA with other macromolecules that can buffer the acidic degradation products with a controlled degradation rate. Biodegradable polyphosphazenes (PPHOS), a new class of biomedical materials, have proved to be superior candidate materials to achieve this objective due to their unique buffering degradation products. A highly practical blending approach was adopted to develop novel biocompatible, miscible blends of these two polymers. In order to achieve this miscibility, a series of amino acid ester, alkoxy, aryloxy, and dipeptide substituted PPHOS were synthesized to promote hydrogen bonding interactions with PLAGA. Five mixed-substituent PPHOS compositions were designed and blended with PLAGA at different weight ratios producing candidate blends via a mutual solvent method. Preliminary characterization identified two specific side groups namely glycylglycine dipeptide and phenylphenoxy that resulted in improved blend miscibility and enhanced in vitro osteocompatibility. These findings led to the synthesis of a mixed-substituent polyphosphazene poly[(glycine ethyl glycinato)1(phenylphenoxy)1phosphazene] (PNGEGPhPh) for blending with PLAGA. Two dipeptide-based blends having weight ratios of PNGEGPhPh to PLAGA namely 25:75 (Matrix1) and 50:50 (Matrix2) were fabricated. Both of the blends were

  12. Study of Radiation Induced Radicals in HAP and β-TCP Based Bone Graft Materials by ERP Spectroscopy

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Matkovic, I.

    2013-01-01

    Calcium phosphates such as beta-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) are frequently used as dental implants due to proven excellent biocompatibility. Because of their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, literature provides little information about effects of γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this study EPR (electron paramagnetic resonance) spectroscopy was used to investigate HAP and β-TCP based dental implants present on the market. Eight dental graft materials present on the market were investigated: Bioresorb R Macropore, Poresorb R -TCP, Easy-Graft T M and Cerasorb R synthetic β-tricalcium phosphates, Easy-Graft T M crystal and Ossceram R two phase synthetic CaP consisting of 60 % HAP and 40 % β-TCP, and Dexabone R and Bio-Oss R bone graft material of bovine origin. EPR study shows that this is the only technique for characterization of free radicals that can simultaneously determine not only the presence and content, but also the position and the structure of free radicals formed by γ-sterilization in the investigated materials, as well as the paramagnetic substitutions incorporated in the materials during the synthesis (such as Mn 2+ , Fe 3+ or Cr 2+ ). Additionally, EPR provides information on stability of irradiation-induced radicals (CO 2 - , trapped H-atoms, NO 3 2 etc.) and processes for reducing them. Results show that EPR should be considered as a valuable technique in improving the quality of bone graft materials, which must be sterile, and to offer the high quality, efficacy and reliable materials to the patients.(author)

  13. The materials used in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tereshchenko, V. P., E-mail: tervp@ngs.ru; Kirilova, I. A.; Sadovoy, M. A.; Larionov, P. M. [Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Novosibirsk (Russian Federation)

    2015-11-17

    Bone tissue engineering looking for an alternative solution to the problem of skeletal injuries. The method is based on the creation of tissue engineered bone tissue equivalent with stem cells, osteogenic factors, and scaffolds - the carriers of these cells. For production of tissue engineered bone equivalent is advisable to create scaffolds similar in composition to natural extracellular matrix of the bone. This will provide optimal conditions for the cells, and produce favorable physico-mechanical properties of the final construction. This review article gives an analysis of the most promising materials for the manufacture of cell scaffolds. Biodegradable synthetic polymers are the basis for the scaffold, but it alone cannot provide adequate physical and mechanical properties of the construction, and favorable conditions for the cells. Addition of natural polymers improves the strength characteristics and bioactivity of constructions. Of the inorganic compounds, to create cell scaffolds the most widely used calcium phosphates, which give the structure adequate stiffness and significantly increase its osteoinductive capacity. Signaling molecules do not affect the physico-mechanical properties of the scaffold, but beneficial effect is on the processes of adhesion, proliferation and differentiation of cells. Biodegradation of the materials will help to fulfill the main task of bone tissue engineering - the ability to replace synthetic construct by natural tissues that will restore the original anatomical integrity of the bone.

  14. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  15. The effect of carrier type on bone regeneration of demineralized bone matrix in vivo.

    Science.gov (United States)

    Tavakol, Shima; Khoshzaban, Ahad; Azami, Mahmoud; Kashani, Iraj Ragerdi; Tavakol, Hani; Yazdanifar, Mahbube; Sorkhabadi, Seyed Mahdi Rezayat

    2013-11-01

    Demineralized bone matrix (DBM) is a bone substitute biomaterial used as an excellent grafting material. Some factors such as carrier type might affect the healing potential of this material. The background data discuss the present status of the field: Albumin as a main protein in blood and carboxymethyl cellulose (CMC) were applied frequently in the DBM gels. We investigated the bone-repairing properties of 2 DBMs with different carriers. Bone regeneration in 3 groups of rat calvaria treated with DBM from the Iranian Tissue Bank Research and Preparation Center, DBM from Hans Biomed Corporation, and an empty cavity was studied. Albumin and CMC as carriers were used. The results of bone regeneration in the samples after 1, 4, and 8 weeks of implantation were compared. The block of the histologic samples was stained with hematoxylin and eosin, and the percentage area of bone formation was calculated using the histomorphometry method. The results of in vivo tests showed a significantly stronger new regenerated bone occupation in the DBM with albumin carrier compared with the one with CMC 8 weeks after the implantation. The 2 types of DBM had a significant difference in bone regeneration. This difference is attributed to the type of carriers. Albumin could improve mineralization and bioactivity compared with CMC.

  16. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part 1. Augmentation using bone graft substitutes and autogenous bone.

    Science.gov (United States)

    Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen

    2012-01-01

    To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.

  17. [Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].

    Science.gov (United States)

    Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu

    2016-02-01

    Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.

  18. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    Science.gov (United States)

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  19. Biomechanical competence of six different bone screws for reconstructive surgery in three different transplants: Fibular, iliac crest, scapular and artificial bone.

    Science.gov (United States)

    Pietsch, Arnold P; Raith, Stefan; Ode, Jan-Eric; Teichmann, Jan; Lethaus, Bernd; Möhlhenrich, Stephan C; Hölzle, Frank; Duda, Georg N; Steiner, Timm

    2016-06-01

    The goal of this study was to determine a combination of screw and transplantation type that offers optimal primary stability for reconstructive surgery. Fibular, iliac crest, and scapular transplants were tested along with artificial bone substrate. Six different kinds of bone screws (Medartis(©)) were compared, each type utilized with one of six specimens from human transplants (n = 6). Controlled screw-in-tests were performed and the required torque was protocolled. Subsequently, pull-out-tests were executed to determine the retention forces. The artificial bone substitute material showed significantly higher retention forces than real bone samples. The self-drilling screws achieved the significantly highest retention values in the synthetic bone substitute material. Cancellous screws achieved the highest retention in the fibular transplants, while self-drilling and cancellous screws demonstrated better retention than cortical screws in the iliac crest. In the scapular graft, no significant differences were found between the screw types. In comparison to the human transplant types, the cortical screws showed the significantly highest values in the fibula and the lowest values in the iliac crest. The best retention was found in the combination of cancellous screws with fibular graft (514.8 N + -252.3 N). For the flat bones (i.e., scapular and illiac crest) we recommend the cancellous screws. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Alveolar bone repair with strontium- containing nanostructured carbonated hydroxyapatite

    Directory of Open Access Journals (Sweden)

    André Boziki Xavier do Carmo

    2018-01-01

    Full Text Available ABSTRACT Objective: This study aimed to evaluate bone repair in rat dental sockets after implanting nanostructured carbonated hydroxyapatite/sodium alginate (CHA and nanostructured carbonated hydroxyapatite/sodium alginate containing 5% strontium microspheres (SrCHA as bone substitute materials. Methods: Twenty male Wistar rats were randomly divided into two experimental groups: CHA and SrCHA (n=5/period/group. After one and 6 weeks of extraction of the right maxillary central incisor and biomaterial implantation, 5 μm bone blocks were obtained for histomorphometric evaluation. The parameters evaluated were remaining biomaterial, loose connective tissue and newly formed bone in a standard area. Statistical analysis was performed by Mann-Withney and and Wilcoxon tests at 95% level of significance. Results: The histomorphometric results showed that the microspheres showed similar fragmentation and bio-absorbation (p>0.05. We observed the formation of new bones in both groups during the same experimental periods; however, the new bone formation differed significantly between the weeks 1 and 6 (p=0.0039 in both groups. Conclusion: The CHA and SrCHA biomaterials were biocompatible, osteoconductive and bioabsorbable, indicating their great potential for clinical use as bone substitutes.

  1. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  2. Three-dimensional bone tissue substitute based on a human mesenchymal stem cell culture on a nanofiber carrier and inorganic matrix

    Directory of Open Access Journals (Sweden)

    Martin Krbec

    2016-01-01

    Full Text Available The aim was to construct a composite structure for bone tissue substitute on the basis of a degradable composite of an organic nanofiber carrier and an inorganic matrix in 3D, and to achieve subsequent colonisation by differentiated human mesenchymal stem cells (hMSC towards osteocytes. We developed an active bone tissue substitute using nanofiber technology for a polycaprolactone (PCL scaffold with the addition of hydroxyapatite and the colonisation of both components with hMSC with the ability of differentiation towards osteocytes. The constructed composition included the components necessary for bone healing (inorganic and cellular and it also forms a spatially-oriented 3D structure. We used polycaprolactone Mw 70,000 with electrostatic spinning for the formation of nanofibers using a modified NanospiderTM method. For the inorganic component we used orthophosphate-calcium silicate with a crystal size of 1-2 mm which the nanofiber membrane was coated with. Both components were connected together with a tissue adhesive based of fibrin glue. Cultivated hMSC cells at a concentration of 1.2 × 104/cm2 were multiplied in vitro and then cultivated in the expansion medium. HMSC overgrew both the PCL membrane and the Si-CaP crystals. After colonisation with cultivated cells, this composite 3D structure can serve as a three-dimensional bone tissue replacement.

  3. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    Science.gov (United States)

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-06-01

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.

  4. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  5. [Children, Collect Bones! : Teaching Aids and Propaganda Material on Bone-Collections and Bone-Utilisation Used in German Schools During the "Third Reich"].

    Science.gov (United States)

    Vaupel, Elisabeth; Preiß, Florian

    2018-06-05

    In the nineteenth and early twentieth centuries bones were an essential raw material for the German chemical industry, vital to the production of fertilizer, glue, gelatine, soap and other products. As most of this material was imported, the German school system during the "Third Reich" took the utilisation of bones as an example to illustrate the relevance of the four-year plan of 1936 and its policy of economic self-sufficiency. The school children were encouraged to collect bones from domestic sources and bring them to the collecting points in the schools. Several NS-institutions developed a variety of teaching aids and materials to support school education on this economically and politically important topic. Focussing on the example of bone-utilisation, this paper examines the messages and intentions of these educational materials. It also demonstrates how even apparently ideologically unbiased school subjects, such as chemistry, were instrumentalised for the political indoctrination of the pupils.

  6. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  7. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    Science.gov (United States)

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  8. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    Chen, Zonggang; Kang, Lingzhi; Meng, Qing-Yuan; Liu, Huanye; Wang, Zhaoliang; Guo, Zhongwu; Cui, Fu-Zhai

    2014-01-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  9. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  10. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    Science.gov (United States)

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  11. Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: Characterization and cytotoxicity analysis

    International Nuclear Information System (INIS)

    Li Yan; Nam, C T; Ooi, C P

    2009-01-01

    Calcium hydroxyapatite (HA) is the main inorganic component of natural bones and can bond to bone directly in vivo. Thus HA is widely used as coating material on bone implants due to its good osteoconductivity and osteoinductivity. Metal ions doped HA have been used as catalyst or absorbents since the ion exchange method has introduced new properties in HA which are inherent to the metal ions. For example, Mn 2+ ions have the potential to increase cell adhesion while Fe 3+ ions have magnetic properties. Here, Fe(III) substituted hydroxyapatite (Fe-HA) and Mn(II) substituted hydroxyapatite (Mn-HA) were produced by wet chemical method coupled with ion exchange mechanism. Compared with pure HA, the colour of both Fe-HA and Mn-HA nanoparticles changed from white to brown and pink respectively. The intensity of the colours increased with increasing substitution concentrations. XRD patterns showed that all samples were single phased HA while the FTIR spectra revealed all samples possessed the characteristic phosphate and hydroxyl adsorption bands of HA. However, undesired adsorption bands of carbonate substitution (B-type carbonated HA) and H 2 O were also detected, which was reasonable since the wet chemical method was used in the synthesis of these nanoparticles. FESEM images showed all samples were elongated spheroids with small size distribution and of around 70 nm, regardless of metal ion substitution concentrations. EDX spectra showed the presence of Fe and Mn and ICP-AES results revealed all metal ion substituted HA were non-stoichiometric (Ca/P atomic ratio deviates from 1.67). Fe-HA nanoparticles were paramagnetic and the magnetic susceptibility increased with the increase of Fe content. Based on the extraction assay for cytotoxicity test, both Fe-HA and Mn-HA displayed non-cytotoxicity to osteoblast.

  12. Possibilities to improve the adaptation quality of calculated material substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G.

    1981-04-01

    In calculating the composition of material substitutes by a system of simultaneous equations it is possible, by using a so called quality index, to find out of the set of solutions which generally exists that solution which possesses the best adaptation quality. Further improvement is often possible by describing coherent scattering and photoelectric interaction by an own material parameter for each effect. The exact formulation of these quantities as energy indepedent functions is, however, impossible. Using a set of attenuation coefficients at suitably chosen energies as coefficients for the system of equations the best substitutes are found. The solutions for the investigated example are identical with the original relative to its chemical composition. Such solutions may be of use in connection with neutrons, protons, heavy ions and negative pions. The components taken into consideration must, of course, permit such solutions. These facts are discussed in detail by two examples.

  13. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  15. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment.

    Science.gov (United States)

    Marković, Dejan; Jokanović, Vukoman; Petrović, Bojan; Perić, Tamara; Vukomanović, Biserka

    2014-05-01

    Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA) obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material's particles took place after 25 weeks. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects.

  16. [Guided bone regeneration: general survey].

    Science.gov (United States)

    Cosyn, Jan; De Bruyn, Hugo

    2009-01-01

    The principle of 'guided bone regeneration' was first described in 1988 on the basis of animal-experimental data. Six weeks after transmandibular defects had been created and protected by non-resorbable teflonmembranes, complete bone regeneration was found. The technique was based on the selective repopulation of the wound: every infiltration of cells outside the neighbouring bone tissue was prevented by the application of the membrane. Additional animal experiments showed that guided bone regeneration was a viable treatment option for local bone defects surrounding dental implants. Clinical practice, however, showed that premature membrane exposure was a common complication, which was responsible for a tremendous reduction in regenerated bone volume. In addition, a second surgical intervention was always necessary to remove the membrane. As a result, resorbable alternatives were developed. Since these are less rigid, bone fillers are usually used simultaneously. These comprise autogenous bone chips and bone substitutes from allogenic or xenogenic origine. Also alloplastic materials could be used for this purpose. Based on their characteristics this article provides an overview of the biomaterials that could be considered for guided bone regeneration. Specific attention goes to their application in clinical practice.

  17. Composite biopolymers for bone regeneration enhancement in bony defects.

    Science.gov (United States)

    Jahan, K; Tabrizian, M

    2016-01-01

    For the past century, various biomaterials have been used in the treatment of bone defects and fractures. Their role as potential substitutes for human bone grafts increases as donors become scarce. Metals, ceramics and polymers are all materials that confer different advantages to bone scaffold development. For instance, biocompatibility is a highly desirable property for which naturally-derived polymers are renowned. While generally applied separately, the use of biomaterials, in particular natural polymers, is likely to change, as biomaterial research moves towards mixing different types of materials in order to maximize their individual strengths. This review focuses on osteoconductive biocomposite scaffolds which are constructed around natural polymers and their performance at the in vitro/in vivo stages and in clinical trials.

  18. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Instrumental neutron activation analysis of rib bone samples and of bone reference materials

    International Nuclear Information System (INIS)

    Saiki, M.; Takata, M.K.; Kramarski, S.; Borelli, A.

    2000-01-01

    The instrumental neutron activation analysis method was used for the determination of trace elements in rib bone samples taken from autopsies of accident victims. The elements Br, Ca, Cl, Cr, Fe, Mg, Mn, Na, P, Sr, Rb and Zn were determined in cortical tissues by using short and long irradiations with thermal neutron flux of the IEA-R1m nuclear reactor. The reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were also analyzed in order to evaluate the precision and the accuracy of the results. It was verified that lyophilization is the most convenient process for drying bone samples since it does not cause any element losses. Comparisons were made between the results obtained for rib samples and the literature values as well as between the results obtained for different ribs from a single individual and for bones from different individuals. (author)

  20. Effects of Surface Morphology ZnAl2O4 of Ceramic Materials on Osteoblastic Cells Responses

    International Nuclear Information System (INIS)

    Suarez-Franco, J.L.; Fernandez-Pedrero, J.A.; Ivarez-Perez, M.A.; Garcia-Hipolito, M.; Surarez-Rosales, M.; Fregoso, O.; Juarez-Islas, J.A.; Ivarez-Perez, M.A.

    2013-01-01

    Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nano structured materials have a great potential to be used in dental implant and bone substitute applications.Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves

  1. The material from Lampung as coarse aggregate to substitute andesite for concrete-making

    Science.gov (United States)

    Amin, M.; Supriyatna, Y. I.; Sumardi, S.

    2018-01-01

    Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.

  2. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  3. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  4. Contemporary guided bone regeneration therapy for unaesthetic anterior peri-implantitis case

    Directory of Open Access Journals (Sweden)

    Benso Sulijaya

    2016-12-01

    Full Text Available Background: Dental implant is one of an alternative solutions reconstruction therapy for missing teeth. Complication of dental implant could occurs and leading to implant failure. In order to restore the complication, surgical treatment with guided bone regeneration (GBR is indicated. The potential use of bone substitutes is widely known to be able to regenerate the bone surrounding the implant and maintain bone volume. Purpose: The study aimed to demonstrate the effectiveness of implant-bone fully coverage by using sandwich technique of biphasic calcium phosphate (BCP and demineralized freeze-dried bone allografts (DFDBA bone substitutes combined with collagen resorbable membrane. Case: A 24-year-old male came with diagnosis of peri-implantitis on implant #11. Clinical finding indicated that implant thread was exposed on the labial aspect. Case management: After initial therapy including oral hygiene improvement performed, an operator did a contemporary GBR to correct the defect. Bone graft materials used were 40% β-tri calcium phosphate (β-TCP-60% hydroxyapatite (HA on the outer layer and DFDBA on the inner layer of the defect. Resorbable collagen membrane was used to cover the graft. Conclusion: GBR with sandwich technique could serve as one of the treatment choices for correcting an exposed anterior implant that would enhance the successful aesthetic outcome.

  5. Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Frasnelli, Matteo, E-mail: matteo.frasnelli@unitn.it [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); INSTM Research Unit, Via G. Giusti 9, 50123 Firenze (Italy); Cristofaro, Francesco [Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Viale Taramelli 3/b, 27100 Pavia (Italy); Sglavo, Vincenzo M. [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); INSTM Research Unit, Via G. Giusti 9, 50123 Firenze (Italy); Dirè, Sandra; Callone, Emanuela [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); “Klaus Müller” NMR Laboratory, Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); Ceccato, Riccardo [Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento (Italy); Bruni, Giovanna [Department of Chemistry, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (PV) (Italy); Cornaglia, Antonia Icaro [Department of Experimental Medicine, Faculty of Medicine, University of Pavia (Italy); Visai, Livia [Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Viale Taramelli 3/b, 27100 Pavia (Italy); Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio, 28, 27100 Pavia (PV) (Italy)

    2017-02-01

    The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr{sup 2+} amount from 0 to 100 mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N{sub 2} physisorption and Transmission Electron Microscopy. The substitution of Ca{sup 2+} with Sr{sup 2+} in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca{sup 2+} → Sr{sup 2+} substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr{sup 2+} load, the cells morphology remaining essentially unaffected. - Highlights

  6. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite

    Science.gov (United States)

    Madupalli, Honey; Pavan, Barbara; Tecklenburg, Mary M. J.

    2017-11-01

    The mineral component of bone and other biological calcifications is primarily a carbonate substituted calcium apatite. Integration of carbonate into two sites, substitution for phosphate (B-type carbonate) and substitution for hydroxide (A-type carbonate), influences the crystal properties which relate to the functional properties of bone. In the present work, a series of AB-type carbonated apatites (AB-CAp) having varying A-type and B-type carbonate weight fractions were prepared and analyzed by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and carbonate analysis. A detailed characterization of A-site and B-site carbonate assignment in the FTIR ν3 region is proposed. The mass fractions of carbonate in A-site and B-site of AB-CAp correlate differently with crystal axis length and crystallite domain size. In this series of samples reduction in crystal domain size correlates only with A-type carbonate which indicates that carbonate in the A-site is more disruptive to the apatite structure than carbonate in the B-site. High temperature methods were required to produce significant A-type carbonation of apatite, indicating a higher energy barrier for the formation of A-type carbonate than for B-type carbonate. This is consistent with the dominance of B-type carbonate substitution in low temperature synthetic and biological apatites.

  7. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of bone specimens harvested from the central part of the glenoid subchondral area. The elastic modulus varied from approximately 100 MPa at the glenoid bare area to 400 MPa at the superior part of the glenoid. With the elastic constants used a predictor of the mechanical anisotropy, the average anisotropy...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  8. Bovine bone for white ceramic

    International Nuclear Information System (INIS)

    Souza, J.L. de; Harima, E.; Leite, J.I.P.; Monteiro, F.M.; Bezerra, M.T.T.

    2011-01-01

    The porcelain is composed of feldspar, kaolin and about 50% for bovine bone ashes. This work aims to analyze the properties acquired by the substitution of kaolin by its waste. For characterization of raw materials chemical analyzes were made by X-Ray Fluorescence (XRF) and mineralogical analysis by X-Ray Diffraction (XRD). Four formulations were produced varying the percentage of waste materials of kaolin and bone ashes of 25 and 55% by weight. The samples were sintered at temperatures of 1150, 1200 and 1250 deg C. The technological tests realized were: water absorption (WA), apparent porosity (AP), apparent density (AD) and linear retraction (LR). Improvement in the physical-mechanical properties of the samples with increasing temperature were observed, and 1250 deg C obtained 0.69% of WA, 1.22% AP, 2.26 g / cm3 AD, and 0.52% LR

  9. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    International Nuclear Information System (INIS)

    Hirata, Eri; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro; Ménard-Moyon, Cécilia; Venturelli, Enrica; Bianco, Alberto

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF–CNT) showed the same effect as FGF alone. In addition, FGF–CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF–CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF–CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications. (paper)

  10. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    Science.gov (United States)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  11. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    International Nuclear Information System (INIS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-01-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found. - Highlights: • A methodology to select tissue equivalent materials for use in CT was proposed. • Physical properties of different materials were studied. • TLDs dose and dose distribution were calculated for original and proposed materials. • B-100 as bone, and water as soft tissue are best substitute materials at 80 kVp. • Mass attenuation coefficient is determinant for selecting best tissue substitutes

  12. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  13. Comparison of the dynamic behaviour of brain tissue and two model materials

    NARCIS (Netherlands)

    Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; Paas, M.H.J.W.; Bree, van J.L.M.J.; Brands, D.W.A.

    1999-01-01

    Linear viscoelastic material parameters of porcine brain tissue and two brain substitute/ materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained

  14. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    International Nuclear Information System (INIS)

    Killion, John A.; Kehoe, Sharon; Geever, Luke M.; Devine, Declan M.; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L.

    2013-01-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. Highlights: • Young's modulus increases with the addition of bioactive glasses. • Hydrogel based composites formed an apatite layer in simulated body fluid. • Storage modulus increases with addition of bioactive glasses. • Compressive strength is dependent on molecular weight and bioactive glass loading

  15. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Manganese substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications

    OpenAIRE

    Paulsen, J. A.; Ring, A. P.; Lo, C. C. H.; Snyder, John Evan; Jiles, David

    2005-01-01

    Metal bonded cobalt ferrite composites have been shown to be promising candidate materials for use in magnetoelastic stress sensors, due to their large magnetostriction and high sensitivity of magnetization to stress. However previous results have shown that below 60 °C the cobalt ferrite material exhibits substantial magnetomechanical hysteresis. In the current study, measurements indicate that substituting Mn for some of the Fe in the cobalt ferrite can lower the Curie temperature of the ma...

  17. Development and in vitro examination of materials for osseointegration

    Science.gov (United States)

    Jalota, Sahil

    Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.

  18. Material Substitution For The Supporting Frame of Power Tiller With Finite Element Analysis Approach

    Directory of Open Access Journals (Sweden)

    Midian Shite

    2006-08-01

    Full Text Available Due to its advantageouse characteristic, aluminum is considered to substitute the existing steel as material of the supporting frame of power tiller to meet the strength and environment concerns. The investigation was emphasized on the comparison of both material in view of stress and deformation. In this study, both experimental test and finite element (FE analysis were employed to meet the research concem.comparison between the experimental test and numerical analysis result indicated acceptable differnces of about 7-33% wich is lower than the previouse research. Substitution with aluminum was confirmed using material index that aluminum has better performance in strength and stiffness than that of steel by prescibing minimum better performance in strength and stiffness than that of steel by prescibing minimum weight. FE analysis result revealed that aluminum model was capable of sustaining loads about equal to the steel model. It was based on its maximum von Mises stress wich was insignificatly lower than the steel model. In term of strength characteristic, strength ratio of the aluminum model was higher than the steel model. Furthemore, the substitution also resulted in redistrubuting stress into wider area and mass reduction for about 36%.

  19. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. Copyright 2000 Kluwer Academic Publishers

  20. Inclusions in bone material as a source of error in radiocarbon dating

    International Nuclear Information System (INIS)

    Hassan, A.A.; Ortner, D.J.

    1977-01-01

    Electron probe microanalysis, X-ray diffraction and microscopic examination were conducted on bone material from several archaeological sites in order to identify post-burial inclusions which, if present, may affect radiocarbon dating of bone. Two types of inclusions were identified: (1) precipitates from ground water solutions, and (2) solid intrusion. The first type consists of calcite, pyrite, humates and an unknown material. The second type includes quartz grains, hyphae, rootlets, wood and charcoal. Precipitation of calcite in a macro-molecular level in bone may lead to erroneaous dating of bone apatite if such calcite was not removed completely. A special technique, therefore, must be employed to remove calcite comletely. Hyphae and rootlets also are likely to induce errors in radiocarbon dating of bone collagen. These very fine inclusions require more than hand picking. (author)

  1. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    International Nuclear Information System (INIS)

    Zhang Lijie; Webster, Thomas J; Rodriguez, Jose; Raez, Jose; Myles, Andrew J; Fenniri, Hicham

    2009-01-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml -1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  2. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.

    Science.gov (United States)

    Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2014-07-01

    The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.

  3. Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses.

    Science.gov (United States)

    Boyd, D; Carroll, G; Towler, M R; Freeman, C; Farthing, P; Brook, I M

    2009-01-01

    Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium-strontium-zinc-silicate glass based bone grafts and characterised their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardised models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO(2) (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation.

  4. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  5. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications.

    Science.gov (United States)

    Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong

    2017-12-01

    The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its

  6. SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures

    Directory of Open Access Journals (Sweden)

    María Piedad Ramírez Fernández

    2017-05-01

    Full Text Available Some studies have demonstrated that in vivo degradation processes are influenced by the material’s physico-chemical properties. The present study compares two hydroxyapatites manufactured on an industrial scale, deproteinized at low and high temperatures, and how physico-chemical properties can influence the mineral degradation process of material performance in bone biopsies retrieved six months after maxillary sinus augmentation. Residual biomaterial particles were examined by field scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX to determine the composition and degree of degradation of the bone graft substitute material. According to the EDX analysis, the Ca/P ratio significantly lowered in the residual biomaterial (1.08 ± 0.32 compared to the initial composition (2.22 ± 0.08 for the low-temperature sintered group, which also presented high porosity, low crystallinity, low density, a large surface area, poor stability, and a high resorption rate compared to the high-temperature sintered material. This demonstrates that variations in the physico-chemical properties of bone substitute material clearly influence the degradation process. Further studies are needed to determine whether the resorption of deproteinized bone particles proceeds slowly enough to allow sufficient time for bone maturation to occur.

  7. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats

    NARCIS (Netherlands)

    Van Der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P.; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A.; Esbrit, Pedro; Weinans, Harrie

    2015-01-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous

  8. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    International Nuclear Information System (INIS)

    Piccirillo, C.; Silva, M.F.; Pullar, R.C.; Braga da Cruz, I.; Jorge, R.; Pintado, M.M.E.; Castro, P.M.L.

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 °C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca 10 (PO 4 ) 6 (OH) 2 and β-Ca(PO 4 ) 3 ) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca 10 (PO 4 ) 6 Cl 2 ) and fluorapatite (Ca 10 (PO 4 ) 6 F 2 ) were obtained using CaCl 2 and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: ► Apatite and calcium phosphate compounds extraction from cod fish bonesBone calcination: biphasic material hydroxyapatite-calcium phosphate production ► Bone pre-treatments in solution change the material composition. ► Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. ► Concentration of other elements (Na, F, Cl) suitable for biomedical applications

  9. The efficacy of hydrothermally obtained carbonated hydroxyapatite in healing alveolar bone defects in rats with or without corticosteroid treatment

    Directory of Open Access Journals (Sweden)

    Marković Dejan

    2014-01-01

    Full Text Available Background/Aim. Autogenous bone grafting has been the gold standard in clinical cases when bone grafts are required for bone defects in dentistry. The study was undertaken to evaluate multilevel designed carbonated hydroxyapatite (CHA obtained by hydrothermal method, as a bone substitute in healing bone defects with or without corticosteroid treatment in rats as assessed by histopathologic methods. Methods. Bone defects were created in the alveolar bone by teeth extraction in 12 rats. The animals were initially divided into two groups. The experimental group was pretreated with corticosteroids: methylprednisolone and dexamethasone, intramuscularly, while the control group was without therapy. Posterior teeth extraction had been performed after the corticosteroid therapy. The extraction defects were fulfilled with hydroxyapatite with bimodal particle sizes in the range of 50-250 μm and the sample from postextocactional defect of the alveolar bone was analyzed pathohystologically. Results. The histopatological investigations confirmed the biologic properties of the applied material. The evident growth of new bone in the alveolar ridge was clearly noticed in both groups of rats. Carbonated HA obtained by hydrothermal method promoted bone formation in the preformed defects, confirming its efficacy for usage in bone defects. Complete resorption of the material’s particles took place after 25 weeks. Conclusion. Hydroxyapatite completely meets the clinical requirements for a bone substitute material. Due to its microstructure, complete resorption took place during the observation period of the study. Corticosteroid treatment did not significantly affect new bone formation in the region of postextractional defects. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  10. Is Graphene a Promising Nano-Material for Promoting Surface Modification of Implants or Scaffold Materials in Bone Tissue Engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang

    2014-01-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041

  11. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

    Science.gov (United States)

    Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng

    2014-10-01

    Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

  12. Pilot study on orthodontic space closure after guided bone regeneration.

    Science.gov (United States)

    Reichert, Christoph; Wenghöfer, Matthias; Götz, Werner; Jäger, Andreas

    2011-03-01

    In the present study, the benefit of moving teeth into extraction sockets preserved by a bone substitute was evaluated. This was performed to determine whether this was advantageous for orthodontic space closure. Socket preservation employing the bony alveolus in patients presenting the orthodontic indication for premolar extraction therapy was performed. Analogue premolars were extracted in a split-mouth design. One extraction alveolus was filled with a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute, with the other acting as a control. The orthodontic space was then closed using NiTi closed coil springs (200 g). Photographs and X-rays were acquired for documentation. Space closure succeeded without complications, e.g., root resorptions or inflammations. Gingival invaginations occurred in two of the control sites. A difference in the velocity of extraction space closure in one patient was also observed. Orthodontic tooth movement using this bone replacement material is possible according to these study results. This technique, thus, warrants further investigation in future clinical trials focusing on preventive means to reduce the development of gingival invaginations.

  13. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  14. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    Directory of Open Access Journals (Sweden)

    Mira Moussa

    2015-04-01

    Full Text Available Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8. Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3% and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%. These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  15. Substitution effects in magnetic and superconducting materials

    Directory of Open Access Journals (Sweden)

    Peña, O.

    1999-10-01

    Full Text Available Chemical substitutions at very low level have been proved to be a very effective tool to change important physical parameters in many kinds of materials. These modifications may be the result of, for instance, subtle variations of the position of the Fermi level with respect to the density of states, presence of additional electrons which may change the hole carrier concentration, steric effects which impose contraints in the crystallographic lattice, mixed-valence states resultating from the dismutation of chemical components, etc. We review herein three systems in which the substitution effects are at the origin of new physical states : the high-Tc superconductor bismuth cuprate of the 2212 family, the mixed-valence manganese perovskites representative of giant magneto-resistive compounds, and the Chevrel phase materials in which a structural transition may inhibit the superconducting state.

    Las substituciones químicas a un nivel muy pequeño se han probado como una importante herramienta para cambiar los parámetros físicos en una gran variedad de materiales. Estas modificaciones pueden ser el resultado de, por ejemplo, muy ligeras variaciones de la posición del nivel de Fermi con respecto a la densidad de estados, presencia de electrones adicionales que pueden cambiar la concentración de portadores tipo huecos, efectos estéricos que imponen restricciones en la red cristalográfica, estados de valencia mixtos resultantes de la dismutación de los componentes químicos, etc. Aquí se revisan tres sistemas donde los efectos de substitución son el origen de nuevos estados físicos: los superconductores de alta temperatura basados en cupratos de bismuto de la familia 2212, las perovskitas de manganeso de valencia mixta representantes de compuestos con magnetorresistencia gigante, y los materiales con fases de Chevrelt cuya transición estructural puede inhibir el estado superconductor.

  16. Study and rheological characterization of various bone ash porcelain formulations

    International Nuclear Information System (INIS)

    Carus, L.A.; Bento, L.; Braganca, S.R.

    2012-01-01

    The bone ash porcelain is a widely accepted product on the market because their qualities such as high strength and whiteness, to differ from common table porcelains. Its traditional formulation comes from an English recipe, consisting of 25% of kaolin, 25% of feldspar and 50% of bovine bone ash. In some studies, this proportion is adapted to regional conditions, optimizing the formulation according to the raw materials available. In this study, the rheological behavior of bone porcelain suspensions, in which the flux feldspar is partially substituted by an alternative flux (espudomenio, wollastonite and glass). The results show that the rheological behavior of porcelain is affected by the size, shape, surface area and particle size distribution of particles in suspension

  17. Bone induction by surface-double-modified true bone ceramics in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Jingfeng; Chen, Liaobin; Deng, Yu; Zheng, Qixin; Guo, Xiaodong; Zou, Zhenwei; Liu, Yudong; Lan, Shenghui

    2013-01-01

    True bone ceramic (TBC), obtained by twice sintering fresh bovine cancellous bone at high temperatures, is an osteoconductive and bioactive bone substitute material that exhibits excellent biocompatibility with hard tissue. The authors have previously synthesized a novel BMP-2-related peptide, P24, and found that it could enhance the osteoblastic differentiation of cells. The objective of the present study was to construct a double-modified TBC via mineralization into simulated body fluid and P24 incorporation for enhanced bone formation. In vitro experiments revealed that surface mineralization-modified (SMM) TBC scaffolds demonstrated efficiency for sustained release of P24. The P24/SMM-TBC composite exhibited increased osteogenic activity by cell adhesion rate determination, MTT assay, alkaline phosphatase staining, and calcium nodule staining with alizarin red compared with SMM-TBC and TBC. In vivo studies showed that the P24/SMM-TBC composite scaffold promoted significant bone defect repair, in marked contrast to stand-alone SMM-TBC and TBC, based on the results of radiographic evaluation and histological examination. These findings indicate that SMM-TBC is a good scaffold for the controlled release of P24 and that the P24/SMM-TBC composite could improve the adhesion, proliferation and differentiation of cells and repair bone defects. The double-modified P24/SMM-TBC composite biomaterial shows potential for clinical application in bone tissue engineering. (paper)

  18. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    Science.gov (United States)

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  19. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  20. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, C.; Silva, M.F. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pullar, R.C. [Dept. Engenharia de Materiais e Ceramica/CICECO, Universidade de Aveiro, Aveiro (Portugal); Braga da Cruz, I. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Jorge, R. [WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pintado, M.M.E. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Castro, P.M.L., E-mail: plcastro@porto.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal)

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 Degree-Sign C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and {beta}-Ca(PO{sub 4}){sub 3}) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}) and fluorapatite (Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}) were obtained using CaCl{sub 2} and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: Black-Right-Pointing-Pointer Apatite and calcium phosphate compounds extraction from cod fish bones Black-Right-Pointing-Pointer Bone calcination: biphasic material hydroxyapatite-calcium phosphate production Black-Right-Pointing-Pointer Bone pre-treatments in solution change the material composition. Black-Right-Pointing-Pointer Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. Black-Right-Pointing-Pointer Concentration of other elements (Na, F, Cl) suitable for biomedical applications.

  1. Composite resin as an implant material in bone. Histologic, radiologic, microradiologic and oxytetracycline fluorescence examination of rats

    Energy Technology Data Exchange (ETDEWEB)

    Vainio, J; Rokkanen, P [Tampere Univ. (Finland). Inst. of Clinical Sciences; Central Hospital, Tampere (Finland))

    1978-01-01

    The potential of a bis-GMA composite resin as implant material in bone is evaluated. The material is claimed to have mechanical and physical properties superior to those of the bone cements used today. A groove made in the cortex of the tibia in 18 rats was filled with bis-GMA, while a similar was left empty in the contralateral tibia. The reaction of the bone to this material was evaluated by histologic, radiologic, microradiograph and OTC-fluorescence methods. The material was well tolerated by the bone; after 1,3 and 6 weeks no reaction to the material was observed.

  2. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: In vivo study in a nonloaded goat model

    NARCIS (Netherlands)

    Walschot, L.H.B.; Aquarius, R.; Schreurs, B.W.; Verdonschot, Nicolaas Jacobus Joseph; Buma, P.

    2012-01-01

    Aims: Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium

  3. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    NARCIS (Netherlands)

    Walschot, L.H.B.; Aquarius, R.J.; Schreurs, B.W.; Verdonschot, N.J.; Buma, P.

    2012-01-01

    AIMS: Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium

  4. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  5. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek [Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin (Poland); Polkowska, Izabela [Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin (Poland); Belcarz, Anna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Karpiński, Mirosław [Department of Companion and Wildlife Animals, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Słowik, Tymoteusz [Independent Radiology Unit at Lublin Small Animals Medical Centre, Stefczyka 11, 20-151 Lublin (Poland); Matuszewski, Łukasz [Children' s Orthopaedic Clinic and Rehabilitation Department, Medical University of Lublin, Chodzki 2, 20-093 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2015-08-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration.

  6. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    International Nuclear Information System (INIS)

    Borkowski, Leszek; Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek; Polkowska, Izabela; Belcarz, Anna; Karpiński, Mirosław; Słowik, Tymoteusz; Matuszewski, Łukasz; Ślósarczyk, Anna; Ginalska, Grażyna

    2015-01-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration

  7. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  8. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA Loaded with Collagen I: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ulrike Ritz

    2017-11-01

    Full Text Available Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1 release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  9. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study.

    Science.gov (United States)

    Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria

    2017-11-29

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  10. Horizontal Bone Reconstruction on sites with different amounts of native bone: a retrospective study

    Directory of Open Access Journals (Sweden)

    André Antonio Pelegrine

    2018-04-01

    Full Text Available Abstract: The lack of guidelines for bone augmentation procedures might compromise decision making in implantology. The objective of this study was to perform a retrospective study to verify the outcomes of horizontal bone reconstruction in implant dentistry with different types of materials and amounts of native bone in the recipient bed to allow for a new guideline for horizontal bone reconstruction. One hundred preoperative CT scans were retrospectively evaluated and categorized in accordance to horizontal bone defects as presence (Group P or absence (Group A of cancellous bone in the recipient bed. Different approaches were used to treat the edentulous ridge and the outcomes were defined either as satisfactory or unsatisfactory regarding the possibility of implant placement. The percentage distribution of the patients according to the presence or absence of cancellous bone was 92% for Group P and 8% for Group A. In Group P, 98% of the patients had satisfactory outcomes, and the use of autografts had 100% of satisfactory outcomes in this group. In Group A, 37.5% of the patients had satisfactory outcomes, and the use of autografts also yielded 100% of satisfactory outcomes. The use of allografts and xenografts in Group A had 0% and 33.3% of satisfactory outcomes, respectively. Therefore, it seems reasonable to speculate that the presence of cancellous bone might be predictive and predictable when the decision includes bone substitutes. In cases of absence of cancellous bone in the recipient bed, the use of a vitalized graft seems to be mandatory.

  11. Hydroxyapatite/collagen bone-like nanocomposite.

    Science.gov (United States)

    Kikuchi, Masanori

    2013-01-01

    Our group has succeeded to synthesize material with bone-like nanostructure and bone-like inorganic and organic composition via self-organization mechanism between them using simultaneous titration method under controlled pH and temperature. The hydroxyapatite/collagen (HAp/Col) bone-like nanocomposite completely incorporated into bone remodeling process to be substituted by new bone. Cells cultured on the HAp/Col revealed very interesting reactions. Osteoblast-like MG63 cells showed upregulation of alkaline phosphatase >3 times greater than MG63 cells cultured on tissue culture polystyrene (TCPS). MG63 cells 3-dimensionally cultured in a "HAp/Col sponge," a porous HAp/Col having sponge-like viscoelasticity, accumulated calcium phosphate nodules on extracellular matrices they secreted. Bone marrow cells co-cultured with osteoblasts on HAp/Col differentiated to osteoclasts without differentiation supplements. This phenomenon is not found in cells cultured on hydroxyapatite ceramics and TCPS, and rarely in cells cultured on dentin. These results suggest that HAp/Col is a good candidate for tissue engineering of bone as well as bone filler. In a clinical test as a bone filler, the HAp/Col sponge was significantly better than porous β-tricalcium phosphate. The HAp/Col sponge has been approved by the Japanese government and will be used as greatly needed bone filler in patients. In addition to the above, HAp/Col coating on titanium revealed higher osteo-conductivity than HAp-coated titanium and bare titanium and improved direct bonding between titanium and newly formed bone. The HAp/Col coating may be used for metal devices requiring osseointegration.

  12. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  13. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

    Science.gov (United States)

    Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan

    2017-12-01

    As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.

  14. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds

    DEFF Research Database (Denmark)

    Bjerre, Lea; Bünger, Cody E; Kassem, Moustapha

    2008-01-01

    Autologous bone grafts are currently the gold standard for treatment of large bone defects, but their availability is limited due to donor site morbidity. Different substitutes have been suggested to replace these grafts, and this study presents a bone tissue engineered alternative using silicate......-substituted tricalcium phosphate (Si-TCP) scaffolds seeded with human bone marrow-derived mesenchymal stem cells (hMSC). The cells were seeded onto the scaffolds and cultured either statically or in a perfusion bioreactor for up to 21 days and assessed for osteogenic differentiation by alkaline phosphatase activity...... assays and by quantitative real-time RT-PCR on bone markers. During culture, cells from the flow cultured constructs demonstrated improved proliferation and osteogenic differentiation verified by a more pronounced expression of several bone markers, e.g. alkaline phosphatase, osteopontin, Runx2, bone...

  15. Decalcified allograft in repair of lytic lesions of bone: A study to evolve bone bank in developing countries

    Directory of Open Access Journals (Sweden)

    Anil Kumar Gupta

    2016-01-01

    Full Text Available Background: The quest for ideal bone graft substitutes still haunts orthopedic researchers. The impetus for this search of newer bone substitutes is provided by mismatch between the demand and supply of autogenous bone grafts. Bone banking facilities such as deep frozen and freeze-dried allografts are not so widely available in most of the developing countries. To overcome the problem, we have used partially decalcified, ethanol preserved, and domestic refrigerator stored allografts which are economical and needs simple technology for procurement, preparation, and preservation. The aim of the study was to assess the radiological and functional outcome of the partially decalcified allograft (by weak hydrochloric acid in patients of benign lytic lesions of bone. Through this study, we have also tried to evolve, establish, and disseminate the concept of the bone bank. Materials and Methods: 42 cases of lytic lesions of bone who were treated by decalcified (by weak hydrochloric acid, ethanol preserved, allografts were included in this prospective study. The allograft was obtained from freshly amputated limbs or excised femoral heads during hip arthroplasties under strict aseptic conditions. The causes of lytic lesions were unicameral bone cyst ( n = 3, aneurysmal bone cyst ( n = 3, giant cell tumor ( n = 9, fibrous dysplasia ( n = 12, chondromyxoid fibroma, chondroma, nonossifying fibroma ( n = 1 each, tubercular osteomyelitis ( n = 7, and chronic pyogenic osteomyelitis ( n = 5. The cavity of the lesion was thoroughly curetted and compactly filled with matchstick sized allografts. Results: Quantitative assessment based on the criteria of Sethi et al. (1993 was done. There was complete assimilation in 27 cases, partial healing in 12 cases, and failure in 3 cases. Functional assessment was also done according to which there were 29 excellent results, 6 good, and 7 cases of failure (infection, recurrence, and nonunion of pathological fracture. We

  16. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.

    Science.gov (United States)

    Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J

    2016-03-15

    Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.

  17. Substitution of wastes for fuels and raw materials in high-temperature processes; Substitution von Brennstoffen und Rohstoffen durch Abfaelle in Hochtemperaturprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Energieverfahrenstechnik; Beckmann, M. [Clausthaler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany)

    1998-09-01

    The physical recycling and energy conversion of wastes has for a long time been a topic of discussion. Some of the most interesting questions in this connection concern specific applications such as the co-combustion of sewage sludge in power plants, substitution of plastic wastes for primary fuels in burning processes in the cement industry etc. This paper also undertakes a comparative study of different applications, giving additional consideration to the state of the art in thermal waste treatment. Different processes can of course only be compared by taking the entirety of expenditures on additives and auxiliary energy into account and assuming equal side constraints for all processes. A further requirement is that the waste materials` specific properties that are relevant to the application in question have to be taken into account. This concerns in particular the effects of the substitution of waste-derived fuels (secondary fuels) for primary fuels on, for example, heat transfer conditions during the combustion process, flow conditions, and the resultant temperature distribution, transport of feedstock, and specific energy expenditure. Secondary fuels must be suited for substitution in various respects, e.g. in their material properties, and their combustion and thermal behaviour. The present paper deals in particular with the requirements on wastes as substitutes for primary fuels with regard to combustion and thermal behaviour. For this purpose it briefly discusses some important aspects of heat transfer in firing plants and industrial furnaces. An important criterion in assessing fuel substitution is the energy exchange ratio, which expresses value of the substitute fuel relative to that of the primary fuel and should be duly considered when making comparative studies. Focussing on aspects of process engineering the paper also deals exemplarily with the influence of fuel substitution on, e.g. furnace temperature, exhaust gas quantities etc. in clinker

  18. Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats.

    Science.gov (United States)

    Nacer, Renato Silva; Poppi, Rodrigo Ré; Carvalho, Paulo de Tarso Camilo de; Silva, Baldomero Antonio Kato da; Odashiro, Alexandre Nakao; Silva, Iandara Schettert; Delben, José Renato Jurkevicz; Delben, Angela Antonia Sanches Tardivo

    2012-01-01

    To evaluate the biologic behavior of the castor polymer containing silica nanoparticles as a bone substitute in diafisary defect. Twenty seven male Rattus norvegicus albinus Wistar lineage were submitted to bone defect filled with castor oil polymer. Three experimental groups had been formed with nine animals each: (1) castor oil polymer containing only calcium carbonate; (2) castor oil polymer with calcium carbonate and doped with 5% of silica nanoparticles; (3) castor polymer with calcium carbonate doped with 10% of silica nanoparticles; 3 animals of each group were submitted to euthanasia 15, 30 and 60 days after experimental procedure, and their femurs were removed to histological evaluation. there was bone growth in all the studied groups, with a greater tendency of growth in the group 1. After 30 days all the groups presented similar results. After 60 days a greater amount of fibroblasts, osteoblasts, osteocytes and osteoclasts in group 3 was observed, with integrated activity of 3 kinds of cells involved in the bone activation-reabsorption-formation. The castor polymer associated to the silica nanoparticles is biocompatible and allows osteoconduction. The presence of osteoprogenitors cells suggests silica osteoinduction capacity.

  19. Comparison about the bone material examination of JIS and ISO; Honezai shiken ni kansuru JIS to ISO no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Sumie.; Yanagi, Kei.; Shimura, Akiharu.; Murohoshi, Shiori. [Japan Testing Center for Construction Materials, Tokyo (Japan)

    1998-12-01

    There are various things in slug bone material and so on manufactured from the macadam, crumble sand. Which crushed rock including gravel, sand to produce in the nature and which was manufactured, and a lightweight bone material and the industry by-product with the bone material used for the concrete. It is necessary with a bone material to grasp the nature of the bone material itself properly to occupy about 70% of the capacity in the concrete and to manufacture the good concrete of the quality from the influence that influence to the various concrete materiality that quality being big. When the quality of a bone material to use for the concrete is confirmed, an examination is being done in accordance with the way of examining it established as the Japanese industry standard in our country. (NEDO)

  20. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  1. Hydroxyapatite/polylactide biphasic combination scaffold loaded with dexamethasone for bone regeneration.

    Science.gov (United States)

    Son, Jun-Sik; Kim, Su-Gwan; Oh, Ji-Su; Appleford, Mark; Oh, Sunho; Ong, Joo L; Lee, Kyu-Bok

    2011-12-15

    This study presents a novel design of a ceramic/polymer biphasic combination scaffold that mimics natural bone structures and is used as a bone graft substitute. To mimic the natural bone structures, the outside cortical-like shells were composed of porous hydroxyapatite (HA) with a hollow interior using a polymeric template-coating technique; the inner trabecular-like core consisted of porous poly(D,L-lactic acid) (PLA) that was loaded with dexamethasone (DEX) and was directly produced using a particle leaching/gas forming technique to create the inner diameter of the HA scaffold. It was observed that the HA and PLA parts of the fabricated HA/PLA biphasic scaffold contained open and interconnected pore structures, and the boundary between both parts was tightly connected without any gaps. It was found that the structure of the combination scaffold was analogous to that of natural bone based on micro-computed tomography analysis. Additionally, the dense, uniform apatite layer was formed on the surface of the HA/PLA biphasic scaffold through a biomimetic process, and DEX was successfully released from the PLA of the biphasic scaffold over a 1-month period. This release caused human embryonic palatal mesenchyme cells to proliferate, differentiate, produce ECM, and form tissue in vitro. Therefore, it was concluded that this functionally graded scaffold is similar to natural bone and represents a potential bone-substitute material. Copyright © 2011 Wiley Periodicals, Inc.

  2. Quantifying migration and polarization of murine mesenchymal stem cells on different bone substitutes by confocal laser scanning microscopy.

    Science.gov (United States)

    Roldán, J C; Chang, E; Kelantan, M; Jazayeri, L; Deisinger, U; Detsch, R; Reichert, T E; Gurtner, G C

    2010-12-01

    Cell migration is preceded by cell polarization. The aim of the present study was to evaluate the impact of the geometry of different bone substitutes on cell morphology and chemical responses in vitro. Cell polarization and migration were monitored temporally by using confocal laser scanning microscopy (CLSM) to follow green fluorescent protein (GFP)±mesenchymal stem cells (MSCs) on anorganic cancellous bovine bone (Bio-Oss(®)), β-tricalcium phosphate (β-TCP) (chronOS(®)) and highly porous calcium phosphate ceramics (Friedrich-Baur-Research-Institute for Biomaterials, Germany). Differentiation GFP±MSCs was observed using pro-angiogenic and pro-osteogenic biomarkers. At the third day of culture polarized vs. non-polarized cellular sub-populations were clearly established. Biomaterials that showed more than 40% of polarized cells at the 3rd day of culture, subsequently showed an enhanced cell migration compared to biomaterials, where non-polarized cells predominated (ppolarization predominated at the 7th day of culture (p=0.001). This model opens an interesting approach to understand osteoconductivity at a cellular level. MSCs are promising in bone tissue engineering considering the strong angiogenic effect before differentiation occurs. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    Science.gov (United States)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  4. Evaluation of cell binding peptide (p15) with silk fibre enhanced hydroxyappatite bone substitute for posterolateral spinal fusion in sheep

    DEFF Research Database (Denmark)

    Axelsen, M.; Jespersen, Stig; Overgaard, Søren

    2015-01-01

    Background: Spinal fusion is indicated in the surgical management of various spinal disorders. To ensure stabile fusion, bone graft materials are essential. Traditionally allo- or autograft has been used, but both are associated with limitations. Synthetic bone graft materials that reassemble today......: In this study, we compared fusion rates between silk fibre enhanced anorganic bovine derived hydroxyapatite matrix (ABM) with and without P15 peptide coating in uninstrumented PLF in a preclinical setting. Study design: Randomised prospective study in sheep. Method/materials: Twelve Tex/got sheep underwent open...

  5. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna

    2016-01-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. - Highlights: • Bioactivity of two calcium phosphates (HAP and CHAP) was compared. • Two novel ceramic-polymer composite materials were developed. • We examined apatite forming ability of scaffolds in SBF solution. • We report comparable bioactive properties between both materials.

  6. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Sroka-Bartnicka, Anna [Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin (Poland); Drączkowski, Piotr [Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20-093 Lublin (Poland); Ptak, Agnieszka [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Zięba, Emil [SEM Laboratory, Department of Zoology and Ecology, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. - Highlights: • Bioactivity of two calcium phosphates (HAP and CHAP) was compared. • Two novel ceramic-polymer composite materials were developed. • We examined apatite forming ability of scaffolds in SBF solution. • We report comparable bioactive properties between both materials.

  7. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    Science.gov (United States)

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  8. Lightweight Open-Cell Scaffolds from Sea Urchin Spines with Superior Material Properties for Bone Defect Repair.

    Science.gov (United States)

    Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing

    2017-03-22

    Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.

  9. Injectable biphasic calcium phosphate cements as a potential bone substitute

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Wolke, J.G.C.; Leeuwenburgh, S.C.G.; Yubao, L.; Jansen, J.A.

    2014-01-01

    Apatitic calcium phosphate cements (CPCs) have been widely used as bone grafts due to their excellent osteoconductive properties, but the degradation properties are insufficient to stimulate bone healing in large bone defects. A novel approach to overcome the lack of degradability of apatitic CPC

  10. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite.

    Science.gov (United States)

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Si-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sinterability

    International Nuclear Information System (INIS)

    Bianco, Alessandra; Cacciotti, Ilaria; Lombardi, Mariangela; Montanaro, Laura

    2009-01-01

    Synthetic hydroxyapatites incorporating small amounts of Si have shown improved biological performances in terms of enhanced bone apposition, bone in-growth and cell-mediated degradation. This paper reports a systematic investigation on Si-substituted hydroxyapatite (Si 1.40 wt%) nanopowders produced following two different conventional wet methodologies: (a) precipitation of Ca(NO 3 ) 2 .4H 2 O and (b) titration of Ca(OH) 2 . The influence of the synthesis process on composition, thermal behaviour and sinterability of the resulting nanopowders is studied. Samples were characterised by electron microscopy, induced coupled plasma atomic emission spectroscopy, thermal analysis, infrared spectroscopy, N 2 adsorption measurements, X-ray diffraction and dilatometry. Semicrystalline Si-substituted hydroxyapatite powders made up of needle-like nanoparticles were obtained, the specific surface area ranged between 84 and 110 m 2 /g. Pure and Si-substituted hydroxyapatite nanopowders derived from Ca(NO 3 ) 2 .4H 2 O decomposed around 1000 deg. C. Si-substituted hydroxyapatite nanopowders obtained from Ca(OH) 2 were thermally stable up to 1200 deg. C and showed a distinct decreased thermal stability with respect to the homologous pure sample. Si-substituted hydroxyapatites exhibited higher sintering temperature and increased total shrinkage with respect to pure powders. Nanostructured dense ceramics were obtained by sintering at 1100 deg. C Si-substituted hydroxyapatites derived from Ca(OH) 2

  12. Alternatives to Autologous Bone Graft in Alveolar Cleft Reconstruction: The State of Alveolar Tissue Engineering.

    Science.gov (United States)

    Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William

    2018-05-01

    Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most

  13. Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials

    International Nuclear Information System (INIS)

    Zhang, Jianhua; Tao, Cuilian; Zhu, Yufang; Zhu, Min; Li, Jie; Hanagata, Nobutaka

    2013-01-01

    We have prepared multifunctional magnetic mesoporous Fe–CaSiO 3 materials using triblock copolymer (P123) as a structure-directing agent. The effects of Fe substitution on the mesoporous structure, in vitro bioactivity, magnetic heating ability and drug delivery property of mesoporous CaSiO 3 materials were investigated. Mesoporous Fe–CaSiO 3 materials had similar mesoporous channels (5–6 nm) with different Fe substitution. When 5 and 10% Fe were substituted for Ca in mesoporous CaSiO 3 materials, mesoporous Fe–CaSiO 3 materials still showed good apatite-formation ability and had no cytotoxic effect on osteoblast-like MC3T3-E1 cells evaluated by the elution cell culture assay. On the other hand, mesoporous Fe–CaSiO 3 materials could generate heat to raise the temperature of the surrounding environment in an alternating magnetic field due to their superparamagnetic property. When we use gentamicin (GS) as a model drug, mesoporous Fe–CaSiO 3 materials release GS in a sustained manner. Therefore, magnetic mesoporous Fe–CaSiO 3 materials would be a promising multifunctional platform with bone regeneration, local drug delivery and magnetic hyperthermia. (paper)

  14. Development of the sex quality of the material for high; Kotaiyosei suritto puragu zaishitsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, R. [TYK Corp., Gifu (Japan)

    1999-02-01

    When it works for the stable durability of the gas business slit flag, a spooling is made a problem like heat, and the improvement of the quality of the material is being done. It is formed, and a thermostability spooling causes curving, and the existence of that gap is being improved by substituting some of the bone materials for the special alumina bone material during the bone material and the matrix by being connected with the resistance of the crack development the gap when a crack develops, it branches off .A stable durability is confirmed even in an actual opportunity, and heat shock crack resistance Rst is placed on the effective method as an evaluation of the thermostability spooling. (translated by NEDO)

  15. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  16. Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta.

    Science.gov (United States)

    Fiedler, Imke A K; Schmidt, Felix N; Wölfel, Eva M; Plumeyer, Christine; Milovanovic, Petar; Gioia, Roberta; Tonelli, Francesca; Bale, Hrishikesh A; Jähn, Katharina; Besio, Roberta; Forlino, Antonella; Busse, Björn

    2018-04-17

    Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Since the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how osteogenesis imperfecta manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/ +) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier transform infrared spectroscopy, nanoindentation and X-ray microscopy. At the skeletal level, Chi/+ display smaller body size, deformities and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to WT. The alterations in the cellular, compositional and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/ +. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant osteogenesis imperfecta. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems.

    Directory of Open Access Journals (Sweden)

    Reza Mahmoudi

    Full Text Available For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs. The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses.In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN. Dose calculations were performed on two TPSs.The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV at three kVp's was less than 1.2%.The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems.

  18. Cell based bone tissue engineering in jaw defects

    NARCIS (Netherlands)

    Meijer, Gert J.; de Bruijn, Joost Dick; Koole, Ron; van Blitterswijk, Clemens

    2008-01-01

    In 6 patients the potency of bone tissue engineering to reconstruct jaw defects was tested. After a bone marrow aspirate was taken, stem cells were cultured, expanded and grown for 7 days on a bone substitute in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix.

  19. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  20. A new Fe–Mn–Si alloplastic biomaterial as bone grafting material: In vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Fântânariu, Mircea, E-mail: mfantanariu@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Trincă, Lucia Carmen, E-mail: lctrinca@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, Str. Aleea M. Sadoveanu, no. 3, 700490, Iasi (Romania); Solcan, Carmen, E-mail: csolcan@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Trofin, Alina, E-mail: aetrofin@yahoo.com [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, Str. Aleea M. Sadoveanu, no. 3, 700490, Iasi (Romania); Strungaru, Ştefan, E-mail: strungaru_stefan@yahoo.com [“Alexandru Ioan Cuza” University, Faculty of Biology, Bulevardul Carol I, Nr.11, 700506, Iasi (Romania); Şindilar, Eusebiu Viorel, E-mail: esindilar@uaiasi.ro [“Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489, Iasi (Romania); Plăvan, Gabriel, E-mail: gabriel.plavan@uaic.ro [“Alexandru Ioan Cuza” University, Faculty of Biology, Bulevardul Carol I, Nr.11, 700506, Iasi (Romania); and others

    2015-10-15

    Highlights: • A Fe–Mn–Si alloy was obtained as alloplastic graft material for bone implants. • Fe–Mn–Si alloy degradation rate was preliminary evaluate with SEM and EDAX techniques. • Biochemical, histological, RX and CT investigations were done in rats with subcutaneous and tibiae implants. • Fe–Mn–Si alloy assured an ideal compromise between degradation and mechanical integrity during bone regeneration. - Abstract: Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft–host interface and by having a potential endocrine like effect on osteoblasts. A Fe–Mn–Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X’Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe–Mn–Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe–Mn–Si alloy assured the mechanical integrity in rat tibiae defects

  1. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    Science.gov (United States)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  2. Metaphyseal bone loss demonstrated with routine planar radiography

    International Nuclear Information System (INIS)

    Mintzer, C.M.; Robertson, D.D.; Weissman, B.; Ewald, F.; Spector, M.

    1989-01-01

    This paper reports on an vitro study performed to examine the ability of current-day radiography for detecting metaphyseal bone loss. A block was cut from the anterior aspect of a cadaveric distal femur, sequential sections (approximately 4% of the BMC of the block) were cut from the block, and a fat-equivalent material was substituted in to the void. Following removal of each bone section, the femur was placed in a water bath, a lateral radiography was taken, and the ash content of the section was determined. Five readers each evaluated over 100 combinations of two radiographs side by side, noting whether there was no difference or whether one femur's region of interest was denser. The readings were compared with bone mineral differences as determined by ashing. All readers identified losses of 25% or more, and 5%-10% losses were seen by four of five readers half of the time

  3. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  4. Development of bone-lead reference materials for validating in vivo XRF measurements

    International Nuclear Information System (INIS)

    Parsons, P.J.; Zong, Y.Y.; Matthews, M. R.

    1995-01-01

    A number of biological reference materials (RM) have been prepared in our laboratory specifically for validating analytical methods for the determination of Pb in biological matrices (e.g. blood, urine, liver, and bone). The RM's were developed using animal (goats and cows) that are routinely dosed with lead acetate to produce proficiency test samples for blood lead (and erythrocyte protoporphyrin). In cases where an animal becomes injured or infirm, the veterinarian in charge may recommend that the animal be euthanized. In such cases, samples of bone, brain, liver, and other tissues containing lead are removed at autopsy. Currently, we have collected bone samples from nine goats and one cow that were dosed with lead over periods ranging from 1 to 10 years. During the autopsy, the epiphyses (bone joints) are separated from each long bone. Skin, muscle, and other adhering tissues are dissected or scraped from each bone. Bone marrow is also removed. All bare bones are currently stored at -70 degrees C until analyses for Pb are conducted

  5. Bovine bone for white ceramic; Osso bovino para ceramica branca

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.L. de; Harima, E.; Leite, J.I.P.; Monteiro, F.M.; Bezerra, M.T.T., E-mail: leonaldo.souza@yahoo.com.br [Instituto de Educacao, Ciencia e Tecnologia do Rio Grande do Norte (LPMR/IFRN), Natal, RN (Brazil). Laboratorio de Processamento Mineral e de Residuos

    2011-07-01

    The porcelain is composed of feldspar, kaolin and about 50% for bovine bone ashes. This work aims to analyze the properties acquired by the substitution of kaolin by its waste. For characterization of raw materials chemical analyzes were made by X-Ray Fluorescence (XRF) and mineralogical analysis by X-Ray Diffraction (XRD). Four formulations were produced varying the percentage of waste materials of kaolin and bone ashes of 25 and 55% by weight. The samples were sintered at temperatures of 1150, 1200 and 1250 deg C. The technological tests realized were: water absorption (WA), apparent porosity (AP), apparent density (AD) and linear retraction (LR). Improvement in the physical-mechanical properties of the samples with increasing temperature were observed, and 1250 deg C obtained 0.69% of WA, 1.22% AP, 2.26 g / cm3 AD, and 0.52% LR.

  6. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.

    Science.gov (United States)

    Fuentes, Elena; Sáenz de Viteri, Virginia; Igartua, Amaya; Martinetti, Roberta; Dolcini, Laura; Barandika, Gotzone

    2010-01-01

    The knowledge of the mechanical response of bones and their substitutes is pertinent to numerous medical problems. Understanding the effects of mechanical influence on the body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This was a comparative study of 5 synthetic scaffolds based on porous calcium phosphates and natural bones, with regard to their microstructural, chemical, and mechanical characterizations. The structural and chemical characterizations of the scaffolds were examined by means of X-ray diffraction, scanning electron microscopy, and X-ray spectroscopy analysis. The mechanical characterization of bones and bone graft biomaterials was carried out through compression tests using samples with noncomplex geometry. Analysis of the chemical composition, surface features, porosity, and compressive strength indicates that hydroxyapatite-based materials and trabecular bone have similar properties.

  7. Bis-aryl substituted dioxaborines as electron-transport materials: a comparative density functional theory investigation with oxadiazoles and siloles

    International Nuclear Information System (INIS)

    Risko, C.; Zojer, E.; Brocorens, P.; Marder, S.R.; Bredas, J.L.

    2005-01-01

    We report on a detailed quantum-chemical comparison of the electronic structures, vertical electron affinities, and intramolecular reorganization energies for bis-aryl substituted dioxaborine, oxadiazole, and silole derivatives. The results indicate that the HOMO and LUMO energies of the substituted compounds can be tuned on the order of 2-3 eV via minor changes in the substitution patterns, with the HOMO and LUMO levels for the dioxaborine derivatives consistently the most energy stabilized. Additionally, large vertical electron affinities and comparable intramolecular reorganization energies confirm that dioxaborine systems are interesting candidates for electron transport materials

  8. Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon

    International Nuclear Information System (INIS)

    Sprio, S.; Tampieri, A.; Landi, E.; Sandri, M.; Martorana, S.; Celotti, G.; Logroscino, G.

    2008-01-01

    Hydroxyapatite powders characterized by ionic substitutions both in anionic and cationic sites were successfully prepared by synthesis in aqueous medium. The process parameters were set up to allow the simultaneous substitution of the foreign ions, namely carbonate, magnesium and silicon in the crystallographic site of calcium and phosphorus, keeping in count the competition which arises between atoms destined to occupy the same crystallographic site. The chemico-physical properties of the powders were investigated through several analytical techniques, i.e. X-ray diffraction, infrared spectroscopy, atomic emission spectroscopy and thermo-gravimetric analysis. The results show that the utilization of sodium hydrogen-carbonate as a reactant allows the entering of carbonate into the HA structure, mainly in phosphate position, while sodium is eliminated during the process of the powder washing. The entering of silicon in the HA structure progressively reduces its crystallinity, as also carbonate ions do. Silicate and carbonate ions can enter simultaneously into the HA structure, in biological-like amounts, although they compete for the occupation of the phosphate site; the powder crystallinity is strongly reduced as the content of the two substituting ions increases, so that a limit molar concentration exists where the apatite structure collapses and an amorphous phase forms with the simultaneous formation of crystalline calcium carbonate. Solubility tests, carried out at physiological conditions, reveal an increased calcium release in the HA powders containing silicon compared to the silicon-free HA; the solubility behaviour of the multi-substituted HA powders at physiological conditions makes these materials promising as bioactive bone scaffold, as they are able to continuously supply ions which are essential for the process of bone reconstruction

  9. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    Science.gov (United States)

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Physical and chemical characteristics of Vietnamese natural corals used as substitutes for bone grafts

    International Nuclear Information System (INIS)

    Tran Cong Toai; To Phuong Vu; Tran Bac Hai; Doan Binh

    1999-01-01

    Coral has been used as substitutes for bone grafts in France and the United State of American. In Vietnam, research on coral has been done at the Biomaterial Research Laboratory, The University Training Centre since 1994. Among the studies are the determination of physical and chemical characteristics of natural coral blocks obtained by the scientists of the NhaTrang Maritime Institute. We found that it was quite necessary to establish a standard formula for processing coral as biomaterial graft. The selected coral was cut into blocks approximately 1x1x1 cm or 1x1x2 cm and cleaned. We measured the density, porous rate, water loading speed (at room temperature and at boiled temperature with low pressure, mechanical strength and content of soluble protein, chitosan in coral rods. (1140 samples of three types of corals). The density of Porites australiensis was heavier than that of Porites lutea. But, Porites lutea has more porous rate than Porites australiensis. This experiment has also showed that mechanical strength of Porites australiensis was harder than that of Porites lutea. To measure the water loading speed, the coral rods were treated at boiled temperature with low pressure versus at room temperature. We found that the water loading speed of Porites australiensis at boiled temperature was faster than that at room temperature. Porites lutea and Montastrea annuligera showed as the same result. The efficiency of water loading rate is quite low approximately 116 - 121 % for 45 minutes at room temperature versus 135 - 155 % for only I 0 minutes at boiled temperature with low pressure. We measured the content of soluble protein by both Lowry and Biuret methods, the content of soluble protein after washing with 0.9% sodium chloride, 1210 degree C, 60 minutes is very low (below limit of tests). The content of chitosan from dried coral rods treated with HCI 36 - 38 % and NAOH 0.01N is about 0.1 - 0.6 %. Our study determined some physical and chemical characteristics

  11. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Ozbolat, Ibrahim T; Moncal, Kazim K; Rizk, Elias; Seitz, Hermann; Gelinsky, Michael; Schröder, Heinz C; Wang, Xiaohong H; Müller, Werner E G; Al-Nawas, Bilal

    The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.

  12. Effects of electron-beam irradiation to the hydroxyapatite and tricalcium phosphate mixtures for the development of new synthetic bone substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Eo, Mi Young; Kang, Ji Young; Park, Jung Min; Seo, Mi Hyun; Myoung, Hoon; Lee, Jong Ho [Seoul National Univ., Seoul (Korea, Republic of); Han, Young Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    The aim of this study is to evaluate the effect and potential of electron beam irradiation treatment to new bone formation and healing in rat calvarial bone defects using hydroxyapatite and tricalcium phosphate mixtures. We used 1.0-2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator with different irradiation dose such as 1, 30, 60 kGy. Structural changes in this synthetic bone material were analyzed in vitro, such as SEM, elementary and FE-SEM, ATR-IR, and CSR. And after sterilization with ethylene oxide, we use it as a bone graft material, in vivo. Bilateral, standardized truenesses circular calvarial defects, 7.0 mm in diameter, were created in male Sprague-Dawley rats. In each experimental group, the defect was filled with electron beam irradiated synthetic bony mixtures. Rate were sacrificed 2, 4 and 8 weeks post-op. for radiographic, histomorphologic, immunohistochemical staining, TEM, and elementary analysis.

  13. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer

    Science.gov (United States)

    Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie

    2018-04-01

    The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.

  14. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    Science.gov (United States)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  15. Bioactive glass-ceramic bone repair associated or not with autogenous bone: a study of organic bone matrix organization in a rabbit critical-sized calvarial model.

    Science.gov (United States)

    Biguetti, Claudia Cristina; Cavalla, Franco; Tim, Carla Roberta; Saraiva, Patrícia Pinto; Orcini, Wilson; De Andrade Holgado, Leandro; Rennó, Ana Claudia Muniz; Matsumoto, Mariza Akemi

    2018-04-26

    The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate ® ) associated or not with particulate autogenous bone graft. Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control-blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in - 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis. The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group. In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period. The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.

  16. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  18. Modern materials in fabrication of scaffolds for bone defect replacement

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  19. Fresh-frozen bone: case series of a new grafting material for sinus lift and immediate implants.

    LENUS (Irish Health Repository)

    Viscioni, A

    2010-08-01

    Although autologous bone is considered to be the gold standard grafting material, it needs to be harvested from patients, a process that can be off-putting and can lead to donor site morbidity. For this reason, homologous fresh-frozen bone (FFB) was used in the current study as an alternative graft material.

  20. A novel hyperthermia treatment for bone metastases using magnetic materials

    International Nuclear Information System (INIS)

    Matsumine, Akihiko; Asanuma, Kunihiro; Matsubara, Takao; Nakamura, Tomoki; Uchida, Atsumasa; Sudo, Akihiro; Takegami, Kenji

    2011-01-01

    Patients with bone metastases in the extremities sometimes require surgical intervention to prevent deterioration of quality of life due to a pathological fracture. The use of localized radiotherapy combined with surgical reinforcement has been a gold standard for the treatment of bone metastases. However, radiotherapy sometimes induces soft tissue damage, including muscle induration and joint contracture. Moreover, cancer cells are not always radiosensitive. Hyperthermia has been studied since the 1940s using an experimental animal model to treat various types of advanced cancer, and studies have now reached the stage of clinical application, especially in conjunction with radiotherapy or chemotherapy. Nevertheless, bone metastases have several special properties which discourage oncologists from developing hyperthermic therapeutic strategies. First, the bone is located deep in the body, and has low thermal conductivity due to the thickness of cortical bone and the highly vascularized medulla. To address these issues, we developed new hyperthermic strategies which generate heat using magnetic materials under an alternating electromagnetic field, and started clinical application of this treatment modality. The purpose of this review is to summarize the latest studies on hyperthermic treatment in the field of musculoskeletal tumors, and to introduce the treatment strategy employing our novel hyperthermia approach. (author)

  1. [Mastoid obliteration with a highly porous bone grafting material in combination with cartilage].

    Science.gov (United States)

    Punke, C; Goetz, W; Just, T; Pau, H-W

    2012-09-01

    An open mastoid cavity might lead to various problems for the patient. Chronic inflammation of the cavity with secretion, changes in the acoustic behavior, vertigo in restricted situations and an impaired self-cleaning function might affect the patient. For surgical treatment reducing of the size of such cavities have been described. Besides autologous materials such as hydroxyapatite or alloplastic substances as tricalcium phosphate have been previously used. A very slow resorption of these materials with rejection has been described. The new ceramic NanoBone® was fabricated in a sol-gel process at 700 °C depositing unsintered hydroxylapatite in a SiO2 structure. This method provides a nano/microstructure of high porosity of the resulting matrix. 20 patients were reexamined after an average of 2 years and 5 months after obliteration of the open mastoid cavity with NanoBone®. We compared pre- and postoperative findings in terms of otorrhea, frequency of medical consultation, vertigo and otoscopic findings. In 5 patients, in addition, a postoperative CT scan of the temporal bones was used for evaluation of osteoinduction and osteointegration. After obliteration of the open mastoid cavity with NanoBone ® we observed an uneventfully healing. After surgery we achieved a reduction of vertigo, otorrhea and frequency of medical consultations for the single patient. The obliteration of an open mastoid cavity with NanoBone ® is a safe alternative method relative to the surgical techniques with autologous materials. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Colonization of bone matrices by cellular components

    Science.gov (United States)

    Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.

    2017-09-01

    Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.

  3. Skull repair materials applied in cranioplasty: History and progress

    Institute of Scientific and Technical Information of China (English)

    Qingsheng Yu; Lin Chen; Zhiye Qiu; Yuqi Zhang; Tianxi Song; Fuzhai Cui

    2017-01-01

    The skull provides protection and mechanical support, and acts as a container for the brain and its accessory organs. Some defects in the skull can fatally threaten human life. Many efforts have been taken to repair defects in the skull, among which cranioplasty is the most prominent technique. To repair the injury, numerous natural and artificial materials have been adopted by neurosurgeons. Many cranioprostheses have been tried in the past decades, from autoplast to bioceramics. Neurosurgeons have been evaluating their advantages andshortages through clinical practice. Among those prostheses, surgeons gradually prefer bionic ones due to their marvelous osteoconductivity, osteoinductivity, biocompatibility,and biodegradability. Autogeneic bone has been widely recognized as the"gold standard" for renovating large-sized bone defects. However, the access to this technique is restricted by limited availability and complications associated with its use. Many metal and polymeric materials with mechanical characteristics analogous to natural bones were consequently applied to cranioplasty. But most of them were unsatisfactory concerning osteoconductiion and biodegradability owe to their intrinsic properties. With the microstructures almost identical to natural bones, mineralized collagen hasbiological performance nearly identical to autogeneic bone, such as osteoconduction. Implants made of mineralized collagen can integrate themselves into the newly formed bones through a process called"creeping substitution". In this review, the authors retrospect the evolution of skull repair material applied in cranioplasty. The ultimate skull repair material should have microstructure and bioactive qualities that enable osteogenesis induction and intramembranous ossification.

  4. Ex vivo and in vitro synchrotron-based micro-imaging of biocompatible materials applied in dental surgery

    Science.gov (United States)

    Rack, A.; Stiller, M.; Nelson, K.; Knabe, C.; Rack, T.; Zabler, S.; Dalügge, O.; Riesemeier, H.; Cecilia, A.; Goebbels, J.

    2010-09-01

    Biocompatible materials such as porous bioactive calcium phosphate ceramics or titanium are regularly applied in dental surgery: ceramics are used to support the local bone regeneration in a given defect, afterwards titanium implants replace lost teeth. The current gold standard for bone reconstruction in implant dentistry is the use of autogenous bone grafts. But the concept of guided bone regeneration (GBR) has become a predictable and well documented surgical approach using biomaterials (bioactive calcium phosphate ceramics) which qualify as bone substitutes for this kind of application as well. We applied high resolution synchrotron microtomography and subsequent 3d image analysis in order to investigate bone formation and degradation of the bone substitute material in a three-dimensional manner, extending the knowledge beyond the limits of classical histology. Following the bone regeneration, titanium-based implants to replace lost teeth call for high mechanical precision, especially when two-piece concepts are used in order to guaranty leak tightness. Here, synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in these kind of highly attenuating objects. Therefore, we could study micro-gap formation at interfaces in two-piece dental implants with the specimen under different mechanical load. We could prove the existence of micro-gaps for implants with conical connections as well as to study the micromechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential issue of failure, i. e. bacterial leakage which can induce an inflammatory process.

  5. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  6. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.

    Science.gov (United States)

    Sethu, Sai Nievethitha; Namashivayam, Subhapradha; Devendran, Saravanan; Nagarajan, Selvamurugan; Tsai, Wei-Bor; Narashiman, Srinivasan; Ramachandran, Murugesan; Ambigapathi, Moorthi

    2017-05-01

    Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO 4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Use of collagen film as a dural substitute: preliminary animal studies.

    Science.gov (United States)

    Collins, R L; Christiansen, D; Zazanis, G A; Silver, F H

    1991-02-01

    Cadaver grafts, laminated metallic materials, and synthetic fabrics have been evaluated as dural substitutes. Use of cadaver tissues is limited by fear of transmission of infectious disease while use of synthetic materials is associated with implant encapsulation and foreign body reactions. The purpose of this study is to evaluate the use of collagen film as a dural substitute. Collagen films prepared from bovine skin were used to replace the dura of rabbits and histological observations were made at 16, 28, 42, and 56 days postimplantation. Controls consisted of dura that was removed and then reattached. Control dura showed no signs of inflammation or adhesion to underlying tissue at 16 and 28 days postimplantation. By 56 days postimplantation, extensive connective tissue deposition was observed in close proximity to adjacent bone as well as pia arachnoid adhesions. Implanted collagen film behaved in a similar manner to control dura showing minimal inflammatory response at all time periods. At 56 days postimplantation collagen film appeared strongly infiltrated by connective tissue cells that deposited new collagen. The results of this study suggest that a reconstituted type I collagen film crosslinked with cyanamide acts as a temporary barrier preventing loss of fluid and adhesion formation. It is replaced after approximately 2 months with host collagen with limited inflammatory and fibrotic complications. Further studies are needed to completely characterize the new connective tissue formed as well as long-term biocompatibility and functioning of a reconstituted collagen dural substitute.

  8. Bioactive Glass Nanopowder for theTreatment of Oral Bone Defects

    Directory of Open Access Journals (Sweden)

    MH. Fathi

    2007-09-01

    Full Text Available Objective: Osseous defects around dental implants are often seen when implants are placed in areas with inadequate alveolar bone, or around failing implants. Bone regenera-tion in these areas using bone grafts or its substitutes may improve dental implants prog-nosis. The aim of this study was to prepare and characterize the bioactive glass nanopow-der and development of its coating for treatment of oral bone defects.Materials and Methods: Bioactive bioglass coating was made on stainless steel plates by sol-gel technique. The powder shape and size was evaluated by transmission electron mi-cropscopy, and thermal properties studied using differential thermal analysis (DTA. Structural characterization techniques (XRD were used to analyze and study the structure and phase present in the prepared bioactive glass nanopowder. This nanopowder was immersed in the simulated body fluid (SBF solution. Fourier transform infrared spec-troscopy (FTIR was utilized to recognize and confirm the formation of apatite layer on prepared bioactive glass nanopowder.Results: The bioglass powder size was less than 100 nanometers which was necessary for better bioactivity, and preparing a homogeneous coating. The formation of apatite layer confirmed the bioactivity of the bioglass nanopowder. Crack-free and homogeneous bioglass coatings were achieved with no observable defects.Conclusion: It was concluded that the prepared bioactive glass nanopowder could be more effective as a bone replacement material than conventional bioactive glass to pro-mote bone formation in osseous defects. The prepared bioactive glass nanopowder could be more useful for treatment of oral bone defects compare to conventional hydroxyapatite or bioactive glass.

  9. Biphasic calcium phosphates (BCP of hydroxyapatite (HA and tricalcium phosphate (TCP as bone substitutes: Importance of physicochemical characterizations in biomaterials studies

    Directory of Open Access Journals (Sweden)

    Mehdi Ebrahimi

    2017-02-01

    Full Text Available The data presented in this article are related to the research article entitled “Biphasic calcium phosphates bioceramics (HA/TCP: Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research” [1]. This article provides in depth study of BCP bone substitutes as valuable option in the field of tissue engineering. However, there are discrepancies in the literature regarding the ideal physicochemical properties of BCP and the ideal balance between different phase compositions for enhanced bone tissue engineering (M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, 2016; M. Ebrahimi, P. Pripatnanont, S. Suttapreyasri, N. Monmaturapoj, 2014 [1,2]. This is found to be mainly because of improper characterization of BCP bioceramics in basic studies and lack of standard study protocols in in vitro and in vivo research. This data article along with original article provide the basic data required for ideal characterization of BCP and other bioceramics in an attempt to provide basic standardized protocols for future studies.

  10. Triphenylamine-Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties.

    Science.gov (United States)

    Le, Thi Huong; Dao, Quang-Duy; Nghiêm, Mai-Phuong; Péralta, Sébastien; Guillot, Regis; Pham, Quoc Nghi; Fujii, Akihiko; Ozaki, Masanori; Goubard, Fabrice; Bui, Thanh-Tuân

    2018-04-25

    Two readily accessible thienothiophene-triphenylamine charge-transport materials have been synthesized by simply varying the substitution pattern of the triphenylamine groups on a central thienothiophene π-linker. The impact of the substitution pattern on the thermal, photoelectrochemical, and photovoltaic properties of these materials was evaluated and, based on theoretical and experimental studies, we found that the isomer in which the triphenylamine groups were located at the 2,5-positions of the thienothiophene core (TT-2,5-TPA) had better π-conjugation than the 3,6-isomer (TT-3,6-TPA). Whilst the thermal, morphological, and hydrophobic properties of the two materials were similar, their optoelectrochemical and photovoltaic properties were noticeably impacted. When applied as hole-transport materials in hybrid perovskite solar cells, the 2,5-isomer exhibited a power-conversion efficiency of 13.6 %, much higher than that of its 3,6-counterpart (0.7 %) under the same standard conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review.

    Science.gov (United States)

    Chavda, Suraj; Levin, Liran

    2018-02-01

    Alveolar ridge augmentation can be completed with various types of bone augmentation materials (autogenous, allograft, xenograft, and alloplast). Currently, autogenous bone is labeled as the "gold standard" because of faster healing times and integration between native and foreign bone. No systematic review has currently determined whether there is a difference in implant success between various bone augmentation materials. The purpose of this article was to systematically review comparative human studies of vertical and horizontal alveolar ridge augmentation comparing different types of bone graft materials (autogenous, allograft, xenograft, and alloplast). A MEDLINE search was conducted under the 3 search concepts of bone augmentation, dental implants, and alveolar ridge augmentation. Studies pertaining to socket grafts or sinus lifts were excluded. Case reports, small case series, and review papers were excluded. A bias assessment tool was applied to the final articles. Overall, 219 articles resulted from the initial search, and 9 articles were included for final analysis. There were no discernible differences in implant success between bone augmentation materials. Generally, patients preferred nonautogenous bone sources as there were fewer hospital days, less pain, and better recovery time. Two articles had industrial support; however, conclusions of whether that support influenced the outcomes could not be determined. Future comparative studies should compare nonautogenous bone sources and have longer follow-up times.

  12. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats.

    Science.gov (United States)

    Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  13. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Directory of Open Access Journals (Sweden)

    Tomasz Gredes

    2016-01-01

    Full Text Available The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen and unmodified (PLA-wt, PCL-wt, were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.

  14. Bone Regeneration after Treatment with Covering Materials Composed of Flax Fibers and Biodegradable Plastics: A Histological Study in Rats

    Science.gov (United States)

    Gedrange, Tomasz

    2016-01-01

    The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965

  15. Analysis of Bone Meal (NIST 1486) and Bone Ash (NIST 1400) reference materials by neutron activation method; Analise de materiais de referencia Bone Meal (NIST 1486) e Bone Ash (NIST 1400) pelo metodo de ativacao com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Marcelo K.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Borelli, Aurelio [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1999-11-01

    In this work instrumental neutron activation analysis has been applied to determine Ba, ca, Cl, Cr, fe, Mg, Mn, Na, P, Sb, Sc, Sr and Zn in two biological reference materials NIST 1486 Bone Meal and NIST 1400 Bone Ash. The purpose of this work was to evaluate the precision and the accuracy of the results as well as to give a contribution to certificate these materials. Interferences found in the determination of some elements were also discussed. (author) 8 refs., 4 tabs.

  16. Histological study on the new bone formation of the implanted bone allograft in sheep

    International Nuclear Information System (INIS)

    Li Youchen; Sun Guiying; Shi Zhancheng

    1999-01-01

    The purpose of this study is to compare the formation of new bone in the implanted frozen irradiated bone allograft with the fresh bone autograft. The work on animal model included resection and implantation of sheep's tibial diaphysis and intramedullary nail fixation, with total number 20. Tibias were harvested at 6, 12, and 24 months after operation. Sheep were fed with tetracycline I week before bone harvesting. Bones were examined with usual and fluorescence microscopes. The results showed that the progress of graft incorporation in allografts were generally similar to that of autografts. Capillaries penetration and callus formation extended from the host end to surround the host-graft junction in 6 months. Incorporation of new bone was nearly completed in 12 months; then the speed of new bone formation was decreased, and the implanted bone graft was almost completely substituted with non-nal bone structure in 24 months

  17. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials

    DEFF Research Database (Denmark)

    Jensen, Simon Storgård; Terheyden, Hendrik

    2009-01-01

    PURPOSE: The objective of this review was to evaluate the efficacy of different grafting protocols for the augmentation of localized alveolar ridge defects. MATERIALS AND METHODS: A MEDLINE search and an additional hand search of selected journals were performed to identify all levels of clinical...... evidence except expert opinions. Any publication written in English and including 10 or more patients with at least 12 months of follow-up after loading of the implants was eligible for this review. The results were categorized according to the presenting defect type: (1) dehiscence and fenestration...... periods. The heterogeneity of the available data did not allow identifying one superior grafting protocol for any of the osseous defect types under investigation. However, a series of grafting materials can be considered well-documented for different indications based on this review. There is a high level...

  18. Management of an endo perio lesion in a maxillary canine using platelet-rich plasma concentrate and an alloplastic bone substitute

    Directory of Open Access Journals (Sweden)

    Singh Sangeeta

    2009-01-01

    Full Text Available To evaluate the efficacy of platelet-rich plasma concentrate in the management of a cirumferential, infrabony defect associated with an endoperio lesion in a maxillary canine. A 45 year-old male patient with an endoperio lesion in the left maxillary canine was initially treated with endodontic therapy. Following the endodontic treatment, the circumferential, infrabony defect was treated using platelet-rich plasma and an alloplastic bone substitute. At the end of three months, there was a gain in the clinical attachment level and reduction in probing depth. Radiographic evidence showed that there was significant bony fill. The results were maintained at the time of recall nine months later.

  19. Reactions and Surface Transformations of a Bone-Bioactive Material in a Simulated Microgravity Environment

    Science.gov (United States)

    Radin, S.; Ducheyne, P.; Ayyaswamy, P. S.

    1999-01-01

    A comprehensive program to investigate the expeditious in vitro formation of three-dimensional bone-like tissue is currently underway at the University of Pennsylvania. The study reported here forms a part of that program. Three-dimensional bone-like tissue structures may be grown under the simulated microgravity conditions of NASA designed Rotating Wall Bioreactor Vessels (RWV's). Such tissue growth will have wide clinical applications. In addition, an understanding of the fundamental changes that occur to bone cells under simulated microgravity would yield important information that will help in preventing or minimizing astronaut bone loss, a major health issue with travel or stay in space over long periods of time. The growth of three-dimensional bone-like tissue structures in RWV's is facilitated by the use of microcarriers which provide structural support. If the microcarrier material additionally promotes bone cell growth, then it is particularly advantageous to employ such microcarriers. We have found that reactive, bone-bioactive glass (BBG) is an attractive candidate for use as microcarrier material. Specifically, it has been found that BBG containing Ca- and P- oxides upregulates osteoprogenitor cells to osteoblasts. This effect on cells is preceded by BBG reactions in solution which result in the formation of a Ca-P surface layer. This surface further transforms to a bone-like mineral (i.e., carbonated crystalline hydroxyapatite (c-HA)). At normal gravity, time-dependent, immersion-induced BBG reactions and transformations are greatly affected both by variations in the composition of the milieu in which the glass is immersed and on the immersion conditions. However, the nature of BBG reactions and phase transformations under the simulated microgravity conditions of RWV's are unknown, and must be understood in order to successfully use BBG as microcarrier material in RWV'S. In this paper, we report some of our recent findings in this regard using

  20. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  1. The fate of allogenic radiation sterilized bone grafts controlled by the electron spin resonance spectrometry

    International Nuclear Information System (INIS)

    Ostrowski, K.; Dziedzic-Goclawska, A.

    1981-01-01

    The normal fate of bone grafts is their resorption and substitution by the own host's bone tissue. This phenomenon described as creeping substitution process was controlled using biopsies from the grafted region in allogenic experimental system. Electron spin resonance (ESR) spectrometry was used for independent evaluation of resorption and substitution processes. The measurements were based on the process of induction in the hydroxyapatite (HA) crystals of bone mineral of stable paramagnetic centers which can be detected by ESR spectrometry. The loss of total amount of spins connected with the paramagnetic centers expressed in percent describes the kinetics of resorption. The changes in the concentration of spins due to the ''dilution'' of spins implanted with the graft by the nonirradiated ingrowing host's own bone describe the kinetics of the substitution process. Allogenic bone of calvaria was grafted orthotopically into rabbits after lyophilization and radiation sterilization with a dose of 3.5 Mrads. The process of graft's rebuilding was evaluated using the described ESR method. The application of the described technique in the human clinic is possible. (author)

  2. Heat-deproteinated xenogeneic bone from slaughterhouse waste

    Indian Academy of Sciences (India)

    Xenogeneic bone procured from the slaughterhouse waste was deproteinated by heat treatment method intended for use as a bone substitute. The effect of heat treatment was investigated by thermal analysis and by physico-chemical methods such as X-ray powder diffraction (XRD) and Fourier transformed infrared (FTIR) ...

  3. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  4. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Røjskjaer, Jesper; Cheng, Liming

    2012-01-01

    Hydroxyappatite-β-tricalciumphosphate (HA/β-TCP) was reinforced with poly(D,L)-lactic acid (PDLLA) to overcome its weak mechanical properties. Two substitutes with porosities of 77% and 81% HA/β-TCP reinforced with 12 wt % PDLLA were tested in compression. The effects of allograft, substitute (HA...

  5. Study of Ti4+ substitution in ZrW2O8 negative thermal expansion materials

    International Nuclear Information System (INIS)

    Buysser, Klaartje de; Driessche, Isabel van; Putte, Bart van de; Schaubroeck, Joseph; Hoste, Serge

    2007-01-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2 -WO 3 -ZrO 2 mixtures revealed the formation of Zr 1-x Ti x W 2 O 8 solid solutions. A noticeable decrease in unit cell parameter 'a' and in the order-disorder transition temperature could be seen in the case of Zr 1-x Ti x W 2 O 8 solid solutions. Studies performed on other ZrW 2 O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry. - Graphical abstract: This study indicates that the phase transition temperature in our materials Zr 1-x Ti x W 2 O 8 is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice-free volume, lowering the phase transition temperature

  6. Curettage of benign bone tumors and tumor like lesions: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Zile Singh Kundu

    2013-01-01

    Full Text Available Background: Curettage is one of the most common treatment options for benign lytic bone tumors and tumor like lesions. The resultant defect is usually filled. We report our outcome curettage of benign bone tumors and tumor like lesions without filling the cavity. Materials and Methods: We retrospectively studied 42 patients (28 males and 14 females with benign bone tumors who had undergone curettage without grafting or filling of the defect by any other bone graft substitute. The age of the patients ranged from 14 to 66 years. The most common histological diagnosis was that of giant cell tumor followed by simple bone cyst, aneurysamal bone cyst, enchondroma, fibrous dysplasia, chondromyxoid fibroma, and chondroblastoma and giant cell reparative granuloma. Of the 15 giant cell tumors, 4 were radiographic grade 1 lesions, 8 were grade 2 and 3 grade 3. The mean maximum diameter of the cysts was 5.1 (range 1.1-9 cm cm and the mean volume of the lesions was 34.89 cm 3 (range 0.94-194.52 cm 3 . The plain radiographs of the part before and after curettage were reviewed to establish the size of the initial defect and the rate of reconstitution, filling and remodeling of the bone defect. Patients were reviewed every 3 monthly for a minimum period of 2 years. Results: Most of the bone defects completely reconstituted to a normal appearance while the rest filled partially. Two patients had preoperative and three had postoperative fractures. All the fractures healed uneventfully. Local recurrence occurred in three patients with giant cell tumor who were then reoperated. All other patients had unrestricted activities of daily living after surgery. The rate of bone reconstitution, risk of subsequent fracture or the incidence of complications was related to the size of the cyst/tumor at diagnosis. The benign cystic bone lesions with volume greater than approximately 70 cm 3 were found to have higher incidence of complications. Conclusion: This study

  7. An Overview of Poly(lactic-co-glycolic Acid (PLGA-Based Biomaterials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Piergiorgio Gentile

    2014-02-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA has attracted considerable interest as a base material for biomedical applications due to its: (i biocompatibility; (ii tailored biodegradation rate (depending on the molecular weight and copolymer ratio; (iii approval for clinical use in humans by the U.S. Food and Drug Administration (FDA; (iv potential to modify surface properties to provide better interaction with biological materials; and (v suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

  8. Prediction of the Setting Properties of Calcium Phosphate Bone Cement

    Directory of Open Access Journals (Sweden)

    Seyed Mahmud Rabiee

    2012-01-01

    Full Text Available Setting properties of bone substitutes are improved using an injectable system. The injectable bone graft substitutes can be molded to the shape of the bone cavity and set in situ when injected. Such system is useful for surgical operation. The powder part of the injectable bone cement is included of β-tricalcium phosphate, calcium carbonate, and dicalcium phosphate and the liquid part contains poly ethylene glycol solution with different concentrations. In this way, prediction of the mechanical properties, setting times, and injectability helps to optimize the calcium phosphate bone cement properties. The objective of this study is development of three different adaptive neurofuzzy inference systems (ANFISs for estimation of compression strength, setting time, and injectability using the data generated based on experimental observations. The input parameters of models are polyethylene glycol percent and liquid/powder ratio. Comparison of the predicted values and measured data indicates that the ANFIS model has an acceptable performance to the estimation of calcium phosphate bone cement properties.

  9. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.

    Science.gov (United States)

    Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis

    2010-01-01

    Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.

  11. Clinical trial and in-vitro study comparing the efficacy of treating bony lesions with allografts versus synthetic or highly-processed xenogeneic bone grafts

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Bernstein, Anke; Wolf, Laura

    2016-01-01

    BACKGROUND: Our study aim was to compare allogeneic cancellous bone (ACB) and synthetic or highly-processed xenogeneic bone substitutes (SBS) in the treatment of skeletal defects in orthopedic surgery. METHODS: 232 patients treated for bony lesions with ACB (n = 116) or SBS (n = 116) within a 10......-year time period were included in this case-control study. Furthermore, both materials were seeded with human osteoblasts (hOB, n = 10) and analyzed by histology, for viability (AlamarBlue®) and protein expression activity (Luminex®). RESULTS: The complication rate was 14.2 %, proportion of defects....... Histological examination revealed similar bone structures, whereas cell remnants were apparent only in the allografts. Both materials were biocompatible in-vitro, and seeded with human osteoblasts. The cells remained vital over the 3-week culture period and produced microscopically typical bone matrix. We...

  12. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  13. Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.

    Science.gov (United States)

    Rahimi, F; Maurer, B T; Enzweiler, M G

    1997-01-01

    The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.

  14. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    Science.gov (United States)

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  16. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Castilla Bolaños, Maria Alejandra, E-mail: ma.castilla964@uniandes.edu.co; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-03-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  18. Development and characterization of a novel porous small intestine submucosa-hydroxyapatite scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Castilla Bolaños, Maria Alejandra; Buttigieg, Josef; Briceño Triana, Juan Carlos

    2017-01-01

    The fabricated small intestine submucosa (SIS) – hydroxyapatite (HAp) sponges can act as biomimetic scaffolds to be utilized in tissue engineering and regeneration. Here we developed SIS-HAp sponges and investigated their mechanical, physical and chemical characteristics using scanning electron microscopy, Fourier transformed infrared spectroscopy, uniaxial compression, porosity, and swelling testing techniques. The results demonstrated mechanical properties superior to comparable bone substitutes fabricated with similar methods. SIS-HAp scaffolds possess an interconnected macroporosity, similar to that of trabecular bone, hence presenting a novel biomaterial that may serve as a superior bone substitute and tissue scaffold. - Highlights: • Small intestine submucosa (SIS) – hydroxyapatite (HAp) scaffolds were developed. • SIS-HAp scaffolds possess a trabecular bone-like structure. • FTIR indicated a molecular interaction between the organic groups of SIS and HAp. • SIS-HAp sponges presented a superior Young modulus to comparable bone substitutes.

  19. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    Science.gov (United States)

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  20. Biological background of dermal substitutes

    NARCIS (Netherlands)

    van der Veen, V. C.; van der Wal, M.B.; van Leeuwen, M.C.; Ulrich, M.; Middelkoop, E.

    2010-01-01

    Dermal substitutes are of major importance in treating full thickness skin defects, both in acute and chronic wounds. In this review we will outline specific requirements of three classes of dermal substitutes:-natural biological materials, with a more or less intact extracellular matrix

  1. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog.

    LENUS (Irish Health Repository)

    Bashara, Haitham

    2012-08-01

    The aim of the present study was to evaluate the effects of a novel bone substitute system (Natix(®)), consisting of porous titanium granules (PTG) and a bovine-derived xenograft (Bio-Oss(®)), on hard tissue remodelling following their placement into fresh extraction sockets in dogs.

  2. Pneumatization of the Temporal Bones in a Greenlandic Inuit Anthropological Material

    DEFF Research Database (Denmark)

    Homøe, P; Lynnerup, N

    1991-01-01

    The degree of pneumatization of the temporal bones correlates with exposure during childhood and adolescence to infectious middle ear diseases (IMED), both acute and chronic. The pneumatized area as seen on cranial X-rays can be measured. This was applied to an anthropological material in order...

  3. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  4. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  5. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach.

    Science.gov (United States)

    Yu, Xiaohua; Wang, Liping; Xia, Zengmin; Chen, Li; Jiang, Xi; Rowe, David; Wei, Mei

    2014-02-01

    Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.

  6. Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits

    Directory of Open Access Journals (Sweden)

    Thuy-Duong Thi Nguyen

    2017-07-01

    Full Text Available The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05. CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo.

  7. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    Science.gov (United States)

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  8. The Application of Corals in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2017-05-01

    Full Text Available Natural coral exoskeleton and coralline hydroxyapatite have been used as bone replacement graft for repairing of bone defects in animal models and humans since two decades ago. These bone replacement grafts have an osteoconductive, biodegradable and biocompatible features. Currently, three lines of researches in bone tissue engineering are conducting on corals. Corals have been used for construction of bony composites, stem cells attachments, and the growth factors-scaffold-based approaches. This review have paid to the wide range of coral use in clinical experiments as a bone graft substitute and cell-scaffold-based approaches in bone tissue engineering.

  9. Clinical application of human mesenchymal stromal cells for bone tissue engineering

    NARCIS (Netherlands)

    Ganguly, Anindita; Meijer, Gert; van Blitterswijk, Clemens; de Boer, Jan

    2010-01-01

    The gold standard in the repair of bony defects is autologous bone grafting, even though it has drawbacks in terms of availability and morbidity at the harvesting site. Bone-tissue engineering, in which osteogenic cells and scaffolds are combined, is considered as a potential bone graft substitute

  10. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  11. A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Alves, Luís C. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066 Bobadela LRS (Portugal); Fernandes, M. Helena Vaz [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO — Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal)

    2016-05-01

    The increasing interest in the effect of strontium in bone tissue repair has promoted the development of bioactive materials with strontium release capability. According to literature, hybrid materials based on the system PDMS–SiO{sub 2} have been considered a plausible alternative as they present a mechanical behavior similar to the one of the human bone. The main purpose of this study was to obtain a biocompatible hybrid material with simultaneous calcium and strontium release capability. A hybrid material, in the system PDMS–SiO{sub 2}–CaO–SrO, was prepared with the incorporation of 0.05 mol of titanium per mol of SiO{sub 2}. Calcium and strontium were added using the respective acetates as sources, following a sol–gel technique previously developed by the present authors. The obtained samples were characterized by FT-IR, solid-state NMR, and SAXS, and surface roughness was analyzed by 3D optical profilometry. In vitro studies were performed by immersion of the samples in Kokubo's SBF for different periods of time, in order to determine the bioactive potential of these hybrids. Surfaces of the immersed samples were observed by SEM, EDS and PIXE, showing the formation of calcium phosphate precipitates. Supernatants were analyzed by ICP, revealing the capability of the material to simultaneously fix phosphorus ions and to release calcium and strontium, in a concentration range within the values reported as suitable for the induction of the bone tissue repair. The material demonstrated to be cytocompatible when tested with MG63 osteoblastic cells, exhibiting an inductive effect on cell proliferation and alkaline phosphatase activity. - Highlights: • A hybrid PDMS–SiO{sub 2}–CaO–SrO material was prepared with the incorporation of Ti. • Sr was released in concentrations suitable for the induction of bone tissue repair. • The material demonstrated to be cytocompatible when tested with osteoblastic cells.

  12. Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.

    Science.gov (United States)

    Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H

    2011-11-01

    Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.

  13. Radiographic and histological study of perennial bone defect repair in rat calvaria after treatment with blocks of porous bovine organic graft material.

    Science.gov (United States)

    Marins, Lucele Vieira; Cestari, Tania Mary; Sottovia, André Dotto; Granjeiro, José Mauro; Taga, Rumio

    2004-03-01

    Over the last few years, various bone graft materials of bovine origin to be used in oromaxillofacial surgeries have entered the market. In the present study, we determined the capacity of a block organic bone graft material (Gen-ox, Baumer SA, Brazil) prepared from bovine cancellous bone to promote the repair of critical size bone injuries in rat calvaria. A transosseous defect measuring approximately 8mm in diameter was performed with a surgical trephine in the parietal bone of 25 rats. In 15 animals, the defects were filled with a block of graft material measuring 8mm in diameter and soaked in the animal's own blood, and in the other 10 animals the defects were only filled with blood clots. The calvariae of rats receiving the material were collected 1, 3 and 6 months after surgery, and those of animals receiving the blood clots were collected immediately and 6 months after surgery. During surgery, the graft material was found to be of easy handling and to adapt perfectly to the receptor bed after soaking in blood. The results showed that, in most animals treated, the material was slowly resorbed and served as a space filling and maintenance material, favoring angiogenesis, cell migration and adhesion, and bone neoformation from the borders of the lesion. However, a foreign body-type granulomatous reaction, with the presence of numerous giant cells preventing local bone neoformation, was observed in two animals of the 1-month subgroup and in one animal of the 3-month subgroup. These cases were interpreted as resulting from the absence of demineralization and the lack of removal of potential antigen factors during production of the biomaterial. We conclude that, with improvement in the quality control of the material production, block organic bone matrix will become a good alternative for bone defect repair in the oromaxillofacial region due to its high osteoconductive capacity.

  14. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis.

    Science.gov (United States)

    Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo

    2017-08-08

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.

  15. A New Biphasic Dicalcium Silicate Bone Cement Implant

    Directory of Open Access Journals (Sweden)

    Fausto Zuleta

    2017-07-01

    Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  16. Regeneration of skull bones in adult rabbits after implantation of commercial osteoinductive materials and transplantation of a tissue-engineering construct.

    Science.gov (United States)

    Volkov, A V; Alekseeva, I S; Kulakov, A A; Gol'dshtein, D V; Shustrov, S A; Shuraev, A I; Arutyunyan, I V; Bukharova, T B; Rzhaninova, A A; Bol'shakova, G B; Grigor'yan, A S

    2010-10-01

    We performed a comparative study of reparative osteogenesis in rabbits with experimental critical defects of the parietal bones after implantation of commercial osteoinductive materials "Biomatrix", "Osteomatrix", "BioOss" in combination with platelet-rich plasma and transplantation of a tissue-engineering construct on the basis of autogenic multipotent stromal cells from the adipose tissue predifferentiated in osteogenic direction. It was found that experimental reparative osteogenesis is insufficiently stimulated by implantation materials and full-thickness trepanation holes were not completely closed. After transplantation of the studied tissue-engineering construct, the defect was filled with full-length bone regenerate (in the center of the regenerate and from the maternal bone) in contrast to control and reference groups, where the bone tissue was formed only on the side of the maternal bone. On day 120 after transplantation of the tissue-engineering construct, the percent of newly-formed bone tissue in the regenerate was 24% (the total percent of bone tissue in the regenerate was 39%), which attested to active incomplete regenerative process in contrast to control and reference groups. Thus, the study demonstrated effective regeneration of the critical defects of the parietal bones in rabbits 120 days after transplantation of the tissue-engineering construct in contrast to commercial osteoplastic materials for directed bone regeneration.

  17. Bone cell-material interactions on metal-ion doped polarized hydroxyapatite

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    The objective of this work is to study the influence of Mg 2+ and Sr 2+ dopants on in vitro bone cell-material interactions of electrically polarized hydroxyapatite [HAp, Ca 10 (PO 4 ) 6 (OH) 2 ] ceramics with an aim to achieve additional advantage of matching bone chemistry along with the original benefits of electrical polarization treatment relevant to biomedical applications. To achieve our research objective, commercial phase pure HAp has been doped with MgO, and SrO in single, and binary compositions. All samples have been sintered at 1200 deg. C for 2 h and subsequently polarized using an external d.c. field (2.0 kV/cm) at 400 deg. C for 1 h. Combined addition of 1 wt.% MgO/1 wt.% SrO in HAp has been most beneficial in enhancing the polarizability in which stored charge was 4.19 μC/cm 2 compared to pure HAp of 2.23 μC/cm 2 . Bone cell-material interaction has been studied by culturing with human fetal osteoblast cells (hFOB) for a maximum of 7 days. Scanning electron microscope (SEM) images of cell morphology reveal that favorable surface properties and dopant chemistry lead to good cellular adherence and spreading on negatively charged surfaces of both Sr 2+ and Mg 2+ doped HAp samples over undoped HAp. MTT assay results at 7 days show the highest viable cell densities on the negatively charged surfaces of binary doped HAp samples, while positive charged doped HAp surfaces exhibit limited cellular growth in comparison to neutral surfaces.

  18. Antibacterial glass and glass-biodegradable matrix composites for bone tissue engineering

    OpenAIRE

    Fernandes, João Pedro Silva

    2017-01-01

    Multiple joint and bone diseases affect millions of people worldwide. In fact the Bone and Joint Decade’s association predicted that the percentage of people over 50 years of age affected by bone diseases will double by 2020. Bone diseases commonly require the need for surgical intervention, often involving partial or total bone substitution. Therefore biodegradable biomaterials designed as bone tissue engineered (BTE) devices to be implanted into the human body, function as a ...

  19. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  20. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  1. Negative effect of rapidly resorbing properties of bioactive glass-ceramics as bone graft substitute in a rabbit lumbar fusion model.

    Science.gov (United States)

    Lee, Jae Hyup; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Lee, Do-Yoon; Chang, Bong-Soon; Lee, Choon-Ki

    2014-03-01

    Bioactive glass-ceramics have the ability to directly bind to bones and have been widely used as bone graft substitutes due to their high osteoconductivity and biocompatibility. CaO-SiO2-P2O5-B2O3 glass-ceramics are known to have good osteoconductivity and are used as bone graft extenders. This study aimed to evaluate the effects of the resorbing properties of glass-ceramics in bone fusion after producing and analyzing three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with high osteoconductivity that had enhanced resorption by having an increased B2O3 content. The three types of CaO-SiO2-P2O5-B2O3 glass-ceramics with B2O3 contents of 8.0, 9.0, and 9.5 weight % were designated and grouped as P20B80, P10B90, and P5B95, respectively. Glass-ceramic types were tested for fusion rates and bone formation by employing the lumbar 5-6 intertransverse process fusion model in 51 New Zealand male rabbits. Bioactivity was assessed by soaking in simulated body fluid (SBF). In vitro study results showed sufficient hydroxycarbonate apatite layer formation occurred for P20B80 in1 day, for P10B90 in 3 days, and for P5B95 in 5 days after soaking in SBF. For the rabbit lumbar spine posterolateral fusion model, the autograft group recorded a 100% fusion rate with levels significantly higher than those of P20B80 (29.4%), P10B90 (0%), and P5B95 (14.3%), with high resorbing properties. Resorbing property differences among the three glass-ceramic groups were not significant. Histological results showed new bone formation confirming osteoconductivity in all three types of glass-ceramics. Radiomorphometric results also confirmed the resorbing properties of the three glass-ceramic types. The high resorbing properties and osteoconductivity of porous glass-ceramics can be advantageous as no glass-ceramics remain in the body. However, their relatively fast rate of resorption in the body negatively affects their role as an osteoconductive scaffold as glass-ceramics are resorbed before bony fusion.

  2. Bone Sialoproteins and Breast Cancer Detection

    Science.gov (United States)

    2006-07-01

    follow proteolytic activity as previously described (20). This substrate is highly substituted with fluorescein moieties so that the fluorescent signal...and phosphorus , a inverse correlation with parathyroid hormone, and (d) a significant positive correlation with total hip and neck bone mineral...correlate with serum phosphorus , parathyroid hormone and bone mineral density. J. Clin. Endo. Metab.89(8):4158-4161. DAMD17-02-1-0684

  3. Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration.

    Science.gov (United States)

    Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin

    2017-01-01

    The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K 0.5 Na 0.5 NbO 3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials.

  4. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  5. Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/?-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration

    OpenAIRE

    Hwang, Kyoung-Sub; Choi, Jae-Won; Kim, Jae-Hun; Chung, Ho Yun; Jin, Songwan; Shim, Jin-Hyung; Yun, Won-Soo; Jeong, Chang-Mo; Huh, Jung-Bo

    2017-01-01

    The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and ?-tricalcium phosphate (?-TCP) in a 4:4:2 ratio, PCL/PLGA/?-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/P...

  6. Synchrotron μCT Imaging of Bone, Titanium implants and Bone Substitutes -a Systematic Review of the Literature

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-01-01

    Today x-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic x-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled...... to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro...... examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization...

  7. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    International Nuclear Information System (INIS)

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-01-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding

  8. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of); Lee, Song Eun; Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440‐746 (Korea, Republic of)

    2015-09-15

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm{sup 2}, respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm{sup 2}, respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs.

  9. Emitting materials based on phenylanthracene-substituted naphthalene derivatives for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lee, Hyun Woo; Kim, Hye Jeong; Kim, Young Seok; Kim, Jwajin; Lee, Song Eun; Lee, Ho Won; Kim, Young Kwan; Yoon, Seung Soo

    2015-01-01

    This study reports the emitting materials based on phenylanthracene-substituted naphthalene derivatives to achieve efficient electroluminescent properties for OLED applications. An OLED device using 4,4′-bis(10-phenylanthracen-9-yl)-1,1′-binaphthalene exhibited the blue emission with the CIE coordinates of (0.19, 0.16) and efficient electroluminescent properties with the luminance, power and external quantum efficiency of 1.70 cd/A, 0.79 lm/W and 1.26% at 20 mA/cm 2 , respectively. Also, the other device using 1,4-bis(10-phenylanthracene-9-yl)naphthalene exhibited white emission with the CIE coordinates of (0.34, 0.43) at 7V, respectively. This device exhibits the luminance, power and external quantum efficiency of 2.22 cd/A, 1.13 lm/W and 0.86% at 20 mA/cm 2 , respectively. - Highlights: • We synthesized fluorescent materials based on phenylanthracene derivatives. • Electroluminescence properties of these materials depend on the molecular structures. • These blue and white materials have great potential for application in OLEDs

  10. [Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration].

    Science.gov (United States)

    Schaefer, D J; Klemt, C; Zhang, X H; Stark, G B

    2000-09-01

    Tissue engineering offers the possibility to fabricate living substitutes for tissues and organs by combining histogenic cells and biocompatible carrier materials. Pluripotent mesenchymal stem cells are isolated and subcultured ex vivo and then their histogenic differentiation is induced by external factors. The fabrication of bone and cartilage constructs, their combinations and gene therapeutic approaches are demonstrated. Advantages and disadvantages of these methods are described by in vitro and in vitro testing. The proof of histotypical function after implantation in vivo is essential. The use of autologous cells and tissue engineering methods offers the possibility to overcome the disadvantages of classical tissue reconstruction--donor site morbidity of autologous grafts, immunogenicity of allogenic grafts and loosening of alloplastic implants. Furthermore, tissue engineering widens the spectrum of surgical indications in bone and cartilage reconstruction.

  11. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    Science.gov (United States)

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  12. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Science.gov (United States)

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  13. A novel bio-inorganic bone implant containing deglued bone

    Indian Academy of Sciences (India)

    With the aim of developing an ideal bone graft, a new bone grafting material was developed using deglued bone, chitosan and gelatin. Deglued bone (DGB) which is a by-product of bone glue industries and has the close crystallographic similarities of hydroxyapatite was used as main component in the preparation of bone ...

  14. Strontium-Doped Calcium Phosphate and Hydroxyapatite Granules Promote Different Inflammatory and Bone Remodelling Responses in Normal and Ovariectomised Rats

    Science.gov (United States)

    Xia, Wei; Emanuelsson, Lena; Norlindh, Birgitta; Omar, Omar; Thomsen, Peter

    2013-01-01

    The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone. PMID:24376855

  15. Synchrotron μCT imaging of bone, titanium implants and bone substitutes - a systematic review of the literature.

    Science.gov (United States)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2014-09-01

    Today X-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic X-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  17. Size distributions of aerosols produced from substitute materials by the Laskin cold DOP aerosol generator

    International Nuclear Information System (INIS)

    Hinds, W.; Macher, J.; First, M.W.

    1981-01-01

    Test aerosols of di(2-ethylhexyl)phthalate (DOP) produced by Laskin nozzle aerosol generators are widely used for in-place filter testing and respirator fit testing. Concern for the health effects of this material has led to a search for substitute materials for test aerosols. Aerosols were generated with a Laskin generator and diluted 6000-fold with clean air. Size distributions were measured for DOP, di(2-ethylhexyl)sebecate, polyethylene glycol, mineral oil, and corn oil aerosols with a PMS ASAS-X optical particle counter. Distributions were slightly bimodal with count median diameters from 0.22 to 0.30 μm. Size distributions varied little with aerosol material, operating pressure, or liquid level. Mineral oil and corn oil gave the best agreement with the DOP size distribution

  18. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Braune, B.M.; Scheuhammer, A.M.; Bond, D.E.

    2007-01-01

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  19. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram M; Thimm, Benjamin W; Unger, Ronald E; Orth, Carina; Barbeck, Mike; Kirkpatrick, C James [Institute of Pathology, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55101 Mainz (Germany); Kohler, Thomas; Mueller, Ralph, E-mail: ghanaati@uni-mainz.d [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland)

    2010-04-15

    In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO{sub 2}-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO{sub 2} biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being present and promoting scaffold degradation from an early stage. This manuscript describes successful osteoblastic growth promotion in vitro and a promising biomaterial integration and vasculogenesis in vivo for a possible therapeutic application of this biomatrix in future clinical studies.

  20. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    Science.gov (United States)

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  1. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    Science.gov (United States)

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  2. A numerical study on stress distribution across the ankle joint: Effects of material distribution of bone, muscle force and ligaments.

    Science.gov (United States)

    Mondal, Subrata; Ghosh, Rajesh

    2017-09-01

    The goal of this study is to develop a realistic three dimensional FE model of intact ankle joint. Three dimensional FE model of the intact ankle joint was developed using computed tomography data sets. The effect of muscle force, ligaments and proper material property distribution of bone on stress distribution across the intact ankle joint was studied separately. Present study indicates bone material property, ligaments and muscle force have influence on stress distribution across the ankle joint. Proper bone material, ligaments and muscle must be considered in the computational model for pre-clinical analysis of ankle prosthesis.

  3. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.

    Science.gov (United States)

    Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng

    2015-07-01

    Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  5. [Biomaterials for bone filling: comparisons between autograft, hydroxyapatite and one highly purified bovine xenograft].

    Science.gov (United States)

    Chappard, D; Zhioua, A; Grizon, F; Basle, M F; Rebel, A

    1993-12-01

    Bone grafts are becoming increasingly common in orthopaedics, neurosurgery and periodontology. Twenty one New Zealand rabbits were used in the present study comparing several materials usable as bone substitutes. A 4.5 mm hole was drilled in the inner femoral condyles. Holes were filled with either an autograft (from the opposite condyle), an hydroxylapatite (Bioapatite), or a highly purified bovine xenograft (T650 Lubboc). Animals were sacrificed at 1, 3 and 6 months post implantation and a quantitative analysis of newly-formed bone volume (BNF/IV) and remaining biomaterials (BMAT/IV) was done. In addition, some holes were left unfilled and served as controls. At 6 months, there was no tendency for spontaneous repair in the control animals. The autografted animals have repaired their trabecular mass and architecture within the first month. Hydroxylapatite appeared unresorbed at six months and only thin and scanty new trabeculae were observed. The xenograft induced woven bone trabeculae formation on the first month. This was associated with resorption of the material by two multinucleated cell populations. At six months, the epiphyseal architecture was restored and the biomaterial has disappeared in most cases. Xenografts appear a promising alternative to autografts and allografts, whose infectious risks and ethical problems should always be borne in mind.

  6. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    Science.gov (United States)

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-06

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures.

  7. Fixation strength analysis of cup to bone material using finite element simulation

    NARCIS (Netherlands)

    Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van Der Heide, Emile

    2016-01-01

    Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw

  8. Effect of a Particulate and a Putty-Like Tricalcium Phosphate-Based Bone-grafting Material on Bone Formation, Volume Stability and Osteogenic Marker Expression after Bilateral Sinus Floor Augmentation in Humans

    Directory of Open Access Journals (Sweden)

    Christine Knabe

    2017-07-01

    Full Text Available This study examines the effect of a hyaluronic acid (HyAc containing tricalcium phosphate putty scaffold material (TCP-P and of a particulate tricalcium phosphate (TCP-G graft on bone formation, volume stability and osteogenic marker expression in biopsies sampled 6 months after bilateral sinus floor augmentation (SFA in 7 patients applying a split-mouth design. 10% autogenous bone chips were added to the grafting material during surgery. The grain size of the TCP granules was 700 to 1400 µm for TCP-G and 125 to 250 µm and 500 to 700 µm (ratio 1:1 for TCP-P. Biopsies were processed for immunohistochemical analysis of resin-embedded sections. Sections were stained for collagen type I (Col I, alkaline phosphatase (ALP, osteocalcin (OC and bone sialoprotein (BSP. Furthermore, the bone area and biomaterial area fraction were determined histomorphometrically. Cone-beam CT data recorded after SFA and 6 months later were used for calculating the graft volume at these two time points. TCP-P displayed more advantageous surgical handling properties and a significantly greater bone area fraction and smaller biomaterial area fraction. This was accompanied by significantly greater expression of Col I and BSP and in osteoblasts and osteoid and a less pronounced reduction in grafting volume with TCP-P. SFA using both types of materials resulted in formation of sufficient bone volume for facilitating stable dental implant placement with all dental implants having been in function without any complications for 6 years. Since TCP-P displayed superior surgical handling properties and greater bone formation than TCP-G, without the HyAc hydrogel matrix having any adverse effect on bone formation or graft volume stability, TCP-P can be regarded as excellent grafting material for SFA in a clinical setting. The greater bone formation observed with TCP-P may be related to the difference in grain size of the TCP granules and/or the addition of the HyAc.

  9. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  10. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  11. Preparation and Characterization of Injectable Brushite Filled-Poly (Methyl Methacrylate Bone Cement

    Directory of Open Access Journals (Sweden)

    Lucas C. Rodriguez

    2014-09-01

    Full Text Available Powder-liquid poly (methyl methacrylate (PMMA bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best

  12. Polymers Containing Diphenylvinyl-Substituted Indole Rings as Charge-Transporting Materials for OLEDs

    Science.gov (United States)

    Grigalevicius, S.; Zostautiene, R.; Sipaviciute, D.; Stulpinaite, B.; Volyniuk, D.; Grazulevicius, J. V.; Liu, L.; Xie, Z.; Zhang, B.

    2016-02-01

    Monomers and polymers containing electronically isolated diphenylvinyl-substituted indole rings were synthesized and characterized by nuclear magnetic resonance (NMR) and mass spectroscopies as well as by gel permeation chromatography. The polymers represent amorphous materials with glass transition temperatures of 91-109°C and thermal decomposition starting above 307°C. Electron photoemission spectra of thin films of the synthesized polymers revealed ionization potentials of 5.54-5.58 eV. The synthesized polymers were tested as hole-transporting materials in simple electroluminescent organic light-emitting diode (OLED) devices with tris(quinolin-8-olato)aluminium (Alq3) as an emitter as well as an electron-transporting layer. A green OLED device containing a hole-transporting layer of poly[1-(2,3-epithiopropyl)-2-methyl-3-(2,2-diphenylvinyl)índole] exhibited the best overall performance with a driving voltage of 4.0 V, maximum photometric efficiency of 2.8 cd/A and maximum brightness of about 4200 cd/m2.

  13. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  14. Influence of bone porcelain scraps on the physical characteristics and phase composition of a hard porcelain body

    Energy Technology Data Exchange (ETDEWEB)

    Nodeh, A.A.

    2017-07-01

    Hard porcelain is constituted in the alkali oxides-alumina-silica ternary system, and produced by a mixture of clay-feldspar and silica. The most important properties of this porcelain are high mechanical strength, translucency and whiteness. These properties depend on quality of raw material, firing temperature and soaking time. In bone porcelain bone ash was added to body composition up to 50wt.%. Generally hard porcelain and bone porcelain scrap cannot be reused in body composition. Whereas using these scrap could help natural resources. In this research using bon porcelain scraps in hard porcelain body have been investigated. Results show, this substitution decrease firing temperature, linear expansion and increase glass, probability of deformation and total shrinkage. Using 6wt.% bone porcelain scraps to hard porcelain body composition besides improving some properties, increases 1340°C firing mechanical strength two times and helps natural resources. (Author)

  15. Materials Substitution and Recycling. Proceedings of the Meeting of the Structures and Materials Panel (57th) Held at Vimeiro, Portugal on 14-19 October 1983.

    Science.gov (United States)

    1984-04-01

    No.356 MATERIALS SUBSTITUTION AND RECYCLING Papers presented at the 5 7th Meeting of the Structures and Materials Panel in Vimneiro, Portupi. 19 -14...nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and...composition. The quality heat treatment for monocrystalline alloys such as CMSX2 normally consists of a 3-stage process, viz., Stage 1 2-3 hours @ 1260°C

  16. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    Science.gov (United States)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  17. Effect of VO43− substitution for PO43− on electrochemical properties of the Li3Fe2(PO4)3 cathode materials

    International Nuclear Information System (INIS)

    Yang, Yonggang; Zhang, Yongguang; Hua, Zhengshen; Wang, Xin; Peng, Huifen; Bakenov, Zhumabay

    2016-01-01

    Graphical abstract: VO 4 3− –substituted Li 3 Fe 2 (PO 4 ) 3 samples were prepared by sol-gel method. The VO 4 3− substitution remarkably improves the rate capability and cycling performance of the Li 3 Fe 2 (PO 4 ) 3 due to improved conductivity and enhanced lithium ion diffusion. - Highlights: • Mixed anion effect was used to improve electrochemical properties of Li 3 Fe 2 (PO 4 ) 3 . • The VO 4 3− substitution improved rate capability and cyclability of Li 3 Fe 2 (PO 4 ) 3 . • The Li 3 Fe 2 (PO 4 ) 2.55 (VO 4 ) 0.45 material shows the excellent electrochemical performance. - Abstract: In this research, VO 4 3− substitution was used to improve electrochemical properties of the Nasicon Li 3 Fe 2 (PO 4 ) 3 cathode material. The VO 4 3− substitution resulted in formation of a homogeneous compound Li 3 Fe 2 (PO 4 ) 3-x (VO 4 ) x in a composition range of x ≤ 0.45; further introduction of VO 4 3− led to precipitation of some other phases. It was shown that the VO 4 3− substituted samples presented discharging capacity higher than that of bare non-substituted Nasicon and the reported Ti 4+ and Mn 2+ doped ones. The Li 3 Fe 2 (PO 4 ) 2.55 (VO 4 ) 0.45 material exhibited excellent cycling stability and rate capability, and retained a capacity of 91.8 mAh g −1 after 60 cycles at 2C charge-discharge rate. This value is one of the highest reported to date for the Li 3 Fe 2 (PO 4 ) 3 compound, and was about 48% higher than that of the latter. The electrochemical performance enhancements for the VO 4 3− substituted samples were attributed to the reduction of charge transfer resistance, increase of electrical conductivity, and fast lithium ion diffusion behavior. Hence, the obtained results proved that the VO 4 3− anion substitution for PO 4 3− is a powerful technique to improve the electrochemical performance of the studied Nasicon compound.

  18. Educating T-Shaped professionals to meet substitution challenges and developing business models for substitution and recycling

    Science.gov (United States)

    Arroyo, Ana; Mendibil Eguiluz, Javier; Sánchez Cupido, Laura

    2018-03-01

    One strategy to overcome the challenges related to critical raw materials (CRMs) is their substitution and recycling. However, the bright scientific idea, proof of concept or laboratory demonstration need to cross the valley of death in order to become stated as ‘a substitute’ instead of ‘a potential substitute’. Most PhD students and Post Docs specialize within a given thematic area; for example on specific materials or on substitution in a certain application. This specialization could limit the ability to generate innovations and profitable business models if there are not enough tools and skills to transform new knowledge and research results into an appealing value proposition towards customers and to a business opportunity for the current markets. The project proposes a framework for developing substitution and recycling related cross-sectorial skills and tools. These are applied for training business-related competences e.g. teamwork, management, communication, value proposition and business models design, especially within RTOs and industries. The proposed learning itinerary can radically improve the path from scientific proof of concept into innovation and lean start up or industrial market launch. The developed framework is tested by a pilot group having several topics within the areas of substitution and recycling of critical raw materials.

  19. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries.

    Science.gov (United States)

    Modaresi, Roja; Pauliuk, Stefan; Løvik, Amund N; Müller, Daniel B

    2014-09-16

    Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.

  20. Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.

    Science.gov (United States)

    Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi

    2013-11-01

    Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.

  1. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  2. Histomorphological evaluation of Compound bone of Granulated Ricinus in bone regeneration in rabbits

    International Nuclear Information System (INIS)

    Mateus, Christiano Pavan; Chierice, Gilberto Orivaldo; Okamoto, Tetuo

    2011-01-01

    Histological evaluation is an effective method in the behavioral description of the qualitative and quantitative implanted materials. The research validated the performance of Compound bone of Granulated Ricinus on bone regeneration with the histomorphological analysis results. Were selected 30 rabbits, females, divided into 3 groups of 10 animals (G1, G2, G3) with a postoperative time of 45, 70 and 120 days respectively. Each animal is undergone 2 bone lesions in the ilium, one implemented in the material: Compound bone of Granulated Ricinus and the other for control. After the euthanasia, the iliac bone was removed, identified and subjected to histological procedure. The evaluation histological, histomorphological results were interpreted and described by quantitative and qualitative analysis based facts verified in the three experimental groups evaluating the rate of absorption of the material in the tissue regeneration, based on the neo-bone formation. The histomorphologic results classified as a material biocompatible and biologically active. Action in regeneration by bone resorption occurs slowly and gradually. Knowing the time and rate of absorption and neo-formation bone biomaterial, which can be determined in the bone segment applicable in the clinical surgical area.

  3. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery

    Science.gov (United States)

    Trombetta, Ryan; Inzana, Jason A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2016-01-01

    Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micropores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards. PMID:27324800

  4. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.

    Science.gov (United States)

    Trombetta, Ryan; Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2017-01-01

    Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.

  5. Biomaterials in search of a meniscus substitute.

    Science.gov (United States)

    Rongen, Jan J; van Tienen, Tony G; van Bochove, Bas; Grijpma, Dirk W; Buma, Pieter

    2014-04-01

    The menisci fulfill key biomechanical functions in the tibiofemoral (knee) joint. Unfortunately meniscal injuries are quite common and most often treated by (partial) meniscectomy. However, some patients experience enduring symptoms, and, more importantly, it leads to an increased risk for symptomatic osteoarthritis. Over the past decades, researchers have put effort in developing a meniscal substitute able to prevent osteoarthritis and treat enduring clinical symptoms. Grossly, two categories of substitutes are observed: First, a resorbable scaffold mimicking biomechanical function which slowly degrades while tissue regeneration and organization is promoted. Second, a non resorbable, permanent implant which mimics the biomechanical function of the native meniscus. Numerous biomaterials with different (material) properties have been used in order to provide such a substitute. Nevertheless, a clinically applicable cartilage protecting material is not yet emerged. In the current review we provide an overview, and discuss, these different materials and extract recommendations regarding material properties for future developmental research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Investigation of composition and structure of spongy and hard bone tissue using FTIR spectroscopy, XRD and SEM

    Science.gov (United States)

    Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.

    2018-02-01

    Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.

  7. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    Science.gov (United States)

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    Science.gov (United States)

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    Science.gov (United States)

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  10. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  11. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  12. Injection of Unicameral Bone Cysts with Bone Marrow Aspirate and Demineralized Bone Matrix Avoids Open Curettage and Bone Grafting in a Retrospective Cohort.

    Science.gov (United States)

    Gundle, Kenneth R; Bhatt, Etasha M; Punt, Stephanie E; Bompadre, Viviana; Conrad, Ernest U

    2017-01-01

    Many treatment options exist for unicameral bone cysts (UBC), without clear evidence of superiority. Meta-analyses have been limited by small numbers of patients in specific anatomic and treatment subgroups. The purpose of this study was to report the outcomes of injecting bone marrow aspirate and demineralized bone matrix (BMA/DBM) for the treatment of proximal humerus UBC. Fifty-one patients with proximal humerus lesions treated by BMA/DBM injection were retrospectively reviewed from a single academic medical center. The mean number of injections performed per patient was 2.14 (range 1-5). Eleven patients underwent only one injection (22%), an additional 19 patients completed treatment after two injections (37%), four patients healed after three injections (8%), and one patient healed after four injections (2%). The cumulative success rate of serial BMA/DBM injections was 22% (11/51), 58% (30/51), 67% (34/51), and 69% (35/51). Eleven patients (22%) ultimately underwent open curettage and bone grafting, and five patients (10%) were treated with injection of calcium phosphate bone substitute. A BMA/DBM injection strategy avoided an open procedure in 78% of patients with a proximal humerus UBC. The majority of patients underwent at least 2 injection treatments. Level IV retrospective cohort study.

  13. Properties of deproteinized bone for reparation of big segmental defect in long bone

    Institute of Scientific and Technical Information of China (English)

    JIAN Yue-kui; TIAN Xiao-bin; LI Bo; QIU Bing; ZHOU Zuo-jia; YANG Zheng; LI Qi-hong

    2008-01-01

    Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm ×3 mm ×3 mm bone blocks from inferior extremity of pig femur along bone trabecula. The deproteinized bone was prepared with an improved method. Their morphological features, components, cell compatibility, mechanical and immunological properties were investigated respectively. Results: Deproteinized bone maintained natural re ticular pore system. The main organic material is collagen Ⅰand inorganic composition is hydroxyapatite. It has good mechanical properties, cell adhesion rate and histocompatibility. Conlusion: This deproteinized bone can be applicable as scaffold for reparation of big segmental defect in long bone.

  14. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis.

    Science.gov (United States)

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.

  15. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    M. Paknejad

    2012-01-01

    Full Text Available Objective: Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influ-ence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM on rabbit calvaria. Materials and Methods: Twelve New Zealand white rabbits were included in this randomized, blinded, prospective study. Four equal 3.3×6.6 mm cranial bone defects were created and immediately grafted with DBBM, PRGF+DBBM, PRGF+fibrin membrane and no treatment as control. The defects were evaluated with histologic and histomorphometric analysis performed 4 and 8 weeks later. Results: Adding PRGF to DBBM led to increased bone formation as compared with the control group in 4- and 8-week intervals. In DBBM and PRGF+fibrin membrane samples, no significant increase was seen compared to the control group. There was also a significant increase in the rate of biodegradation of DBBM particles with the addition of PRGF in the 8-week interval. Neither noti-ceable foreign body reaction nor any severe inflammation was seen in each of the specimens evaluated. Conclusion: Under the limitation of this study, adding PRGF to DBBM enhanced osteogenesis in rabbit calvarias. Applying autologous fibrin membrane in the de-fects was not helpful.

  16. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.

    Science.gov (United States)

    Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming

    2017-07-01

    Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    Science.gov (United States)

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    Science.gov (United States)

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  19. Bone replacement following dental trauma prior to implant surgery - present status

    NARCIS (Netherlands)

    Hallman, Mats; Mordenfeld, Arne; Strandkvist, Tomas

    Dento-alveolar trauma often leads to a need for reconstruction of the alveolar crest before an implant can be placed. Although autogenous bone grafts is considered the 'gold standard', this may be associated with patient morbidity and graft resorption. Consequently, the use of bone substitutes has

  20. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  1. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  2. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.

    Science.gov (United States)

    Zhao, Song; Peng, Lingjie; Xie, Guoming; Li, Dingfeng; Zhao, Jinzhong; Ning, Congqin

    2014-08-01

    The current nature of tendon-bone healing after rotator cuff (RC) repair is still the formation of granulation tissue at the tendon-bone interface rather than the formation of fibrocartilage, which is the crucial structure in native tendon insertion and can be observed after knee ligament reconstruction. The interposition of calcium phosphate materials has been found to be able to enhance tendon-bone healing in knee ligament reconstruction. However, whether the interposition of these kinds of materials can enhance tendon-bone healing or even change the current nature of tendon-bone healing after RC repair still needs to be explored. The interposition of calcium phosphate materials during RC repair would enhance tendon-bone healing or change its current nature of granulation tissue formation into a more favorable process. Controlled laboratory study. A total of 144 male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon, followed by delayed repair after 3 weeks. The animals were allocated into 1 of 3 groups: (1) repair alone, (2) repair with Ca5(PO4)2SiO4 (CPS) bioceramic interposition, or (3) repair with hydroxyapatite (HA) bioceramic interposition at the tendon-bone interface. Animals were sacrificed at 2, 4, or 8 weeks postoperatively, and microcomputed tomography (micro-CT) was used to quantify the new bone formation at the repair site. New fibrocartilage formation and collagen organization at the tendon-bone interface was evaluated by histomorphometric analysis. Biomechanical testing of the supraspinatus tendon-bone complex was performed. Statistical analysis was performed using 1-way analysis of variance. Significance was set at P repair, CPS bioceramic significantly increased the area of fibrocartilage at the tendon-bone interface compared with the control and HA groups. Moreover, CPS and HA bioceramics had significantly improved collagen organization. Biomechanical tests indicated that the CPS and HA groups have greater ultimate

  3. Influence of Healing Period Upon Bone Turn Over on Maxillary Sinus Floor Augmentation Grafted Solely with Deproteinized Bovine Bone Mineral: A Prospective Human Histological and Clinical Trial.

    Science.gov (United States)

    Wang, Feng; Zhou, Wenjie; Monje, Alberto; Huang, Wei; Wang, Yueping; Wu, Yiqun

    2017-04-01

    To investigate the influence of maturation timing upon histological, histomorphometric and clinical outcomes when deproteinized bovine bone mineral (DBBM) was used as a sole biomaterial for staged maxillary sinus floor augmentation (MSFA). Patients with a posterior edentulous maxillary situation and a vertical bone height ≤ 4 mm were included in this study. A staged MSFA was carried out. After MSFA with DBBM as a sole grafting material, biopsy cores were harvested with simultaneous implant placement followed by a healing period of 5, 8, and 11 months, respectively. Micro-CT, histologic and histomorphometric analyses were performed. Forty-one patients were enrolled and 38 bone core biopsies were harvested. Significantly greater BV/TV was observed between 5- and 8-month healing from micro-CT analysis. Histomorphometric analyses showed the ratio of mineralized newly formed bone increased slightly from 5 to 11 months; however, no statistically significant difference was reached (p = .409). Residual bone substitute decreased from 37.3 ± 5.04% to 20.6 ± 7.45%, achieving a statistical significant difference from of 5 up to 11 months (p < .01). Moreover, no implant failure, biological or technical complication occurred after 12-month follow-up of functional loading. DBBM utilized as sole grafting material in staged MSFA demonstrated to be clinically effective regardless of the healing period. Histomorphometrical and micro-CT assessments revealed that at later stages of healing (8 and 11 months) there is a higher proportion of newly-bone formation compared to earlier stages (5 months). Moreover, the longer the maturation period, the substantially lesser remaining biomaterial could be expected. Even though, these facts did not seem to negatively impact on the implant prognosis 1-year after loading. © 2016 Wiley Periodicals, Inc.

  4. Computed tomography to evaluate the association of fragmented heterolog cortical bone and methylmethacrylate to repare segmental bone defect produced in tibia of rabbits

    International Nuclear Information System (INIS)

    Freitas, S.H.; Doria, R.G.S.; Mendonca, F.S.; Santos, M.D.; Moreira, R.; Simoes, R.S.; Camargo, L.M.; Simoes, M.J.; Marques, A.T.C.

    2012-01-01

    A 6mm segmental defect was performed on the metaphyseal region of the tibia of 12 rabbits and the autoclaved fragmented heterolog cortical bone conserved in glycerin (98%) and methylmethacrylate was used as a bone graft for the reconstruction. The graft was placed in the receptor bed and its integration was evaluated by computed tomography after 30, 60 and 90 days. There was gradual bone graft incorporation in the receptor bed during the time in 100% of the cases. Fragmented cortical bone heterograft and methylmethacrylate was biologically compatible and promotes bone defect reparation without signs of infection, migration and or rejection, featuring a new option of osseous substitute to fill in bone defects. (author)

  5. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    OpenAIRE

    I. I. Kuzhelivsky; M. A. Akselrov; L. A. Sitko

    2015-01-01

    The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  6. Experimental model of bone response to collagenized xenografts of porcine origin (OsteoBiol® mp3): a radiological and histomorphometric study.

    Science.gov (United States)

    Calvo Guirado, Jose Luis; Ramírez Fernández, Maria Piedad; Negri, Bruno; Delgado Ruiz, Rafael Arcesio; Maté Sánchez de-Val, José Eduardo; Gómez-Moreno, Gerardo

    2013-02-01

    Adequate alveolar ridges are fundamental to successful rehabilitation with implants. There are diverse techniques for reconstructing atrophied ridges, of which bone substitute grafts is one possibility. The aim of this study was to carry out radiological and histomorphometric evaluations of bone response to collagenized porcine bone xenografts over a 4-month period following their insertion in rabbits' tibiae. Twenty New Zealand rabbits were used. Twenty collagenized porcine bone xenografts (Osteobiol® mp3, Tecnoss Dental s.r.l., Torino, Italy), in granulated form of 600 to 1,000 µm, were inserted in the proximal metaphyseal area of the animals' tibiae and 20 control areas were created. Following implantation, the animals were sacrificed in four groups of five, after 1, 2, 3, and 4 months, respectively. Radiological and histomorphometric studies were made. After 4 months, radiological images revealed bone defects with a decrease in graft volume and the complete repair of the osseous defect. No healed or residual bone alterations attributable to the presence of the implants were observed. Histomorphometric analysis at 4 months found mean values for newly formed bone, residual graft material, and non-mineralized connective tissue of 25.4 ± 1.8%, 36.37 ± 3.0%, and 38.22 ± 2.5%, respectively. There were no statistical differences in the length of cortical formation with collagenized porcine xenograft (98.9 ± 1.1%) compared with the control samples (99.1 ± 0.7%) at the end of the study period. The biomaterial used proved to be biocompatible, bioabsorbable, and osteoconductive and as such, a possible bone substitute that did not interfere with the bone's normal reparative processes. © 2011 Wiley Periodicals, Inc.

  7. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.

    Science.gov (United States)

    Reznikov, Natalie; Shahar, Ron; Weiner, Steve

    2014-02-01

    Lamellar bone is the most common bone type in humans. The predominant components of individual lamellae are plywood-like arrays of mineralized collagen fibrils aligned in different directions. Using a dual-beam electron microscope and the Serial Surface View (SSV) method we previously identified a small, but significantly different layer in rat lamellar bone, namely a disordered layer with collagen fibrils showing little or no preferred orientation. Here we present a 3D structural analysis of 12 SSV volumes (25 complete lamellae) from femora of 3 differently aged human individuals. We identify the ordered and disordered motifs in human bone as in the rat, with several significant differences. The ordered motif shows two major preferred orientations, perpendicular to the long axis of the bone, and aligned within 10-20° of the long axis, as well as fanning arrays. At a higher organizational level, arrays of ordered collagen fibrils are organized into 'rods' around 2 to 3μm in diameter, and the long axes of these 'rods' are parallel to the lamellar boundaries. Human bone also contains a disordered component that envelopes the rods and fills in the spaces between them. The disordered motif is especially well-defined between adjacent layers of rods. The disordered motif and its interfibrillar substance stain heavily with osmium tetroxide and Alcian blue indicating the presence of another organic component in addition to collagen. The canalicular network is confined to the disordered material, along with voids and individual collagen fibrils, some of which are also aligned more or less perpendicular to the lamellar boundaries. The organization of the ordered fibril arrays into rods enveloped in the continuous disordered structure was not observed in rat lamellar bone. We thus conclude that human lamellar bone is comprised of two distinct materials, an ordered material and a disordered material, and contains an additional hierarchical level of organization composed of

  8. Application of interconnected porous hydroxyapatite ceramic block for onlay block bone grafting in implant treatment: A case report.

    Science.gov (United States)

    Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki

    2017-12-01

    Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.

  9. Calcium phosphate coatings for bone regeneration

    NARCIS (Netherlands)

    Yang, Liang

    2010-01-01

    As a novel approach to repair and regenerate damaged and degraded bone tissue, tissue engineering has recorded tremendous growth for the last thirty years. This is an emerging interdisciplinary field applying the principles of biology and engineering to the development of viable substitutes that

  10. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration.

    Science.gov (United States)

    Mao, Daoyong; Li, Qing; Bai, Ningning; Dong, Hongzhou; Li, Daikun

    2018-01-15

    A major challenge in bone tissue engineering is the development of biomimetic scaffolds which should simultaneously meet mechanical strength and pore structure requirements. Herein, we combined technologies of high concentration solvent casting, particulate leaching, and room temperature compression molding to prepare a novel poly(lactic acid)/ethyl cellulose/hydroxyapatite (PLA/EC/HA) scaffold. The functional, structural and mechanical properties of the obtained porous scaffolds were characterized. The results indicated that the PLA/EC/HA scaffolds at the 20wt% HA loading level showed optimal mechanical properties and desired porous structure. Its porosity, contact angle, compressive yield strength and weight loss after 56days were 84.28±7.04%, 45.13±2.40°, 1.57±0.09MPa and 4.77±0.32%, respectively, which could satisfy the physiological demands to guide bone regeneration. Thus, the developed scaffolds have potential to be used as a bone substitute material for bone tissue engineering application. Copyright © 2017. Published by Elsevier Ltd.

  11. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  12. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  13. 3D silicon doped hydroxyapatite scaffolds decorated with Elastin-like Recombinamers for bone regenerative medicine.

    Science.gov (United States)

    Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María

    2016-11-01

    The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier

  14. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics].

    Science.gov (United States)

    Zhu, Minghua; Zeng, Yi; Sun, Tao; Peng, Qiang

    2005-03-15

    To investigate the osteogenic potential of four kinds of new bioactive ceramics combined with bovine bone morphogenetic proteins (BMP) and to explore the feasibility of using compounds as bone substitute material. Ninety-six rats were divided into 4 groups (24 in each group). BMP was combined with hydroxyapatite (HA), tricalcium phosphate (TCP), fluoridated-HA (FHA), and collagen-HA(CHA) respectively. The left thighs of the rats implanted with HA/BMP, TCP/BMP, FHA/BMP, and CHA/BMP were used as experimental groups. The right thighs of the rats implanted with HA, TCP, CHA, and decalcified dentin matrix (DDM) were used as control groups. The rats were sacrificed 1, 3, 5 and 7 weeks after implantation and bone induction was estimated by alkaline phosphatase (ALP), phosphorus (P), and total protein (TP) measurement. The histological observation and electronic microscope scanning of the implants were also made. The cartilage growth in the 4 experimental groups and the control group implanted with DDM was observed 1 week after operation and fibrous connective tissues were observed in the other 3 control groups. 3 weeks after implantation, lamellar bone with bone marrow and positive reaction in ALP stain were observed in the 4 experimental groups. No bone formation or positive reaction in ALP stain were observed in the control groups. The amount of ALP activity, P value, and new bone formation in the experimental groups were higher than those in the control group(P < 0.05). The amount of ALP activity, P value, and new bone formation in TCP/BMP group were higher than those in HA/BMP, CHA/BMP and FHA/BMP groups (P < 0.05). There was no significant difference in TP between the BMP treatment group and the control groups. From 5th to 7th week, new bone formation, histochemistry evaluation, and the level of ALP, P, TP value were as high as those in the 3rd week. New composite artificial bone of TCP/BMP, HA/BMP, CHA/BMP, and FHA/BMP all prove to be effective, but TCP/BMP is the

  15. * Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair.

    Science.gov (United States)

    Drager, Justin; Ramirez-GarciaLuna, Jose Luis; Kumar, Abhishek; Gbureck, Uwe; Harvey, Edward J; Barralet, Jake E

    2017-12-01

    Tissue hypoxia is a critical driving force for angiogenic and osteogenic responses in bone regeneration and is, at least partly, under the control of the Hypoxia Inducible Factor-1α (HIF-1α) pathway. Recently, the widely used iron chelator deferoxamine (DFO) has been found to elevate HIF-1α levels independent of oxygen concentrations, thereby, creating an otherwise normal environment that mimics the hypoxic state. This has the potential to augment the biological properties of inorganic scaffolds without the need of recombinant growth factors. This pilot study investigates the effect of local delivery of DFO on bone formation and osseointegration of an anatomically matched bone graft substitute, in the treatment of segmental bone defects. Three-dimensional printing was used to create monetite grafts, which were implanted into 10 mm midshaft ulnar defects in eight rabbits. Starting postoperative day 4, one graft site in each animal was injected with 600 μL (200 μM) of DFO every 48 h for six doses. Saline was injected in the contralateral limb as a control. At 8 weeks, micro-CT and histology were used to determine new bone growth, vascularity, and assess osseointegration. Six animals completed the protocol. Bone metric analysis using micro-CT showed a significantly greater amount of new bone formed (19.5% vs. 13.65% p = 0.042) and an increase in bone-implant contact area (63.1 mm 2 vs. 33.2 mm 2 p = 0.03) in the DFO group compared with control. Vascular channel volume was significantly greater in the DFO group (20.9% vs. 16.2% p = 0.004). Histology showed increased bone formation within the osteotomy gap, more bone integrated with the graft surface as well as more matured soft tissue callus in the DFO group. This study demonstrates a significant increase in new bone formation after delivery of DFO in a rabbit long bone defect bridged by a 3D-printed bioresorbable bone graft substitute. Given the safety, ease of handling, and low expense of

  16. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    I. I. Kuzhelivsky

    2015-01-01

    Full Text Available The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  17. Finite element analysis of functionally graded bone plate at femur bone fracture site

    Science.gov (United States)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  18. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering

    International Nuclear Information System (INIS)

    Diogo, G S; Gaspar, V M; Serra, I R; Fradique, R; Correia, I J

    2014-01-01

    The growing need to treat bone-related diseases in an elderly population compels the development of novel bone substitutes to improve patient quality of life. In this context, the advent of affordable and effective rapid prototyping equipment, such as the Fab@home plotter, has contributed to the development of novel scaffolds for bone tissue engineering. In this study, we report for the first time the use of a Fab@home plotter for the production of 3D scaffolds composed by beta-tricalcium phosphate (β-TCP)/alginate hybrid materials. β-TCP/alginate mixtures were used in a proportion of 50/50% (w/w), 30/70% (w/w) and 20/80% (w/w). The printing parameters were optimized to a nozzle diameter of 20 Gauge for the production of rigid scaffolds with pre-defined architectures. We observed that, despite using similar printing parameters, both the precision and resolution of the scaffolds were significantly affected by the blend's viscosity. In particular, we demonstrate that the higher viscosity of 50/50 scaffolds (150.0 ± 3.91 mPa s) provides a higher precision in the extrusion process. The physicochemical and biological characterization of the samples demonstrated that the 50/50 scaffolds possessed a resistance to compression comparable to that of native trabecular bone. Moreover, this particular formulation also exhibited a Young's modulus that was higher than that of trabecular bone. Scanning electron microscopy and fluorescence microscopy analysis revealed that osteoblasts were able to adhere, proliferate and also penetrate into the scaffold's architecture. Altogether, our findings suggest that the Fab@home printer can be employed in the manufacture of reproducible scaffolds, using a formulation 50/50 alginate-β-TCP that has suitable properties to be applied as bone substitutes in the future. (paper)

  19. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over.

    Science.gov (United States)

    Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim

    2018-03-21

    Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.

  20. Osseous Flap of Galea and Periosteum Filled With Mesenchymal Stem Cells, Platelet-Rich Plasma, Bone Dust, and Hyaluronic Acid.

    Science.gov (United States)

    Brock, Ryane Schmidt; Viterbo, Fausto; Deffune, Elenice; Domingues, Maria Aparecida Custodio; Mamprim, Maria Jaqueline; Paschoalinotte, Eloisa Elena

    2017-10-01

    Reconstructive surgery to craniofacial deformities caused by tumor ressections, traumas or congenital malformation are frequent in medicine practice. It aims to provide the patients with better quality of life and functional improvement of speech, breathing, chewing, and swallowing. Many are the techniques described in the literature to recover bone defects. This study evaluated a vascularized galeal and periosteum flap in rabbits, which could possibly substitute the bone graft in reconstructive surgery, especially for facial defects. It involved rabbits, divided into 12 groups, submitted to a surgical procedure to construct the galea and periosteum cranial flap filled with fragments of cranial bone, platelet-rich plasma, mesenchimal stem cells, and hyaluronic acid. The evaluation methods included image examinations and histological analysis.The results demonstrated bone formation with the use of platelet-rich plasma, mesenchimal stem cells, and bone fragments. The use of several enrichment materials of osseous cellular stimulation improved the quality and bone tissue organization. The more enrichment factor used, the better the tissue quality result was.Much research should be done to improve the methods and to analyze if results in human have the same bone formation as it happened in rabbits.

  1. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  2. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Science.gov (United States)

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject to...

  3. Bioreactor activated graft material for early implant fixation in bone

    DEFF Research Database (Denmark)

    Snoek Henriksen, Susan; Ding, Ming; Overgaard, Søren

    2011-01-01

    from the iliac crest. For both groups, mononuclear cells were isolated, and injected into a perfusion bioreactor (Millenium Biologix AG, Switzerland). Scaffold granules (Ø~900-1500 µm, ~88% porosity) in group 1, consisted of hydroxyapatite (HA, 70%) with β-tricalcium-phosphate (β-TCP, 30%) (Danish....... The superficial part was used for mechanical testing and micro-CT scanning, and the profound part for histomorphometry. Push-out tests were performed on an 858 Bionix MTS hydraulic materials testing machine (MTS Systems Corporation, USA). Shear mechanical properties between implant and newly generated bone were...

  4. Osteoconduction of impacted porous titanium particles with a calcium-phosphate coating is comparable to osteoconduction of impacted allograft bone particles: in vivo study in a nonloaded goat model.

    Science.gov (United States)

    Walschot, Lucas H B; Aquarius, René; Schreurs, Barend W; Verdonschot, Nico; Buma, Pieter

    2012-08-01

    Impaction grafting restores bone defects in hip arthroplasty. Defects are reconstructed with bone particles (BoP) as substitute materials with adequate mechanical and biological properties are not yet available. Ceramic particles (CeP) have mechanical drawbacks as opposed to porous titanium particles (TiP). In this in vivo study, bone ingrowth and bone volume in coated and noncoated TiP were compared to porous biphasic calcium-phospate CeP and allograft BoP. Coatings consisted of silicated calcium-phosphate and carbonated apatite. Materials were implanted in goats and impacted in cylindrical defects (diameter 8 mm) in the cancellous bone of the femur. On the basis of fluorochrome labeling and histology, bone ingrowth distance was measured at 4, 8, and 12 weeks. Cross-sectional bone area was measured at 12 weeks. TiP created a coherent matrix of entangled particles. CeP pulverized and were noncoherent. Bone ingrowth in TiP improved significantly by the coatings to levels comparable to BoP and CeP. Cross-sectional bone area was smaller in CeP and TiP compared to BoP. The osteoconductive properties of impacted TiP with a calcium-phosphate coating are comparable to impacted allograft bone and impacted biphasic ceramics. A more realistic loaded in vivo study should prove that coated TiP is an attractive alternative to allograft bone. Copyright © 2012 Wiley Periodicals, Inc.

  5. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    Energy Technology Data Exchange (ETDEWEB)

    Jegatheeswaran, S. [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India); Selvam, S. [Laser and Sensor Application Laboratory, Pusan National University, Busan 609735 (Korea, Republic of); Sri Ramkumar, V. [Deptartment of Environmental Biotechnology, School of Environmental, Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu (India); Sundrarajan, M., E-mail: sundrarajan@yahoo.com [Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi-3, Tamil Nadu (India)

    2016-05-15

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF{sub 4} ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  6. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    International Nuclear Information System (INIS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-01-01

    Highlights: • Fluorine based ionic liquid was highly influenced the morphological structure of nanocomposites. • These composites has been motivated controlled release of silver nanoparticles for uniform antibacterial activity. • These material has given excellent antibacterial biofilm activity and favourable cytotoxical behavior on the human osteosarcoma (MG-63) cells. • These material has been highly suitable for bone substitute appliactions. - Abstract: A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF_4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  7. Bioefficacy And Economics Of Ronozyme™ P As A Substitute For ...

    African Journals Online (AJOL)

    The biological and economic efficiencies of Ronozyme ™ p as a substitute for bone meal in female Turkey poults was investigated. A total of eighty local female poults were brooded and fed commercial broiler starter diet containing 23% CP and 2800kcal/kg ME from day-old to four weeks of age. Sixty (60) female poults ...

  8. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running

    Science.gov (United States)

    We conducted a study to examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphag...

  9. Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis

    Directory of Open Access Journals (Sweden)

    Oršolić Nada

    2018-06-01

    Full Text Available Retinoic acid-induced osteoporosis (RBM is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM. After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg or alendronate (40 mg/kg. We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD, markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.

  10. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    Science.gov (United States)

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  12. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  13. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications

    International Nuclear Information System (INIS)

    Ashuri, Maziar; Moztarzadeh, Fathollah; Nezafati, Nader; Ansari Hamedani, Ali; Tahriri, Mohammadreza

    2012-01-01

    In the present study, a bioceramic-based composite was prepared by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol–gel-derived bioactive glass (64SiO 2 -26CaO-5MgO-5ZnO) (based on mol%) powders. HA powder was mixed with different concentrations of the glass powders up to 30 wt.%. The effect of adding bioactive glass powder to HA matrix, on the mechanical properties of the composite was assessed by compression test. The specimen with the highest compressive strength was chosen to be immersed in simulated body fluid (SBF) to study apatite forming ability and dissolution behavior. It was found that compressive strength of the specimen was decreased 65% after maintaining in the SBF for 14 days. X-ray diffraction (XRD) showed prevalence of HA and β-TCP related peaks. Also, the surface morphology of the composite was observed using scanning electron microscopy (SEM). The study of degradation behavior revealed Si release capability of this composite. Biological evaluations in vitro confirmed the composite studied could induce osteoblast-like cells' activities. - Highlights: ► A novel composite based on HA/bioactive glass for bone substitutes was developed. ► Evaluations in vitro confirmed the composites induce bone-like cells' activities. ► A successful compromise of bioactivity and cytocompatibility was observed.

  14. Nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Vieira, Sílvia; Vial, Stephanie; Reis, Rui L; Oliveira, J Miguel

    2017-05-01

    Tissue engineering (TE) envisions the creation of functional substitutes for damaged tissues through integrated solutions, where medical, biological, and engineering principles are combined. Bone regeneration is one of the areas in which designing a model that mimics all tissue properties is still a challenge. The hierarchical structure and high vascularization of bone hampers a TE approach, especially in large bone defects. Nanotechnology can open up a new era for TE, allowing the creation of nanostructures that are comparable in size to those appearing in natural bone. Therefore, nanoengineered systems are now able to more closely mimic the structures observed in naturally occurring systems, and it is also possible to combine several approaches - such as drug delivery and cell labeling - within a single system. This review aims to cover the most recent developments on the use of different nanoparticles for bone TE, with emphasis on their application for scaffolds improvement; drug and gene delivery carriers, and labeling techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:590-611, 2017. © 2017 American Institute of Chemical Engineers.

  15. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    Science.gov (United States)

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the sustained morphology. PMID:20514266

  16. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications

    Science.gov (United States)

    Gopi, D.; Nithiya, S.; Shinyjoy, E.; Kavitha, L.

    Synthetic calcium hydroxyapatite (HAP,Ca10(PO4)6(OH)2) is a well-known bioceramic material used in orthopaedic and dental applications because of its excellent biocompatibility and bone-bonding ability. Substitution of trace elements, such as Sr, Mg and Zn ions into the structure of calcium phosphates is the subject of widespread investigation. In this paper, we have reported the synthesis of Sr, Mg and Zn co-substituted nanohydroxyapatite by soft solution freezing method. The effect of pH on the morphology of bioceramic nanomaterial was also discussed. The in vitro bioactivity of the as-synthesized bioceramic nanomaterial was determined by soaking it in SBF for various days. The as-synthesized bioceramic nanomaterial was characterized by Fourier transform infrared spectroscopy, X- ray diffraction analysis, Scanning electron microscopy and Energy dispersive X-ray analysis and Transmission electron microscopic techniques respectively. The results obtained in our study have revealed that pH 10 was identified to induce the formation of mineralized nanohydroxyapatite. It is observed that the synthesis of bioceramic nanomaterial not only support the growth of apatite layer on its surface but also accelerate the growth which is evident from the in vitro studies. Therefore, mineralized nanohydroxyapatite is a potential candidate in bone tissue engineering.

  17. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    Full Text Available Danggui Buxue Tang (DBT is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT. The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS, micro-computed tomography (micro-CT, and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.

  18. [Metabolic bone disease osteomalacia].

    Science.gov (United States)

    Reuss-Borst, M A

    2014-05-01

    Osteomalacia is a rare disorder of bone metabolism leading to reduced bone mineralization. Underlying vitamin D deficiency and a disturbed phosphate metabolism (so-called hypophosphatemic osteomalacia) can cause the disease. Leading symptoms are dull localized or generalized bone pain, muscle weakness and cramps as well as increased incidence of falls. Rheumatic diseases, such as polymyalgia rheumatica, rheumatoid arthritis, myositis and fibromyalgia must be considered in the differential diagnosis. Alkaline phosphatase (AP) is typically elevated in osteomalacia while serum phosphate and/or 25-OH vitamin D3 levels are reduced. The diagnosis of osteomalacia can be confirmed by an iliac crest bone biopsy. Histological correlate is reduced or deficient mineralization of the newly synthesized extracellular matrix. Treatment strategies comprise supplementation of vitamin D and calcium and for patients with intestinal malabsorption syndromes vitamin D and calcium are also given parenterally. In renal phosphate wasting syndromes substitution of phosphate is the treatment of choice, except for tumor-induced osteomalacia when removal of the tumor leads to a cure in most cases.

  19. Cellular and molecular prerequisites for bone tissue engineering

    NARCIS (Netherlands)

    Siddappa, Ramakrishnaiah

    2007-01-01

    Recent advances in medicine and other biological disciplines have considerably enhanced the life expectancy of human and consequently, resulting in age related health problems including skeletal complications. In addition, bone substitute to regenerate fractures resulting from trauma, congenital and

  20. Sealing ability of a new calcium silicate based material as a dentin substitute in class II sandwich restorations: An in vitro study

    Directory of Open Access Journals (Sweden)

    Raji Viola Solomon

    2014-01-01

    Full Text Available Background: Class ll sandwich restorations are routinely performed where conventional Glass ionomer cement (GIC or Resin-modified GIC (RMGIC is used as a base or dentin substitute and a light curing composite resin restorative material is used as an enamel substitute. Various authors have evaluated the microleakage of composite resin restorations where glass ionomer cement has been used as a base in class II sandwich restorations, but a literature survey reveals limited studies on the microleakage analysis of similar restorations with biodentine as a dentin substitute, as an alternative to glass ionomer cement. The aim of this study is: To evaluate the marginal sealing efficacy of a new calcium-silicate-based material (Biodentine as a dentin substitute, at the cervical margins, in posterior class II sandwich restorations.To compare and evaluate the microleakage at the biodentine/composite interface with the microleakage at the resin-modified GIC/composite interface, in posterior class II open sandwich restorations. To compare the efficacy between a water-based etch and rinse adhesive (Scotch bond multipurpose and an acetone-based etch and rinse adhesive (Prime and bond NT, when bonding biodentine to the composite. To evaluate the enamel, dentin, and interfacial microleakage at the composite and biodentine/RMGIC interfaces. Materials and Methods: Fifty class II cavities were prepared on the mesial and distal surfaces of 25 extracted human maxillary third molars, which were randomly divided into five groups of ten cavities each: (G1 Biodentine group, (G2 Fuji II LC GIC group, (G3 Biodentine as a base + prime and bond NT + Tetric N-Ceram composite, (G4 Biodentine + scotchbond multi-purpose + Tetric N-Ceram composite, (G5 Fuji II LC as a base + prime and bond NT+ Tetric-N Ceram composite. The samples were then subjected to thermocycling, 2500× (5°C to 55°C, followed by the dye penetration test. Scores are given from 0 to 3 based on the depth of

  1. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  2. Osteotome-Mediated Sinus Lift without Grafting Material: A Review of Literature and a Technique Proposal

    Science.gov (United States)

    Taschieri, Silvio; Corbella, Stefano; Saita, Massimo; Tsesis, Igor; Del Fabbro, Massimo

    2012-01-01

    Implant rehabilitation of the edentulous posterior maxilla may be a challenging procedure in the presence of insufficient bone volume for implant placement. Maxillary sinus augmentation with or without using grafting materials aims to provide adequate bone volume. The aim of the present study was to systematically review the existing literature on transalveolar maxillary sinus augmentation without grafting materials and to propose and describe an osteotome-mediated approach in postextraction sites in combination with platelet derivative. The systematic review showed that high implant survival rate (more than 96% after 5 years) can be achieved even without grafting the site, with a low rate of complications. Available alveolar bone height before surgery was not correlated to survival rate. In the described case report, three implants were placed in posterior maxilla after extraction of two teeth. An osteotome-mediated sinus lifting technique was performed with the use of platelet derivative (PRGF); a synthetic bone substitute was used to fill the gaps between implant and socket walls. No complications occurred, and implants were successfully in site after 1 year from prosthetic loading. The presented technique might represent a viable alternative for the treatment of edentulous posterior maxilla with atrophy of the alveolar bone though it needs to be validated by studies with a large sample size. PMID:22792108

  3. Osteotome-Mediated Sinus Lift without Grafting Material: A Review of Literature and a Technique Proposal

    Directory of Open Access Journals (Sweden)

    Silvio Taschieri

    2012-01-01

    Full Text Available Implant rehabilitation of the edentulous posterior maxilla may be a challenging procedure in the presence of insufficient bone volume for implant placement. Maxillary sinus augmentation with or without using grafting materials aims to provide adequate bone volume. The aim of the present study was to systematically review the existing literature on transalveolar maxillary sinus augmentation without grafting materials and to propose and describe an osteotome-mediated approach in postextraction sites in combination with platelet derivative. The systematic review showed that high implant survival rate (more than 96% after 5 years can be achieved even without grafting the site, with a low rate of complications. Available alveolar bone height before surgery was not correlated to survival rate. In the described case report, three implants were placed in posterior maxilla after extraction of two teeth. An osteotome-mediated sinus lifting technique was performed with the use of platelet derivative (PRGF; a synthetic bone substitute was used to fill the gaps between implant and socket walls. No complications occurred, and implants were successfully in site after 1 year from prosthetic loading. The presented technique might represent a viable alternative for the treatment of edentulous posterior maxilla with atrophy of the alveolar bone though it needs to be validated by studies with a large sample size.

  4. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    Science.gov (United States)

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

  5. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  6. The Development of Biomimetic Spherical Hydroxyapatite/Polyamide 66 Biocomposites as Bone Repair Materials

    Directory of Open Access Journals (Sweden)

    Xuesong Zhang

    2014-01-01

    Full Text Available A novel biomedical material composed of spherical hydroxyapatite (s-HA and polyamide 66 (PA biocomposite (s-HA/PA was prepared, and its composition, mechanical properties, and cytocompatibility were characterized and evaluated. The results showed that HA distributed uniformly in the s-HA/PA matrix. Strong molecule interactions and chemical bonds were presented between the s-HA and PA in the composites confirmed by IR and XRD. The composite had excellent compressive strength in the range between 95 and 132 MPa, close to that of natural bone. In vitro experiments showed the s-HA/PA composite could improve cell growth, proliferation, and differentiation. Therefore, the developed s-HA/PA composites in this study might be used for tissue engineering and bone repair.

  7. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  8. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    NARCIS (Netherlands)

    Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element

  9. Micro-mechanical modeling of the cement-bone interface: the effect of friction morphology and material properties on the micromechanical response

    NARCIS (Netherlands)

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element

  10. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    Science.gov (United States)

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Growth hormone and bone health.

    Science.gov (United States)

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  12. Healing of experimentally created defects: a review

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Hjørting-Hansen, E

    1995-01-01

    Within cranio-maxillofacial surgery and orthopedic surgery a bone graft or a bone substitute is required to recontour or assist bony healing in repair of osseous congenital deformities, or in repair of deformity due to trauma or to surgical excision after elimination of osseous disease processes ...... proteins have with success been added as adjuncts to already known biomaterials. In the future, inductive materials together with a suitable carrier and a biodegradable membrane may be the choice of bone substitute used within cranio-maxillofacial and orthopaedic surgery.......Within cranio-maxillofacial surgery and orthopedic surgery a bone graft or a bone substitute is required to recontour or assist bony healing in repair of osseous congenital deformities, or in repair of deformity due to trauma or to surgical excision after elimination of osseous disease processes...... exceeding a certain size. An autogenous bone graft is the optimal material of choice, however its use is problematic due to donor site morbidity, sparse amounts and uncontrolled resorption. Immunological responses and risk of viral contamination of allogenous and xenogenous bone materials make the use...

  13. Characterization of the interaction between therapeutical carbon ions and bone-like materials and related impact on treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Anna; Durante, Marco [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany); TU Darmstadt (Germany); Carlino, Antonio [University of Palermo (Italy); Kaderka, Robert; Kraemer, Michael; La Tessa, Chiara; Scifoni, Emanuele [GSI Helmholtzzentrum fuer Schwereionen, Darmstadt (Germany)

    2013-07-01

    Radiotherapy is one of the most common and effective therapies for cancer. The treatment planning system for ions TRiP98 was developed at GSI, Darmstadt. In TRiP98, the interaction between primary radiation and tissue is modeled from experimental data measured in water and rescaled to other tissue. This approximation is not accurate enough for biological materials whose elemental composition besides density deviates significantly from water. The nuclear attenuation of carbon beams in bone-like materials was measured and an estimation of the fragmentation cross section was done. In parallel, the dose profile inhomogeneity predicted by TRiP98 at the interface between water and bones was investigated and measured at HIT (Heidelberg). A 3D treatment plan was delivered in a water phantom equipped with bone targets. Pin-point ionization chambers and X-ray dosimetric films were used for measuring the dose at different positions. As a further step, the measured cross sections of carbon ions in bone have been implemented in TRiP98. The comparison of the dose profiles calculated with the standard and benchmarked versions of the treatment planning will give an estimate of the improvement.

  14. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  15. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Fahami, Abbas; Beall, Gary W.; Betancourt, Tania

    2016-01-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl"− and F"− substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  16. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Fahami, Abbas, E-mail: fahami@txstate.edu [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Beall, Gary W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Betancourt, Tania [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl{sup −} and F{sup −} substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  17. Particulate bioglass in the regeneration of alveolar bone in dogs: clinical, surgical and radiographic evaluations

    Directory of Open Access Journals (Sweden)

    Alexandre Couto Tsiomis

    2011-04-01

    Full Text Available Bone loss, either by trauma or other diseases, generates an increasing need for substitutes of this tissue. This study evaluated Bioglass as a bone substitute in the regeneration of the alveolar bone in mandibles of dogs by clinical, surgical and radiological analysis. Twenty-eight adult dogs were randomly separated into two equal groups. In each animal, a bone defect was created on the vestibular surface of the alveolar bone between the roots of the fourth right premolar tooth. In the treated group, the defect was immediately filled with bioglass, while in the control, it remained unfilled. Clinical evaluations were performed daily for a week, as well as x-rays immediately after surgery and at 8, 14, 21, 42, 60, 90 and 120 days post-operative. Most animals in both groups showed no signs of inflammation and wound healing was similar. Radiographic examination revealed a gradual increase of radiopacity in the region of the defect in the control group. In the treated group, initial radiopacity was higher than that of adjacent bone, decreasing until 21 days after surgery. Then it gradually increased until 120 days after surgery, when the defect became undetectable. The results showed that Bioglass integrates into bone tissue, is biocompatible and reduced the period for complete bone regeneration.

  18. A novel bio-inorganic bone implant containing deglued bone ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. With the aim of developing an ideal bone graft, a new bone grafting material was developed using ... ing of a HA powder in a chitosan solution and coating of. HA particle .... system and the cell parameters were calculated using the.

  19. Strontium-Substituted Bioceramics Particles: A New Way to Modulate MCP-1 and Gro-α Production by Human Primary Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Julien Braux

    2016-12-01

    Full Text Available Background: To avoid morbidity and limited availability associated with autografts, synthetic calcium phosphate (CaP ceramics were extensively developed and used as bone filling materials. Controlling their induced-inflammatory response nevertheless remained a major concern. Strontium-containing CaP ceramics were recently demonstrated for impacting cytokines’ secretion pattern of human primary monocytes. The present study focuses on the ability of strontium-containing CaP to control the human primary bone cell production of two major inflammatory and pro-osteoclastogenic mediators, namely MCP-1 and Gro-α, in response to ceramics particles. Methods: This in vitro study was performed using human primary osteoblasts in which their response to ceramics was evaluated by PCR arrays, antibody arrays were used for screening and real-time PCR and ELISA for more focused analyses. Results: Study of mRNA and protein expression highlights that human primary bone cells are able to produce these inflammatory mediators and reveal that the adjunction of CaP in the culture medium leads to their enhanced production. Importantly, the current work determines the down-regulating effect of strontium-substituted CaP on MCP-1 and Gro-α production. Conclusion: Our findings point out a new capability of strontium to modulate human primary bone cells’ communication with the immune system.

  20. Mathematical model of mechanical testing of bone-implant (4.5 mm LCP construct

    Directory of Open Access Journals (Sweden)

    Lucie Urbanová

    2012-01-01

    Full Text Available The study deals with the possibility of substituting time- and material-demanding mechanical testing of a bone defect fixation by mathematical modelling. Based on the mechanical model, a mathematical model of bone-implant construct stabilizing experimental segmental femoral bone defect (segmental ostectomy in a miniature pig ex vivo model using 4.5 mm titanium LCP was created. It was subsequently computer-loaded by forces acting parallel to the long axis of the construct. By the effect of the acting forces the displacement vector sum of individual construct points occurred. The greatest displacement was noted in the end segments of the bone in close proximity to ostectomy and in the area of the empty central plate hole (without screw at the level of the segmental bone defect. By studying the equivalent von Mises stress σEQV on LCP as part of the tested construct we found that the greatest changes of stress occur in the place of the empty central plate hole. The distribution of this strain was relatively symmetrical along both sides of the hole. The exceeding of the yield stress value and irreversible plastic deformations in this segment of LCP occurred at the acting of the force of 360 N. These findings are in line with the character of damage of the same construct loaded during its mechanic testing. We succeeded in creating a mathematical model of the bone-implant construct which may be further used for computer modelling of real loading of similar constructs chosen for fixation of bone defects in both experimental and clinical practice.

  1. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-08-01

    Full Text Available In this work, nanostructured LiMn2O4 (LMO and LiMn2O3.99S0.01 (LMOS1 spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS measurements as a function of state of charge (SOC were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material.

  2. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material

    International Nuclear Information System (INIS)

    Araujo, P.M.; Lima, M.G.; Costa, A.C.; Pallone, E.M.

    2016-01-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al_2O_3/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al_2O_3/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Bark extract of Terminalia arjuna (TA) possesses potent medical properties and therefore, holds a reputed position in both Ayurvedic and Unani systems of medicine. Bone substitutes play an inevitable role in traumatic bone damages. Growth factors induce osteoinductivity, but suffer from limitations such as high cost and ...

  4. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws.

    Science.gov (United States)

    Götz, Werner; Gerber, Thomas; Michel, Barbara; Lossdörfer, Stefan; Henkel, Kai-Olaf; Heinemann, Friedhelm

    2008-10-01

    Bone substitute biomaterials may be osteogenic, osteoconductive or osteoinductive. To test for these probable characteristics in a new nanoporous grafting material consisting of nanocrystalline hydroxyapatite embedded in a porous silica gel matrix (NanoBone(s)), applied in humans, we studied biopsies from 12 patients before dental implantation following various orofacial augmentation techniques with healing times of between 3.5 and 12 months. Sections from decalcified specimens were investigated using histology, histochemistry [periodic acid Schiff, alcian blue staining and tartrate-resistant acid phosphatase (TRAP)] and immunohistochemistry, with markers for osteogenesis, bone remodelling, resorption and vessel walls (alkaline phosphatase, bone morphogenetic protein-2, collagen type I, ED1, osteocalcin, osteopontin, runx2 and Von-Willebrand factor). Histologically, four specific stages of graft transformation into lamellar bone could be characterized. During early stages of healing, bone matrix proteins were absorbed by NanoBone(s) granules, forming a proteinaceous matrix, which was invaded by small vessels and cells. We assume that the deposition of these molecules promotes early osteogenesis in and around NanoBone(s) and supports the concomitant degradation probably by osteoclast-like cells. TRAP-positive osteoclast-like cells were localized directly on the granular surfaces. Runx2-immunoreactive pre-osteoblasts, which are probably involved in direct osteogenesis forming woven bone that is later transformed into lamellar bone, were attracted. Graft resorption and bone apposition around the graft granules appear concomitantly. We postulate that NanoBone(s) has osteoconductive and biomimetic properties and is integrated into the host's physiological bone turnover at a very early stage.

  5. Synthetischer Knochenersatz

    DEFF Research Database (Denmark)

    Hettwer, W

    2017-01-01

    , their specific foreign material-mediated side effects and complications and fairly modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts. However, a defect and pathology specific combination of synthetic bone graft substitutes with appropriate......Successful reconstruction of critical bone defects requires complete elimination of the underlying pathology, preservation or restoration of mechanical stability of the affected bone segment and, most importantly, an adequate filling material that supports the regeneration and formation of new bone...... within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot address all requirements of such a complex biological process individually. Due their suboptimal and, with respect to physiological bone healing, asynchronous biodegradation properties...

  6. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material.

    Science.gov (United States)

    Kinoshita, Kazuhiko; Hibi, Hideharu; Yamada, Yoichi; Ueda, Minoru

    2008-01-01

    Bilateral maxillary distraction was performed at a higher rate in rabbits to determine whether locally applied tissue-engineered osteogenic material (TEOM) enhances bone regeneration. The material was an injectable gel composed of autologous mesenchymal stem cells, which were cultured then induced to be osteogenic in character, and platelet-rich plasma (PRP). After a 5-day latency period, distraction devices were activated at a rate of 2.0 mm once daily for 4 days. Twelve rabbits were divided into 2 groups. At the end of distraction, the experimental group of rabbits received an injection of TEOM into the distracted tissue on one side, whereas, saline solution was injected into the distracted tissue on the contralateral side as the internal control. An additional control group received an injection of PRP or saline solution into the distracted tissue in the same way as the experimental group. The distraction regenerates were assessed by radiological and histomorphometric analyses. The radiodensity of the distraction gap injected with TEOM was significantly higher than that injected with PRP or saline solution at 2, 3, and 4 weeks postdistraction. The histomorphometric analysis also showed that both new bone zone and bony content in the distraction gap injected with TEOM were significantly increased when compared with PRP or saline solution. Our results demonstrated that the distraction gap injected with TEOM showed significant new bone formation. Therefore, injections of TEOM may be able to compensate for insufficient distraction gaps.

  7. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  8. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures.

    Directory of Open Access Journals (Sweden)

    Chiara Gardin

    Full Text Available The combination of bone grafting materials with guided bone regeneration (GBR membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM. In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications.

  9. Use of computational methods for substitution and numerical dosimetry of real bones; Utilização de métodos computacionais para substituição e dosimetria numérica de ossos reais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R., E-mail: Islanecristina94@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife, PE (Brazil); Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-RJ), Recife-PE (Brazil)

    2017-07-01

    Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one.

  10. Improved Optical and Morphological Properties of Vinyl-Substituted Hybrid Silica Materials Incorporating a Zn-Metalloporphyrin

    Directory of Open Access Journals (Sweden)

    Zoltán Dudás

    2018-04-01

    Full Text Available This work is focused on a novel class of hybrid materials exhibiting enhanced optical properties and high surface areas that combine the morphology offered by the vinyl substituted silica host, and the excellent absorption and emission properties of 5,10,15,20-tetrakis(N-methyl-4-pyridylporphyrin-Zn(II tetrachloride as a water soluble guest molecule. In order to optimize the synthesis procedure and the performance of the immobilized porphyrin, silica precursor mixtures of different compositions were used. To achieve the requirements regarding the hydrophobicity and the porous structure of the gels for the successful incorporation of porphyrin, the content of vinyltriacetoxysilane was systematically changed and thoroughly investigated. Substitution of the silica gels with organic groups is a viable way to provide new properties to the support. An exhaustive characterization of the synthesized silica samples was realised by complementary physicochemical methods, such as infrared spectroscopy (FT-IR, absorption spectroscopy (UV-Vis and photoluminescence, nuclear magnetic resonance spectroscopy (29Si-MAS-NMR transmission and scanning electron microscopy (TEM and SEM, nitrogen absorption (BET, contact angle (CA, small angle X ray and neutron scattering (SAXS and SANS. All hybrids showed an increase in emission intensity in the wide region from 575 to 725 nm (Q bands in comparison with bare porphyrin. By simply tuning the vinyltriacetoxysilane content, the hydrophilic/hydrophobic profile of the hybrid materials was changed, while maintaining a high surface area. Good control of hydrophobicity is important to enhance properties such as dispersion, stability behaviour, and resistance to water, in order to achieve highly dispersible systems in water for biomedical applications.

  11. BONE REGENERATION AFTER DEMINERALIZED BONE MATRIX AND CASTOR OIL (RICINUS COMMUNIS) POLYURETHANE IMPLANTATION

    Science.gov (United States)

    Leite, Fábio Renato Manzolli; Ramalho, Lizeti Toledo de Oliveira

    2008-01-01

    Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial. PMID:19089203

  12. Bone formation in sinus augmentation procedures using autologous bone, porcine bone, and a 50 : 50 mixture: a human clinical and histological evaluation at 2 months.

    Science.gov (United States)

    Cassetta, Michele; Perrotti, Vittoria; Calasso, Sabrina; Piattelli, Adriano; Sinjari, Bruna; Iezzi, Giovanna

    2015-10-01

    The aim of this study was to perform a 2 months clinical and histological comparison of autologous bone, porcine bone, and a 50 : 50 mixture in maxillary sinus augmentation procedures. A total of 10 consecutive patients, undergoing two-stage sinus augmentation procedures using 100% autologous bone (Group A), 100% porcine bone (Group B), and a 50 : 50 mixture of autologous and porcine bone (Group C) were included in this study. After a 2-month healing period, at the time of implant insertion, clinical evaluation was performed and bone core biopsies were harvested and processed for histological analysis. The postoperative healing was uneventful regardless of the materials used for the sinus augmentation procedures. The histomorphometrical analysis revealed comparable percentages of newly formed bone, marrow spaces, and residual grafted material in the three groups. The clinical and histological results of this study indicated that porcine bone alone or in combination with autologous bone are biocompatible and osteoconductive materials and can be successfully used in sinus augmentation procedures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Use of platelet lysate for bone regeneration - are we ready for clinical translation?

    Science.gov (United States)

    Altaie, Ala; Owston, Heather; Jones, Elena

    2016-02-26

    Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells (MSCs). Although MSCs are most commonly grown in media containing fetal calf serum, human platelet lysate (PL) offers an effective alternative. Bone marrow - derived MSCs grown in PL-containing media display faster proliferation whilst maintaining good osteogenic differentiation capacity. Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo. In an alternative approach, nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices. Even though methods to coat scaffolds with PL vary, in vitro studies suggest that PL allows for MSC adhesion, migration and differentiation inside these scaffolds. Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo. This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration. To minimise inconsistency between the studies, further work is required towards standardisation of PL preparation in terms of the starting material, platelet concentration, leukocyte depletion, and the method of platelet lysis. PL quality control procedures and its "potency" assessment are urgently needed, which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation. Furthermore, different PL formulations could be tailor-made for specific bone repair indications. Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.

  14. Evaluation of the Effect of Plasma Rich in Growth Factors (PRGF) on Bone Regeneration.

    Science.gov (United States)

    Paknejad, M; Shayesteh, Y Soleymani; Yaghobee, S; Shariat, S; Dehghan, M; Motahari, P

    2012-01-01

    Reconstruction methods are an essential prerequisite for functional rehabilitation of the stomatognathic system. Plasma rich in growth factors (PRGF) offers a new and potentially useful adjunct to bone substitute materials in bone reconstructive surgery. This study was carried out to investigate the influence of PRGF and fibrin membrane on regeneration of bony defects with and without deproteinized bovine bone mineral (DBBM) on rabbit calvaria. Twelve New Zealand white rabbits were included in this randomized, blinded, prospective study. Four equal 3.3×6.6 mm cranial bone defects were created and immediately grafted with DBBM, PRGF+DBBM, PRGF+fibrin membrane and no treatment as control. The defects were evaluated with histologic and histomorphometric analysis performed 4 and 8 weeks later. Adding PRGF to DBBM led to increased bone formation as compared with the control group in 4- and 8-week intervals. In DBBM and PRGF+fibrin membrane samples, no significant increase was seen compared to the control group. There was also a significant increase in the rate of biodegradation of DBBM particles with the addition of PRGF in the 8-week interval. Neither noticeable foreign body reaction nor any severe inflammation was seen in each of the specimens evaluated. Under the limitation of this study, adding PRGF to DBBM enhanced osteogenesis in rabbit calvarias. Applying autologous fibrin membrane in the defects was not helpful.

  15. Analysis of bone mineral density of human bones for strength ...

    Indian Academy of Sciences (India)

    Different types of bone strength are required for various ... To statically analyse various methods to find BMD and related material ... bone study for research purpose. ..... and Dagoberto Vela Arvizo 2007 A qualitative stress analysis of a cross ...

  16. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite.

    Science.gov (United States)

    Gibson, Iain R; Bonfield, William

    2002-03-15

    A novel synthesis route has been developed to produce a high-purity mixed AB-type carbonate-substituted hydroxyapatite (CHA) with a carbonate content that is comparable to the type and level observed in bone mineral. This method involves the aqueous precipitation in the presence of carbonate ions in solution of a calcium phosphate apatite with a Ca/P molar ratio greater than the stoichiometric value of 1.67 for hydroxyapatite (HA). The resulting calcium-rich carbonate-apatite is sintered/heat-treated in a carbon dioxide atmosphere to produce a single-phase, crystalline carbonate-substituted hydroxyapatite. In contrast to previous methods for producing B- or AB-type carbonate-substituted hydroxyapatites, no sodium or ammonium ions, which would be present in the reaction mixture from the sodium or ammonium carbonates commonly used as a source of carbonate ions, were present in the final product. The chemical and phase compositions of the carbonate-substituted hydroxyapatite was characterized by X-ray fluorescence and X-ray diffraction, respectively, and the level and nature of the carbonate substitution were studied using C-H-N analysis and Fourier transform infrared spectroscopy, respectively. The carbonate substitution improves the densification of hydroxyapatite and reduces the sintering temperature required to achieve near-full density by approximately 200 degrees C compared to stoichiometric HA. Initial studies have shown that these carbonate-substituted hydroxyapatites have improved mechanical and biologic properties compared to stoichiometric hydroxyapatite. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 697-708, 2002

  17. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    Science.gov (United States)

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [Impact of thyroid diseases on bone].

    Science.gov (United States)

    Tsourdi, E; Lademann, F; Siggelkow, H

    2018-05-09

    Thyroid hormones are key regulators of skeletal development in childhood and bone homeostasis in adulthood, and thyroid diseases have been associated with increased osteoporotic fractures. Hypothyroidism in children leads to an impaired skeletal maturation and mineralization, but an adequate and timely substitution with thyroid hormones stimulates bone growth. Conversely, hyperthyroidism at a young age accelerates skeletal development, but may also cause short stature because of a premature fusion of the growth plates. Hypothyroidism in adults causes an increase in the duration of the remodeling cycle and, thus, leads to low bone turnover and enhanced mineralization, but an association with a higher fracture risk is less well established. In adults, a surplus of thyroid hormones enhances bone turnover, mostly due to an increased bone resorption driven by osteoclasts. Thus, hyperthyroidism is a well-recognized cause of high-bone turnover secondary osteoporosis, resulting in an increased susceptibility to fragility fractures. Subclinical hyperthyroidism, especially resulting from endogenous disease, also has an adverse effect on bone mineral density and is associated with fractures. In most patients with overt or subclinical hyperthyroidism restoration of the euthyroid status reverses bone loss. In postmenopausal women who receive thyroid-stimulating hormone suppression therapy because of thyroid cancer, antiresorptive treatments may be indicated. Overall, extensive data support the importance of a euthyroid status for bone mineral accrual and growth in childhood as well as maintenance of bone health in adulthood.

  19. beta-TCP Versus Autologous Bone for Repair of Alveolar Clefts in a Goat Model.

    NARCIS (Netherlands)

    Ruiter, A. de; Meijer, G.J.; Dormaar, T.; Janssen, N.; Bilt, A. van der; Slootweg, P.J.; Bruijn, J. de; Rijn, L. van; Koole, R.A.

    2011-01-01

    Objective : The aim of this study in goats was to test the hypothesis that a novel synthetic bone substitute beta tricalcium phosphate (beta-TCP) can work as well as autologous bone harvested from the iliac crest for grafting and repair of alveolar clefts. Design : Ten adult Dutch milk goats ( Capra

  20. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Amirsalar Khandan

    2014-01-01

    Full Text Available Introduction: Bone tissue engineering proposes a suitable way to regenerate lost bones. Different materials have been considered for use in bone tissue engineering. Hydroxyapatite (HA is a significant success of bioceramics as a bone tissue repairing biomaterial. Among different bioceramic materials, recent interest has been risen on fluorinated hydroxyapatites, (FHA, Ca 10 (PO 4 6 F x (OH 2−x . Fluorine ions can promote apatite formation and improve the stability of HA in the biological environments. Therefore, they have been developed for bone tissue engineering. The aim of this study was to synthesize and characterize the FHA nanopowder via mechanochemical (MC methods. Materials and Methods: Natural hydroxyapatite (NHA 95.7 wt.% and calcium fluoride (CaF 2 powder 4.3 wt.% were used for synthesis of FHA. MC reaction was performed in the planetary milling balls using a porcelain cup and alumina balls. Ratio of balls to reactant materials was 15:1 at 400 rpm rotation speed. The structures of the powdered particles formed at different milling times were evaluated by X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. Results: Fabrication of FHA from natural sources like bovine bone achieved after 8 h ball milling with pure nanopowder. Conclusion: F− ion enhances the crystallization and mechanical properties of HA in formation of bone. The produced FHA was in nano-scale, and its crystal size was about 80-90 nm with sphere distribution in shape and size. FHA powder is a suitable biomaterial for bone tissue engineering.