WorldWideScience

Sample records for bond valence model

  1. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  2. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  3. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    Sidey, Vasyl

    2015-01-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  4. Bond-Valence Constraints on Liquid Water Structure

    International Nuclear Information System (INIS)

    Bickmore, Barry R.; Rosso, Kevin M.; Brown, I. David; Kerisit, Sebastien N.

    2009-01-01

    The recent controversy about the structure of liquid water pits a new model involving water molecules in relatively stable rings-and-chains structures against the standard model that posits water molecules in distorted tetrahedral coordination. Molecular dynamics (MD) simulations 'both classical and ab initio' almost uniformly support the standard model, but since none of them can yet reproduce all the anomalous properties of water, they leave room for doubt. We argue that it is possible to evaluate these simulations by testing them against their adherence to the bond-valence model, a well known, and quantitatively accurate, empirical summary of the behavior of atoms in the bonded networks of inorganic solids. Here we use the results of ab initio molecular dynamics simulations of ice, water, and several solvated aqueous species to show that the valence sum rule (the first axiom of the bond-valence model,) is followed in both solid and liquid bond networks. We then test MD simulations of water, employing several popular potential models, against this criterion and the experimental O-O radial distribution function. It appears that most of those tested cannot satisfy both criteria well, except TIP4P and TIP5P. If the valence sum rule really can be applied to simulated liquid structures, then it follows that the bonding behaviors of atoms in liquids are in some ways identical to those in solids. We support this interpretation by showing that the simulations produce O-H-O geometries completely consistent with the range of geometries available in solids, and the distributions of instantaneous valence sums reaching the atoms in both the ice and liquid water simulations are essentially identical. Taken together, this is powerful evidence in favor of the standard distorted tetrahedral model of liquid water structure

  5. Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models

    Science.gov (United States)

    Soos, Z. G.; Ramasesha, S.

    1984-05-01

    The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.

  6. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    Science.gov (United States)

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  7. Topologically distinct classes of valence-bond solid states with their parent Hamiltonians

    International Nuclear Information System (INIS)

    Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai

    2009-01-01

    We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.

  8. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  9. Semiempirical search for oxide superconductors based on bond valence sums

    International Nuclear Information System (INIS)

    Tanaka, S.; Fukushima, N.; Niu, H.; Ando, K.

    1992-01-01

    Relationships between crystal structures and electronic states of layered transition-metal oxides are analyzed in the light of bond valence sums. Correlations between the superconducting transition temperature T c and the bond-valence-sum parameters are investigated for the high-T c cuprate compounds. Possibility of making nonsuperconducting oxides superconducting is discussed. (orig.)

  10. Quantum computational capability of a 2D valence bond solid phase

    International Nuclear Information System (INIS)

    Miyake, Akimasa

    2011-01-01

    Highlights: → Our model is the 2D valence bond solid phase of a quantum antiferromagnet. → Universal quantum computation is processed by measurements of quantum correlations. → An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  11. Topological Qubits from Valence Bond Solids

    Science.gov (United States)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  12. Microscopic theory of the nearest-neighbor valence bond sector of the spin-1/2 kagome antiferromagnet

    Science.gov (United States)

    Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis

    2018-03-01

    The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.

  13. Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap

    International Nuclear Information System (INIS)

    Greiter, Martin; Rachel, Stephan

    2007-01-01

    To begin with, we introduce several exact models for SU(3) spin chains: First is a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3 of SU(3) if the original spins of the model transform under representation 3. Second is a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin representations 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a Haldane gap in the excitation spectrum. We generalize some of our models to SU(n). Finally, we use the emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic chains of SU(n) spins, in general, possess a Haldane gap if the spins transform under a representation corresponding to a Young tableau consisting of a number of boxes λ which is divisible by n. If λ and n have no common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If λ and n have a common divisor different from n, it will depend on the specifics of the model including the range of the interaction

  14. Bond charge approximation for valence electron density in elemental semiconductors

    International Nuclear Information System (INIS)

    Bashenov, V.K.; Gorbachov, V.E.; Marvakov, D.I.

    1985-07-01

    The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)

  15. Resonating-valence-bond superconductors with fermionic projected entangled pair states

    NARCIS (Netherlands)

    Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.

    2014-01-01

    We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately

  16. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  17. Kekulé-based Valence Bond Model.I. The Ground-state Properties of Conjugated π-Systems

    Institute of Scientific and Technical Information of China (English)

    LI,Shu-Hua(黎书华); MA,Jing(马晶); JIANG,Yuan-Sheng(江元生)

    2002-01-01

    The Kekulé-based valence bond ( VB ) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is dimonstrated to provide satisfactory descriptions for resoance energies and bond ang lengths of benzenoid hydrocarbons, being in good agreement with SCF-MO and experimental results. In additicn, an alternative way of discyssing characters of localizedsubstructures within a polyclic benzenoid system is suggested based upon such sunokufied VB calculations. Finally,the symmetries of VB ground states for nonalternant conjugated systems are also illustrated to be obtainable through these calculations, presenting very useful information for understanding the chemical behaviors of some nonalternant conjugated molecules.

  18. BOA valence bonding with f-character in highly coordinated actinides

    International Nuclear Information System (INIS)

    Carter, F.L.

    1979-01-01

    The addition of f character to bidirectional orbitals enhances their flexibility significantly. The resultant Cf and Gf orbitals are applied to some common high coordinations of the actinides. The valence bond approach implies d and f orbital radial splitting into bonding hybrids and either contracted localized or extended supra-valent d and f orbitals

  19. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    Science.gov (United States)

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  20. Effects of Electric Field on the Valence-Bond Property of an Electron in a Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The electronic structure of the quantum-dot molecules in an electric field is investigated by the finite element method with the effective mass approximation. The numerical calculation results show that the valence bond of the quantum-dot molecule alternates between covalent bonds and ionic bonds as the electric field increases. The valence-bond property can be reflected by the oscillator strength of the intraband transition. The bound state with the highest energy level in the quantum-dot molecule gradually changes into a quasibound state when the electric field increases.

  1. Chemical Bonding in Solids. On the Generalization of the Concept of Bond Order and Valence for Infinite Periodical Structures

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert

    2005-01-01

    Roč. 114, 1-3 (2005), s. 208-212 ISSN 1432-881X R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z4072921 Keywords : bonding in solids * bond order * valence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.179, year: 2005

  2. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  3. Seniority Number in Valence Bond Theory.

    Science.gov (United States)

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-08

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  4. A crystal chemical approach to superconductivity. I. A bond-valence sum analysis of inorganic compounds

    International Nuclear Information System (INIS)

    Liebau, Friedrich; Klein, Hans-Joachim; Wang, Xiqu

    2011-01-01

    A crystal-chemical approach to superconductivity is described that is intended to complement the corresponding physical approach. The former approach takes into account the distinction between the stoichiometric valence ( stoich V) and the structural valence ( struct V) which is represented by the bond-valence sums (BVS). Through calculations of BVS values from crystal-structure data determined at ambient temperature and pressure it has been found that in chalcogenides und pnictides of the transition metals Fe, Co, Ni, Mn, Hf, and Zr the atoms of the potential superconducting units yield values of vertical stroke BVS vertical stroke = vertical stroke struct V vertical stroke ≥ 1.11 x vertical stroke stoich V vertical stroke, whereas the atoms of the charge reservoirs have in general values of vertical stroke struct V vertical stroke stoich V vertical stroke. In corresponding compounds which contain the same elements but are not becoming superconducting, nearly all atoms are found to have vertical stroke struct V vertical stroke stoich V vertical stroke. For atoms of oxocuprates that are not becoming superconducting and for atoms of the charge reservoirs of oxocuprates that become superconducting, the relation vertical stroke struct V vertical stroke stoich V vertical stroke seems also to be fulfilled, with the exception of Ba. However, in several oxocuprates the relation vertical stroke struct V vertical stroke = 1.11 x vertical stroke stoich V vertical stroke for the atoms that become superconducting units is violated. These violations seem to indicate that in oxocuprates it is the local bond-valence distribution rather than the bond-valence sums that is essential for superconductivity. The present analysis can possibly be used to predict, by a simple consideration of ambient-T, P structures, whether a compound can become an unconventional superconductor at low T, under high P and/or by doping, or not. (orig.)

  5. Entanglement of the valence-bond-solid state on an arbitrary graph

    International Nuclear Information System (INIS)

    Xu Ying; Korepin, Vladimir E

    2008-01-01

    The Affleck-Kennedy-Lieb-Tasaki (AKLT) spin interacting model can be defined on an arbitrary graph. We explain the construction of the AKLT Hamiltonian. Given certain conditions, the ground state is unique and known as the valence-bond-solid (VBS) state. It can be used in measurement-based quantum computation as a resource state instead of the cluster state. We study the VBS ground state on an arbitrary connected graph. The graph is cut into two disconnected parts: the block and the environment. We study the entanglement between these two parts and prove that many eigenvalues of the density matrix of the block are zero. We describe a subspace of eigenvectors of the density matrix corresponding to non-zero eigenvalues. The subspace is the degenerate ground states of some Hamiltonian which we call the block Hamiltonian

  6. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  7. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    Science.gov (United States)

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  8. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    Science.gov (United States)

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Political Culture and Covalent Bonding. A Conceptual Model of Political Culture Change

    OpenAIRE

    Camelia Florela Voinea

    2015-01-01

    Our class of models aims at explaining the dynamics of political attitude change by means of the dynamic changes in values, beliefs, norms and knowledge with which it is associated. The model constructs a political culture perspective over the relationship between macro and micro levels of a society and polity. The model defines the bonding mechanism as a basic mechanism of the political culture change by taking inspiration from the valence bonding theory in Chemistry, which has inspired the ...

  10. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  11. Structure of s - p bonded metal clusters with 8, 20 and 40 valence electrons

    International Nuclear Information System (INIS)

    Kumar, V.

    1992-10-01

    From studies on some clusters of metals and semiconductors, there appear some similarities in the structure of clusters with a given number of atoms and having the number of valence electrons corresponding to a shell closing. Here we present results of the atomic and electronic structure of a few other clusters with 20 and 40 valence electrons, namely Sb 4 , Sn 5 and Sb 8 using the density functional molecular dynamics method. We suggest that the similarities in the structure and deviation from them may help to understand bonding characteristics in clusters and its evolution to bulk behaviour. Our results on Sb 8 cluster are preliminary but indicate that above room temperature its structure is two weakly interacting tetrahedra which is in general agreement with the observation of predominently antimony tetramers at T > 300 K. (author). 16 refs, 2 figs

  12. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Yanagisawa, Susumu; Kadekawa, Yukihiro [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  13. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  14. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  15. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  16. Valence electron structure and bonding features of RuB2 and OSB2: The empirical electron theory calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The valence electron structure (VES) of RuB2 and OsB2 were calculated by the empirical electron theory (EET) of solids and molecules and compared with the results derived from the first-principles calculations. The distributions of covalent electrons in different bonds indicate that B-B and B-Me have remarkably covalent bonding characters. Lattice electrons cruising around Me-Me layers are found to have great influences on electronic conductivity and high temperature plasticity. The ultra-high values of elastic constant Cn in the two compounds originate from close-packed covalent bonding along the c axis. Uneven bond strengths and distributions of covalent bonds, especially for B-Afe bonds, yield significant anisotropy. Low ratios of lattice electrons to covalent electrons suggest the intrinsic embrittlement in crystals. The fact that the calculated cohesive energies well agree with experimental results demonstrates the good suitability of the EET calculations in estimating cohesive energy for transition-metal borides.

  17. Lie algebraic approach to valence bond theory of π-electron systems: a preliminary study of excited states

    Science.gov (United States)

    Paldus, J.; Li, X.

    1992-10-01

    Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.

  18. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  19. In-medium pion valence distributions in a light-front model

    Energy Technology Data Exchange (ETDEWEB)

    Melo, J.P.B.C. de, E-mail: joao.mello@cruzeirodosul.edu.br [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Tsushima, K. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); Ahmed, I. [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo (Brazil); National Center for Physics, Quaidi-i-Azam University Campus, Islamabad 45320 (Pakistan)

    2017-03-10

    Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.

  20. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  1. Ferromagnetic bond of Li{sub 10} cluster: An alternative approach in terms of effective ferromagnetic sites

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, Roberto; Fuentealba, Patricio, E-mail: pfuentea@hotmail.es, E-mail: cardena@macul.ciencias.uchile.cl; Cárdenas, Carlos, E-mail: pfuentea@hotmail.es, E-mail: cardena@macul.ciencias.uchile.cl [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Avda. Ecuador 3493, Santiago 9170124 (Chile); Rössler, Jaime [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Llano-Gil, Sandra [Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Antioquia (Colombia)

    2016-09-07

    In this work, a model to explain the unusual stability of atomic lithium clusters in their highest spin multiplicity is presented and used to describe the ferromagnetic bonding of high-spin Li{sub 10} and Li{sub 8} clusters. The model associates the (lack of-)fitness of Heisenberg Hamiltonian with the degree of (de-)localization of the valence electrons in the cluster. It is shown that a regular Heisenberg Hamiltonian with four coupling constants cannot fully explain the energy of the different spin states. However, a more simple model in which electrons are located not at the position of the nuclei but at the position of the attractors of the electron localization function succeeds in explaining the energy spectrum and, at the same time, explains the ferromagnetic bond found by Shaik using arguments of valence bond theory. In this way, two different points of view, one more often used in physics, the Heisenberg model, and the other in chemistry, valence bond, come to the same answer to explain those atypical bonds.

  2. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  3. Block correlated second order perturbation theory with a generalized valence bond reference function

    International Nuclear Information System (INIS)

    Xu, Enhua; Li, Shuhua

    2013-01-01

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a “multi-orbital” block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Møller–Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods

  4. Block correlated second order perturbation theory with a generalized valence bond reference function.

    Science.gov (United States)

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  5. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  6. Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6

    Science.gov (United States)

    de Vries, M. A.; Piatek, J. O.; Misek, M.; Lord, J. S.; Rønnow, H. M.; Bos, J.-W. G.

    2013-04-01

    We carried out ac magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ∼1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground state, i.e. without broken symmetries or frozen moments. However, the ac susceptibility revealed a dilute-spin-glass-like transition below ∼1 K. Antiferromagnetically coupled Mo5+ 4d1 electrons in triply degenerate t2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d1 electrons have paired in spin-singlets dimers, and residual unpaired Mo5+ 4d1 electron spins. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection) leading to a self-induced glass of valence bonds between neighbouring 4d1 electrons. The muon spin relaxation (μSR) unambiguously points to a heterogeneous state with a static arrangement of unpaired electrons in a background of (valence bond) dimers between the majority of Mo5+ 4d electrons. The ac susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ∼5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba2YMoO6 are discussed in this context.

  7. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum

    Science.gov (United States)

    Ando, Koji

    2018-03-01

    A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.

  8. The use of symmetrized valence and relative motion coordinates for crystal potentials

    DEFF Research Database (Denmark)

    McMurry, H. L.; Hansen, Flemming Yssing

    1980-01-01

    Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...

  9. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  10. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  11. Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method

    Science.gov (United States)

    Gao, Jian; Chu, Geng; He, Meng; Zhang, Shu; Xiao, RuiJuan; Li, Hong; Chen, LiQuan

    2014-08-01

    Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/ γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.

  12. Crossover and valence band Kβ X-rays of chromium oxides

    International Nuclear Information System (INIS)

    Fazinic, Stjepko; Mandic, Luka; Kavcic, Matjaz; Bozicevic, Iva

    2011-01-01

    Kβ X-ray spectra of chromium metal and selected chromium oxides were measured twice using medium resolution flat crystal spectrometer and high resolution spectrometer employing Johansson geometry after excitation with 2 MeV proton beams. The positions and intensities of crossover (Kβ'') and valence (Kβ 2,5 ) band X-rays relative to the primary Kβ X-ray components were extracted in a consistent way. The results were compared with the existing data obtained by proton and photon induced ionization mechanisms and theoretical predictions. The obtained results in peak relative positions and intensities were analyzed in order to study dependence on the chromium oxidation states and chromium-oxygen bond lengths in selected chromium oxides. Our results obtained by both spectrometers confirm that the linear trend observed for the valence peak relative energy shift as a function of chromium oxidation number does not depend on the experimental resolution. Experimental results for normalized intensities (i.e. relative intensities divided with the number of chromium-oxygen pairs) of crossover and valence band X-rays obtained by both spectrometers are in very good agreement, and follow exponential relationship with the average Cr-O bond lengths in corresponding chromium oxides. The observed trends in crossover and valence X-rays normalized intensities could be used to measure the average chromium-oxygen bond length in various chromium oxides, with the sum of both crossover and valence X-ray normalized intensities being the most sensitive measure.

  13. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  14. A model on valence state evaluation of TRU nuclides in reprocessing solutions

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Fujine, Sachio; Yoshida, Zenko; Maeda, Mitsuru; Motoyama, Satoshi.

    1998-02-01

    A mathematical model was developed to evaluate the valence state of TRU nuclides in reprocessing process solutions. The model consists of mass balance equations, Nernst equations, reaction rate equations and electrically neutrality equations. The model is applicable for the valence state evaluation of TRU nuclides in both steady state and transient state conditions in redox equilibrium. The valence state which is difficult to measure under high radiation and multi component conditions is calculated by the model using experimentally measured data for the TRU nuclide concentrations, nitric acid and redox reagent concentrations, electrode potential and solution temperature. (author)

  15. Levels of valence

    Directory of Open Access Journals (Sweden)

    Vera eShuman

    2013-05-01

    Full Text Available The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010, qualitatively different types of valence are proposed based on appraisals of (unpleasantness, goal obstructiveness/conduciveness, low or high power, self- (incongruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative common currency to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro to valence at another level (macro, leading to new hypotheses and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation.

  16. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  17. Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6

    International Nuclear Information System (INIS)

    De Vries, M A; Piatek, J O; Rønnow, H M; Misek, M; Lord, J S; Bos, J-W G

    2013-01-01

    We carried out ac magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba 2 YMoO 6 , down to 50 mK. Below ∼1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground state, i.e. without broken symmetries or frozen moments. However, the ac susceptibility revealed a dilute-spin-glass-like transition below ∼1 K. Antiferromagnetically coupled Mo 5+ 4d 1 electrons in triply degenerate t 2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d 1 electrons have paired in spin-singlets dimers, and residual unpaired Mo 5+ 4d 1 electron spins. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection) leading to a self-induced glass of valence bonds between neighbouring 4d 1 electrons. The muon spin relaxation (μSR) unambiguously points to a heterogeneous state with a static arrangement of unpaired electrons in a background of (valence bond) dimers between the majority of Mo 5+ 4d electrons. The ac susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ∼5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba 2 YMoO 6 are discussed in this context. (paper)

  18. Reactive force field simulation of proton diffusion in BaZrO{sub 3} using an empirical valence bond approach

    Energy Technology Data Exchange (ETDEWEB)

    Raiteri, Paolo; Gale, Julian D [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box 1987, Perth, WA 6845 (Australia); Bussi, Giovanni, E-mail: paolo@ivec.org, E-mail: julian@ivec.org [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste (Italy)

    2011-08-24

    A new reactive force field to describe proton diffusion within the solid oxide fuel cell material BaZrO{sub 3} has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both pure and yttrium-doped BaZrO{sub 3} have been determined. Reactivity is then incorporated through the use of the empirical valence bond model. Molecular dynamics simulations (EVB-MD) have been performed to explore the diffusion of hydrogen using a stochastic thermostat and barostat whose equations are extended to the isostress-isothermal ensemble. In the low concentration limit, the presence of yttrium is found not to significantly influence the diffusivity of hydrogen, despite the proton having a longer residence time at oxygen adjacent to the dopant. This lack of influence is due to the fact that trapping occurs infrequently, even when the proton diffuses through octahedra adjacent to the dopant. The activation energy for diffusion is found to be 0.42 eV, in good agreement with experimental values, though the prefactor is slightly underestimated.

  19. Levels of Valence

    Science.gov (United States)

    Shuman, Vera; Sander, David; Scherer, Klaus R.

    2013-01-01

    The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292

  20. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  1. Mode-coupling theory predictions for a limited valency attractive square well model

    International Nuclear Information System (INIS)

    Zaccarelli, E; Saika-Voivod, I; Moreno, A J; Nave, E La; Buldyrev, S V; Sciortino, F; Tartaglia, P

    2006-01-01

    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbours. Studying a large region of temperatures T and packing fractions φ, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a (repulsive) glass line at high packing fraction, and a gel line at low φ and T. The former is essentially vertical φ controlled), while the latter is rather horizontal (T controlled) in the φ-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line-in satisfactory agreement with the simulation results-and an attractive glass line, which appears to be unrelated to the gel line

  2. Effects of Nb and Si on densities of valence electrons in bulk and defects of Fe3Al alloys

    Institute of Scientific and Technical Information of China (English)

    邓文; 钟夏平; 黄宇阳; 熊良钺; 王淑荷; 郭建亭; 龙期威

    1999-01-01

    Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and th

  3. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  4. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  5. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    Science.gov (United States)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  6. Coupled cluster valence bond theory for open-shell systems with application to very long range strong correlation in a polycarbene dimer.

    Science.gov (United States)

    Small, David W; Head-Gordon, Martin

    2017-07-14

    The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.

  7. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.

    Science.gov (United States)

    Isaksen, Geir Villy; Andberg, Tor Arne Heim; Åqvist, Johan; Brandsdal, Bjørn Olav

    2015-07-01

    Structural information and activity data has increased rapidly for many protein targets during the last decades. In this paper, we present a high-throughput interface (Qgui) for automated free energy and empirical valence bond (EVB) calculations that use molecular dynamics (MD) simulations for conformational sampling. Applications to ligand binding using both the linear interaction energy (LIE) method and the free energy perturbation (FEP) technique are given using the estrogen receptor (ERα) as a model system. Examples of free energy profiles obtained using the EVB method for the rate-limiting step of the enzymatic reaction catalyzed by trypsin are also shown. In addition, we present calculation of high-precision Arrhenius plots to obtain the thermodynamic activation enthalpy and entropy with Qgui from running a large number of EVB simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta2AC and Zr2AC (A=Al, Si, and P)

    International Nuclear Information System (INIS)

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-01-01

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta 2 AC and Zr 2 AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta 2 AlC. The bulk moduli of both Ta 2 AC and Zr 2 AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion

  9. Structural and magnetic properties of Ba2LuMoO6: a valence bond glass.

    Science.gov (United States)

    Coomer, Fiona C; Cussen, Edmund J

    2013-02-27

    We report here the synthesis of the site ordered double perovskite Ba(2)LuMoO(6). Rietveld refinement of room temperature powder x-ray diffraction measurements indicates that it crystallizes in the cubic space group Fm3m, with a = 8.3265(1) Å. Powder neutron diffraction data indicate that, unusually, this cubic symmetry is maintained down to 2 K, with [Formula: see text], Mo(5+) ions situated on the frustrated face-centred cubic lattice. Despite dc-susceptibility measurements showing Curie-Weiss behaviour with strong antiferromagnetic interactions at T ≥ 200 K, there is no evidence of long range magnetic ordering at 2 K. At T ≤ 50 K, susceptibility measurements indicate a loss in moment to ∼18% of the expected value, and there is a corresponding loss in the magnitude of the magnetic exchange. The structural and magnetic properties of this compound are compared with the related compound Ba(2)YMoO(6), which is a valence bond glass.

  10. Model analysis of molecular conformations in terms of weak interactions between non bonded atoms

    International Nuclear Information System (INIS)

    Lombardi, E.

    1988-01-01

    The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed

  11. AVE bond index in the H-bond of the Watson-Crick pairs

    International Nuclear Information System (INIS)

    Giambiagi, M.; Giambiagi, M.S. de; Barroso Filho, W.

    1981-01-01

    The normal Watson-Crick base pairs are treated as super-molecules. The properties of the electronic distribution along the N-H...Y bonds are studied in an all-valence-electrons calculation, through a bond index formula devised for non-orthogonal basis. Eletronic density diagrams of the adenine-uracil base pair are analysed. (Auhor) [pt

  12. Clustering of low-valence particles: structure and kinetics.

    Science.gov (United States)

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  13. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  14. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  15. Valence effects of sorption: laboratory control of valence state

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.

    1984-01-01

    Estimation of the rates of migration of nuclides from nuclear waste repositories required knowledge of the interaction of these nuclides with the components of the geological formations in the path of the migration. These interactions will be dependent upon the valence state and speciation of the nuclide. If the valence state is not known, then there can be little confidence in use of the data for safety analysis. An electrochemical method of valence state control was developed which makes use of a porous electrode in a flow system containing a column of the adsorbent. By use of this method and solvent extraction analyses of the valence states, a number of reactions of interest to HLW repositories were investigated. These include the reduction of Np(V) and Tc(VII) by crushed basalt and other minerals. For the reduction of Np(V) by basalt, the experiments indicate that sorption on basalt increases with pH and that most of the Np is reduced to Np(IV). The adsorbed Np(IV) is very difficult to remove from the basalt. For the experiments with Tc(VII), the results are considerably more complicated. The results of these experiments are used to assess some of the techniques and methods currently used in safety analyses of proposed HLW repositories. Perhaps the most important consideration is that predictive modeling of valence change reactions, such as the reduction of Np(V) and Tc(VII), must be used with considerable caution, and the occurrence of such reactions should be verified as best as possible with experiments using valence state control and analyses. 13 references, 3 figures, 1 table

  16. Static and dynamical valence-charge-density properties of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1993-01-01

    Owing to the close neighbourhood of Ga and As in Mendeleev's table, GaAs shows two fundamental classes of X-ray structure amplitudes distinguished by their extremely different scattering power. They are differently sensitive to the valence electron density (VED) redistribution caused by the chemical bond and must be measured by different experimental methods. Using such data, both the VED and the difference electron densities (DED) are calculated here. Comparison with theoretical densities shows that the VED is characterized by covalent, ionic and metallic contributions. The DED constructed from GaAs and Ge data demonstrates the electronic response caused by a ''protonic'' charge transfer between both f.c.c. sublattices as well as the transition from a purely covalent to a mixed covalent-ionic bond. Especially the charge-density accumulation between nearest neighbours (bond charge (BC)) depends on the distance between the bonding atoms and changes under the influence of any lattice deformation. This phenomenon is described by a BC-transfer model. Its direct experimental proof is given by measuring the variation of the scattering power of weak reflections under the influence of an external electric field. This experiment demonstrates that the ionicity of the bond changes in addition to the BC variation. (orig.)

  17. Micro-Valences: Affective valence in neutral everyday objects

    Directory of Open Access Journals (Sweden)

    Sophie eLebrecht

    2012-04-01

    Full Text Available Affective valence influences both our cognition and our perception of the world. Indeed, the speed and quality with which we recognize objects in a visual scene can vary dramatically depending on its affective content. However, affective processing of visual objects has been typically studied using only stimuli with strong affective valences (e.g., guns or roses. Here we explore whether affective valence must be strong or obvious to exert an effect on our perception. We conclude that the majority of objects carry some affective valence (micro-valences and, thus, nominally neutral objects are not really neutral. Functionally, the perception of valence in everyday objects facilitates perceptually-driven choice behavior, decision-making, and affective responses.

  18. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  19. The Pariser-Parr-Pople model for trans-polyenes. I. Ab initio and semiempirical study of the bond alternation in trans-butadiene

    Science.gov (United States)

    Förner, Wolfgang

    1992-03-01

    Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.

  20. Localized description of valence fluctuations

    International Nuclear Information System (INIS)

    Alascio, B.; Allub, R.; Aligia, A.

    1979-07-01

    The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)

  1. Covalent bond orders and atomic valences from correlated wavefunctions

    Science.gov (United States)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  2. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    Science.gov (United States)

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  3. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  4. Generalized valence bond description of the ground states (X(1)Σg(+)) of homonuclear pnictogen diatomic molecules: N2, P2, and As2.

    Science.gov (United States)

    Xu, Lu T; Dunning, Thom H

    2015-06-09

    The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.

  5. Political Culture and Covalent Bonding. A Conceptual Model of Political Culture Change

    Directory of Open Access Journals (Sweden)

    Camelia Florela Voinea

    2015-01-01

    Full Text Available Our class of models aims at explaining the dynamics of political attitude change by means of the dynamic changes in values, beliefs, norms and knowledge with which it is associated. The model constructs a political culture perspective over the relationship between macro and micro levels of a society and polity. The model defines the bonding mechanism as a basic mechanism of the political culture change by taking inspiration from the valence bonding theory in Chemistry, which has inspired the elaboration of the mechanisms and processes underlying the political culture emergence and the political culture control over the relationship between macro-level political entities and the micro-level individual agents. The model introduces operational definitions of the individual agent in political culture terms. The simulation model is used for the study of emergent political culture change phenomena based on individual interactions (emergent or upward causation as well as the ways in which the macro entities and emergent phenomena influence in turn the behaviors of individual agents (downward causation. The model is used in the ongoing research concerning the quality of democracy and political participation of the citizens in the Eastern European societies after the Fall of Berlin Wall. It is particularly aimed at explaining the long-term effect of the communist legacy and of the communist polity concept and organization onto the political mentalities and behaviors of the citizens with respect to democratic institutions and political power. The model has major implications in political socialization, political involvement, political behavior, corruption and polity modeling.

  6. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  7. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  8. High energy pp and anti-pp elastic scattering in nucleon valence core model

    International Nuclear Information System (INIS)

    Islam, M.M.; Fearnley, T.

    1986-01-01

    Connection between the valence core model and the effective QCD models of nucleon structure is pointed out. Also, implication of recent anti-pp differential cross section measurements at 53 GeV on our previous calculations is discussed

  9. Bonding and M?ssbauer Isomer Shifts in (Tl,Pb) - 1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of (Tl,Pb) - 1223 was calculated.The results show that the Sr-O,Tl-O,and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent character.M?ssbauer isomer shifts of 57Fe and 119Sn doped in (Tl,Pb) -1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe,and 119Sn doped (Tl,Pb) -1223 superconductor.We conclude that all of the Fe atoms substitute the Cu at square planar Cu (1) site,whereas Sn prefers to substitute the square pyramidal Cu (2) site.

  10. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  11. The Valency Theory: The Human Bond From A New Psychoanalytic Perspective

    OpenAIRE

    Med Hafsi

    2008-01-01

    The present paper discusses some psychoanalytical conceptions concerning what links people to each other, or the human bond. Psychoanalysis, can be regarded as a science dealing basically with, although not directly, the human bond or link linking the person with his external and internal objects. The fact that this bond is in perpetualtransformation, and therefore can be apprehended from different angles has led to various psychoanalytical conceptions or theories which are more complementary...

  12. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  13. Valence-Dependent Belief Updating: Computational Validation

    Directory of Open Access Journals (Sweden)

    Bojana Kuzmanovic

    2017-06-01

    Full Text Available People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates with trials with bad news (worse-than-expected base rates. After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on

  14. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  15. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  16. Micro-Valences: Affective valence in neutral everyday objects

    OpenAIRE

    Sophie eLebrecht; Moshe eBar; Lisa F Barrett; Michael J Tarr

    2012-01-01

    Affective valence influences both our cognition and our perception of the world. Indeed, the speed and quality with which we recognize objects in a visual scene can vary dramatically depending on its affective content. However, affective processing of visual objects has been typically studied using only stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or obvious to exert an effect on our perception. We conclude that the maj...

  17. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    Science.gov (United States)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  18. Bonding and Moessbauer Isomer Shifts in (Hg,Pb)—1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    高发明; 田永君; 谌岩; 李东春; 董海峰; 张思远

    2003-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of(Hg,Pb)-1223 were calculated.The results show that the(Ba,Sr)-O and Ca-0 types of bond have higher ionic character,while the Cu-O and(Hg,Pb)-0 types of bond have more covalent character.Moessbauer isomer shifts of 57Fe and 119Sn doped in(Hg,Pb)-1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped(Hg,Pb)-1223 superconductor.It can be concluded that all of the Fe atoms substitute the Cu at square planar Cu(1) site,Whereas Sn prefers to substitute the square pyramidal Cu(2) site.

  19. Valence change in rare earth semiconductors in many-impurity Anderson model

    International Nuclear Information System (INIS)

    Kocharyan, A.N.

    1986-01-01

    Green functions averaged over point impurity localization are found out in the simplest many-impurity model of rare earth semiconductor taking into account local Coulomb repulsion and hybridization of s- and f-electrons. Analytical expressions for s- and f-electron states density are obtained in the appoximation linear in can centration. Behaviour of a state density nearly the continuous spectrum edge and in the vicinity of the f-level is studied as a function of electron parameters. A comparison with the Anderson one-impurity model is performed. It is shown that essential energy spectrum conversion occurs in the case of a great number of impurities close to the continuous spectrum. Continuous spectrum boundaries are found out, and conditions are defined, at which the forbidden energy gap occurs in the continuous spectrum nearly a f-level. Effect of the coherent conversion of spectrum on behaviour of valence in changing f-level position is analyzed. It is shown that in the lack of electron-lattice interaction the phase transition with valence change occurs in a smooth manner as in the model with strictly periodic Andersen lattice

  20. Emotion and language: Valence and arousal affect word recognition

    Science.gov (United States)

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  1. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    Science.gov (United States)

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  2. Analysis of the valence electronic structures and calculation of the physical properties of Fe,Co,and Ni

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The valence electronic structures of Fe, Co and Ni have been investigated with Empirical Electron Theory of Solids and Molecules. The magnetic moments, Curie temperature, cohesive energy and melting point have been calculated according to the valence electronic structure. These calculations fit the experimental data very well. Based on the calculations, the magnetic moments are proportional to the number of 3d magnetic electrons. Curie temperatures are related to the magnetic electrons and the bond lengths between magnetic atoms. Cohesive energies increase with the increase of the number of covalent electrons, and the decrease of the number of magnetic and dumb pair electrons. The melting point is mainly related to the number of covalent electron pairs distributed in the strongest bond. The contribution from the lattice electrons is very small, the dumb pair electrons weaken the melting point; however, the contribution to melting point of the magnetic electrons can be neglected. It reveals that the magnetic and thermal properties are closely related to the valence electronic structures, and the changes or transitions between the electrons obviously affect the physical properties.

  3. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    Science.gov (United States)

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  4. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  5. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    Science.gov (United States)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  6. Models for calculation of dissociation energies of homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Brewer, L.; Winn, J.S.

    1979-08-01

    The variation of known dissociation energies of the transition metal diatomics across the Periodic Table is rather irregular like the bulk sublimation enthalpy, suggesting that the valence-bond model for bulk metallic systems might be applicable to the gaseous diatomic molecules and the various intermediate clusters. Available dissociation energies were converted to valence-state bonding energies considering various degrees of promotion to optimize the bonding. The degree of promotion of electrons to increase the number of bonding electrons is smaller than for the bulk, but the trends in bonding energy parallel the behavior found for the bulk metals. Thus using the established trends in bonding energies for the bulk elements, it was possible to calculate all unknown dissociation energies to provide a complete table of dissociation energies for all M 2 molecules from H 2 to Lr 2 . For solids such as Mg, Al, Si and most of the transition metals, large promotion energies are offset by strong bonding between the valence state atoms. The main question is whether bonding in the diatomics is adequate to sustain extensive promotion. The most extreme example for which a considerable difference would be expected between the bulk and the diatomics would be that of the Group IIA and IIB metals. The first section of this paper which deals with the alkaline earths Mg and Ca demonstrates a significant influence of the excited valence state even for these elements. The next section then expands the treatment to transition metals

  7. NEVER forget: negative emotional valence enhances recapitulation.

    Science.gov (United States)

    Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A

    2017-07-10

    A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.

  8. Ground state and elementary excitations of a model valence-fluctuation system

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1979-01-01

    The nature of the valence fluctuation problem is described, and motivations are given for an Anderson-lattice model Hamiltonian. A simple trial wave function is posed for the ground state, and the variational problem is solved. This demonstrates clearly that there is no Kondo-like divergence; the present concentrated Kondo problem is thus more simple mathematically than the sngle-impurity problem. Elementary excitations are studies by the Green's function techniques of Zubarev and Hubbard. Quenching of local moments and a large specific heat are found at low temperatures. The quasi-particle spectrum exhibits a gap, but epsilon/sub F/ does not lie in this gap. The insulation-like feature of SmB 6 , SmS, and TmSe at very low temperatures is explained in terms of a strongly reduced mobility for states near the gap, and reasons are given why this feature is not observed in other valence-fluctuation compounds. 73 references

  9. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    Science.gov (United States)

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.

  10. Calculation of fluctuations and photoemission properties in a tetrahedral-cluster model for an intermediate-valence system

    International Nuclear Information System (INIS)

    Reich, A.; Falicov, L.M.

    1986-01-01

    An exact solution of a four-site tetrahedral-crystal model, the smallest face-centered-cubic crystal, is presented in the case of an intermediate-valence system. The model consists of the following: (a) one extended orbital and one localized orbital per atom, (b) an interatomic transfer term between extended orbitals, (c) an interatomic hybridization between the localized and extended orbitals, (d) strong intra-atomic Coulomb repulsion between opposite-spin localized states, and (e) intermediate-strength intra-atomic Coulomb repulsion between the localized and extended states. These competing effects are examined as they manifest themselves in the intermediate-valence, photoemission, inverse-photoemission, and thermodynamic properties

  11. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  12. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  13. Explaining the effect of event valence on unrealistic optimism.

    Science.gov (United States)

    Gold, Ron S; Brown, Mark G

    2009-05-01

    People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.

  14. Architectural Representation of Valence in the Limbic System

    Science.gov (United States)

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  15. Valence fluctuations between two magnetic configurations

    International Nuclear Information System (INIS)

    Mazzaferro, J.O.

    1982-01-01

    The subject of this work is the study of a microscopic model which describes TmSe through its most important feature, i.e.: the valence fluctuations between two magnetic configurations. Chapter I is a general review of the most important physical properties of rare-earth systems with intermediate valence (I.V.) and a general description of experimental results and theoretical models on Tm compounds. In Chapter II the Hamiltonian model is discussed and the loss of rotational invariance is also analyzed. Chapter III is devoted to the study of non-stoichiometric Tsub(x)Se compounds. It is shown that these compounds can be considered as a mixture of TmSe (I.V. system) and Tm 3+ 0.87Se. Chapter IV is devoted to the calculation of spin-and charge susceptibilities. The results obtained permit to explain the essential features of the neutron scattering spectrum in TmSe. In Chapter V, an exactly solvable periodic Hamiltonian is presented. From the experimental results, some fundamental features are deduced to describe TmSe as an intermediate valence system whose two accessible ionic configurations are magnetic (degenerated fundamental state). (M.E.L) [es

  16. Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy

    Directory of Open Access Journals (Sweden)

    Heraldo D. Silva

    2017-07-01

    Full Text Available Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS pictures; (ii to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of “interacting dyads” (Bonding: N = 70 and matched controls “non-interacting dyads” (Controls: N = 70. The dyads could be either a child and an adult, or two children. Participants (N = 283, 182 women were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other

  17. Pressure induced valence transitions in the Anderson lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Coqblin, B.

    2009-01-01

    We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.

  18. Social learning modulates the lateralization of emotional valence.

    Science.gov (United States)

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  19. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  20. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  1. Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution

    OpenAIRE

    Toulemonde, P.; Odier, P.; Bordet, P.; Floch, S. Le; Suard, E.

    2004-01-01

    The effects of Sr substitution on superconductivity, and more particulary the changes induced in the hole doping mechanism, were investigated in Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y = 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to 42 K for y = 1.0. The charge distribution among atoms of the unit cell was determined from the refined structure, for y ...

  2. System dynamics and control with bond graph modeling

    CERN Document Server

    Kypuros, Javier

    2013-01-01

    Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...

  3. Core-electron binding energies from self-consistent field molecular orbital theory using a mixture of all-electron real atoms and valence-electron model atoms

    International Nuclear Information System (INIS)

    Quinn, C.M.; Schwartz, M.E.

    1981-01-01

    The chemistry of large systems such as clusters may be readily investigated by valence-electron theories based on model potentials, but such an approach does not allow for the examination of core-electron binding energies which are commonly measured experimentally for such systems. Here we merge our previously developed Gaussian based valence-electron model potential theory with all-electron ab initio theory to allow for the calculation of core orbital binding energies when desired. For the atoms whose cores are to be examined, we use the real nuclear changes, all of the electrons, and the appropriate many-electron basis sets. For the rest of the system we use reduced nuclear charges, the Gaussian based model potentials, only the valence electrons, and appropriate valence-electron basis sets. Detailed results for neutral Al 2 are presented for the cases of all-electron, mixed real--model, and model--model SCF--MO calculations. Several different all-electron and valence electron calculations have been done to test the use of the model potential per se, as well as the effect of basis set choice. The results are in all cases in excellent agreement with one another. Based on these studies, a set of ''double-zeta'' valence and all-electron basis functions have been used for further SCF--MO studies on Al 3 , Al 4 , AlNO, and OAl 3 . For a variety of difference combinations of real and model atoms we find excellent agreement for relative total energies, orbital energies (both core and valence), and Mulliken atomic populations. Finally, direct core-hole-state ionic calculations are reported in detail for Al 2 and AlNO, and noted for Al 3 and Al 4 . Results for corresponding frozen-orbital energy differences, relaxed SCF--MO energy differences, and relaxation energies are in all cases in excellent agreement (never differing by more than 0.07 eV, usually by somewhat less). The study clearly demonstrates the accuracy of the mixed real--model theory

  4. Work Valence as a Predictor of Academic Achievement in the Family Context

    Science.gov (United States)

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents mediate the…

  5. One hundred years of Lewis Chemical Bond!

    Indian Academy of Sciences (India)

    2016-09-20

    Sep 20, 2016 ... Chemists knew how many electrons are there in each element and were also aware of stable electronic configurations. For example, 'inert gases' having. 8 electrons in the valence shell (now known as s and p orbitals) were very stable. Bonding in polar molecules, called electrovalent those days, such as ...

  6. THE VALENCE OF CORPUSCULAR PROTEINS.

    Science.gov (United States)

    Gorin, M H; Mover, L S

    1942-07-20

    BY THE USE OF TWO EXTREME MODELS: a hydrated sphere and an unhydrated rod the valence (net charge) of corpuscular proteins can be successfully calculated from electric mobility data by the Debye-Hückel theory (modified to include the effect of the ions in the ion atmosphere) in conjunction with the electrophoretic theory of Henry. As pointed out by Abramson, this permits a comparison with values for the valence from titration data. Electrometric titration measurements of serum albumin B (Kekwick) have been determined at several ionic strengths. These results, together with the available data in the literature for serum albumin B, egg albumin, and beta-lactoglobulin have been used to compare values for the valence calculated from measurements of titration, electrophoresis, and membrane potentials. The results indicate that the usual interpretation of titration curves is open to serious question. By extrapolation of the titration data to zero ionic strength and protein concentration, there results an "intrinsic" net charge curve describing the binding of H(+) (OH(-)) ion alone. This curve agrees closely, in each case, with values of the valence calculated from mobility data (which in turn are in close accord with those estimated from membrane potential measurements). The experimental titration curves in the presence of appreciable quantities of ions and protein deviate widely from the ideal curve. It is suggested that, under these conditions, binding of undissociated acid (base) leads to erroneous values for the net charge. This binding would not affect the electrophoretic mobility. Values of the net charge obtained by the two extreme models from electrophoretic data are in agreement within 15 to 20 per cent. The agreement between the cylindrical model and the titration data is somewhat better in each case than with the sphere; i.e., this comparison enables a choice to be made between asymmetry and hydration in the interpretation of results from sedimentation and

  7. The Bond Fluctuation Model and Other Lattice Models

    Science.gov (United States)

    Müller, Marcus

    Lattice models constitute a class of coarse-grained representations of polymeric materials. They have enjoyed a longstanding tradition for investigating the universal behavior of long chain molecules by computer simulations and enumeration techniques. A coarse-grained representation is often necessary to investigate properties on large time- and length scales. First, some justification for using lattice models will be given and the benefits and limitations will be discussed. Then, the bond fluctuation model by Carmesin and Kremer [1] is placed into the context of other lattice models and compared to continuum models. Some specific techniques for measuring the pressure in lattice models will be described. The bond fluctuation model has been employed in more than 100 simulation studies in the last decade and only few selected applications can be mentioned.

  8. A Global Stock and Bond Model

    OpenAIRE

    Connor, Gregory

    1996-01-01

    Factor models are now widely used to support asset selection decisions. Global asset allocation, the allocation between stocks versus bonds and among nations, usually relies instead on correlation analysis of international equity and bond indexes. It would be preferable to have a single integrated framework for both asset selection and asset allocation. This framework would require a factor model applicable at an asset or country level, as well as at a global level,...

  9. Intermediate valence spectroscopy

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Schoenhammer, K.

    1987-01-01

    Spectroscopic properties of intermediate valence compounds are studied using the Anderson model. Due to the large orbital and spin degeneracy N/sub f/ of the 4f-level, 1/N/sub f/ can be treated as a small parameter. This approach provides exact T = 0 results for the Anderson impurity model in the limit N/sub f/ → ∞, and by adding 1/N/sub f/ corrections some properties can be calculated accurately even for N/sub f/ = 1 or 2. In particular valence photoemission and resonance photoemission spectroscopies are studied. A comparison of theoretical and experimental spectra provides an estimate of the parameters in the model. Core level photoemission spectra provide estimates of the coupling between the f-level and the conduction states and of the f-level occupancy. With these parameters the model gives a fair description of other electron spectroscopies. For typical parameters the model predicts two structures in the f-spectrum, namely one structure at the f-level and one at the Fermi energy. The resonance photoemission calculation gives a photon energy dependence for these two peaks in fair agreement with experiment. The peak at the Fermi energy is partly due to a narrow Kondo resonance, resulting from many-body effects and the presence of a continuous, partly filled conduction band. This resonance is related to a large density of low-lying excitations, which explains the large susceptibility and specific heat observed for these systems at low temperatures. 38 references, 11 figures, 2 tables

  10. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

    Directory of Open Access Journals (Sweden)

    Majid Ebrahimizadeh Abrishami

    2016-11-01

    Full Text Available An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1−xPrxMnO3 and the first-order RP-system Ca2−xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

  11. Substituent Effects on the Stability of Thallium and Phosphorus Triple Bonds: A Density Functional Study.

    Science.gov (United States)

    Lu, Jia-Syun; Yang, Ming-Chung; Su, Ming-Der

    2017-07-05

    Three computational methods (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ+dp) were used to study the effect of substitution on the potential energy surfaces of RTl≡PR (R = F, OH, H, CH₃, SiH₃, SiMe(Si t Bu₃)₂, Si i PrDis₂, Tbt (=C₆H₂-2,4,6-(CH(SiMe₃)₂)₃), and Ar* (=C₆H₃-2,6-(C₆H₂-2, 4,6- i -Pr₃)₂)). The theoretical results show that these triply bonded RTl≡PR compounds have a preference for a bent geometry (i.e., ∠R⎼Tl⎼P ≈ 180° and ∠Tl⎼P⎼R ≈ 120°). Two valence bond models are used to interpret the bonding character of the Tl≡P triple bond. One is model [I], which is best described as TlP. This interprets the bonding conditions for RTl≡PR molecules that feature small ligands. The other is model [II], which is best represented as TlP. This explains the bonding character of RTl≡PR molecules that feature large substituents. Irrespective of the types of substituents used for the RTl≡PR species, the theoretical investigations (based on the natural bond orbital, the natural resonance theory, and the charge decomposition analysis) demonstrate that their Tl≡P triple bonds are very weak. However, the theoretical results predict that only bulkier substituents greatly stabilize the triply bonded RTl≡PR species, from the kinetic viewpoint.

  12. Valence instabilities as a source of actinide system inconsistencies

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1979-01-01

    Light actinide elements alone, and in some of their alloys, may exist as a static or dynamic mixture of two configurations. Such a state can explain both a resistivity maximum and lack of magnetic order observed in so many actinide materials, and still be compatible with the existence of f-electrons in narrow bands. Impurity elements may stabilize slightly different intermediate valence states in U, Np, and Pu, thus contributing to inconsistencies in published results. The physical property behavior of mixed-valence, rare-earth compounds is very much like that observed in development of antiphase (martensitic) structures. Martensitic transformations in U, Np, and Pu, from high-temperature b. c. c. to alpha phase, may be a way of ordering an alloy-like metal of mixed or intermediate valence. The relative stability of each phase structure may depend upon its electron-valence ratio. A Hubbard model for electron correlations in a narrow energy band has been invoked in most recent theories for explaining light actinide behavior. Such a model may also be applicable to crystal symmetry changes in martensitic transformations in actinides

  13. Valence electron structure and properties of the ZrO2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To reveal the properties of ZrO2 at the atom and electron levels, the valence elec- tron structures of three ZrO2 phases were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr and O atoms in the m-ZrO2 were the same as those in the t-ZrO2, while those in the c-ZrO2 rose markedly. The electron numbers and bond energies on the strongest covalent bonds in the m-ZrO2 phase were the greatest, the values were 0.901106 and 157.5933 kJ/mol, respectively. Those in the t-ZrO2 phase took second place, which were 0.722182 and 123.9304 kJ/mol, and those in the c-ZrO2 phase were the smallest, which were 0.469323 and 79.0289 kJ/mol. According to the product of the bond energy on the strongest covalent bond and equivalent bond number (this value reflected the crystal cohesive energy), the order from the greatness to smallness was the c-ZrO2> t-ZrO2 > m-ZrO2. This showed that the m-phase bonds were the tightest, their energy was the smallest, the crystal cohe- sive energy of the m-phase was the largest, and the m-phase existed most stably at room temperature. So it must need energy or higher temperature to take apart the stronger covalent bonds to form a new phase.

  14. Valence electron structure and properties of the ZrO2

    Institute of Scientific and Technical Information of China (English)

    LI JinPing; MENG SongHe; HAN JieCai; ZHANG XingHong

    2008-01-01

    To reveal the properties of ZrO2 at the atom and electron levels, the valence elec-tron structures of three ZrO2 phases were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr and O atoms in the m-ZrO2 were the same as those in the t-ZrO2, while those in the c-ZrO2 rose markedly. The electron numbers and bond energies on the strongest covalent bonds in the m-ZrO2 phase were the greatest, the values were 0.901106 and 157.5933 kJ/mol, respectively. Those in the t-ZrO2 phase took second place, which were 0.722182 and 123.9304 kJ/mol, and those in the c-ZrO2 phase were the smallest, which were 0.469323 and 79.0289 kJ/mol. According to the product of the bond energy on the strongest covalent bond and equivalent bond number (this value reflected the crystal cohesive energy), the order from the greatness to smallness was the c-ZrO2 t-ZrO2 m-ZrO2. This showed that the m-phase bonds were the tightest, their energy was the smallest, the crystal cohe-sive energy of the m-phase was the largest, and the m-phase existed most stably at room temperature. So it must need energy or higher temperature to take apart the stronger covalent bonds to form a new phase.

  15. Cohesive zone model for direct silicon wafer bonding

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  16. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  17. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  18. An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:1 ordered A2InNbO6 double perovskites (A=Ca2+, Sr2+, Ba2+)

    International Nuclear Information System (INIS)

    Ting, V.; Liu, Y.; Withers, R.L.; Krausz, E.

    2004-01-01

    A careful investigation has been carried out into the space group symmetries, structures and crystal chemistries of the 1:1 B-site ordered double perovskites A 2 InNbO 6 (A=Ca 2+ , Sr 2+ , Ba 2+ ) using a combination of bond valence sum calculations, powder XRD and electron diffraction. A recent investigation of these compounds by Yin et al. reported a random distribution of In 3+ and Nb 5+ ions onto the perovskite B-site positions of these compounds and hence Pm3-barm (a=a p , subscript p for parent perovskite sub-structure) space group symmetry for the A=Ba and Sr compounds and Pnma (a=a p +b p , b=-a p +b p , c=2c p ) space group symmetry for the A=Ca compound. A careful electron diffraction study, however, shows that both the A=Ca and Sr compounds occur at room temperature in P12 1 /n1 (a=a p +b p , b=-a p +b p , c=2c p ) perovskite-related superstructure phases while the A=Ba compound occurs in the Fm3-barm, a=2a p , elpasolite structure type. Bond valence sum calculations are used to explain why this should be so as well as to provide a useful first-order approximation to the structures of each of the compounds

  19. Unicorns in the world of chemical bonding models.

    Science.gov (United States)

    Frenking, Gernot; Krapp, Andreas

    2007-01-15

    The appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry. Copyright (c) 2006 Wiley Periodicals, Inc.

  20. Bonding in Sulfur-Oxygen Compounds-HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Woon, David E; Dunning, Thom H

    2013-10-08

    The ground states (X(2)A″) of HSO and SOH are extremely close in energy, yet their molecular structures differ dramatically, e.g., re(SO) is 1.485 Å in HSO and 1.632 Å in SOH. The SO bond is also much stronger in HSO than in SOH: 100.3 kcal/mol versus 78.8 kcal/mol [RCCSD(T)-F12/AVTZ]. Similar differences are found in the SO2 isomers, SOO and OSO, depending on whether the second oxygen atom binds to oxygen or sulfur. We report generalized valence bond and RCCSD(T)-F12 calculations on HSO/SOH and OSO/SOO and analyze the bonding in all four species. We find that HSO has a shorter and stronger SO bond than SOH due to the presence of a recoupled pair bond in the π(a″) system of HSO. Similarly, the bonding in SOO and OSO differs greatly. SOO is like ozone and has substantial diradical character, while OSO has two recoupled pair π bonds and negligible diradical character. The ability of the sulfur atom to form recoupled pair bonds provides a natural explanation for the dramatic variation in the bonding in these and many other sulfur-oxygen compounds.

  1. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  2. Effect of valence on the electromigration in silver

    International Nuclear Information System (INIS)

    Nguyen Van Doan

    1970-01-01

    It is shown that the apparent effective valence Z B ** of a solute deduced from experiments differs from the true effective valence Z B * defined in the atomic models by a corrective term due to the 'vacancy flow effect'. The experimental results suggest that this corrective term is very important and that it is negative for transition elements; this hypothesis is confirmed for the case of iron in a copper matrix. For the elements to the right of silver in the periodic table, where the correction can be neglected, the effective valence of the solute varies linearly with z (z + 1), z being the difference between the valency of the solute and the solvent; in contrast, the further the solute is from the solvent in the periodic table the more nearly the electronic structure of the ion at the saddle point resembles that of the ion at the equilibrium position. (author) [fr

  3. Electron momentum distributions and binding energies for the valence orbitals of hydrogen bromide and hydrogen iodide

    International Nuclear Information System (INIS)

    Brion, C.E.; McCarthy, I.E.; Suzuki, I.H.; Weigold, E.; Williams, G.R.J.; Bedford, K.L.; Kunz, A.B.; Weidman, R.

    1981-12-01

    The electron binding energy spectra and momentum distributions have been obtained for the valence orbitals of HBr and HI using noncoplanar symmetric electron coincidence spectroscopy at 1200eV. The weakly bonding inner valence ns orbitals, which have not been previously observed, have their spectroscopic (pole) strength severely split among a number of ion states. For HBr the strength of the main inner valence (ns) transition is 0.42 0.03 whereas for HI it is 0.37 0.04, in close agreement with that observed for the valence s orbitals of the corresponding isoelectronic inert gas atoms. The spectroscopic strength for the two outermost orbitals is found to be close to unity, in agreement with many body Green's function calculations. The measured momentum distributions are compared with several spherically averaged MO momentum distributions, as well as (for HBr) with a Green's function calculation of the generalized overlap amplitude (GOA). The GOA momentum distributions are in excellent agreement with the HBr data, both in shape and relative magnitude. Not all of the MO momentum distributions are in reasonable agreement with the data. Comparison is also made with the calculated momentum distributions for Kr, Br, Xe and I

  4. Investigating Valence and Autonomy in Children's Relationships with Imaginary Companions

    Science.gov (United States)

    McInnis, Melissa A.; Pierucci, Jillian M.; Gilpin, Ansley Tullos

    2013-01-01

    Little research has explored valence and autonomy in children's imaginary relationships. In the present study, a new interview (modeled after an existing measure for real relationships) was designed to elicit descriptions of both positive and negative interactions with imaginary companions and to provide a measure of relationship valence and…

  5. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  6. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  7. The acoustic correlates of valence depend on emotion family.

    Science.gov (United States)

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. Valence electron structure analysis of refining mecha-nism of Sc and Ti additions on aluminum

    Institute of Scientific and Technical Information of China (English)

    LI PieJie; YE YiCong; HE LiangJu

    2009-01-01

    The mechanism of the difference of refining effect between Sc and Ti adding to aluminum can not be explained substantially with traditional theory. Valence electron structures of AI-Ti and Al-Sc alloys have been studied by using the empirical electron theory of solids and molecules (EET). The covalent bond electron numbers and interfacial electron density differences are calculated. The conclusion is that, in the two alloys, different covalent bond electron numbers of nucleation particles, and different electron densities on the interface between the second phase particles and the matrix, fundamentally lead to the difference of refining effect between Sc and Ti adding to aluminum.

  9. Valence Band Structure of InAs1-xBix and InSb1-xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Directory of Open Access Journals (Sweden)

    D. P. Samajdar

    2014-01-01

    Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  10. An improved interfacial bonding model for material interface modeling

    Science.gov (United States)

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  11. Variation of sigma-hole magnitude with M valence electron population in MX(n)Y(4-n) molecules (n = 1-4; M = C, Si, Ge; X, Y = F, Cl, Br).

    Science.gov (United States)

    McDowell, Sean A C; Joseph, Jerelle A

    2014-01-14

    Sigma holes are described as electron-deficient regions on atoms, particularly along the extension of covalent bonds, due to non-uniform electron density distribution on the surface of these atoms. A computational study of MX(n)Y(4-n) molecules (n = 1-4; M = C, Si, Ge; X, Y = F, Cl, Br) was undertaken and it is shown that the relative sigma hole potentials on M due to X-M and Y-M can be adequately explained in terms of the variation in the valence electron population of the central M atom. A model is proposed for the depletion of the M valence electron population which explains the trends in sigma hole strengths, especially those that cannot be accounted for solely on the basis of relative electronegativities.

  12. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...... environment with limited ligand selectivity. To address this limitation, we have investigated the enhancement of XAS features using valence-to-core (VtC)-detected XAS, whereby XAS spectra are measured by monitoring fluorescence from valence-to-core X-ray emission (VtC XES) events. VtC emission corresponds...... to transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data...

  13. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  14. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework....

  15. Interfacial chemical bonding state and band alignment of CaF2/hydrogen-terminated diamond heterojunction

    International Nuclear Information System (INIS)

    Liu, J. W.; Liao, M. Y.; Cheng, S. H.; Imura, M.; Koide, Y.

    2013-01-01

    CaF 2 films are deposited on hydrogen-terminated diamond (H-diamond) by a radio-frequency sputter-deposition technique at room temperature. Interfacial chemical bonding state and band alignment of CaF 2 /H-diamond heterojunction are investigated by X-ray photoelectron spectroscopy. It is confirmed that there are only C-Ca bonds at the CaF 2 /H-diamond heterointerface. Valence and conductance band offsets of the CaF 2 /H-diamond heterojunciton are determined to be 3.7 ± 0.2 and 0.3 ± 0.2 eV, respectively. It shows a type I straddling band configuration. The large valence band offset suggests advantage of the CaF 2 /H-diamond heterojunciton for the development of high power and high frequency field effect transistors.

  16. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation.

    Science.gov (United States)

    Oanca, Gabriel; Stare, Jernej; Mavri, Janez

    2017-12-01

    This work scrutinizes kinetics of decomposition of adrenaline catalyzed by monoamine oxidase (MAO) A and B enzymes, a process controlling the levels of adrenaline in the central nervous system and other tissues. Experimental kinetic data for MAO A and B catalyzed decomposition of adrenaline are reported only in the form of the maximum reaction rate. Therefore, we estimated the experimental free energy barriers form the kinetic data of closely related systems using regression method, as was done in our previous study. By using multiscale simulation on the Empirical Valence Bond (EVB) level, we studied the chemical reactivity of the MAO A catalyzed decomposition of adrenaline and we obtained a value of activation free energy of 17.3 ± 0.4 kcal/mol. The corresponding value for MAO B is 15.7 ± 0.7 kcal/mol. Both values are in good agreement with the estimated experimental barriers of 16.6 and 16.0 kcal/mol for MAO A and MAO B, respectively. The fact that we reproduced the kinetic data and preferential catalytic effect of MAO B over MAO A gives additional support to the validity of the proposed hydride transfer mechanism. Furthermore, we demonstrate that adrenaline is preferably involved in the reaction in a neutral rather than in a protonated form due to considerably higher barriers computed for the protonated adrenaline substrate. The results are discussed in the context of chemical mechanism of MAO enzymes and possible applications of multiscale simulation to rationalize the effects of MAO activity on adrenaline level. © 2017 Wiley Periodicals, Inc.

  17. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  18. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    International Nuclear Information System (INIS)

    Saraswati, Teguh Endah; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH 3 ). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory. (paper)

  19. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    Science.gov (United States)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  20. The valence electron structure and property analysis of TiC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The valence electron structure of TiC was calculated by using the empirical electron theory of solids and molecules. The calculated results show that with the increase of temperature the number of common electrons of TiC increases, which indicates that TiC has a good thermal sta-bility; and there exists a close relationship between hardness and brittleness of TiC. According to the number of lattice electrons, the differences among the crystals with different structures can be explained qualitatively. Using the "bond- strengthening factor", the differences of hardness among the crystals with different structures can also be qualitatively explained to some extent.

  1. Charge transfer and bond lengths in YBa2Cu3-xMxO6+y

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.

    1989-01-01

    We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs

  2. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  3. A Direct Proof of the Resonance-Impaired Hydrogen Bond (RIHB) Concept.

    Science.gov (United States)

    Lin, Xuhui; Wu, Wei; Mo, Yirong

    2018-01-24

    The concept of resonance-enhanced hydrogen bond (RAHB) has been widely accepted and applied as it highlights the positive impact of π-conjugation on intramolecular H-bonds. However, electron delocalization is directional and there is a possibility that π-resonance goes from the H-bond acceptor to the H-bond donor, leading to a negative impact on H-bonds. Here we used the block-localized wavefunction (BLW) method which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently, to quantify the interplay between H-bond and π-resonance in the terms of geometry, energetics and spectral properties. The comparison of geometrical optimizations with and without π-resonance shows that conjugation can indeed either enhance or weaken intramolecular H-bonds. We further experimented with various substituents attached to either the H-bond acceptor and/or H-bond donor side(s) to tune the H-bonding strength in both directions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  5. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  6. X-ray photoelectron spectra structure of actinide compounds stipulated by electrons of the inner valence molecular orbitals (IVMO)

    International Nuclear Information System (INIS)

    Teterin, Yu. A.; Ivanov, K. E.

    1997-01-01

    Development of precise X-ray photoelectron spectroscopy using X-ray radiation hν< 1.5 KeV allowed to carry out immediate investigations of fine spectra structure of both weakly bond and deep electrons. Based on the experiments and the obtained results it may be concluded: 1. Under favourable conditions the inner valence molecular orbitals (IVMO) may form in all actinide compounds. 2. The XPS spectra fine structure stipulated by IVMO electrons allows to judge upon the degree of participation of the filled AO electrons in the chemical bond, on the structure o considered atom close environment and the bond lengths in compounds. For amorphous compounds the obtaining of such data based on X-ray structure analysis is restricted. 3. The summary contribution of IVMO electrons to the absolute value of the chemical bonding is comparable with the corresponding value of OMO electrons contribution to the atomic bonding. This fact is very important and new in chemistry. (author)

  7. Simultaneous conditioning of valence and arousal.

    Science.gov (United States)

    Gawronski, Bertram; Mitchell, Derek G V

    2014-01-01

    Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.

  8. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  9. A Bond Graph Approach for the Modeling and Simulation of a Buck Converter

    Directory of Open Access Journals (Sweden)

    Rached Zrafi

    2018-01-01

    Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter.

  10. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor

    2011-02-15

    Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.

  11. On the electrical conductivity for the mixed-valence model with d-f correlations

    International Nuclear Information System (INIS)

    Borgiel, W.; Matlak, M.

    1984-08-01

    The static electrical conductivity of mixed-valence systems is calculated in the model of Matlak and Nolting [Solid State Commun., 47, 11 (1983); Z. Phys., B55, 103 (1984)]. The method takes into account the atomic properties more exactly than those connected with bands, and hence emphasizes the ionic aspect of the problem in some way; indeed, the calculations overestimate the atomic properties. Some results are presented in a graph. It is found that the electrical conductivity depends strongly on temperature and the electron-hole attraction constant

  12. Valence band structure of InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy semiconductors calculated using valence band anticrossing model.

    Science.gov (United States)

    Samajdar, D P; Dhar, S

    2014-01-01

    The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs(1-x)Bi(x) and InSb(1-x)Bi(x) alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E - energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.

  13. Basic features of the pion valence-quark distribution function

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lei [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Mezrag, Cédric; Moutarde, Hervé [Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette (France); Roberts, Craig D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rodríguez-Quintero, Jose [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva E-21071 (Spain); Tandy, Peter C. [Center for Nuclear Research, Department of Physics, Kent State University, Kent, OH 44242 (United States)

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q{sup π}(x); namely, at a characteristic hadronic scale, q{sup π}(x)∼(1−x){sup 2} for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.

  14. Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation.

    Science.gov (United States)

    Andrés, Juan; Berski, Sławomir; Silvi, Bernard

    2016-07-07

    Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant

  15. Macroeconomic Stability in a Model with Bond Transaction Services

    Directory of Open Access Journals (Sweden)

    Massimiliano Marzo

    2018-02-01

    Full Text Available Cochrane (2014 shows that high-powered money balances and short-term government bonds can be considered as perfect substitutes for the U.S economy during the past twenty years. We build on this claim and consider a variant of the standard cashless new-Keynesian model with two types of government bonds, which can be thought of as short- and long-term bonds. The first one has a macroeconomic role in the sense that it provides transaction services in addition to generating a yield. The other type of government bond pays only an interest rate. Consistent with previous findings, the Taylor principle is not a panacea for equilibrium determinacy in a model without money. When the government bond market matters beyond the need for fiscal solvency, monetary policy rules do not need to comply with the Taylor principle for unique equilibria to exist.

  16. Numerical investigation of compaction of deformable particles with bonded-particle model

    Directory of Open Access Journals (Sweden)

    Dosta Maksym

    2017-01-01

    Full Text Available In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  17. Application of Bond Graph Modeling for Photovoltaic Module Simulation

    Directory of Open Access Journals (Sweden)

    Madi S.

    2016-01-01

    Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.

  18. Valence configurations in 214Rn

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.

    1987-01-01

    Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)

  19. Valence effects on adsorption: a preliminary assessment of the effects on valence state control on sorption measurements

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.; Shiao, S.Y.; Palmer, D.A.

    1983-01-01

    Electrochemical arguments are advanced to illustrate that what is usually measured in practice is a mixed potential determined by the kinetics of the electrode processes occurring at the indicator electrode. Valence states can be altered electrochemically or by use of added chemical reagents, including redox couples which can hold the potential to relatively specific potentials. The disadvantage of added chemical reagents is that they may alter the characteristics of the sorption reactions by interaction with the sorbent. Electrochemical methods are versatile and do not add reagents, but in some caes the nuclide can adsorb on the electrode itself. A description is given of the application of the electrochemical method of valence control to determination of sorption of Np(V) on alumina. Valence state control and analysis can be used to study possible redox reactions on materials which might be used as backfill materials. A description is given of survey experiments with a number of sulfides and iron-containing materials. Valence state analysis is used on the initial solutions and leachate from acid leaches of the sorbent after the sorption experiment to help determine whether valence state change is occurring. The preliminary results indicate that on the sulfides tested, sorption occurs both with and without valence state change

  20. Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models

    International Nuclear Information System (INIS)

    Bhargava, Kapilesh; Ghosh, A.K.; Mori, Yasuhiro; Ramanujam, S.

    2007-01-01

    The present paper aims to investigate the relationship between the bond strength and the reinforcement corrosion in reinforced concrete (RC). Analytical and empirical models are proposed for the bond strength of corroded reinforcing bars. Analytical model proposed by Cairns.and Abdullah [Cairns, J., Abdullah, R.B., 1996. Bond strength of black and epoxy-coated reinforcement-a theoretical approach. ACI Mater. J. 93 (4), 362-369] for splitting bond failure and later modified by Coronelli [Coronelli, D. 2002. Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete. ACI Struct. J. 99 (3), 267-276] to consider the corroded bars, has been adopted. Estimation of the various parameters in the earlier analytical model has been proposed by the present authors. These parameters include corrosion pressure due to expansive action of corrosion products, modeling of tensile behaviour of cracked concrete and adhesion and friction coefficient between the corroded bar and cracked concrete. Simple empirical models are also proposed to evaluate the reduction in bond strength as a function of reinforcement corrosion in RC specimens. These empirical models are proposed by considering a wide range of published experimental investigations related to the bond degradation in RC specimens due to reinforcement corrosion. It has been found that the proposed analytical and empirical bond models are capable of providing the estimates of predicted bond strength of corroded reinforcement that are in reasonably good agreement with the experimentally observed values and with those of the other reported published data on analytical and empirical predictions. An attempt has also been made to evaluate the flexural strength of RC beams with corroded reinforcement failing in bond. It has also been found that the analytical predictions for the flexural strength of RC beams based on the proposed bond degradation models are in agreement with those of the experimentally

  1. Magnetic-field-induced valence transition in rare-earth systems

    Indian Academy of Sciences (India)

    In the present work we investigate the scaling behavior observed experimentally based on an electronic model which has not yet been attempted. 2. The model and approximation. The Hamiltonian of the periodic Anderson model (PAM) with Falicov–Kimball term used to describe both continuous and discontinuous valence ...

  2. The Origin of the Non-Additivity in Resonance-Assisted Hydrogen Bond Systems.

    Science.gov (United States)

    Lin, Xuhui; Zhang, Huaiyu; Jiang, Xiaoyu; Wu, Wei; Mo, Yirong

    2017-11-09

    The concept of resonance-assisted hydrogen bond (RAHB) has been widely accepted, and its impact on structures and energetics can be best studied computationally using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory and able to derive strictly electron-localized structures self-consistently. In this work, we use the BLW method to examine a few molecules that result from the merging of two malonaldehyde molecules. As each of these molecules contains two hydrogen bonds, these intramolecular hydrogen bonds may be cooperative or anticooperative, depended on their relative orientations, and compared with the hydrogen bond in malonaldehyde. Apart from quantitatively confirming the concept of RAHB, the comparison of the computations with and without π resonance shows that both σ-framework and π-resonance contribute to the nonadditivity in these RAHB systems with multiple hydrogen bonds.

  3. Valence Band Structure of InAs1−xBix and InSb1−xBix Alloy Semiconductors Calculated Using Valence Band Anticrossing Model

    Science.gov (United States)

    Samajdar, D. P.; Dhar, S.

    2014-01-01

    The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1−xBix and InSb1−xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E + levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E − energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data. PMID:24592181

  4. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    Science.gov (United States)

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  5. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    Science.gov (United States)

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  6. Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.

    Science.gov (United States)

    Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante

    1998-07-27

    Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).

  7. The spherical sector of the Calogero model as a reduced matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, Tigran, E-mail: hakob@yerphi.am [Yerevan State University, 1 Alex Manoogian, 0025 Yerevan (Armenia); Yerevan Physics Institute, 2 Alikhanyan Br., 0036 Yerevan (Armenia); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Leibniz Universitaet Hannover, Institut fuer Theoretische Physik, Appelstr. 2, D-30167 Hannover (Germany); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian, 0025 Yerevan (Armenia)

    2012-05-11

    We investigate the matrix-model origin of the spherical sector of the rational Calogero model and its constants of motion. We develop a diagrammatic technique which allows us to find explicit expressions of the constants of motion and calculate their Poisson brackets. In this way we obtain all functionally independent constants of motion to any given order in the momenta. Our technique is related to the valence-bond basis for singlet states.

  8. Bond slip model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Casanova, A.; Jason, L.; Davenne, L.

    2012-01-01

    This paper presents a new finite element approach to model the steel-concrete bond effects. This model proposes to relate steel, represented by truss elements, with the surrounding concrete in the case where the two meshes are not necessary coincident. The theoretical formulation is described and the model is applied on a reinforced concrete tie. A characteristic stress distribution is observed, related to the transfer of bond forces from steel to concrete. The results of this simulation are compared with a computation in which a perfect relation between steel and concrete is supposed. It clearly shows how the introduction of the bond model can improve the description of the cracking process (finite number of cracks). (authors)

  9. A theoretical and (e,2e) experimental investigation into the complete valence electronic structure of (1.1.1) propellane

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, W.; Clark, C.I. [Flinders Univ. of South Australia, Bedford Park, SA (Australia); Brunger, M.J.; McCarthy, I.E. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). School of Physical Sciences; Michalewicz, M.T. [CSIRO, Carlton, VIC (Australia). Division of Information Technology; Von Niessen, W. [Technische Univ., Braunschweig (Germany). Institute fur Physikalische and Theoretische Chemie; Weigold, E. [Australian National Univ., Canberra, ACT (Australia). Inst. of Advanced Studies; Winkler, D.A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC (Australia). Div. of Chemical Physics

    1996-08-01

    The first comprehensive electronic structural study of the complete valence shell of [1.1.1] propellane is reported. Binding energy spectra were measured in the energy regime 3.5-46.5 eV over a range of different target electron momentum so that individual orbital momentum profiles could also be determined. These binding energy spectra were collected using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1000 eV, with a coincidence energy resolution of 1.38 eV and a momentum resolution of about 0.1 a.u. The experimental orbital electron momentum profiles are compared with those calculated in the plane wave impulse approximation (PWIA) using both a triple zeta plus polarisation level SCF wavefunction and a further 13 basis sets as calculated using Density Functional Theory (DFT). A critical comparison between the experimental an theoretical momentum distributions (MDs) allows to determine the optimum wavefunction for [1.1.1]propellane. In general, the level of agreement between the experimental and theoretical MDs for the optimum wavefunction for all of the respective valence orbitals was very good. The determination of this wavefunction then allowed to derive the chemically interesting molecular properties of [1.1.1]propellane. These include infrared spectra, bond lengths, bond orders, electron densities and many others. A summary of these results and a comparison of them with the previous results of other workers is presented with the level of agreement typically being good. In particular, the existence of the C1-C3 bridging bond with a bond order of 0.70 was confirmed. 59 refs., 4 tabs., 11 figs.

  10. Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories

    KAUST Repository

    Chikalov, Igor

    2011-04-02

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given conformation. The paper discusses several extensions that may yield further improvements.

  11. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  12. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  13. Intermetallic bonds and midgap interface states at epitaxial Al/GaAs(001) junctions

    International Nuclear Information System (INIS)

    Maxisch, T.; Baldereschi, A.; Binggeli, N.

    2003-03-01

    Using first-principles pseudopotential calculations, we have investigated the nature of the electronic states with energies within the semiconductor bandgap of abrupt, defect-free As-terminated Al/GaAs(001) junctions. While bonding-/antibonding-like semiconductor evanescent states occur near the valence-/conduction-band edges, the semiconductor midgap region is characterized by a new type of electronic states, not accounted for by commonly accepted models. These states, which correspond to intermetallic bonds between the outermost Ga cations of the semiconductor and Al atoms of the metal, occur near the Fermi energy. They are localized at the interface and are located around the J-point of the Brillouin zone. These new interface states derive from an interaction between localized states of the Al(001) surface and bulk GaAs conduction band states, mediated by localized states of the unreconstructed As-terminated GaAs(001) surface. (author)

  14. Nuclear masses and the number of valence nucleons

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Frank, A.; Hirsch, J.G.; Lopez Vieyra, J.C.; Morales, I.; Barea, J.; Van Isacker, P.; Velazquez, V.

    2008-01-01

    An improved version of the liquid drop model is presented. The addition of two terms, linear and quadratic in the total number of valence nucleons (particles or holes), improves the description of atomic masses, which can be fitted with an r.m.s. error of 1.2 MeV. Predictions are analysed an compared with those of established models

  15. Emotional valence and the free-energy principle.

    Science.gov (United States)

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  16. Emotional valence and the free-energy principle.

    Directory of Open Access Journals (Sweden)

    Mateus Joffily

    Full Text Available The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  17. Influence of 5f electrons on structure and bonding in the actinide-hydrogen intermetallics

    International Nuclear Information System (INIS)

    Ward, J.W.

    1984-01-01

    Complexa phases form for the Th + H and U + H systems that are found with no other metals. In the Pa + H system, simple bcc C15 Laves and A15 phases can form, dependent on temperature and composition. The phase transformations appear to b magnetically driven, as a resutl of the decoupling of the metallic 5f electron bonding that occurs during hydriding; the C15 phases contain two kinds of Pa atoms-the one sublattice being still fully f-bonded and the other magnetic. This is a unique situation in solid state physics which defies a valence description. A similar situation obtains for A15 β - UH 3 structure. The parent metals themselves exhibit electronegativities not unlike those of the mid-3d transition metals (e.g., Fe) because the valence electrons re tied up in metallic bonding. However, under the driving force for hydriding, the lattices can open up, decoupling the f-bonding and inducing magnetism. The systems then aggressively form very stable hydrides typical of highly-electropositive metals. Beyond uranium the trivalent metallic state is favored and rare-earth-like hydrides are found for Np + H and Pu + H. Nevertheless, the solid-state and transport properties are markedly different than for the rare-earth hydrides, showing that the latent influence of the 5f electrons is still strong

  18. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  19. Bonding in phase change materials: concepts and misconceptions

    Science.gov (United States)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  20. Complexes in solution of o-phenanthroline with the ions of 4f and 5f elements at valencies II, III, V, VI

    International Nuclear Information System (INIS)

    Le Marois, Gilles.

    1980-06-01

    Slight differences between the complexation in aqueous solution of 4f and 5f series ions are revealed by the use of a soft, aromatic and chelating ligand of the o-phenanthroline type. Trivalent actinide ions are extrated selectively in the presence of a carboxylic acid. This extraction takes place at high pH and does not require large quantities of salts in aqueous solution, which increase the volume of radioactive wastes for storage. Only the first two o-phenanthroline complexes of these ions are obtained in aqueous solution. Determination of the constants of formation of such complexes shows the stronger affinity of the ligand for actinide ions. An inversion of the usual order of complexation of the different actinide valencies is also observed: pentavalent ions are most complexed than trivalent, o-phenanthroline stabilises actinide ions preferentially because they are more liable to form bonds with delocalised electrons. Finally a slight stabilisation of europium at valency II shows the participation of electrons by back bonding of the metal, due to the strong conjugation of the ligand π electrons [fr

  1. Memory effects of sleep, emotional valence, arousal and novelty in children.

    Science.gov (United States)

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  2. Modeling of direct wafer bonding: Effect of wafer bow and etch patterns

    Science.gov (United States)

    Turner, K. T.; Spearing, S. M.

    2002-12-01

    Direct wafer bonding is an important technology for the manufacture of silicon-on-insulator substrates and microelectromechanical systems. As devices become more complex and require the bonding of multiple patterned wafers, there is a need to understand the mechanics of the bonding process. A general bonding criterion based on the competition between the strain energy accumulated in the wafers and the surface energy that is dissipated as the bond front advances is developed. The bonding criterion is used to examine the case of bonding bowed wafers. An analytical expression for the strain energy accumulation rate, which is the quantity that controls bonding, and the final curvature of a bonded stack is developed. It is demonstrated that the thickness of the wafers plays a large role and bonding success is independent of wafer diameter. The analytical results are verified through a finite element model and a general method for implementing the bonding criterion numerically is presented. The bonding criterion developed permits the effect of etched features to be assessed. Shallow etched patterns are shown to make bonding more difficult, while it is demonstrated that deep etched features can facilitate bonding. Model results and their process design implications are discussed in detail.

  3. Temperature effects in the valence fluctuation of europium intermetallic compounds

    International Nuclear Information System (INIS)

    Menezes, O.L.T. de; Troper, A.; Gomes, A.A.

    1978-03-01

    A previously reported model for valence fluctuations in europium compound in order to account for thermal occupation effect. Experimental results are critically discussed and new experiments are suggested

  4. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    Science.gov (United States)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  5. Emotional Valence and Arousal Effects on Memory and Hemispheric Asymmetries

    Science.gov (United States)

    Mneimne, Malek; Powers, Alice S.; Walton, Kate E.; Kosson, David S.; Fonda, Samantha; Simonetti, Jessica

    2010-01-01

    This study examined predictions based upon the right hemisphere (RH) model, the valence-arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon…

  6. Age-related emotional bias in processing two emotionally valenced tasks.

    Science.gov (United States)

    Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott

    2017-01-01

    Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.

  7. [Emotional valence of words in schizophrenia].

    Science.gov (United States)

    Jalenques, I; Enjolras, J; Izaute, M

    2013-06-01

    Emotion recognition is a domain in which deficits have been reported in schizophrenia. A number of emotion classification studies have indicated that emotion processing deficits in schizophrenia are more pronounced for negative affects. Given the difficulty of developing material suitable for the study of these emotional deficits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words

  8. Relation between plasmons and the valence-band density-of-states in polymethylmethacrylate - influence of ion irradiation on damage selectivity

    International Nuclear Information System (INIS)

    Moliton, J.P.; Jussiaux, C.; Trigaud, T.; Lazzaroni, R.; Lhost, O.; Bredas, J.L.; Kihn, Y.; Sevely, J.

    1996-01-01

    A physical model is presented that aims at rationalizing the selectivity of bond breakage observed when polymethylmethacrylate is irradiated by ions in the 10-500 keV energy range. This model, previously proposed by Brandt and Ritchie, is based on electronic collective effects. The coupling between the pure plasma oscillation at omega(p) and the oscillation of free electrons at [omega(k0)(2)](1/2) makes the whole electronic population resonant at the frequency omega(rp) = (omega(p)(2) + [omega(k0)(2)])(1/2). By computing the valence-band density of states, we calculate [omega(k0)(2)] and then deduce the theoretical value of omega(rp). On the other hand, we provide an experimental measurement of omega(rp) and study its dependence on ion fluence by electron-energy-loss spectroscopy. The validity of the model of Brandt and Ritchie is then discussed in the light of both theoretical and experimental data. (author)

  9. Bond Graph Modeling and Simulation of Mechatronic Systems

    DEFF Research Database (Denmark)

    Habib, Tufail; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn

    2012-01-01

    One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential characterist......One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential...

  10. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  11. Estimating Structural Models of Corporate Bond Prices in Indonesian Corporations

    Directory of Open Access Journals (Sweden)

    Lenny Suardi

    2014-08-01

    Full Text Available This  paper  applies  the  maximum  likelihood  (ML  approaches  to  implementing  the structural  model  of  corporate  bond,  as  suggested  by  Li  and  Wong  (2008,  in  Indonesian corporations.  Two  structural  models,  extended  Merton  and  Longstaff  &  Schwartz  (LS models,  are  used  in  determining  these  prices,  yields,  yield  spreads  and  probabilities  of default. ML estimation is used to determine the volatility of irm value. Since irm value is unobserved variable, Duan (1994 suggested that the irst step of ML estimation is to derive the likelihood function for equity as the option on the irm value. The second step is to ind parameters such as the drift and volatility of irm value, that maximizing this function. The irm value itself is extracted by equating the pricing formula to the observed equity prices. Equity,  total  liabilities,  bond  prices  data  and  the  irm's  parameters  (irm  value,  volatility of irm value, and default barrier are substituted to extended Merton and LS bond pricing formula in order to valuate the corporate bond.These models are implemented to a sample of 24 bond prices in Indonesian corporation during  period  of  2001-2005,  based  on  criteria  of  Eom,  Helwege  and  Huang  (2004.  The equity  and  bond  prices  data  were  obtained  from  Indonesia  Stock  Exchange  for  irms  that issued equity and provided regular inancial statement within this period. The result shows that both models, in average, underestimate the bond prices and overestimate the yields and yield spread. ";} // -->activate javascript

  12. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    LI JinPing; HAN JieOai; MENG SongHe; ZHANG XingHong

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels,the valence elec-tron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules.The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13,the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15,and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2.The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>ZrCeO2>ZrYOZrMgO>ZrCaO.The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are ZrCeO2>c-ZrO2>ZrYO>ZrMgO>ZrCaO.The percent-ages of the total number of covalent electrons in the descending order arec-ZrO2>ZrYO> ZrCeO2>ZrMgO> ZrCaO.From the above analysis,it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  13. Dissociable modulation of overt visual attention in valence and arousal revealed by topology of scan path.

    Directory of Open Access Journals (Sweden)

    Jianguang Ni

    Full Text Available Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness and arousal (intensity of evoked emotion, have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS that were graded for affective levels of valence and arousal (high, medium, and low. Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal.

  14. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey

    Directory of Open Access Journals (Sweden)

    Ee Wah Lim

    2015-09-01

    Full Text Available Resistive switching effect in transition metal oxide (TMO based material is often associated with the valence change mechanism (VCM. Typical modeling of valence change resistive switching memory consists of three closely related phenomena, i.e., conductive filament (CF geometry evolution, conduction mechanism and temperature dynamic evolution. It is widely agreed that the electrochemical reduction-oxidation (redox process and oxygen vacancies migration plays an essential role in the CF forming and rupture process. However, the conduction mechanism of resistive switching memory varies considerably depending on the material used in the dielectric layer and selection of electrodes. Among the popular observations are the Poole-Frenkel emission, Schottky emission, space-charge-limited conduction (SCLC, trap-assisted tunneling (TAT and hopping conduction. In this article, we will conduct a survey on several published valence change resistive switching memories with a particular interest in the I-V characteristic and the corresponding conduction mechanism.

  15. Theory of Valence Transitions in Ytterbium and Europium Intermetallics

    International Nuclear Information System (INIS)

    Zlatic, V.; Freericks, J.K.

    2001-01-01

    The exact solution of the multi-component Falicov-Kimball model in infinite-dimensions is presented and used to discuss a new fixed point of valence fluctuating intermetallics with Yb and Eu ions. In these compounds, temperature, external magnetic field, pressure, or chemical pressure induce a transition between a metallic state with the f-ions in a mixed-valent (non-magnetic) configuration and a semi-metallic state with the f-ions in an integral-valence (paramagnetic) configuration. The zero-field transition occurs at the temperature T V , while the zero-temperature transition sets in at the critical field H c . We present the thermodynamic and dynamic properties of the model for an arbitrary concentration of d- and f -electrons. For large U, we find a MI transition, triggered by the temperature or field- induced change in the f-occupancy. (author)

  16. Reply to Isgur's comments on valence QCD

    International Nuclear Information System (INIS)

    Liu, K.F.

    2000-01-01

    With the goal of understanding the complexity of QCD and the role of symmetry in dynamics, the authors studied a field theory called Valence QCD (VQCD) in which the Z graphs are forbidden so that the Fock space is limited to the valence quarks. The authors calculated nucleon form factors, matrix elements, and hadron masses both with this theory and with quenched QCD on a set of lattices with the same gauge background. Comparing the results of the lattice calculations in these two theories, the authors drew conclusions regarding the SU(6) valence quark model and chiral symmetry. While recognizing the goal of VQCD, Nathan Isgur disagrees on some of the conclusions the authors have drawn. The foremost objection raised in section 2 is to their suggestion that the major part of the hyperfine splittings in baryons is due to Goldstone boson exchange and not one-gluon-exchange (OGE) interactions. The logic of Isgur's objection is that VQCD yields a spectroscopy vastly different from quenched QCD and therefore the structure of the hadrons (to which hyperfine splittings in a quark model are intimately tied) is also suspect so no definite conclusions are possible. To put this into perspective it should be emphasized at the outset that spectroscopy is only one aspect of hadron physics examined in section 1. The authors have studied the axial and scalar couplings of nucleon in terms of F A /D A and F S /D S , the neutron to proton magnetic moment ratio μn/μp, and various form factors. None of these results reveal any pathologies of hadron structure and turn out to be close to the SU(6) relations, as expected. In fact this is what motivated the study of valence degrees of freedom via VQCD. In section 2 the authors address specific issues related to spectroscopy in VQCD. Isgur also presented more general arguments against the idea of boson exchange as a contributor to hyperfine effects. A cornerstone of his discussion is the unifying aspect of OGE in a quark model picture. The

  17. Cerium valence change in the solid solutions Ce(Rh1-xRux)Sn

    International Nuclear Information System (INIS)

    Niehaus, Oliver; Riecken, Jan F.; Winter, Florian; Poettgen, Rainer; Muenster Univ.; Abdala, Paula M.; Chevalier, Bernard

    2013-01-01

    The solid solutions Ce(Rh 1-x Ru x )Sn were investigated by means of susceptibility measurements, specific heat, electrical resistivity, X-ray absorption spectroscopy (XAS), and 119 Sn Moessbauer spectroscopy. Magnetic measurements as well as XAS data show a cerium valence change in dependence on the ruthenium content. Higher ruthenium content causes an increase from 3.22 to 3.45 at 300 K. Furthermore χ and χ -1 data indicate valence fluctuation for cerium as a function of temperature. For example, Ce(Rh 0.8 Ru 0.2 )Sn exhibits valence fluctuations between 3.42 and 3.32 in the temperature range of 10 to 300 K. This could be proven by using the interconfiguration fluctuation (ICF) model introduced by Sales and Wohlleben. Cerium valence change does not influence the tin atoms as proven by 119 Sn Moessbauer spectroscopy, but it influences the electrical properties. Ce(Rh 0.9 Ru 0.1 )Sn behaves like a typical valence fluctuating compound, and higher ruthenium content causes an increase of the metallic behavior. (orig.)

  18. Bond graph modeling of nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed

  19. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  20. Positive valence music restores executive control over sustained attention.

    Science.gov (United States)

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  1. Moessbauer spectroscopic study on valence-detrapping and trapping of mixed-valence trinuclear iron (III, III, II) fluorine-substitute benzoate complexes

    International Nuclear Information System (INIS)

    Sakai, Y.; Onaka, S.; Ogiso, R.; Takayama, T.; Takahashi, M.; Nakamoto, T.

    2012-01-01

    Four mixed-valence trinuclear iron(III, III, II) fluorine-substituted benzoate complexes were synthesized; Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 ·CH 2 Cl 2 (1), Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 (2), Fe 3 O(2H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (3), and Fe 3 O(4H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (4). By means of 57 Fe-Moessbauer spectroscopy, valence-detrapping and trapping phenomena have been investigated for the four mixed-valence complexes. The valence state of three iron ions is trapped at lower temperatures while it is fully detrapped at higher temperatures for 1. Valence detrapping is not observed for 2, 3, and 4 even at room temperature, although Moessbauer spectra for 3 and 4 show a complicated temperature dependence. (author)

  2. Doping and bond length contributions to Mn K-edge shift in La1 ...

    Indian Academy of Sciences (India)

    ... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...

  3. A numerical simulation model of valence-change-based resistive switching

    OpenAIRE

    Marchewka, Astrid

    2017-01-01

    Due to their superior scalability and performance, nanoscale resistive switches based on the valence-change mechanism are considered promising candidates for future nonvolatile memory and logic applications. These devices are metal-oxide-metal structures that can be reversibly switched between different resistance states by electrical signals. Typically, they contain one Schottky-like and one ohmic-like metal-oxide contact and exhibit bipolar switching. The switching mechanism and the initial...

  4. On triangle meshes with valence dominant vertices

    KAUST Repository

    Morvan, Jean-Marie

    2018-02-16

    We study triangulations $\\\\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\\\\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\\\\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.

  5. On triangle meshes with valence dominant vertices

    KAUST Repository

    Morvan, Jean-Marie

    2018-01-01

    We study triangulations $\\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.

  6. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    International Nuclear Information System (INIS)

    Kim, Jong Shik; Park, Jeon Soo

    1991-01-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1 st -dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2 nd -dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author)

  7. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Shik; Park, Jeon Soo [Busan National Univ. (Korea, Republic of)

    1991-09-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1{sup st}-dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2{sup nd}-dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author).

  8. Electro-optical parameters of bond polarizability model for aluminosilicates.

    Science.gov (United States)

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  9. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  10. Beyond Valence and Magnitude: a Flexible Evaluative Coding System in the Brain

    Science.gov (United States)

    Gu, Ruolei; Lei, Zhihui; Broster, Lucas; Wu, Tingting; Jiang, Yang; Luo, Yue-jia

    2013-01-01

    Outcome evaluation is a cognitive process that plays an important role in our daily lives. In most paradigms utilized in the field of experimental psychology, outcome valence and outcome magnitude are the two major features investigated. The classical “independent coding model” suggest that outcome valence and outcome magnitude are evaluated by separate neural mechanisms that may be mapped onto discrete event-related potential (ERP) components: feedback-related negativity (FRN) and the P3, respectively. To examine this model, we presented outcome valence and magnitude sequentially rather than simultaneously. The results reveal that when only outcome valence or magnitude is known, both the FRN and the P3 encode that outcome feature; when both aspects of outcome are known, the cognitive functions of the two components dissociate: the FRN responds to the information available in the current context, while the P3 pattern depends on outcome presentation sequence. The current study indicates that the human evaluative system, indexed in part by the FRN and the P3, is more flexible than previous theories suggested. PMID:22019775

  11. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  12. Wood-adhesive bonding failure : modeling and simulation

    Science.gov (United States)

    Zhiyong Cai

    2010-01-01

    The mechanism of wood bonding failure when exposed to wet conditions or wet/dry cycles is not fully understood and the role of the resulting internal stresses exerted upon the wood-adhesive bondline has yet to be quantitatively determined. Unlike previous modeling this study has developed a new two-dimensional internal-stress model on the basis of the mechanics of...

  13. Effects of self-relevant cues and cue valence on autobiographical memory specificity in dysphoria.

    Science.gov (United States)

    Matsumoto, Noboru; Mochizuki, Satoshi

    2017-04-01

    Reduced autobiographical memory specificity (rAMS) is a characteristic memory bias observed in depression. To corroborate the capture hypothesis in the CaRFAX (capture and rumination, functional avoidance, executive capacity and control) model, we investigated the effects of self-relevant cues and cue valence on rAMS using an adapted Autobiographical Memory Test conducted with a nonclinical population. Hierarchical linear modelling indicated that the main effects of depression and self-relevant cues elicited rAMS. Moreover, the three-way interaction among valence, self-relevance, and depression scores was significant. A simple slope test revealed that dysphoric participants experienced rAMS in response to highly self-relevant positive cues and low self-relevant negative cues. These results partially supported the capture hypothesis in nonclinical dysphoria. It is important to consider cue valence in future studies examining the capture hypothesis.

  14. Untitled

    African Journals Online (AJOL)

    corresponds to a physical model for intermole- cular forces involving valence and non-valence binding. ... realistic physical picture of van der Waals electrostatic interaction between the two .... Hydrogen bond energy and equilibrium bond length of some van der Waals systems. (kcal/mol). Multipolar Molecule H.Dipole H..

  15. Valence nucleons in self-consistent fields

    International Nuclear Information System (INIS)

    Di Toro, M.; Lomnitz-Adler, J.

    1978-01-01

    An iterative approach to determine directly the best Hartree-Fock one-body density rho is extended by expressing rho in terms of a core and a valence part and allowing for general crossings of occupied and unoccupied levels in the valence part. Results are shown for 152 Sm and a microscopic analysis of the core structure of deformed light nuclei is carried out. (author)

  16. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    Science.gov (United States)

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  17. Bond graphs for modelling, control and fault diagnosis of engineering systems

    CERN Document Server

    2017-01-01

    This book presents theory and latest application work in Bond Graph methodology with a focus on: • Hybrid dynamical system models, • Model-based fault diagnosis, model-based fault tolerant control, fault prognosis • and also addresses • Open thermodynamic systems with compressible fluid flow, • Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems – Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in a...

  18. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  19. Theory for the mixed-valence state

    International Nuclear Information System (INIS)

    Varma, C.M.

    1979-01-01

    A theory is presented which explains why mixed-valence compounds behave as two component Fermi liquids, and why TmSe orders magnetically while the other known mixed-valence compounds do not. The variation of Tsub(N) and the field Hsub(T) to obtain ferromagnetic alignment with changing Tm 2+ /Tm 3+ ratio is quantitatively explained. For Tm 2+ concentration > = 0.3, TmSe is predicted to order ferromagnetically

  20. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    Science.gov (United States)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  1. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    Science.gov (United States)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  2. Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings

    Directory of Open Access Journals (Sweden)

    Merabtine Abdelatif

    2013-01-01

    Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.

  3. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  4. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    Science.gov (United States)

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  5. Large shift and small broadening of Br2 valence band upon dimer formation with H2O: an ab initio study.

    Science.gov (United States)

    Franklin-Mergarejo, Ricardo; Rubayo-Soneira, Jesus; Halberstadt, Nadine; Ayed, Tahra; Bernal-Uruchurtu, Margarita I; Hernández-Lamoneda, Ramón; Janda, Kenneth C

    2011-06-16

    Valence electronic excitation spectra are calculated for the H(2)O···Br(2) complex using highly correlated ab initio potentials for both the ground and the valence electronic excited states and a 2-D approximation for vibrational motion. Due to the strong interaction between the O-Br and the Br-Br stretching motions, inclusion of these vibrations is the minimum necessary for the spectrum calculation. A basis set calculation is performed to determine the vibrational wave functions for the ground electronic state and a wave packet simulation is conducted for the nuclear dynamics on the excited state surfaces. The effects of both the spin-orbit interaction and temperature on the spectra are explored. The interaction of Br(2) with a single water molecule induces nearly as large a shift in the spectrum as is observed for an aqueous solution. In contrast, complex formation has a remarkably small effect on the T = 0 K width of the valence bands due to the fast dissociation of the dihalogen bond upon excitation. We therefore conclude that the widths of the spectra in aqueous solution are mostly due to inhomogeneous broadening. © 2011 American Chemical Society

  6. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    Science.gov (United States)

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  7. Unsynchronized resonance of covalent bonds in the superconducting state

    International Nuclear Information System (INIS)

    Costa, Marconi B.S.; Bastos, Cristiano C.; Pavao, Antonio C.

    2012-01-01

    Daft calculations performed on different cluster models of cuprates (LaBa 2 Cu 3 O 6.7 , La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7 , TlBa 2 Ca 2 Cu 3 O 8.78 , HgBa 2 Ca 2 Cu 3 O 8.27 ), metallic systems (Nb 3 Ge, MgB 2 ) and the pnictide LaO 0.92 F 0.08 FeAs made evident the occurrence of un synchronized resonance of covalent bonds in the superconducting state, as predicted by Paling's resonating valence bond Rb) theory. For cuprates, the un synchronized resonance involves electron transfer between Cu atoms accompanied by a decrease in the charge of the La, Sr, Y and Ca atoms. For MgB 2 , electron transfer occurs in the Mg layer, while the B layer behaves as charge reservoir. For Nb 3 Ge, unsynchronized resonance occurs among the Ge atoms, which should be responsible for charge transfer. For LaO 0.92 F 0.08 FeAs, the results suggest that both La-O and Fe-As layers are involved in the mechanism of superconductivity. The identification of unsynchronized resonances in these systems provides evidence which supports RVB as a suitable theory for high-temperature superconductivity (high-TC). (author)

  8. Fluorescence properties of valence-controlled Eu{sup 2+} and Mn{sup 2+} ions in aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyen, Ho [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nonaka, Takamasa; Yamanaka, Ken-ichi [Toyota Central R& D Labs., Inc., Nagakute, Aichi (Japan); Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nogami, Masayuki, E-mail: mnogami@mtj.biglobe.ne.jp [Toyota Physical and Chemical Research Institute, Nagakute, Aichi (Japan); Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam)

    2017-04-15

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} glasses were developed to dope Eu{sup 2+} and Mn{sup 2+} with well controlled valence states by heating in H{sub 2} gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu{sup 3+}, Mn{sup 3+} and Mn{sup 2+} ions incorporated in the as-prepared glasses, the Eu{sup 3+} and Mn{sup 3+} ions were reduced to Eu{sup 2+} and Mn{sup 2+} ions, respectively, by heating in H{sub 2} gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H{sub 2} exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu{sup 2+} and Mn{sup 2+}, respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn{sup 2+} ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu{sup 2+} to Mn{sup 2+} ions and the energy transfer efficiency was estimated with a concentration of Eu{sup 2+}and Mn{sup 2+} ions.

  9. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    International Nuclear Information System (INIS)

    Freire, J J

    2008-01-01

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches

  10. Influence of chain topology and bond potential on the glass transition of polymer chains simulated with the bond fluctuation model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es

    2008-07-16

    The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.

  11. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    Science.gov (United States)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  12. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  13. Incremental validity of positive and negative valence in predicting personality disorder.

    Science.gov (United States)

    Simms, Leonard J; Yufik, Tom; Gros, Daniel F

    2010-04-01

    The Big Seven model of personality includes five dimensions similar to the Big Five model as well as two evaluative dimensions—Positive Valence (PV) and Negative Valence (NV)—which reflect extremely positive and negative person descriptors, respectively. Recent theory and research have suggested that PV and NV predict significant variance in personality disorder (PD) above that predicted by the Big Five, but firm conclusions have not been possible because previous studies have been limited to only single measures of PV, NV, and the Big Five traits. In the present study, we replicated and extended previous findings using three markers of all key constructs—including PV, NV, and the Big Five—in a diverse sample of 338 undergraduates. Results of hierarchical multiple regression analyses revealed that PV incrementally predicted Narcissistic and Histrionic PDs above the Big Five and that NV nonspecifically incremented the prediction of most PDs. Implications for dimensional models of personality pathology are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  14. Valenced cues and contexts have different effects on event-based prospective memory.

    Science.gov (United States)

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  15. Valenced cues and contexts have different effects on event-based prospective memory.

    Directory of Open Access Journals (Sweden)

    Peter Graf

    Full Text Available This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  16. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... chain subject to a substrate with two optical bands), both providing a bistability of the hydrogen-bonded proton. Exact two-component (kink and antikink) discrete solutions for these models are found numerically. We compare the soliton solutions and their properties in both the one- (when the heavy ions...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  17. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  18. Decoding emotional valence from electroencephalographic rhythmic activity.

    Science.gov (United States)

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  19. Magnetic re-entrance in intermediate valence compounds

    International Nuclear Information System (INIS)

    Allub, R.; Machiavelli, O.; Balseiro, C.; Alascio, B.

    1980-01-01

    The possibility is explored of magnetic re-entrance in intermediate valence compounds. Using a simplified Anderson-Lattice model the pressure-temperature magnetic phase diagram is obtained. This diagram shows that for some value of the microscopic parameters the temperature induced two transitions (non-magnetic to magnetically ordered to paramagnetic). The magnetization and the average occupation number of the localized state are calculated. Estimations of the observability of the effect in systems like CeAl 2 are made. (author)

  20. Virtual Distance and Soundstage, and their Impacts on Experienced Emotional Valence

    DEFF Research Database (Denmark)

    Christensen, Justin

    2015-01-01

    stimuli should cause stronger valenced responses in the nearfield than at a distance. Thus, music experienced as being negatively valenced at a distance should be more negatively valenced in nearfield, and music that is experienced as having a positive valence at a distance should be more positively......Research from animal ethology and affective neuroscience suggest that a listener’s perceived distance from a signal source can alter their experienced emotional valence of the music. Furthermore, appraisal theories of emotion suggest that emotionally valenced responses will diverge according...... to the type of emotion presented. For these exploratory investigations, subjects listen to selected musical excerpts on speakers in combination with a tactile transducer attached to their chair. The listening sessions are recorded on EEG supported by subject feedback responses. My hypothesis is that musical...

  1. Modeling the Conditional Covariance between Stock and Bond Returns

    NARCIS (Netherlands)

    P. de Goeij (Peter); W.A. Marquering (Wessel)

    2002-01-01

    textabstractTo analyze the intertemporal interaction between the stock and bond market returns, we allow the conditional covariance matrix to vary over time according to a multivariate GARCH model similar to Bollerslev, Engle and Wooldridge (1988). We extend the model such that it allows for

  2. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    International Nuclear Information System (INIS)

    Kojima, Takuto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2015-01-01

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi 2

  3. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    Science.gov (United States)

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  4. Intersite interactions and susceptibility in mixed valence systems

    International Nuclear Information System (INIS)

    Xiaoqian Wang; Gao Lin; Bingjian Ni; Fusui Liu.

    1985-10-01

    This paper considers the effect of intersite processes on the susceptibility in mixed valence system. The method of thermodynamical perturbation used in this paper can also be generalized to study other properties of mixed valence system. The general formula of partition function of two-site interactions for the mixed valence system is given. The numerical calculations show that the intersite interaction is large enough to explain the minimum of susceptibility discovered in experiments. The different types of our theoretical curves predict that the susceptibility should exhibit a rich variety of behaviour at low temperature for various materials. (author)

  5. Space-Valence Priming with Subliminal and Supraliminal Words

    Directory of Open Access Journals (Sweden)

    Ulrich eAnsorge

    2013-02-01

    Full Text Available To date it is unclear whether (1 awareness-independent non-evaluative semantic processes influence affective semantics and whether (2 awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked primes and visible targets in a space-valence across-category congruence effect. In line with (1, we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1: Classifications were faster with a congruent prime (e.g., the prime ‘up’ before the target ‘happy’ than with an incongruent prime (e.g., the prime ‘up’ before the target ‘sad’. In contrast to (2, no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2. Control conditions showed that standard masked response-priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1 that awareness-independent non-evaluative semantic priming influences valence judgments.

  6. Theoretical calculations of valence states in Fe-Mo compounds

    International Nuclear Information System (INIS)

    Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M

    2014-01-01

    The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism

  7. Equation of states and phonons at high pressure of intermediate valence compound TmTe

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.

    1997-01-01

    The study of equation of states and pressure dependence of the phonon frequencies of the compound TmTe have been performed by using a simple interatomic potential approach in the frame work of rigid ion model. The compressibility study confirms that below 2 GPa the valence of the Tm is 2+ while there is a valence transition from Tm 2+ to Tm 3+ above 2 GPa. The phonon frequencies of TmTe increases as pressure is increased. (author)

  8. The Relation Between Valence and Arousal in Subjective Experience Varies With Personality and Culture.

    Science.gov (United States)

    Kuppens, Peter; Tuerlinckx, Francis; Yik, Michelle; Koval, Peter; Coosemans, Joachim; Zeng, Kevin J; Russell, James A

    2017-08-01

    While in general arousal increases with positive or negative valence (a so-called V-shaped relation), there are large differences among individuals in how these two fundamental dimensions of affect are related in people's experience. In two studies, we examined two possible sources of this variation: personality and culture. In Study 1, participants (Belgian university students) recalled a recent event that was characterized by high or low valence or arousal and reported on their feelings and their personality in terms of the Five-Factor Model. In Study 2, participants from Canada, China/Hong Kong, Japan, Korea, and Spain reported on their feelings in a thin slice of time and on their personality. In Study 1, we replicated the V-shape as characterizing the relation between valence and arousal, and identified personality correlates of experiencing particular valence-arousal combinations. In Study 2, we documented how the V-shaped relation varied as a function of Western versus Eastern cultural background and personality. The results showed that the steepness of the V-shaped relation between valence and arousal increases with Extraversion within cultures, and with a West-East distinction between cultures. Implications for the personality-emotion link and research on cultural differences in affect are discussed. © 2016 Wiley Periodicals, Inc.

  9. Valence, arousal and cognitive control: A voluntary task switching study

    Directory of Open Access Journals (Sweden)

    Jelle eDemanet

    2011-11-01

    Full Text Available The present study focused on the interplay between arousal, valence and cognitive control. To this end, we investigated how arousal and valence associated with affective stimuli influenced cognitive flexibility when switching between tasks voluntarily. Three hypotheses were tested. First, a valence hypothesis that states that the positive valence of affective stimuli will facilitate both global and task-switching performance because of increased cognitive flexibility. Second, an arousal hypothesis that states that arousal, and not valence, will specifically impair task-switching performance by strengthening the previously executed task-set. Third, an attention hypothesis that states that both cognitive and emotional control ask for limited attentional resources, and predicts that arousal will impair both global and task-switching performance. The results showed that arousal affected task-switching but not global performance, possibly by phasic modulations of the noradrenergic system that reinforces the previously executed task. In addition, positive valence only affected global performance but not task-switching performance, possibly by phasic modulations of dopamine that stimulates the general ability to perform in a multitasking environment.

  10. Prediction of valence and arousal from music features

    NARCIS (Netherlands)

    Den Brinker, A.C.; Van Dinther, C.H.B.A.; Skowronek, J.

    2011-01-01

    Mood is an important attribute of music and knowledge on mood can beused as a basic ingredient in music recommender and retrieval systems. Moods are assumed to be dominantly determined by two dimensions:valence and arousal. An experiment was conducted to attain data forsong-based ratings of valence

  11. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    Science.gov (United States)

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  12. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  13. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  14. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  15. Processing negative valence of word pairs that include a positive word.

    Science.gov (United States)

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.

  16. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  17. Theoretical study of the mechanism of formation of a chemical bond between two ions: A+ and B+. Application to CO++. Interpretation of N2O++ photo-dissociation mechanisms

    International Nuclear Information System (INIS)

    Levasseur, Nathalie

    1989-01-01

    This research thesis reports the theoretical study of the mechanism of formation of a chemical bond between two positively charged species, within the frame of the valence-bond theory and in the CO model case. The analysis in terms of orthogonal and non orthogonal orbitals leads to two very different interpretations, and allows potential curves of doubly charged diatomic ions to be simply explained, the generally evoked model to be put into question again, and a predictive model to be developed. The theoretical determination of N 2 O potential energy surfaces and of the first states of N 2 O ++ ( 3 Σ - , 1 Δ, 1 Σ + et 3 Π) allowed experimental results of N 2 O ++ photo-dissociation to be at least qualitatively understood and interpreted. Moreover, the study of electronic configurations involved in dissociation, showed that the model elaborated for a diatomic molecule is also valid for a triatomic system [fr

  18. Electronic structure and chemical bond in technetium dimer

    International Nuclear Information System (INIS)

    Klyagina, A.P.; Fursova, V.D.; Levin, A.A.; Gutsev, G.L.

    1987-01-01

    DV-X α method is used to study electron structure and peculiarities of chemical bond in Tc 2 and Tc 2 2+ dimers. Electron state characteristics are calculated in the basis of numerical Hartree-Fock functions for d 6 s 1 - and d 5 s 2 -configurations of Tc atom and for Tc 2 2+ ion d 5 s 1 -configuration. Disposition order for valence MO in Tc and Tc 2 2+ calculated for the given configurations is presented. It is shown that quinary bond with π u 4 dσ g 2 σ g 4 sσ g 2 δ u 2 configuration corresponds to the ground state of Tc 2 molecule. In Tc 2 some weakening of binding for π- and δ-orbitals and strengthening of total σ-binding in comparison with Mo 2 takes place. In Tc + and Tc 2+ MO composition is slightly changed, but a shift of 2σ-MO relatively MO consisting of d-AO is occured

  19. Reducing the negative valence of stressful memories through emotionally valenced, modality-specific tasks

    NARCIS (Netherlands)

    Tadmor, Avia; McNally, Richard J; Engelhard, Iris M

    2016-01-01

    BACKGROUND AND OBJECTIVES: People who perform a cognitively demanding secondary task while recalling a distressing memory often experience the memory as less emotional, vivid, or accurate during subsequent recollections. In this experiment, we tested whether the emotional valence (positive versus

  20. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  1. Styrofoam-and-Velcro: An Alternative to Ball-and-Stick Models

    Directory of Open Access Journals (Sweden)

    Sawyer Rowan Masonjones

    2014-07-01

    Full Text Available For students learning biology at introductory levels, one of the most significant instructional barriers is their lack of preparation in chemistry. In upper-division college chemistry and biology courses, students employ ball-and-stick models in order to visualize molecular structures, but at the introductory biology level, models are inconsistently used and at the secondary level they are avoided altogether. Traditional ball-and-stick models perform poorly at all levels because they only show bonds, never valence electrons. This poses a problem for students who are visual or kinesthetic learners, as modeling electrons in the bonding process may be critical to understanding the mechanisms behind the biochemical reactions that serve as a foundation for biological concepts. Our molecular modeling kits show the action of valence electrons and correctly deal with the issue of polarity and partial charge, while still illustrating structure and function similarly to ball-and-stick models, allowing students to model nearly every reaction or molecule they may need to learn.  Additionally, this kit will foster model building exercises required as part of the Next Generation Science Standards (http://www.nextgenscience.org/next-generation-science-standards. This model was devloped in conjunction with 'Molecular Twister: A Game for Exploring Solution Chemistry' (JMBE Vol 15, No 1; http://jmbe.asm.org/index.php/jmbe/article/view/652 by the same authors, which uses principles derived from the present paper.

  2. Valence, magnetism and conduction in the intermediate valence compounds: the case SmB6

    International Nuclear Information System (INIS)

    Derr, J.

    2006-09-01

    In some rare earth based compounds, the 4f level is situated so close to the Fermi level that the valence of the compound can become intermediate between two integer values. The so called 'intermediate valence' compound of Samarium hexaboride (SmB 6 ) is one typical example of the exciting physics which can result from this quantum equilibrium between two valence configurations. The first configuration (Sm 2+ ) corresponds to an insulating and non magnetic state whereas the second one (Sm 3+ ) would theoretically give a magnetic and metallic ground state. This dissertation deals with the influence of pressure on this equilibrium. Specific heat measurements under pressure evidenced a new long range magnetic ordering for pressures higher than p c ∼ 10 GPa. On another hand, transport measurements measured for the first time in good conditions of hydrostatics found a reliable and reproducible critical pressure for the insulator to metal transition equal to p c . The phase diagram of SmB 6 is now well known and the observation for the first time of a magnetic anomaly in the high pressure resistivity curves certifies that the onset of the magnetic phase really coincide with the closure of the gap. This change at the critical pressure p c is discussed in a general frame taking into account the Kondo lattice temperature as a key parameter for the renormalization of the wavefunction from one integer configuration to the other whereas the valence itself is still intermediate. This general idea seems to be valid also for other systems studied in this dissertation like SmS or TmSe and could even be valid for more general cases (Ytterbium, Cerium). In the same time, resistivity measurements under uniaxial stress were undertaken. The result is a strong anisotropy effect observed on the pressure dependence of the residual resistivity in the compound SmB 6 . The comparison with the transport under hydrostatic conditions enables us to consider a new idea for the nature of the gap

  3. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    Science.gov (United States)

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  4. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  5. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    Science.gov (United States)

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  6. Annealing effects on recombinative activity of nickel at direct silicon bonded interface

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuto, E-mail: tkojima@toyota-ti.ac.jp; Ohshita, Yoshio; Yamaguchi, Masafumi [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya, 468-8511 (Japan)

    2015-09-15

    By performing capacitance transient analyses, the recombination activity at a (110)/(100) direct silicon bonded (DSB) interface contaminated with nickel diffused at different temperatures, as a model of grain boundaries in multicrystalline silicon, was studied. The trap level depth from the valence band, trap density of states, and hole capture cross section peaked at an annealing temperature of 300 °C. At temperatures ⩾400 °C, the hole capture cross section increased with temperature, but the density of states remained unchanged. Further, synchrotron-based X-ray analyses, microprobe X-ray fluorescence (μ-XRF), and X-ray absorption near edge structure (XANES) analyses were performed. The analysis results indicated that the chemical phase after the sample was annealed at 200 °C was a mixture of NiO and NiSi{sub 2}.

  7. Few-valence-particle excitations around doubly magic 132Sn

    International Nuclear Information System (INIS)

    Daly, P.J.; Zhang, C.T.; Bhattacharyya, P.

    1996-01-01

    Prompt γ-ray cascades in neutron-rich nuclei around doubly-magic 132 Sn have been studied using a 248 Cm fission source. Yrast states located in the N = 82 isotones 134 Te and 135 I are interpreted as valence proton and neutron particle-hole core excitations with the help of shell model calculations employing empirical nucleon-nucleon interactions from both 132 Sn and 208 Pb regions

  8. Representations of Chemical Bonding Models in School Textbooks--Help or Hindrance for Understanding?

    Science.gov (United States)

    Bergqvist, Anna; Drechsler, Michal; De Jong, Onno; Rundgren, Shu-Nu Chang

    2013-01-01

    Models play an important and central role in science as well as in science education. Chemical bonding is one of the most important topics in upper secondary school chemistry, and this topic is dominated by the use of models. In the past decade, research has shown that chemical bonding is a topic that students find difficult, and therefore, a wide…

  9. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    Science.gov (United States)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  10. Plutonium valence state distributions

    International Nuclear Information System (INIS)

    Silver, G.L.

    1974-01-01

    A calculational method for ascertaining equilibrium valence state distributions of plutonium in acid solutions as a function of the plutonium oxidation number and the solution acidity is illustrated with an example. The method may be more practical for manual use than methods based upon polynomial equations. (T.G.)

  11. Creep simulation of adhesively bonded joints using modified generalized time hardening model

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, Mohammad Ali Saeimi [Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2016-04-15

    Creep behavior of double lap adhesively bonded joints was investigated using experimental tests and numerical analysis. Firstly, uniaxial creep tests were carried out to obtain the creep characteristics and constitutive parameters of the adhesive at different stress and temperature levels. Generalized time hardening model was used to predict the creep behavior of the adhesive. This model was modified to simulate the creep behavior at different stress and temperature levels. Secondly, the developed model was used to simulate the creep behavior of bonded joints using finite element based numerical analysis. Creep deformations of the joints were measured experimentally and good agreement was observed in comparison with the results obtained using numerical simulation. Afterward, stress redistribution due to the creep along the adhesively bonded joint was obtained numerically. It was observed that temperature level had a significant effect on the stress redistribution along the adhesive thickness.

  12. CzEngVallex: a Bilingual Czech-English Valency Lexicon

    Directory of Open Access Journals (Sweden)

    Urešová Zdeňka

    2016-04-01

    Full Text Available This paper introduces a new bilingual Czech-English verbal valency lexicon (called CzEng-Vallex representing a relatively large empirical database. It includes 20,835 aligned valency frame pairs (i.e., verb senses which are translations of each other and their aligned arguments. This new lexicon uses data from the Prague Czech-English Dependency Treebank and also takes advantage of the existing valency lexicons for both languages: the PDT-Vallex for Czech and the EngVallex for English. The CzEngVallex is available for browsing as well as for download in the LINDAT/CLARIN repository.

  13. [Connection between the evaluation of positive or negative valence and verbal responses to a lexical decision making task].

    Science.gov (United States)

    Brouillet, Thibaut; Syssau, Arielle

    2005-12-01

    Evaluation of the positive or negative valence of a stimulus is an activity that is part of any emotional experience that has been mostly studied using the affective priming paradigm. When the prime and the target have the same valence (e.g. positive prime and positive target), the target response is facilitated as a function of opposing valence conditions (e.g. negative prime and positive target). These studies show that this evaluation is automatic but depends on the nature of the task's implied response because the priming effects are only observed for positive responses, not for negative responses. This result was explained in automatic judgmental tendency model put forth by Abelson and Rosenberg (1958) and Klauer and Stern (1992). In this model, affective priming assumes there is an overlap between both responses, the first response taking precedence as a function of the prime-target valence, and the second response one that is required by the task. We are assuming that another type of response was not foreseen under this model. In fact, upon activating the valence for each of the prime-target elements, two preliminary responses would be activated before the response on the prime-target valence relationship. These responses are directly linked to the prime and target evaluation independently of the prime-target relationship. This hypothesis can be linked to the larger hypothesis whereby the evaluative process is related to two distinct motivational systems corresponding to approach and avoidance behaviour responses (Lang, Bradley, & Cuthbert, 1990; Neuman & Strack, 2000; Cacciopo, Piester & Bernston, 1993). In this study, we use the hypothesis that when a word leads to a positive valence evaluation, this favours a positive verbal response and inversely, a negative valence word favours a negative response. We are testing this hypothesis outside the affective priming paradigm to study to what extent evaluating a word, even when it is not primed, activates both

  14. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  15. Steel-concrete bond model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Mang, Chetra

    2015-01-01

    Reinforced concrete structure behavior can be extremely complex in the case of exceeding the cracking threshold. The composite characteristics of reinforced concrete structure should be finely presented especially in the distribution stress zone between steel-concrete at their interface. In order to compute the industrial structures, a perfect relation hypothesis between steel and concrete is supposed in which the complex phenomenon of the two-material relation is not taken into account. On the other hand, this perfect relation is unable to predict the significant disorders, the repartition, and the distribution of the cracks, which is directly linked to the steel. In literature, several numerical methods are proposed in order to finely study the concrete-steel bond behavior, but these methods give many difficulties in computing complex structures in 3D. With the results obtained in the thesis framework of Torre-Casanova (2012), the new concrete-steel bond model has been developed to improve performances (iteration numbers and computational time) and the representation (cyclic behavior) of the initial one. The new model has been verified with analytical solution of steel-concrete tie and validated with the experimental results. The new model is equally tested with the structural scale to compute the shear wall behavior in the French national project (CEOS.fr) under monotonic load. Because of the numerical difficulty in post-processing the crack opening in the complex crack formation, a new crack opening method is also developed. This method consists of using the discontinuity of relative displacement to detect the crack position or using the slip sign change between concrete-steel. The simulation-experiment comparison gives validation of not only the new concrete-steel bond model but also the new crack post-processing method. Finally, the cyclic behavior of the bond law with the non-reduced envelope is adopted and integrated in the new bond model in order to take

  16. Lying about the valence of affective pictures: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Tatia M C Lee

    Full Text Available The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  17. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  18. 5th International Conference on Valence Fluctuations

    CERN Document Server

    Malik, S

    1987-01-01

    During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence a...

  19. Calibration of short rate term structure models from bid-ask coupon bond prices

    Science.gov (United States)

    Gomes-Gonçalves, Erika; Gzyl, Henryk; Mayoral, Silvia

    2018-02-01

    In this work we use the method of maximum entropy in the mean to provide a model free, non-parametric methodology that uses only market data to provide the prices of the zero coupon bonds, and then, a term structure of the short rates. The data used consists of the prices of the bid-ask ranges of a few coupon bonds quoted in the market. The prices of the zero coupon bonds obtained in the first stage, are then used as input to solve a recursive set of equations to determine a binomial recombinant model of the short term structure of the interest rates.

  20. Effective interactions for valence-hole nuclei with modern meson-exchange potential models

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Kuo, E.

    1991-10-01

    Within the framework of the folded-diagram theory, the authors have studied the effective interaction appropriate for hole-hole nuclei in the mass regions of 16 O and 40 Ca, using the Bonn and Paris potential models. To sum up the folded diagrams the renormalization procedure of Lee and Suzuki has been employed, using a so-called Q-box in which were included all one-body and two-body irreducible valence-linked diagrams through third order in perturbation theory. Discrepancies for the mass dependence of the effective interaction for several JT configurations with respect to empirically deduced mass dependencies is reported. The role of core polarization processes through third order were found to be one of the mechanisms behind these discrepancies. Compared to the results obtained with the Paris potential, more attraction is introduced by the Bonn potential for all matrix elements of concerns, a result which agrees well with previous findings for the particle-particle interaction in the same mass regions. A qualitative agreements with experimental data is obtained. 31 refs., 6 figs., 8 tabs

  1. Valence electronic properties of porphyrin derivatives.

    Science.gov (United States)

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  2. A discrete-time two-factor model for pricing bonds and interest rate derivatives under random volatility

    OpenAIRE

    Heston, Steven L.; Nandi, Saikat

    1999-01-01

    This paper develops a discrete-time two-factor model of interest rates with analytical solutions for bonds and many interest rate derivatives when the volatility of the short rate follows a GARCH process that can be correlated with the level of the short rate itself. Besides bond and bond futures, the model yields analytical solutions for prices of European options on discount bonds (and futures) as well as other interest rate derivatives such as caps, floors, average rate options, yield curv...

  3. Reliable four-point flexion test and model for die-to-wafer direct bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, T., E-mail: toshiyuki.tabata@cea.fr; Sanchez, L.; Fournel, F.; Moriceau, H. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  4. Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms

    International Nuclear Information System (INIS)

    Bidard, Catherine

    1994-01-01

    This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr

  5. Determinants of the Government Bond Yield in Spain: A Loanable Funds Model

    Directory of Open Access Journals (Sweden)

    Yu Hsing

    2015-07-01

    Full Text Available This paper applies demand and supply analysis to examine the government bond yield in Spain. The sample ranges from 1999.Q1 to 2014.Q2. The EGARCH model is employed in empirical work. The Spanish government bond yield is positively associated with the government debt/GDP ratio, the short-term Treasury bill rate, the expected inflation rate, the U.S. 10 year government bond yield and a dummy variable representing the debt crisis and negatively affected by the GDP growth rate and the expected nominal effective exchange rate.

  6. Evidence for valence neutron capture in s-wave neutron capture in 38Ar and 54Fe

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    1975-01-01

    The valence and channel neutron model of Lane and Lynn remarkably account for partial radiative widths of neutron resonances in the 3p-giant resonance. Evidence is presented for valence neutron capture at and in the neighborhood of the 3s-giant resonance in target nuclei 36 Ar and 54 Fe. In addition, the variation of the correlation coefficient rho with the reduction power factor n of the γ ray energy is studied. (4 figures, 1 table) (U.S.)

  7. Chemical bond as a test of density-gradient expansions for kinetic and exchange energies

    International Nuclear Information System (INIS)

    Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.

    1988-01-01

    Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules

  8. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  9. Modeling and Simulation of a Wind Turbine Driven Induction Generator Using Bond Graph

    Directory of Open Access Journals (Sweden)

    Lachouri Abderrazak

    2015-12-01

    Full Text Available The objective of this paper is to investigate the modelling and simulation of wind turbine applied on induction generator with bond graph methodology as   a graphical and multi domain approach. They provide a precise and unambiguous modelling tool, which allows for the specification of hierarchical physical structures. The paper begins with an introduction to the bond graphs technique, followed by an implementation of the wind turbine model. Simulation results illustrate the simplified system response obtained using the 20-sim software.

  10. Emotions and false memories: valence or arousal?

    Science.gov (United States)

    Corson, Yves; Verrier, Nadège

    2007-03-01

    The effects of mood on false memories have not been studied systematically until recently. Some results seem to indicate that negative mood may reduce false recall and thus suggest an influence of emotional valence on false memory. The present research tested the effects of both valence and arousal on recall and recognition and indicates that the effect is actually due to arousal. In fact, whether participants' mood is positive, negative, or neutral, false memories are significantly more frequent under conditions of high arousal than under conditions of low arousal.

  11. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  12. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  13. Valency state changes in lanthanide-contained systems under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, A

    1980-08-01

    Changes in valency state induced by pressure in samarium sulphide SmS remind one of alchemy, as the mat black initial substance shines golden after the electron transition. The alchemist's dream is of course not realized, however the compound does exhibit an unusually interesting behaviour in the new state. The valency state of samarium as newly appeared fluctuated very rapidly between two electron configurations. Manipulation of the valency state by pressure or chemical substitution can basically change the physical properties of systems containing lanthanides. The phenomena are described and discussed in the following survey.

  14. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    Electronic parameters of constituent element core levels of strontium pyrotantalate (Sr2Ta2O7) were measured with X-ray photoelectron spectroscopy (XPS). The Sr2Ta2O7 powder sample was synthesized using standard solid state method. The valence electron transfer on the formation of the Sr-O and Ta......-O bonds was characterized by the binding energy differences between the O 1s and cation core levels, Delta(O-Sr) = BE(O 1s) - BE(Sr 3d(5/2)) and Delta(O-Ta) = BE(O 1s) - BE(Ta 4f(7/2)). The chemical bonding effects were considered on the basis of our XPS results for Sr2Ta2O7 and earlier published...

  15. Thermal recombination: Beyond the valence quark approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-07-07

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  16. On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2017-10-01

    Full Text Available In this paper we study a corporate bond-pricing model with credit rating migration and astochastic interest rate. The volatility of bond price in the model strongly depends on potential creditrating migration and stochastic change of the interest rate. This new model improves the previousexisting models in which the interest rate is considered to be a constant. The existence, uniquenessand regularity of the solution for the model are established. Moreover, some properties includingthe smoothness of the free boundary are obtained. Furthermore, some numerical computations arepresented to illustrate the theoretical results.

  17. Breakdown of rotational symmetry at semiconductor interfaces; a microscopic description of valence subband mixing

    International Nuclear Information System (INIS)

    Cortez, S.; Krebs, O.; Voisin, P.

    2000-01-01

    The recently discovered in-plane optical anisotropy of [001]-grown quantum wells offers a new theoretical and experimental insight into the electronic properties of semiconductor interfaces. We first discuss the coupling of X and Y valence bands due to the breakdown of rotation inversion symmetry at a semiconductor hetero-interface, with special attention to its dependence on effective parameters such as valence band offset. The intracell localization of Bloch functions is explained from simple theoretical arguments and evaluated numerically from a pseudo-potential microscopic model. The role of envelope functions is considered, and we discuss the specific case of non-common atom interfaces. Experimental results and applications to interface characterization are presented. These calculations give a microscopic justification, and establish the limits of the heuristic 'H BF ' model. (author)

  18. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    OpenAIRE

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children’s memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true...

  19. Postpartum Bonding Disorder: Factor Structure, Validity, Reliability and a Model Comparison of the Postnatal Bonding Questionnaire in Japanese Mothers of Infants

    Directory of Open Access Journals (Sweden)

    Yukiko Ohashi

    2016-08-01

    Full Text Available Negative attitudes of mothers towards their infant is conceptualized as postpartum bonding disorder, which leads to serious health problems in perinatal health care. However, its measurement still remains to be standardized. Our aim was to examine and confirm the psychometric properties of the Postnatal Bonding Questionnaire (PBQ in Japanese mothers. We distributed a set of questionnaires to community mothers and studied 392 mothers who returned the questionnaires at 1 month after childbirth. Our model was compared with three other models derived from previous studies. In a randomly halved sample, an exploratory factor analysis yielded a three-factor structure: Anger and Restrictedness, Lack of Affection, and Rejection and Fear. This factor structure was cross-validated by a confirmatory factor analysis using the other halved sample. The three subscales showed satisfactory internal consistency. The three PBQ subscale scores were correlated with depression and psychological abuse scores. Their test–retest reliability between day 5 and 1 month after childbirth was measured by intraclass correlation coefficients between 0.76 and 0.83. The Akaike Information Criteria of our model was better than the original four-factor model of Brockington. The present study indicates that the PBQ is a reliable and valid measure of bonding difficulties of Japanese mothers with neonates.

  20. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  1. Valence electron structure and properties of stabilized ZrO2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To reveal the properties of stabilizers in ZrO2 on nanoscopic levels, the valence electron structures of four stable ZrO2 phases and c-ZrO2 were analyzed on the basis of the empirical electron theory of solids and molecules. The results showed that the hybridization levels of Zr atoms in c-ZrO2 doped with Ca and Mg dropped from B17 to B13, the hybridization levels of Zr atoms in c-ZrO2 doped with Y and Ce dropped from B17 to B15, and that the four stabilizing atoms all made the hybridization levels of O atoms drop from level 4 to level 2. The numbers of covalent electrons in the strongest covalent bond in the descending order are c-ZrO2>Zr0.82Ce0.18O2> Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The bond energies of the strongest covalent bond and the melting points of the solid solutions in the descending order are Zr0.82Ce0.18O2> c-ZrO2>Zr0.82Y0.18O1.91>Zr0.82Mg0.18O1.82>Zr0.82Ca0.18O1.82. The percent-ages of the total number of covalent electrons in the descending order are c-ZrO2>Zr0.82Y0.18O1.91> Zr0.82Ce0.18O2>Zr0.82Mg0.18O1.82> Zr0.82Ca0.18O1.82. From the above analysis, it can be concluded that the stabilizing degrees of the four stabilizers in the descending order are CaO> MgO>Y2O3>CeO2.

  2. Binding branched and linear DNA structures: From isolated clusters to fully bonded gels

    Science.gov (United States)

    Fernandez-Castanon, J.; Bomboi, F.; Sciortino, F.

    2018-01-01

    The proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences. Hence AA and BB bonds are not allowed. Such a binary mixture system reproduces with DNA-based particles the physics of poly-functional condensation, with an exquisite control over the bonding process, tuned by the ratio, r, between B and A units and by the temperature, T. We report dynamic light scattering experiments in a window of Ts ranging from 10 °C to 55 °C and an interval of r around the percolation transition to quantify the decay of the density correlation for the different cases. At low T, when all possible bonds are formed, the system behaves as a fully bonded network, as a percolating gel, and as a cluster fluid depending on the selected r.

  3. Ductility Enhancement of Molybdenum Phase by Nano-sizedd Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Kang

    2008-07-31

    The present research is focused on ductility enhancement of molybdenum (Mo) alloys by adding nano-sized oxide particles to the alloy system. The research approach includes: (1) determination of microscopic mechanisms responsible for the macroscopic ductility enhancement effects through atomistic modeling of the metal-ceramic interface; (2) subsequent computer simulation-aided optimization of composition and nanoparticle size of the dispersion for improved performance; (3) synthesis and characterization of nanoparticle dispersion following the guidance from atomistic computational modeling analyses (e.g., by processing a small sample of Mo alloy for evaluation); and (4) experimental testing of the mechanical properties to determine optimal ductility enhancement.Through atomistic modeling and electronic structure analysis using full-potential linearized muffin-tin orbital (FP-LMTO) techniques, research to date has been performed on a number of selected chromium (Cr) systems containing nitrogen (N) and/or magnesium oxide (MgO) impurities. The emphasis has been on determining the properties of the valence electrons and the characteristics of the chemical bonds they formed. It was found that the brittle/ductile behavior of this transitional metal system is controlled by the relative population of valence charges: bonds formed by s valence electrons yield metallic, ductile behavior, whereas bonds formed by d valence electrons lead to covalent, brittle behavior. The presence of valence bands from impurities also affects the metal bonding, thereby explaining the detrimental and beneficial effects induced by the inclusion of N impurities and MgO dispersions. These understandings are useful for optimizing ductility enhancement effects on the dispersion materials.

  4. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    Science.gov (United States)

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  5. Effects of valence and divided attention on cognitive reappraisal processes.

    Science.gov (United States)

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Effects of valence and divided attention on cognitive reappraisal processes

    Science.gov (United States)

    Leclerc, Christina M.; Kensinger, Elizabeth A.

    2014-01-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. PMID:24493837

  7. Slave-boson method for the Hubbard model: Resonating-valence-bond state and high-temperature superconductivity

    International Nuclear Information System (INIS)

    Kapitonov, V.S.

    1991-01-01

    This paper offers a formulation of mean-field theory for the Hubbard model that is different from the one developed in the work of Anderson. The modified slave-boson method is used. The advantage of the method is that it is not necessary to exclude doubly occupied sites by using the approximately canonical transformation. In the proposed theory, Cooper pairs and the energy gap are a result of the condensation of the slave Bose field that describes doubly occupied sites. Here, the modified slave-boson method is used to describe the metal-insulator and metal-superconductor phase transitions in the Hubbard model. Expressions are derived for the energy gap and phase-transition temperature

  8. Bond particle model for semiconductor melts and its application to liquid structure germanium

    International Nuclear Information System (INIS)

    Ferrante, A.; Tosi, M.P.

    1988-08-01

    A simple type of liquid state model is proposed to describe on a primitive level the melt of an elemental group IV semiconductor as a mixture of atoms and bond particles. The latter, on increase of a coupling strength parameter becomes increasingly localized between pairs of atoms up to local tetrahedral coordination of atoms by bond particles. Angular interatomic correlations are built into the model as bond particle localization grows, even though the bare interactions between the components of the liquid are formally described solely in terms of central pair potentials. The model is solved for liquid structure by standard integral equation techniques of liquid state theory and by Monte Carlo simulation, for values of the parameters which are appropriate to liquid germanium down to strongly supercooled states. The calculated liquid structure is compared with the results of diffraction experiments on liquid germanium near freezing and discussed in relation to diffraction data on amorphous germanium. The model suggests simple melting criteria for elemental and polar semiconductors, which are empirically verified. (author). 25 refs, 9 figs, 3 tabs

  9. Using Agent-Based Modeling to Assess Liquidity Mismatch in Open-End Bond Funds

    Directory of Open Access Journals (Sweden)

    Donald J. Berndt

    2017-12-01

    Full Text Available In this paper, we introduce a small-scale heterogeneous agent-based model of the US corporate bond market. The model includes a realistic micro-grounded ecology of investors that trade a set of bonds through dealers. Using the model, we simulate market dynamics that emerge from agent behaviors in response to basic exogenous factors (such as interest rate shocks and the introduction of regulatory policies and constraints. A first experiment focuses on the liquidity transformation provided by mutual funds and investigates the conditions under which redemption-driven bond sales may trigger market instability. We simulate the effects of increasing mutual fund market shares in the presence of market-wide repricing of risk (in the form of a 100 basis point increase in the expected returns. The simulations highlight robust-yet-fragile aspects of the growing liquidity transformation provided by mutual funds, with an inflection point beyond which redemption-driven negative feedback loops trigger market instability.

  10. Fuzzy Case-Based Reasoning in Product Style Acquisition Incorporating Valence-Arousal-Based Emotional Cellular Model

    Directory of Open Access Journals (Sweden)

    Fuqian Shi

    2012-01-01

    Full Text Available Emotional cellular (EC, proposed in our previous works, is a kind of semantic cell that contains kernel and shell and the kernel is formalized by a triple- L = , where P denotes a typical set of positive examples relative to word-L, d is a pseudodistance measure on emotional two-dimensional space: valence-arousal, and δ is a probability density function on positive real number field. The basic idea of EC model is to assume that the neighborhood radius of each semantic concept is uncertain, and this uncertainty will be measured by one-dimensional density function δ. In this paper, product form features were evaluated by using ECs and to establish the product style database, fuzzy case based reasoning (FCBR model under a defined similarity measurement based on fuzzy nearest neighbors (FNN incorporating EC was applied to extract product styles. A mathematical formalized inference system for product style was also proposed, and it also includes uncertainty measurement tool emotional cellular. A case study of style acquisition of mobile phones illustrated the effectiveness of the proposed methodology.

  11. Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond

    International Nuclear Information System (INIS)

    Bai Yun; Buchner, Florian; Kellner, Ina; Schmid, Martin; Vollnhals, Florian; Steinrueck, Hans-Peter; Marbach, Hubertus; Michael Gottfried, J

    2009-01-01

    The adsorption of cobalt (II) octaethylporphyrin (CoOEP) and 2H-octaethylporphyrin (2HOEP) on Ag(111) was investigated with scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS/UPS), in order to achieve a detailed mechanistic understanding of the surface chemical bond of coordinated metal ions. Previous studies of related systems, especially cobalt (II) tetraphenylporphyrin (CoTPP) on Ag(111), have revealed adsorption-induced changes of the oxidation state of the Co ion and the appearance of a new valence state. These effects were attributed to a covalent interaction of the Co ion with the silver substrate. However, recent studies show that the porphyrin ligand of adsorbed CoTPP undergoes a pronounced saddle-shape distortion, which could alter the electronic structure and thus provide an alternative explanation for the new valence state previously attributed to the formation of a surface coordinative bond. With the octaethylporphyrins investigated here, which were found to adsorb in a flat, undistorted conformation on Ag(111), the effects of geometric distortion can be separated from those of the electronic interaction with the substrate. The CoOEP monolayer gives rise to an adsorption-induced shift of the Co 2p signal (-1.9 eV relative to the multilayer), a new valence state at 0.6 eV below the Fermi energy, and a work-function shift of -0.84 eV (2HOEP: -0.44 eV) relative to the clean surface. Comparison with data for the distorted CoTPP confirms the existence of a covalent ion-surface interaction that is insensitive to the conformation of the ligand.

  12. Ab initio calculations of the electronic structure and bonding characteristics of LaB6

    International Nuclear Information System (INIS)

    Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.

    2005-01-01

    Lanthanum hexaboride (LaB 6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB 6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB 6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB 6 system and partially explains its high efficiency as a thermionic emitter

  13. Spectroscopy of 211Rn approaching the valence limit

    International Nuclear Information System (INIS)

    Davidson, P.M.; Dracoulis, G.D.; Byrne, A.P.; Kibedi, T.; Fabricus, B.; Baxter, A.M.; Stuchbery, A.E.; Poletti, A.R.; Schiffer, K.J.

    1993-01-01

    High-spin states in 211 Rn were populated using the reaction 198 Pt( 18 O, 5n) at 96 MeV. Their decay was studied using γ-ray and electron spectroscopy. The known level scheme is extended up to a spin of greater than 69/2 and many non-yrast states are added. Semi-empirical shell-model calculations and the properties of related states in 210 Rn and 212 Rn are used to assign configurations to some of the non-yrast states. The properties of the high-spin states observed are compared to the predictions of the multi-particle octupole-coupling model and the semi-empirical shell model. The maximum reasonable spin available from the valence particles and holes in 77/2 and states are observed to near this limit. (orig.)

  14. Bond and CDS Pricing via the Stochastic Recovery Black-Cox Model

    Directory of Open Access Journals (Sweden)

    Albert Cohen

    2017-04-01

    Full Text Available Building on recent work incorporating recovery risk into structural models by Cohen & Costanzino (2015, we consider the Black-Cox model with an added recovery risk driver. The recovery risk driver arises naturally in the context of imperfect information implicit in the structural framework. This leads to a two-factor structural model we call the Stochastic Recovery Black-Cox model, whereby the asset risk driver At defines the default trigger and the recovery risk driver Rt defines the amount recovered in the event of default. We then price zero-coupon bonds and credit default swaps under the Stochastic Recovery Black-Cox model. Finally, we compare our results with the classic Black-Cox model, give explicit expressions for the recovery risk premium in the Stochastic Recovery Black-Cox model, and detail how the introduction of separate but correlated risk drivers leads to a decoupling of the default and recovery risk premiums in the credit spread. We conclude this work by computing the effect of adding coupons that are paid continuously until default, and price perpetual (consol bonds in our two-factor firm value model, extending calculations in the seminal paper by Leland (1994.

  15. Direct double photoionization of the valence shell of Be

    International Nuclear Information System (INIS)

    Citrini, F.; Malegat, L.; Selles, P.; Kazansky, A.K.

    2003-01-01

    The hyperspherical R-matrix method with semiclassical outgoing waves is used to study the direct double photoionization (DPI) of the valence shell of the lightest alkaline earth-metal Be. The absolute fully integrated, singly, doubly, and triply differential cross sections obtained are compared with the single set of measurements available and with recent calculations based on the convergent close coupling and time-dependent close coupling methods. The level of agreement between all these data is very encouraging. A comparison is also made between the DPI of He and the direct DPI of the valence shell of Be. It confirms that the electron-electron correlations are stronger in the valence 2s shell of Be than in the 1s shell of He, thus contributing to a desirable clarification

  16. Applicability of a valence fluctuation model to the observed physical property response of actinide materials

    International Nuclear Information System (INIS)

    Sandenaw, T.A.

    1978-01-01

    It is shown that the physical property behavior of the light actinide elements, U, Np, and Pu, and certain of their alloys, is like that of known mixed-valence, R.E. metallic compounds. It is inferred that interconfiguration fluctuation (ICF) theory should also be applicable to actinide materials

  17. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  18. Molecular single-bond covalent radii for elements 1-118.

    Science.gov (United States)

    Pyykkö, Pekka; Atsumi, Michiko

    2009-01-01

    A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.

  19. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  20. Ising tricriticality in the extended Hubbard model with bond dimerization

    Science.gov (United States)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  1. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  2. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  3. Is Accessing of Words Affected by Affective Valence Only? A Discrete Emotion View on the Emotional Congruency Effect.

    Science.gov (United States)

    Chen, Xuqian; Liu, Bo; Lin, Shouwen

    2016-01-01

    This paper advances the discussion on which emotion information affects word accessing. Emotion information, which is formed as a result of repeated experiences, is primary and necessary in learning and representing word meanings. Previous findings suggested that valence (i.e., positive or negative) denoted by words can be automatically activated and plays a role in many significant cognitive processes. However, there has been a lack of discussion about whether discrete emotion information (i.e., happiness, anger, sadness, and fear) is also involved in these processes. According to the hierarchy model, emotions are considered organized within an abstract-to-concrete hierarchy, in which emotion prototypes are organized following affective valence. By controlling different congruencies of emotion relations (i.e., matches or mismatches between valences and prototypes of emotion), the present study showed both an evaluative congruency effect (Experiment 1) and a discrete emotional congruency effect (Experiment 2). These findings indicate that not only affective valences but also discrete emotions can be activated under the present priming lexical decision task. However, the present findings also suggest that discrete emotions might be activated at the later priming stage as compared to valences. The present work provides evidence that information about discrete emotion could be involved in word processing. This might be a result of subjects' embodied experiences.

  4. RKKY interaction in mixed valence system and heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Fusui Liu; Gao Lin; Lin Zonghan

    1985-11-01

    The 1-D RKKY interaction of mixed valence system is given by using the thermodynamic perturbation theory. The numerical comparisons of 1-D and 3-D RKKY interaction between systems with localized magnetic moments of mixed valence and non-mixed valence show that the former is much stronger than the latter. From some analyses we propose that the heavy Fermion superconductivity comes from the RKKY interaction between two local f electrons which hop off the impurity site to become two continuum electrons. The source of the two impurity electrons hopping is the Coulomb interaction. It is also emphasized that the RKKY interaction does not disappear for the Kondo lattice, when the temperature is less than the Kondo temperature. (author)

  5. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation

    International Nuclear Information System (INIS)

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-01-01

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion.

  6. Bonding character and s-p hybridization of orbitals of hydride molecules according to photoelectron spectroscopy data

    International Nuclear Information System (INIS)

    Vovna, V.I.

    1988-01-01

    In consideration of the electron structure of the molecules in terms of canonical many-centered orbitals by s-p hybridization we mean mixture of the ns and np orbitals of an atom into one molecular orbital. The PE spectra of the valence levels of the molecules give direct information on the influence of s-p hybridization on the bonding character and energies of the levels [1, 3]. In this article we discuss the influence of hybridization on the bonding character of the MO of the isoelectronic series A 7 H - A 6 H 2 - A 5 H 2 - A 4 H 4 according to the results of PE spectroscopy. To simplify the discussion we adopt the approximation of Kupmans theorem IP i = -var epsilon i

  7. Valence-delocalization of the mixed-valence oxo-centered trinuclear iron propionates [FeIII2FeIIO(C2H5CO2)6(py)3[npy; n = 0, 1.5

    International Nuclear Information System (INIS)

    Nakamoto, Tadahiro; Katada, Motomi; Kawata, Satoshi; Kitagawa, Susumu; Sano, Hirotoshi; Konno, Michiko

    1994-01-01

    Mixed-valence trinuclear iron propionates [Fe III 2 Fe II O(C 2 H 5 CO 2 ) 6 (py) 3 [npy, where n = 0, 1.5, were synthesized and the structure of the pyridine-solvated complex was determined by single-crystal X-ray diffraction. Moessbauer spectra of the solvated propionate complex showed a temperature-dependent mixed-valence state related to phase transitions, reaching an almost delocalized valence state at room temperature. On the other hand, the non-solvated propionate showed a remarkable change of the spectral shape related to a phase transition, remaining in a localized valence state at higher temperatures up to room temperature. (orig.)

  8. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  9. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    Science.gov (United States)

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  11. An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering

    Science.gov (United States)

    Roman, Monica; Popescu, Dorin; Selisteanu, Dan

    2013-01-01

    The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…

  12. Emotional valence of stimuli modulates false recognition: Using a modified version of the simplified conjoint recognition paradigm.

    Science.gov (United States)

    Gong, Xianmin; Xiao, Hongrui; Wang, Dahua

    2016-11-01

    False recognition results from the interplay of multiple cognitive processes, including verbatim memory, gist memory, phantom recollection, and response bias. In the current study, we modified the simplified Conjoint Recognition (CR) paradigm to investigate the way in which the valence of emotional stimuli affects the cognitive process and behavioral outcome of false recognition. In Study 1, we examined the applicability of the modification to the simplified CR paradigm and model. Twenty-six undergraduate students (13 females, aged 21.00±2.30years) learned and recognized both the large and small categories of photo objects. The applicability of the paradigm and model was confirmed by a fair goodness-of-fit of the model to the observational data and by their competence in detecting the memory differences between the large- and small-category conditions. In Study 2, we recruited another sample of 29 undergraduate students (14 females, aged 22.60±2.74years) to learn and recognize the categories of photo objects that were emotionally provocative. The results showed that negative valence increased false recognition, particularly the rate of false "remember" responses, by facilitating phantom recollection; positive valence did not influence false recognition significantly though enhanced gist processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Solid-liquid interdiffusion (SLID) bonding in the Au-In system: experimental study and 1D modelling

    Science.gov (United States)

    Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel

    2015-12-01

    Au-In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn2, AuIn and Au7In3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve.

  14. Solid-liquid interdiffusion (SLID) bonding in the Au–In system: experimental study and 1D modelling

    International Nuclear Information System (INIS)

    Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel

    2015-01-01

    Au–In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn 2 , AuIn and Au 7 In 3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve. (paper)

  15. Spectroscopy of 211Rn approaching the valence limit

    International Nuclear Information System (INIS)

    Davidson, P.M.; Dracoulis, G.D.; Kibedi, T.; Fabricius, B.; Baxter, A.M.; Stuchbery, A.E.; Poletti, A.R.; Schiffer, K.J.

    1993-02-01

    High spin states in 211 Rn were populated using the reaction 198 Pt( 18 O,5n) at 96 MeV. The decay was studied using γ-ray and electron spectroscopy. The known level scheme is extended up to a spin of greater than 69/2 and many non-yrast states are added. Semi-empirical shell model calculations and the properties of related states in 210 Rn and 212 Rn are used to assign configurations to some of the non-yrast states. The properties of the high spin states observed are compared to the predictions of the Multi-Particle Octupole Coupling model and the semi-empirical shell model. The maximum reasonable spin available from the valence particles and holes is 77/2 and states are observed to near this limit. 12 refs., 4 tabs., 8 figs

  16. Valence band variation in Si (110) nanowire induced by a covered insulator

    International Nuclear Information System (INIS)

    Hong-Hua, Xu; Xiao-Yan, Liu; Yu-Hui, He; Gang, Du; Ru-Qi, Han; Jin-Feng, Kang; Chun, Fan; Ai-Dong, Sun

    2010-01-01

    In this work, we investigate strain effects induced by the deposition of gate dielectrics on the valence band structures in Si (110) nanowire via the simulation of strain distribution and the calculation of a generalized 6×6k·p strained valence band. The nanowire is surrounded by the gate dielectric. Our simulation indicates that the strain of the amorphous SiO 2 insulator is negligible without considering temperature factors. On the other hand, the thermal residual strain in a nanowire with amorphous SiO 2 insulator which has negligible lattice misfit strain pushes the valence subbands upwards by chemical vapour deposition and downwards by thermal oxidation treatment. In contrast with the strain of the amorphous SiO 2 insulator, the strain of the HfO 2 gate insulator in Si (110) nanowire pushes the valence subbands upwards remarkably. The thermal residual strain by HfO 2 insulator contributes to the up-shifting tendency. Our simulation results for valence band shifting and warping in Si nanowires can provide useful guidance for further nanowire device design. (classical areas of phenomenology)

  17. Modified bond model for shear in slabs under concentrated loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.

  18. Segregation of information about emotional arousal and valence in horse whinnies.

    Science.gov (United States)

    Briefer, Elodie F; Maigrot, Anne-Laure; Mandel, Roi; Freymond, Sabrina Briefer; Bachmann, Iris; Hillmann, Edna

    2015-04-21

    Studying vocal correlates of emotions is important to provide a better understanding of the evolution of emotion expression through cross-species comparisons. Emotions are composed of two main dimensions: emotional arousal (calm versus excited) and valence (negative versus positive). These two dimensions could be encoded in different vocal parameters (segregation of information) or in the same parameters, inducing a trade-off between cues indicating emotional arousal and valence. We investigated these two hypotheses in horses. We placed horses in five situations eliciting several arousal levels and positive as well as negative valence. Physiological and behavioral measures collected during the tests suggested the presence of different underlying emotions. First, using detailed vocal analyses, we discovered that all whinnies contained two fundamental frequencies ("F0" and "G0"), which were not harmonically related, suggesting biphonation. Second, we found that F0 and the energy spectrum encoded arousal, while G0 and whinny duration encoded valence. Our results show that cues to emotional arousal and valence are segregated in different, relatively independent parameters of horse whinnies. Most of the emotion-related changes to vocalizations that we observed are similar to those observed in humans and other species, suggesting that vocal expression of emotions has been conserved throughout evolution.

  19. Valence-Specific Laterality Effects in Vocal Emotion: Interactions with Stimulus Type, Blocking and Sex

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Geddes, Pauline

    2012-01-01

    Valence-specific laterality effects have been frequently obtained in facial emotion perception but not in vocal emotion perception. We report a dichotic listening study further examining whether valence-specific laterality effects generalise to vocal emotions. Based on previous literature, we tested whether valence-specific laterality effects were…

  20. The power of emotional valence-from cognitive to affective processes in reading.

    Science.gov (United States)

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  1. Effect of Oxidation Degree on Valence Change and Distribution of Octahedral Fe Element in Biotite

    Directory of Open Access Journals (Sweden)

    Li Ziqian

    2017-01-01

    Full Text Available In this paper, the valence change and distribution of iron elements in octahedral vacancies of biotite were studied in the oxidation process. The biotite and saturated barium nitrate solution were mixed in dilute hydrochloric acid under hydrothermal reaction conditions, the solid after reaction was used as the test sample. Firstly, the remainder potassium and iron content were measured by atomic absorption spectrometry(AAS. Secondly, the state of iron along with oxidation degree increased was analyzed, in addition, the phase composition and the change of layer spacing in samples was detected by X-ray diffraction(XRD. Thirdly, The variation mode of Si-O bond were characterized by Fourier transform infrared spectroscopy(FT-IR.This research was adopted hydrogen ions in diluted hydrochloric acid and nitrate ions in barium nitrate to provide oxidation environment for reaction, and the oxidation degree was controlled by adjusted the amount of hydrogen ion introduced. We found out that the amount of hydrogen ion is positively correlated with oxidation degree in biotite, and the deeper oxidation degree in biotite, the lower electronegativity of singer layer. Potassium and iron element would be release out of micaceous structure during the biotite oxidation. The higher the oxidation degree is, the greater the releasing happen. The charge density combining Fe oxidation and releasing firstly increased then decreased with the oxidation degree turned greater. During the oxidation, the Si-O vibrated would change from parallel layer vibration model to vertical vibration model.

  2. Multilevel analysis of facial expressions of emotion and script: self-report (arousal and valence) and psychophysiological correlates.

    Science.gov (United States)

    Balconi, Michela; Vanutelli, Maria Elide; Finocchiaro, Roberta

    2014-09-26

    The paper explored emotion comprehension in children with regard to facial expression of emotion. The effect of valence and arousal evaluation, of context and of psychophysiological measures was monitored. Indeed subjective evaluation of valence (positive vs. negative) and arousal (high vs. low), and contextual (facial expression vs. facial expression and script) variables were supposed to modulate the psychophysiological responses. Self-report measures (in terms of correct recognition, arousal and valence attribution) and psychophysiological correlates (facial electromyography, EMG, skin conductance response, SCR, and heart rate, HR) were observed when children (N = 26; mean age = 8.75 y; range 6-11 y) looked at six facial expressions of emotions (happiness, anger, fear, sadness, surprise, and disgust) and six emotional scripts (contextualized facial expressions). The competencies about the recognition, the evaluation on valence and arousal was tested in concomitance with psychophysiological variations. Specifically, we tested for the congruence of these multiple measures. Log-linear analysis and repeated measure ANOVAs showed different representations across the subjects, as a function of emotion. Specifically, children' recognition and attribution were well developed for some emotions (such as anger, fear, surprise and happiness), whereas some other emotions (mainly disgust and sadness) were less clearly represented. SCR, HR and EMG measures were modulated by the evaluation based on valence and arousal, with increased psychophysiological values mainly in response to anger, fear and happiness. As shown by multiple regression analysis, a significant consonance was found between self-report measures and psychophysiological behavior, mainly for emotions rated as more arousing and negative in valence. The multilevel measures were discussed at light of dimensional attribution model.

  3. Modulation of motor-meaning congruity effects for valenced words

    OpenAIRE

    Brookshire, Geoffrey; Ivry, Richard; Casasanto, Daniel

    2010-01-01

    We investigated the extent to which emotionally valenced words automatically cue spatio-motor representations. Participants made speeded button presses, moving their hand upward or downward while viewing words with positive or negative valence. Only the color of the words was relevant to the response; on target trials, there was no requirement to read the words or process their meaning. In Experiment 1, upward responses were faster for positive words, and downward for negative words. This eff...

  4. Influence of emotional valence and arousal on the spread of activation in memory.

    Science.gov (United States)

    Jhean-Larose, Sandra; Leveau, Nicolas; Denhière, Guy

    2014-11-01

    Controversy still persists on whether emotional valence and arousal influence cognitive activities. Our study sought to compare how these two factors foster the spread of activation within the semantic network. In a lexical decision task, prime words were varied depending on the valence (pleasant or unpleasant) or on the level of emotional arousal (high or low). Target words were carefully selected to avoid semantic priming effects, as well as to avoid arousing specific emotions (neutral). Three SOA durations (220, 420 and 720 ms) were applied across three independent groups. Results indicate that at 220 ms, the effect of arousal is significantly higher than the effect of valence in facilitating spreading activation while at 420 ms, the effect of valence is significantly higher than the effect of arousal in facilitating spreading activation. These findings suggest that affect is a sequential process involving the successive intervention of arousal and valence.

  5. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    Science.gov (United States)

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  6. Universality class of non-Fermi liquid behaviour in mixed valence systems

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Lu Yu

    1995-11-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper-oxides. Using the abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed valence quantum critical point separating two different Fermi liquid phases, i.e. the Kondo phase and the empty orbital phase. In the mixed valence quantum critical regime, the local moment is only partially quenched and X-ray edge singularities are generated. Around the quantum critical point, a new type of non-Fermi liquid behaviour is predicted with an extra specific heat C imp ∼ T 1/4 and a singular spin-susceptibility χ imp ∼ T -3/4 . At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in U Pd x Cu 5-x (x=1, 1.5) alloys, which show single-impurity critical behaviour consistent with our predictions. (author). 30 refs

  7. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    Science.gov (United States)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  8. Interatomic decay of inner-valence ionized states in ArXe clusters: Relativistic approach

    International Nuclear Information System (INIS)

    Fasshauer, Elke; Pernpointner, Markus; Gokhberg, Kirill

    2013-01-01

    In this work we investigate interatomic electronic decay processes taking place in mixed argon-xenon clusters upon the inner-valence ionization of an argon center. We demonstrate that both interatomic Coulombic decay and electron-transfer mediated decay (ETMD) are important in larger rare gas clusters as opposed to dimers. Calculated secondary electron spectra are shown to depend strongly on the spin-orbit coupling in the final states of the decay as well as the presence of polarizable environment. It follows from our calculations that ETMD is a pure interface process taking place between the argon-xenon layers. The interplay of all these effects is investigated in order to arrive at a suitable physical model for the decay of inner-valence vacancies taking place in mixed ArXe clusters.

  9. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    International Nuclear Information System (INIS)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-01-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  10. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  11. Parental Bonds, Attachment Anxiety, Media Susceptibility, and Body Dissatisfaction: A Mediation Model

    Science.gov (United States)

    Patton, Sarah C.; Beaujean, A. Alexander; Benedict, Helen E.

    2014-01-01

    The developmental trajectory of body image dissatisfaction is unclear. Researchers have investigated sociocultural and developmental risk factors; however, the literature needs an integrative etiological model. In 2009, Cheng and Mallinckrodt proposed a dual mediation model, positing that poor-quality parental bonds, via the mechanisms of…

  12. Double site-bond percolation model for biomaterial implants

    OpenAIRE

    Mely, H.; Mathiot, J. -F.

    2011-01-01

    9 figures - 10 pages; We present a double site-bond percolation model to account, on the one hand, for the vascularization and/or resorption of biomaterial implant in bones, and on the other hand, for its mechanical continuity. The transformation of the implant into osseous material, and the dynamical formation/destruction of this osseous material is accounted for by creation and destruction of links and sites in two, entangled, networks. We identify the relevant parameters to describe the im...

  13. Hard x-ray photoemission study of the temperature-induced valence transition system EuNi2(Si1-xGex) 2

    Science.gov (United States)

    Ichiki, Katsuya; Mimura, Kojiro; Anzai, Hiroaki; Uozumi, Takayuki; Sato, Hitoshi; Utsumi, Yuki; Ueda, Shigenori; Mitsuda, Akihiro; Wada, Hirofumi; Taguchi, Yukihiro; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    2017-07-01

    We investigated the bulk-derived electronic structure of the temperature-induced valence transition system EuNi2(Si1 -xGex )2 (x =0.70 , 0.79, and 0.82) by means of hard x-ray photoemission spectroscopy (HAXPES). The HAXPES spectra clearly show distinct temperature dependencies in the spectral intensities of the Eu2 + and Eu3 +3 d components. For x =0.70 , the changes in the Eu2 + and Eu3 +3 d spectral components with temperature reflect a continuous valence transition, whereas the sudden changes for x =0.79 and 0.82 reflect first-order valence transitions. The Eu 3 d spectral shapes for all x and particularly the drastic changes in the Eu3 +3 d feature with temperature are validated by a theoretical calculation based on the single-impurity Anderson model (SIAM). SIAM analysis reveals that the valence transition for each x is controlled by the c -f hybridization strength and the charge-transfer energy. Furthermore, the c -f hybridization strength governs the valence transition of this system, which is either first order or continuous, consistent with Kondo volume collapse.

  14. Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k · p theory

    International Nuclear Information System (INIS)

    Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin

    2011-01-01

    After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Investigation of ball bond integrity for 0.8 mil (20 microns) diameter gold bonding wire on low k die in wire bonding technology

    Science.gov (United States)

    Kudtarkar, Santosh Anil

    Microelectronics technology has been undergoing continuous scaling to accommodate customer driven demand for smaller, faster and cheaper products. This demand has been satisfied by using novel materials, design techniques and processes. This results in challenges for the chip connection technology and also the package technology. The focus of this research endeavor was restricted to wire bond interconnect technology using gold bonding wires. Wire bond technology is often regarded as a simple first level interconnection technique. In reality, however, this is a complex process that requires a thorough understanding of the interactions between the design, material and process variables, and their impact on the reliability of the bond formed during this process. This research endeavor primarily focused on low diameter, 0.8 mil thick (20 mum) diameter gold bonding wire. Within the scope of this research, the integrity of the ball bond formed by 1.0 mil (25 mum) and 0.8 mil (20 mum) diameter wires was compared. This was followed by the evaluation of bonds formed on bond pads having doped SiO2 (low k) as underlying structures. In addition, the effect of varying the percentage of the wire dopant, palladium and bonding process parameters (bonding force, bond time, ultrasonic energy) for 0.8 mil (20 mum) bonding wire was also evaluated. Finally, a degradation empirical model was developed to understand the decrease in the wire strength. This research effort helped to develop a fundamental understanding of the various factors affecting the reliability of a ball bond from a design (low diameter bonding wire), material (low k and bonding wire dopants), and process (wire bonding process parameters) perspective for a first level interconnection technique, namely wire bonding. The significance of this research endeavor was the systematic investigation of the ball bonds formed using 0.8 mil (20 microm) gold bonding wire within the wire bonding arena. This research addressed low k

  16. Optical gain and gain suppression of quantum-well lasers with valence band mixing

    International Nuclear Information System (INIS)

    Ahn, D.; Chuang, S.L.

    1990-01-01

    The effects of valence band mixing on the nonlinear gains of quantum-well lasers are studied theoretically. The authors' analysis is based on the multiband effective-mass theory and the density matrix formalism with intraband relaxation taken into account. The gain and the gain-suppression coefficient of a quantum-well laser are calculated from the complex optical susceptibility obtained by the density matrix formulation with the theoretical dipole moments obtained from the multiband effective-mass theory. The calculated gain spectrum shows that there are remarkable differences (both in peak amplitude and spectral shape) between our model with valence band mixing and the conventional parabolic band model. The shape of the gain spectrum calculated by the authors' model becomes more symmetric due to intraband relaxation together with nonparabolic energy dispersions and is closer to the experimental observations when compared with the conventional method using the parabolic band model and the multiband effective-mass calculation without intraband relaxation. Both give quite asymmetric gain spectra. Optical intensity in the GaAs active region is estimated by solving rate equations for the stationary states with nonlinear gain suppression. The authors calculate the mode gain for the resonant mode including the gain suppression, which results in spectral hole burning of the gain spectrum

  17. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: a large-scale global search of SiX(n)Y(m)(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br).

    Science.gov (United States)

    Xu, Jing; Ding, Yi-hong

    2015-03-05

    Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never-ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate-Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, SiXnYm(q) (n + m = 4; q = 0, ±1, -2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, Li3SiAs(2-), HSiY3 (Y = Al/Ga), Ca3SiAl(-), Mg4Si(2-), C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H-atom is only bonded to the ptSi-center via a localized 2c-2e σ bond. This sharply contradicts the known pentaatomic planar-centered systems, in which the ligands are actively involved in the ligand-ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e-ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline-earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.

  18. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Feyer, Vitaliy, E-mail: vitaliy.feyer@elettra.trieste.it [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Plekan, Oksana [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [Institute of Electron Physics, 21 Universitetska St., 88017 Uzhgorod (Ukraine); Richter, Robert [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy); Coreno, Marcello [CNR-IMIP, Area della Ricerca di Roma 1, CP10, I-00016 Monterotondo Scalo (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy); Prince, Kevin C. [Sincrotrone Trieste, in Area Science Park, I-34012 Basovizza (Trieste) (Italy)] [CNR-Laboratorio Nazionale TASC-INFM, I-34012 Basovizza (Trieste) (Italy)

    2009-03-30

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  19. The bond diluted spin-1 Blume-Emery-Griffiths model in a transverse field

    International Nuclear Information System (INIS)

    Ez Zahraouy, H.

    1993-09-01

    The effect of Bond-dilution on the magnetic properties of a quantum transverse spin-1 Blume-Emery-Griffiths model is investigated within an expansion technique for cluster identities of a spin-1 localized spin system. The longitudinal and transverse magnetizations and quadrupolar moments are studied for several values of the bond concentration. A general formula, applicable to structures with arbitrary coordination number N, are given. (author). 41 refs, 6 figs

  20. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  1. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  2. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    Science.gov (United States)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  3. Study of a class of photovoltaic systems using a bond graph approach. Modeling, analysis and control; Etude d'une classe de systemes photovoltaiques par une approche bond graph. Modelisation, analyse et commande

    Energy Technology Data Exchange (ETDEWEB)

    Andoulsi, R.

    2001-12-01

    We present in this thesis a study of a class of photovoltaic system by a bond graph approach. This study concerns the modelling, the analysis and the control of some configurations including PV generator, DC/DC converters and DC motor-pumps. The modelling of the different elements of a photovoltaic system is an indispensable stage that must precede all application of sizing, identification or simulation. However, theses PV systems are of hybrid type and their modelling is complex. It is why we use a unified modelling approach based on the bond graph technique. This methodology is completely systematic and has a sufficient flexibility for allowing the introduction of different components in the system. In the first chapter, we recall the principle of functioning of a photovoltaic generator and we treat mainly the MPPT (Maximum Power Point Tracking) working. In the second chapter, we elaborate bond graph models of various photovoltaic system configurations. For the PV source, we elaborate, in a first stage, a complete model taking into account the various physical phenomena influencing the quality of the PV source. In a second stage, we deduce a reduced bond graph model more easy to use for analysis and control purposes. For the DC/DC converters, we recall the bond graph modelling of switching elements and the average bond graph of the DC/DC converters developed in the literature. Thus, we deduce the bond graphs models of the various DC/DC converters to be used. The third chapter presents a dynamic study of some configurations stability in linear procedure. In the fourth chapter, we study the feasibility of non linear controllers by input/output linearization for some configurations of PV systems. In this study, we use the concept of inverse bond graph to determine, by a bond graph approach, the expression of the control input and the nature of the stability of the internal dynamics (dynamics of zeros). The fifth chapter is dedicated for the presentation of some

  4. Voltage-assisted polymer wafer bonding

    International Nuclear Information System (INIS)

    Varsanik, J S; Bernstein, J J

    2012-01-01

    Polymer wafer bonding is a widely used process for fabrication of microfluidic devices. However, best practices for polymer bonds do not achieve sufficient bond strength for many applications. By applying a voltage to a polymer bond in a process called voltage-assisted bonding, bond strength is shown to improve dramatically for two polymers (Cytop™ and poly(methyl methacrylate)). Several experiments were performed to provide a starting point for further exploration of this technique. An optimal voltage range is experimentally observed with a reduction in bonding strength at higher voltages. Additionally, voltage-assisted bonding is shown to reduce void diameter due to bond defects. An electrostatic force model is proposed to explain the improved bond characteristics. This process can be used to improve bond strength for most polymers. (paper)

  5. Experimentally driven atomistic model of 1,2 polybutadiene

    Energy Technology Data Exchange (ETDEWEB)

    Gkourmpis, Thomas, E-mail: thomas.gkourmpis@borealisgroup.com [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Mitchell, Geoffrey R. [Polymer Science Centre, J. J. Thomson Physical Laboratory, Department of Physics, University of Reading, Reading RG6 6AF (United Kingdom); Centre for Rapid and Sustainable Product Development, Institute Polytechnic Leiria, Marinha Grande (Portugal)

    2014-02-07

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  6. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  7. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  8. Measuring Treasury Bond Portfolio Risk and Portfolio Optimization with a Non-Gaussian Multivariate Model

    Science.gov (United States)

    Dong, Yijun

    The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.

  9. Core level photoelectron spectroscopy of LiGaS2 and Ga-S bonding in complex sulfides

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Isaenko, L.I.; Kesler, V.G.; Lobanov, S.I.

    2010-01-01

    The electronic parameters of the lithium thiogallate LiGaS 2 have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference Δ 2p (S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value Δ 2p (S-Ga) = 141.9 eV found for LiGaS 2 is very close to that evaluated for AgGaS 2 . This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS 2 and AgGaS 2 .

  10. Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.

    Science.gov (United States)

    Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias

    2017-06-19

    The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The bidirectional congruency effect of brightness-valence metaphoric association in the Stroop-like and priming paradigms.

    Science.gov (United States)

    Huang, Yanli; Tse, Chi-Shing; Xie, Jiushu

    2017-11-04

    The conceptual metaphor theory (Lakoff & Johnson, 1980, 1999) postulates a unidirectional metaphoric association between abstract and concrete concepts: sensorimotor experience activated by concrete concepts facilitates the processing of abstract concepts, but not the other way around. However, this unidirectional view has been challenged by studies that reported a bidirectional metaphoric association. In three experiments, we tested the directionality of the brightness-valence metaphoric association, using Stroop-like paradigm, priming paradigm, and Stroop-like paradigm with a go/no-go manipulation. Both mean and vincentile analyses of reaction time data were performed. We showed that the directionality of brightness-valence metaphoric congruency effect could be modulated by the activation level of the brightness/valence information. Both brightness-to-valence and valence-to-brightness metaphoric congruency effects occurred in the priming paradigm, which could be attributed to the presentation of prime that pre-activated the brightness or valence information. However, in the Stroop-like paradigm the metaphoric congruency effect was only observed in the brightness-to-valence direction, but not in the valence-to-brightness direction. When the go/no-go manipulation was used to boost the activation of word meaning in the Stroop-like paradigm, the valence-to-brightness metaphoric congruency effect was observed. Vincentile analyses further revealed that valence-to-brightness metaphoric congruency effect approached significance in the Stroop-like paradigm when participants' reaction times were slower (at around 490ms). The implications of the current findings on the conceptual metaphor theory and embodied cognition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  13. Electronic parameters of Sr2M2O7 (M = V, Nb, Ta) and Sr-O chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, Victor V.; Grivel, Jean-Claude; Zhang, Zhaoming

    2010-01-01

    XPS measurements were carried out on Sr2Nb2O7 and Sr2Ta2O7 powder samples, which were synthesized using standard solid state method. The binding energy differences between the O 1s and cation core level, Δ(O-Sr) = BE(O 1s) - BE(Sr 3d5/2), was used to characterize the valence electron transfer...... on the formation of the Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and Sr2Ta2O7 and the previously published structural and XPS data for other Sr-oxide compounds. A new empirical relationship between Δ(O-Sr) and L(Sr-O) was obtained. Possible applications...

  14. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  15. Valency stabilization of Polyvalent Iron Ions in Solution By some Organic additives during Gamma Irradiation

    International Nuclear Information System (INIS)

    Barakat, M.F.; Abdel Hamid, M.M.

    2012-01-01

    Valency stabilization of polyvalent ions in gamma irradiated aqueous solutions is sometimes necessary for the success of some chemical operations. In some previous publications valency stabilization of some polyvalent ions in solution upon gamma irradiation was achieved by using additives capable of interacting with the oxidizing or reducing species formed by water radiolysis in the medium. The results showed that the duration of valency stabilization depends on the concentration of the additives used.In the present work, a series of some organic additives has been used to investigate their capability in inducing valency stabilization of polyvalent iron ions when subjected to extended gamma irradiation periods. The results showed that the efficiency of valency stabilization depends on the amount and chemical structure of the organic additive used

  16. Valence and Magnetic Transitions in YbMn2Ge2-Applied Pressure

    International Nuclear Information System (INIS)

    Hofmann, M.; Link, P.; Campbell, S.J.; Goncharenko, I.

    2005-01-01

    Full text: Rare-earth intermetallic compounds containing ytterbium exhibit a wide range of interesting and unusual physical and magnetic properties. This occurs mainly as a result of their mixed valence states (II/III) or changes from one valence state to the other. We have recently determined the magnetic structures of tetragonal YbMn 2 Ge 2 (I4/mmm) by powder neutron diffraction experiments and demonstrated that YbMn 2 Ge 2 has a planar antiferromagnetic structure below T N1 ∼ 510 K with a canted antiferromagnetic structure below T N2 ∼ 185 K. As applied pressure favours changes in the valence character of intermediate valence systems and correspondingly influences the magnetic behaviour, we have investigated the effects of applied pressure on YbMn 2 Ge 2 . Analyses of our in situ neutron diffraction experiments (T=1.5-300 K; p=0-2.7 GPa), reveal a distinct change in magnetic structure and a sharp drop in the a-lattice parameter above ∼ 1.4 GPa with the changes associated with a valence transition. A full account of these effects will be discussed in relation to our current photoelectron spectroscopy measurements of YbMn 2 Ge 2 . (authors)

  17. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    Science.gov (United States)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  18. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  19. Approach and withdrawal tendencies during written word processing: effects of task, emotional valence and emotional arousal

    OpenAIRE

    Citron, Francesca Maria Marina; Abugaber, David; Herbert, Cornelia

    2016-01-01

    The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behaviour (approach vs. withdrawal) and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL) are associated with an implic...

  20. Changing the conversation: the influence of emotions on conversational valence and alcohol consumption.

    Science.gov (United States)

    Hendriks, Hanneke; van den Putte, Bas; de Bruijn, Gert-Jan

    2014-10-01

    Health campaign effects may be improved by taking interpersonal communication processes into account. The current study, which employed an experimental, pretest-posttest, randomized exposure design (N = 208), investigated whether the emotions induced by anti-alcohol messages influence conversational valence about alcohol and subsequent persuasion outcomes. The study produced three main findings. First, an increase in the emotion fear induced a negative conversational valence about alcohol. Second, fear was most strongly induced by a disgusting message, whereas a humorous appeal induced the least fear. Third, a negative conversational valence elicited healthier binge drinking attitudes, subjective norms, perceived behavioral control, intentions, and behaviors. Thus, health campaign planners and health researchers should pay special attention to the emotional characteristics of health messages and should focus on inducing a healthy conversational valence.

  1. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  2. Vanadium K XANES of synthetic olivine: Valence determinations and crystal orientation effects

    International Nuclear Information System (INIS)

    Sutton, S.R.; Newville, M.

    2005-01-01

    Vanadium can exist in a large number of valence states in nature (2+?, 3+, 4+ and 5+) and determinations of V valence is therefore valuable in defining the oxidation states of earth and planetary materials over a large redox range. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy is well-suited for measurements of V valence with ∼micrometer spatial resolution and ∼ppm elemental sensitivity. Applications of microXANES have been demonstrated for basaltic glasses. Applications to minerals are feasible but complicated by orientation effects (e.g. due to polarization of the synchrotron x-ray beam) and some results for spinel have been reported. Here we report initial results for olivine from laboratory crystallization ex-periments. The goal is to define the valence partition-ing between olivine and melt and quantify the magnitude of orientation effects, the latter tested by measuring grains at a variety of orientations in the same charge.

  3. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  4. Spectroscopic determination of valence band parameters in InP

    International Nuclear Information System (INIS)

    Lewis, R.A.; Lough, B.C.C.

    2003-01-01

    Full text: The general form of the Hamiltonian for an electron or hole in a semiconductor has been given by Luttinger. The valence band is characterised by three parameters - γ 1 , γ 2 , γ 3 -now commonly known as the Luttinger parameters. Despite many investigations there is still considerable uncertainty regarding the Luttinger parameters of InP. The situation has been reviewed by Hackenberg et al. These authors themselves sought to determine the Luttinger parameters by hot-electron luminescence and discovered that many Luttinger parameter triplets were consistent with their data. We employ a spectroscopic approach to estimating valence-band parameters in InP. Calculations have been made for both the unperturbed energy levels and the energy levels in a magnetic field of acceptor impurities in semiconductors characterised by different Luttinger parameters. We compare our recent experimental data for the transitions associated with the Zn acceptor impurity in InP in magnetic fields up to 30 T to determine the most appropriate set of valence-band parameters for InP

  5. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    Science.gov (United States)

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  6. Unified model to predict flexural shear behavior of externally bonded RC beams

    International Nuclear Information System (INIS)

    Colotti, V.; Spadea, G.; Swamy, R.N.

    2006-01-01

    Structural strengthening with externally bonded reinforcement is now recognized as a cost-effective, structurally sound and practically efficient method of rehabilitating deteriorating and damaged reinforced concrete beams. There is now an urgent need to develop a sound engineering basis which can predict the failure loads of all such strengthened beams in a reliable and consistent manner. Existing models to predict the behavior at ultimate of strengthened beams suffer from many limitations and weaknesses. This paper presents a unified global model, based on the Strut-and-Tie approach, to predict the failure loads of reinforced concrete beams strengthened for flexure and/or shear. This structural model is based on rational engineering principles, considers all the possible failure modes, and incorporates the load transfer mechanism bond to reflect the debonding phenomena which has a dominant influence on the failure process of plated beams. The model is validated against about 200 strengthened beam test reported in the literature and failing in flexure and/or shear, involving a large number of structural variables and steel, carbon and glass fiber reinforced polymer laminates as reinforcing medium. (author)

  7. A facilitative effect of negative affective valence on working memory.

    Science.gov (United States)

    Gotoh, Fumiko; Kikuchi, Tadashi; Olofsson, Ulrich

    2010-06-01

    Previous studies have shown that negatively valenced information impaired working memory performance due to an attention-capturing effect. The present study examined whether negative valence could also facilitate working memory. Affective words (negative, neutral, positive) were used as retro-cues in a working memory task that required participants to remember colors at different spatial locations on a computer screen. Following the cue, a target detection task was used to either shift attention to a different location or keep attention at the same location as the retro-cue. Finally, participants were required to discriminate the cued color from a set of distractors. It was found that negative cues yielded shorter response times (RTs) in the attention-shift condition and longer RTs in the attention-stay condition, compared with neutral and positive cues. The results suggest that negative affective valence may enhance working memory performance (RTs), provided that attention can be disengaged.

  8. Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion

    International Nuclear Information System (INIS)

    Nelson, J.S.; Schultz, P.A.; Wright, A.F.

    1998-01-01

    First-principles pseudopotential calculations of dopant-vacancy exchange barriers indicate a strong dependency on dopant valence and atomic size, in contrast to current models of vacancy-mediated dopant diffusion. First-row elements (B, C, N) are found to have exchange barriers which are an order of magnitude larger than the assumed value of 0.3 eV (the Si vacancy migration energy). copyright 1998 American Institute of Physics

  9. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  10. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  11. Crystal structure and hydrogen bonding in N-(1-deoxy-β-d-fructopyranos-1-yl-2-aminoisobutyric acid

    Directory of Open Access Journals (Sweden)

    Valeri V. Mossine

    2018-01-01

    Full Text Available The title compound, alternatively called d-fructose-2-aminoisobutyric acid (FruAib, C10H19NO7, (I, crystallizes exclusively in the β-pyranose form, with two conformationally non-equivalent molecules [(IA and (IB] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyranose, 10.4% β-furanose, 10.1% α-furanose, 3.0% α-pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C—H bonds.

  12. The power of emotional valence – From cognitive to affective processes in reading

    Directory of Open Access Journals (Sweden)

    Ulrike eAltmann

    2012-06-01

    Full Text Available The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1 the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM, and (2 the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a 3 Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simulatiously liked, selectively engaged the medial prefrontal cortex (mPFC, which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  13. A generalization of the bond fluctuation model to viscoelastic environments

    International Nuclear Information System (INIS)

    Fritsch, Christian C

    2014-01-01

    A lattice-based simulation method for polymer diffusion in a viscoelastic medium is presented. This method combines the eight-site bond fluctuation model with an algorithm for the simulation of fractional Brownian motion on the lattice. The method applies to unentangled self-avoiding chains and is probed for anomalous diffusion exponents α between 0.7 and 1.0. The simulation results are in very good agreement with the predictions of the generalized Rouse model of a self-avoiding chain polymer in a viscoelastic medium. (paper)

  14. Spin Dynamics and Magnetic Ordering in Mixed Valence Systems

    DEFF Research Database (Denmark)

    Shapiro, S. M.; Bjerrum Møller, Hans; Axe, J. D.

    1978-01-01

    . 0 meV at the transition to the alpha phase. The temperature independence of the susceptibility within the gamma phase cannot be simply reconciled with the temperature dependence of the valence within the gamma phase. TmSe is shown to order in a type I antiferromagnetic structure below T//N similar 3....... 2 K. The magnetic phase diagram is understood as a successive domain reorientation and a metamagnetic phase transition for T less than 3 K with increasing field. The mixed valence nature manifests itself in a reduced moment and a markedly altered crystal field. Another sample of TmSe with a lattice...

  15. A Unique Method to Describe the Bonding Strength in a Bonded Solid–Solid Interface by Contact Acoustic Nonlinearity

    International Nuclear Information System (INIS)

    Jian-Jun, Chen; De, Zhang; Yi-Wei, Mao; Jian-Chun, Cheng

    2009-01-01

    We present a unique method to describe the bonding strength at a bonded solid–solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid–solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour

  16. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    Science.gov (United States)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  17. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    Science.gov (United States)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  18. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  19. Contribution to the study of higher valency states of americium

    International Nuclear Information System (INIS)

    Langlet, Jean.

    1976-01-01

    Study of the chemistry of the higher valencies of americium in aqueous solutions and especially the autoreduction phenomenon. First a purification method of americium solutions is studied by precipitation, solvent extraction and ion exchange chromatography. Studies of higher valency states chemical properties are disturbed by the autoreduction phenomenon changing Am VI and Am V in Am III more stable. Stabilization of higher valency states, characterized by a steady concentration of Am VI in solution, can be done by complexation of Am VI and Am V ions or by a protecting effect of foreign ions. The original medium used has a complexing effect by SO 4 2- ions and a protecting effect by the system S 2 O 8 2- -Ag + consuming H 2 O 2 main reducing agent produced by water radiolysis. These effects are shown by the study of Am VI in acid and basic solutions. A mechanism of the stabilization effect is given [fr

  20. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  1. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor; Yao, Peggy; Moshkov, Mikhail; Latombe, Jean-Claude

    2011-01-01

    . The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H

  2. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    Science.gov (United States)

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evaluative conditioning induces changes in sound valence

    Directory of Open Access Journals (Sweden)

    Anna C. Bolders

    2012-04-01

    Full Text Available Evaluative Conditioning (EC has hardly been tested in the auditory domain, but it is a potentially valuable research tool. In Experiment 1 we investigated whether the affective evaluation of short environmental sounds can be changed using affective words as unconditioned stimuli (US. Congruence effects on an affective priming task (APT for conditioned sounds demonstrated successful EC. Subjective ratings for sounds paired with negative words changed accordingly. In Experiment 2 we investigated whether the acquired valence remains stable after repeated presentation of the conditioned sound without the US or whether extinction occurs. The acquired affective value remained present, albeit weaker, even after 40 extinction trials. These results warrant the use of EC to study processing of short environmental sounds with acquired valence, even if this requires repeated stimulus presentations. This paves the way for studying processing of affective environmental sounds while effectively controlling low level-stimulus properties.

  4. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  5. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  6. Electronic structures and valence band splittings of transition metals doped GaNs

    International Nuclear Information System (INIS)

    Lee, Seung-Cheol; Lee, Kwang-Ryeol; Lee, Kyu-Hwan

    2007-01-01

    For a practical viewpoint, presence of spin splitting of valence band in host semiconductors by the doping of transition metal (TM) ions is an essential property when designing a diluted magnetic semiconductors (DMS) material. The first principle calculations were performed on the electronic and magnetic structure of 3d transition metal doped GaN. V, Cr, and Mn doped GaNs could not be candidates for DMS materials since most of their magnetic moments is concentrated on the TM ions and the splittings of valence band were negligible. In the cases of Fe, Co, Ni, and Cu doped GaNs, on the contrary, long-ranged spin splitting of valence band was found, which could be candidates for DMS materials

  7. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  8. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    Science.gov (United States)

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  9. DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Fellermann, Harold; Rasmussen, Steen

    2012-01-01

    We utilize a coarse-grained directional dynamic bonding DNA model [C. Svaneborg, Comp. Phys. Comm. (In Press DOI:10.1016/j.cpc.2012.03.005)] to study DNA self-assembly and DNA computation. In our DNA model, a single nucleotide is represented by a single interaction site, and complementary sites can...

  10. An S-N2-model for proton transfer in hydrogen-bonded systems

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism of proton transfer in donor-acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce...... a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use...... of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution....

  11. Mixing positive and negative valence: Affective-semantic integration of bivalent words.

    Science.gov (United States)

    Kuhlmann, Michael; Hofmann, Markus J; Briesemeister, Benny B; Jacobs, Arthur M

    2016-08-05

    Single words have affective and aesthetic properties that influence their processing. Here we investigated the processing of a special case of word stimuli that are extremely difficult to evaluate, bivalent noun-noun-compounds (NNCs), i.e. novel words that mix a positive and negative noun, e.g. 'Bombensex' (bomb-sex). In a functional magnetic resonance imaging (fMRI) experiment we compared their processing with easier-to-evaluate non-bivalent NNCs in a valence decision task (VDT). Bivalent NNCs produced longer reaction times and elicited greater activation in the left inferior frontal gyrus (LIFG) than non-bivalent words, especially in contrast to words of negative valence. We attribute this effect to a LIFG-grounded process of semantic integration that requires greater effort for processing converse information, supporting the notion of a valence representation based on associations in semantic networks.

  12. An exploration of the relationship among valence, fading affect, rehearsal frequency, and memory vividness for past personal events.

    Science.gov (United States)

    Lindeman, Meghan I H; Zengel, Bettina; Skowronski, John J

    2017-07-01

    The affect associated with negative (or unpleasant) memories typically tends to fade faster than the affect associated with positive (or pleasant) memories, a phenomenon called the fading affect bias (FAB). We conducted a study to explore the mechanisms related to the FAB. A retrospective recall procedure was used to obtain three self-report measures (memory vividness, rehearsal frequency, affective fading) for both positive events and negative events. Affect for positive events faded less than affect for negative events, and positive events were recalled more vividly than negative events. The perceived vividness of an event (memory vividness) and the extent to which an event has been rehearsed (rehearsal frequency) were explored as possible mediators of the relation between event valence and affect fading. Additional models conceived of affect fading and rehearsal frequency as contributors to a memory's vividness. Results suggested that memory vividness was a plausible mediator of the relation between an event's valence and affect fading. Rehearsal frequency was also a plausible mediator of this relation, but only via its effects on memory vividness. Additional modelling results suggested that affect fading and rehearsal frequency were both plausible mediators of the relation between an event's valence and the event's rated memory vividness.

  13. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model

    International Nuclear Information System (INIS)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En

    2012-01-01

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  14. Environmentally dependent bond-order potentials: New ...

    Indian Academy of Sciences (India)

    Environmentally dependent bond-order potentials: New developments and applications ... for modelling amorphous structure we found that the and bond integrals are not only transferable between graphite and diamond structures but they are also strongly anisotropic due to inter-plan bonding between graphite sheets.

  15. Approach and Withdrawal Tendencies during Written Word Processing: Effects of Task, Emotional Valence, and Emotional Arousal.

    Science.gov (United States)

    Citron, Francesca M M; Abugaber, David; Herbert, Cornelia

    2015-01-01

    The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behavior (approach vs. withdrawal) and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL) are associated with an implicit tendency to approach a stimulus, whereas negative valence and high arousal (NH) are associated with withdrawal. Hence, positive, high-arousal (PH) and negative, low-arousal (NL) stimuli elicit conflicting action tendencies. By extending previous research that used several tasks and methods, the present study investigated whether and how emotional valence and arousal affect subjective approach vs. withdrawal tendencies toward emotional words during two novel tasks. In Study 1, participants had to decide whether they would approach or withdraw from concepts expressed by written words. In Studies 2 and 3 participants had to respond to each word by pressing one of two keys labeled with an arrow pointing upward or downward. Across experiments, positive and negative words, high or low in arousal, were presented. In Study 1 (explicit task), in line with the valence-arousal conflict theory, PH and NL words were responded to more slowly than PL and NH words. In addition, participants decided to approach positive words more often than negative words. In Studies 2 and 3, participants responded faster to positive than negative words, irrespective of their level of arousal. Furthermore, positive words were significantly more often associated with "up" responses than negative words, thus supporting the existence of implicit associations between stimulus valence and response coding (positive is up and negative is down). Hence, in contexts in which participants' spontaneous responses are

  16. Structure phenomena in the bond zone of explosively bonded plates

    International Nuclear Information System (INIS)

    Livne, Z.

    1979-12-01

    In the bond areas of couples of explosively bonded plates, there are often zones, generally designated as ''molten pockets'', which have undergone melting and solidification. The object of the present study was to investigate molten pockets, which have a decisive effect on bond quality. The experimental samples for the study were chosen in consideration of the mutual behaviour of the plates constituting the couples, according to their equilibrium phase diagrams. To facilitate the investigation, large plates were bonded under conditions that enabled to to obtain wavy bond zones that included relatively large molten pockets. To clarify the complex nature of molten pockets and their surroundings, a wide variety of methods were employed. It was found that the shape and composition of molten pockets largely depend upon the mechanism of formation of both the bond wave and the molten pockets. It was also found that the composition of molten pockets is not homogeneous, which is manifest in the modification of the composition of the pockets, the solidification morphology, the phases, which have been identified by X-ray diffraction, and the bond strenght and hardness. Moreover, the different solidification morphologies revealed by metallography were found to depend upon the types of plates bonded, the bonding conditions and the location of pockets in the wavy interface. For molten pockets, cooling rates of 10 4 to 10 5 (degC/sec) have been deduced from interdendritic spacing, and found to be in good agreement with calculations after a mathematical model. It seems that the fast cooling rates and the steep temperature gradients are at the origin of the particular solidification phenomena observed in molten pockets

  17. Ferrimagnetic Properties of Bond Dilution Mixed Blume-Capel Model with Random Single-Ion Anisotropy

    International Nuclear Information System (INIS)

    Liu Lei; Yan Shilei

    2005-01-01

    We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel model (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random single-ion anisotropy. Some results have not been revealed in previous papers and predicted by Neel theory of ferrimagnetism.

  18. Mixed-valent and heavy fermions and related systems: Technical progress report, October 1, 1987-September 14, 1988

    International Nuclear Information System (INIS)

    Schlottmann, P.

    1988-01-01

    This paper discusses Ce-impurities in LaB 6 and LaAL 2 , critical behavior of ferromagnetic Heisenberg chains; integrable SU(2)---invariant model; soluble narrow-band model with possible relevance to heavy-fermions and resonating valence bonds, soluble variant of the two-impurity Anderson model; De Haas-van Alphen effect in the Anderson lattice for large orbital degeneracy; interactions mediated by spin-fluctuations in He 3 ; mixed-valence and heavy-fermion systems and high-temperature superconductivity

  19. Pressure and irradiation effects on transport properties of samarium compounds with instable valence

    International Nuclear Information System (INIS)

    Morillo, J.

    1981-01-01

    Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr

  20. Core level photoelectron spectroscopy of LiGaS{sub 2} and Ga-S bonding in complex sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.r [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, 13, Lavrentieva Ave., Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Lobanov, S.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2010-05-14

    The electronic parameters of the lithium thiogallate LiGaS{sub 2} have been evaluated by X-ray photoelectron spectroscopy (XPS). Spectral features of all constituent element core levels and Auger lines have been considered. The Ga-S bonding effects in Ga-bearing sulfide crystals have been discussed using binding energy difference {Delta}{sub 2p}(S-Ga) = BE(S 2p) - BE(Ga 3d) as a representative parameter to quantify the valence electron shift from gallium to sulfur atoms. The value {Delta}{sub 2p}(S-Ga) = 141.9 eV found for LiGaS{sub 2} is very close to that evaluated for AgGaS{sub 2}. This relation is an indicator of closely coincident ionicity of Ga-S bonds in LiGaS{sub 2} and AgGaS{sub 2}.

  1. Molecular invariants: atomic group valence

    International Nuclear Information System (INIS)

    Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.

    1988-01-01

    Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt

  2. Social Annotation Valence: The Impact on Online Informed Consent Beliefs and Behavior.

    Science.gov (United States)

    Balestra, Martina; Shaer, Orit; Okerlund, Johanna; Westendorf, Lauren; Ball, Madeleine; Nov, Oded

    2016-07-20

    Social media, mobile and wearable technology, and connected devices have significantly expanded the opportunities for conducting biomedical research online. Electronic consent to collecting such data, however, poses new challenges when contrasted to traditional consent processes. It reduces the participant-researcher dialogue but provides an opportunity for the consent deliberation process to move from solitary to social settings. In this research, we propose that social annotations, embedded in the consent form, can help prospective participants deliberate on the research and the organization behind it in ways that traditional consent forms cannot. Furthermore, we examine the role of the comments' valence on prospective participants' beliefs and behavior. This study focuses specifically on the influence of annotations' valence on participants' perceptions and behaviors surrounding online consent for biomedical research. We hope to shed light on how social annotation can be incorporated into digitally mediated consent forms responsibly and effectively. In this controlled between-subjects experiment, participants were presented with an online consent form for a personal genomics study that contained social annotations embedded in its margins. Individuals were randomly assigned to view the consent form with positive-, negative-, or mixed-valence comments beside the text of the consent form. We compared participants' perceptions of being informed and having understood the material, their trust in the organization seeking the consent, and their actual consent across conditions. We find that comment valence has a marginally significant main effect on participants' perception of being informed (F2=2.40, P=.07); specifically, participants in the positive condition (mean 4.17, SD 0.94) felt less informed than those in the mixed condition (mean 4.50, SD 0.69, P=.09). Comment valence also had a marginal main effect on the extent to which participants reported trusting the

  3. Verbal instructions targeting valence alter negative conditional stimulus evaluations (but do not affect reinstatement rates).

    Science.gov (United States)

    Luck, Camilla C; Lipp, Ottmar V

    2018-02-01

    Negative conditional stimulus (CS) valence acquired during fear conditioning may enhance fear relapse and is difficult to remove as it extinguishes slowly and does not respond to the instruction that unconditional stimulus (US) presentations will cease. We examined whether instructions targeting CS valence would be more effective. In Experiment 1, an image of one person (CS+) was paired with an aversive US, while another (CS-) was presented alone. After acquisition, participants were given positive information about the CS+ poser and negative information about the CS- poser. Instructions reversed the pattern of differential CS valence present during acquisition and eliminated differential electrodermal responding. In Experiment 2, we compared positive and negative CS revaluation by providing positive/negative information about the CS+ and neutral information about CS-. After positive revaluation, differential valence was removed and differential electrodermal responding remained intact. After negative revaluation, differential valence was strengthened and differential electrodermal responding was eliminated. Unexpectedly, the instructions did not affect the reinstatement of differential electrodermal responding.

  4. A tensegrity model for hydrogen bond networks in proteins

    OpenAIRE

    Bywater, Robert P.

    2017-01-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − c...

  5. Interest Rates and Coupon Bonds in Quantum Finance

    Science.gov (United States)

    Baaquie, Belal E.

    2009-09-01

    1. Synopsis; 2. Interest rates and coupon bonds; 3. Options and option theory; 4. Interest rate and coupon bond options; 5. Quantum field theory of bond forward interest rates; 6. Libor Market Model of interest rates; 7. Empirical analysis of forward interest rates; 8. Libor Market Model of interest rate options; 9. Numeraires for bond forward interest rates; 10. Empirical analysis of interest rate caps; 11. Coupon bond European and Asian options; 12. Empirical analysis of interest rate swaptions; 13. Correlation of coupon bond options; 14. Hedging interest rate options; 15. Interest rate Hamiltonian and option theory; 16. American options for coupon bonds and interest rates; 17. Hamiltonian derivation of coupon bond options; Appendixes; Glossaries; List of symbols; Reference; Index.

  6. Double-valence-fluctuating molecules and superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Scalapino, D.J.

    1985-01-01

    We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature

  7. Fragmentation modeling of a resin bonded sand

    Science.gov (United States)

    Hilth, William; Ryckelynck, David

    2017-06-01

    Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.

  8. Valuation of Indonesian catastrophic earthquake bonds with generalized extreme value (GEV) distribution and Cox-Ingersoll-Ross (CIR) interest rate model

    Science.gov (United States)

    Gunardi, Setiawan, Ezra Putranda

    2015-12-01

    Indonesia is a country with high risk of earthquake, because of its position in the border of earth's tectonic plate. An earthquake could raise very high amount of damage, loss, and other economic impacts. So, Indonesia needs a mechanism for transferring the risk of earthquake from the government or the (reinsurance) company, as it could collect enough money for implementing the rehabilitation and reconstruction program. One of the mechanisms is by issuing catastrophe bond, `act-of-God bond', or simply CAT bond. A catastrophe bond issued by a special-purpose-vehicle (SPV) company, and then sold to the investor. The revenue from this transaction is joined with the money (premium) from the sponsor company and then invested in other product. If a catastrophe happened before the time-of-maturity, cash flow from the SPV to the investor will discounted or stopped, and the cash flow is paid to the sponsor company to compensate their loss because of this catastrophe event. When we consider the earthquake only, the amount of discounted cash flow could determine based on the earthquake's magnitude. A case study with Indonesian earthquake magnitude data show that the probability of maximum magnitude can model by generalized extreme value (GEV) distribution. In pricing this catastrophe bond, we assumed stochastic interest rate that following the Cox-Ingersoll-Ross (CIR) interest rate model. We develop formulas for pricing three types of catastrophe bond, namely zero coupon bonds, `coupon only at risk' bond, and `principal and coupon at risk' bond. Relationship between price of the catastrophe bond and CIR model's parameter, GEV's parameter, percentage of coupon, and discounted cash flow rule then explained via Monte Carlo simulation.

  9. Synthesis and investigation of the structure and chemical properties of acyclic compounds of bicoordinated phosphorus with a phosphorus-carbon (p-p)/sub π/ bond

    International Nuclear Information System (INIS)

    Markovskii, L.N.; Romanenko, V.D.

    1987-01-01

    Five types of reactions of phosphoalkenes can be distinguished according to the nature of the change in the coordination number and valence of the phosphorus atom in the course of chemical conversions. There are: reactions of cyclodimerization, cycloaddition, and 1,2-addition at the P-C double bond; formation of compounds of tricoordinated pentavalent phosphorus; formation of tetracoordinated phosphorus compounds; reactions of functionalization occurring without a change in the valence and coordination number of the phosphorus atom; and reactions of 1,2-elimination, leading to compounds of monocoordinated phosphorus. This paper reviews each of these reactions in detail, using double-resonance hydrogen 1 and phosphorus 31 NMR spectra and analyzing the acquired chemical shift and spin-spin coupling constants, and also demonstrates the complexation of phosphorus with several metals

  10. Ab initio study of isomerism in molecular Li2AB+ ions with 12 and 14 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of potential energy surfaces (PES) of molecular ions Li 2 AB + with 12 and 14 valence electrons have been made in the framework of approximations MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/6-31*//MP2/6-31G*+ZPE(MP2/6-31G*). The following most favourable structures have been found: a double-terminal linear for LiNO + (a triplet); a plane bicyclic one for Li 2 OF + , Li 2 SCl + , Li 2 NO + (a singlet) and Li 2 PS + (a singlet), where both cations are coordinated to A-B bond; rectangular (T-shaped) for Li 2 OCl + and SFLi + , as well as for LiNS + and POLi 2 + ions in singlet and triplet states; in the form of a half-opened butterfly for Li 2 PS + (a triplet) and Li 2 SCl +

  11. Event-related brain potential correlates of words' emotional valence irrespective of arousal and type of task.

    Science.gov (United States)

    Espuny, Javier; Jiménez-Ortega, Laura; Casado, Pilar; Fondevila, Sabela; Muñoz, Francisco; Hernández-Gutiérrez, David; Martín-Loeches, Manuel

    2018-03-23

    Many Event-Related brain Potential (ERP) experiments have explored how the two main dimensions of emotion, arousal and valence, affect linguistic processing. However, the heterogeneity of experimental paradigms and materials has led to mixed results. In the present study, we aim to clarify words' emotional valence effects on ERP when arousal is controlled, and determine whether these effects may vary as a function of the type of task performed. For these purposes, we designed an ERP experiment with the valence of words manipulated, and arousal equated across valences. The participants performed two types of task: in one, they had to read aloud each word, written in black on a white background; in the other, they had to name the color of the ink in which each word was written. The results showed the main effects of valence irrespective of task, and no interaction between valence and task. The most marked effects of valence were in response to negative words, which elicited an Early Posterior Negativity (EPN) and a Late Positive Complex (LPC). Our results suggest that, when arousal is controlled, the cognitive information in negative words triggers a 'negativity bias', these being the only words able to elicit emotion-related ERP modulations. Moreover, these modulations are largely unaffected by the types of task explored here. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Reducing the anisotropy of a Brazilian disc generated in a bonded-particle model

    Science.gov (United States)

    Zhang, Q.; Zhang, X. P.; Ji, P. Q.

    2018-03-01

    The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bonded-particle models (BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness (particle and bond) and strength (bond) of the boundary are set at less than and greater than those of the disc assembly, respectively, which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.

  13. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    International Nuclear Information System (INIS)

    Mattila, T.; Zunger, A.

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics

  14. Valence of Facial Cues Influences Sheep Learning in a Visual Discrimination Task

    Directory of Open Access Journals (Sweden)

    Lucille G. A. Bellegarde

    2017-11-01

    Full Text Available Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emotional states of neutral (ruminating in the home pen or negative valence (social isolation or aggressive interaction. Sheep (n = 35 first had to learn a discrimination task with colored cards. Animals that reached the learning criterion (n = 16 were then presented with pairs of images of the face of a single individual taken in the neutral situation and in one of the negative situations. Finally, sheep had to generalize what they had learned to new pairs of images of faces taken in the same situation, but of a different conspecific. All sheep that learned the discrimination task with colored cards reached the learning criterion with images of faces. Sheep that had to associate a negative image with a food reward learned faster than sheep that had to associate a neutral image with a reward. With the exception of sheep from the aggression-rewarded group, sheep generalized this discrimination to images of faces of different individuals. Our results suggest that sheep can perceive the emotional valence displayed on faces of conspecifics and that this valence affects learning processes.

  15. Levels and transitions in /sup 204/Pb and the four valence neutron-hole configurations

    International Nuclear Information System (INIS)

    Hanly, J.M.; Hicks, S.E.; McEllistrem, M.T.; Yates, S.W.

    1988-01-01

    Levels of the nucleus /sup 204/Pb have been investigated using the (n,n'γ) reaction, and γ rays from low-spin excited levels have been observed. Forty-three low-spin levels connected by 78 γ rays are found below 2.9 MeV, whereas only about 28 levels had previously been known. The levels below 2 MeV excitation energy are expected to be dominated by the p/sub 1/2/, f/sub 5/2/, and p/sub 3/2/ valence neutron hole excitations, and 0 + levels at 0, 1730, and 2433.1 keV are associated primarily with these configurations. These states are at almost the same excitation energies as parent 0 + excitations in /sup 206/Pb. Approximately six unnatural-parity levels are identified; this is close to the number predicted in six orbit valence-space shell model calculations. The number of natural-parity levels found, however, is almost twice that calculated with the shell model. Levels and transitions below 2 MeV excitation energy are consistent with expectations basing /sup 204/Pb states on correlated two-hole excitations dominant in /sup 206/Pb

  16. Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea

    Science.gov (United States)

    Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar

    2018-03-01

    Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.

  17. Functionality versus dimensionality in psychological taxonomies, and a puzzle of emotional valence.

    Science.gov (United States)

    Trofimova, Irina

    2018-04-19

    This paper applies evolutionary and functional constructivism approaches to the discussion of psychological taxonomies, as implemented in the neurochemical model Functional Ensemble of Temperament (FET). FET asserts that neurochemical systems developed in evolution to regulate functional-dynamical aspects of construction of actions: orientation, selection (integration), energetic maintenance, and management of automatic behavioural elements. As an example, the paper reviews the neurochemical mechanisms of interlocking between emotional dispositions and performance capacities. Research shows that there are no specific neurophysiological systems of positive or negative affect, and that emotional valence is rather an integrative product of many brain systems during estimations of needs and the capacities required to satisfy these needs. The interlocking between emotional valence and functional aspects of performance appears to be only partial since all monoamine and opioid receptor systems play important roles in non-emotional aspects of behaviour, in addition to emotionality. This suggests that the Positive/Negative Affect framework for DSM/ICD classifications of mental disorders oversimplifies the structure of non-emotionality symptoms of these disorders. Contingent dynamical relationships between neurochemical systems cannot be represented by linear statistical models searching for independent dimensions (such as factor analysis); nevertheless, these relationships should be reflected in psychological and psychiatric taxonomies.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  18. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  19. The Measurement of the Relationship between Taiwan’s Bond Funds’ Net Flow and the Investment Risk -Threshold Autoregressive Model

    OpenAIRE

    Wo-Chiang Lee; Joe-Ming Lee

    2014-01-01

    This article applies the threshold autoregressive model to investigate the relationship between bond funds’ net flow and investment risk in Taiwan. Our empirical findings show that bond funds’ investors are concerned about the investment return and neglect the investment risk. In particular, when expanding the size of the bond funds, fund investors believe that the fund cannot lose any money on investment products. In order to satisfy investors, bond fund managers only target short-term retur...

  20. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar

    2014-01-01

    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  1. Measurement of valence band structure in arbitrary dielectric films

    International Nuclear Information System (INIS)

    Uhm, Han S.; Choi, Eun H.

    2012-01-01

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  2. Size-dependent valence change in small Pr, Nd, and Sm clusters isolated in solid Ar

    International Nuclear Information System (INIS)

    Luebcke, M.; Sonntag, B.; Niemann, W.; Rabe, P.

    1986-01-01

    The L/sub III/ absorption thresholds of Pr, Nd, and Sm clusters isolated in solid Ar are marked by prominent white lines. The lines ascribed to divalent and trivalent rare-earth metals are well separated in energy. From the relative intensities of these lines an average valence of the rare-earth atoms in the cluster has been determined. For dimers and trimers the average valence is close to 2, the value for free atoms. For clusters consisting of more than 20 atoms the average valence approaches 3, the value for bulk metals. In between the valence changes abruptly, indicating the existence of a critical cluster size of approximately 5 atoms for Pr and Nd and of 13 atoms for Sm

  3. Approach and withdrawal tendencies during written word processing: effects of task, emotional valence and emotional arousal

    Directory of Open Access Journals (Sweden)

    Francesca M. M. Citron

    2016-01-01

    Full Text Available The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behaviour (approach vs. withdrawal and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL are associated with an implicit tendency to approach a stimulus, whereas negative valence and high arousal (NH are associated with withdrawal. Hence, positive, high-arousal (PH and negative, low-arousal (NL stimuli elicit conflicting action tendencies. By extending previous research that used several tasks and methods, the present study investigated whether and how emotional valence and arousal affect subjective approach vs. withdrawal tendencies towards emotional words during two novel tasks. In Study 1, participants had to decide whether they would approach or withdraw from concepts expressed by written words. In Studies 2 and 3 participants had to respond to each word by pressing one of two keys labelled with an arrow pointing upward or downward. Across experiments, positive and negative words, high or low in arousal, were presented. In Study 1 (explicit task, in line with the valence-arousal conflict theory, PH and NL words were responded to more slowly than PL and NH words. In addition, participants decided to approach positive words more often than negative words. In Studies 2 and 3, participants responded faster to positive than negative words, irrespective of their level of arousal. Furthermore, positive words were significantly more often associated with up responses than negative words, thus supporting the existence of implicit associations between stimulus valence and response coding (positive is up and negative is down. Hence, in contexts in which participants’ spontaneous

  4. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  5. fK /f{pi} in Full QCD with Domain Wall Valence Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage

    2007-05-01

    We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.

  6. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  7. The influence of valence and arousal on reasoning: Affective priming in the semantic verification task

    Directory of Open Access Journals (Sweden)

    Orlić Ana

    2014-01-01

    Full Text Available The aim of the present study was to examine the effects of affective valence and arousal on the reasoning process. Reasoning was measured using a semantic verification task and the influence of valence and arousal was tracked using the affective priming paradigm. Primes were photographs varied on two dimensions - emotional valence (positive, neutral, negative and arousal (high, low. Forty-nine psychology students participated in the experiment. Results showed that reaction time needed for semantic verification was significantly faster for positive-high arousing in comparison to positive-low arousing condition and for neutral high arousing in comparison to neutral-low arousing condition, but there were no significant differences in negative low and high arousing conditions. Also, significant differences were found among all three valences in high arousing conditions and there were no such differences in low arousing conditions. These results reveal the importance of both arousal and valence in the research on the influence of emotions on the reasoning process. [Projekat Ministarstva nauke Republike Srbije, br. 179033

  8. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  9. Valence framing of political preferences and resistance to persuasion

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2007-01-01

    Full Text Available This study tested the "valence framing effect": an assumption that negatively conceptualized attitudes (as opposing the non-preferred alternative are more resistant to later persuasion attempts. In the experiment we created choice between two political candidates and experimental subjects were led to conceptualize their political preferences in one of two possible ways: either as supporting the preferred candidate or as opposing the non-preferred candidate. The data indicate that negative preferences show less overall change when exposed to counterarguments. This finding can be incorporated in two theoretical frameworks: dual process theories of attitude change (Elaboration likelihood model and descriptive decision making theories (Prospect theory. Results are discussed for their implications for the efficacy of political communication. .

  10. Neurons for hunger and thirst transmit a negative-valence teaching signal

    Science.gov (United States)

    Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.

    2015-01-01

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020

  11. The role of valence focus and appraisal overlap in emotion differentiation.

    Science.gov (United States)

    Erbas, Yasemin; Ceulemans, Eva; Koval, Peter; Kuppens, Peter

    2015-06-01

    Emotion differentiation refers to the level of specificity with which people distinguish between their emotional states and is considered to play an important role for psychological well-being. Yet, not much is known about what characterizes people high or low in emotion differentiation and what underlies these differences. In 2 studies involving experience sampling (Studies 1-2) and lab based (Study 2) methods, we investigated how emotion differentiation is related to individual differences in valence focus and the overlap in appraisal patterns between emotions. In line with expectations, results showed that high levels of both positive and negative emotion differentiation are related to lower levels of valence focus and lower levels of appraisal overlap between emotions. These findings suggest that individuals who are low in emotion differentiation mainly emphasize the valence aspect of emotions while individuals who are high in emotion differentiation make stronger distinctions between emotions in terms of their underlying appraisal profiles. (c) 2015 APA, all rights reserved).

  12. Yb valence state in Yb{sub 5}Rh{sub 4}Ge{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hitoshi; Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima (Japan); Utsumi, Yuki [Synchrotron SOLEIL, L' Orme des Merisiers, Gif-sur-Yvette (France); Katoh, Kenichi [Department of Applied Physics, National Defense Academy, Yokosuka (Japan); Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo (Japan); Quantum Beam Unit, National Institute for Materials Science, Tsukuba (Japan); Yamaoka, Hitoshi [RIKEN SPring-8 Center, Hyogo (Japan); Rousuli, Awabaikeli [Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan); Umeo, Kazunori [NBARD, Hiroshima University, Higashi-Hiroshima (Japan)

    2017-06-15

    Temperature- and pressure-dependent Yb valence state in Yb{sub 5}Rh{sub 4}Ge{sub 10} has been investigated by means of Yb 3d hard X-ray photoemission spectroscopy (HAXPES) and Yb L{sub 3} absorption spectroscopy (XAS). The mean Yb valence derived from the Yb 3d HAXPES is estimated to be ∝2.78 at 300 K and decreases to ∝2.74 at 20 K. On the other hand, the Yb valence deduced from the Yb L{sub 3} XAS at 300 K is almost constant with ∝2.81 in the pressure range between 9.2 and 34.7 GPa. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Interpersonal Valence Dimensions as Discriminators of Communication Contexts: An Empirical Assessment of Dyadic Linkages.

    Science.gov (United States)

    Garrison, John P.; And Others

    The capability of 14 interpersonal dimensions to predict dyadic communication contexts was investigated in this study. Friend, acquaintance, co-worker, and family contexts were examined. The interpersonal valence construct, based on a coactive or mutual-causal paradigm, encompasses traditional source-valence components (credibility, power,…

  14. Iron valence in double-perovskite (Ba,Sr,Ca)2FeMoO6: isovalent substitution effect

    International Nuclear Information System (INIS)

    Yasukawa, Y.; Linden, J.; Chan, T.S.; Liu, R.S.; Yamauchi, H.; Karppinen, M.

    2004-01-01

    In the Fe-Mo based B-site ordered double-perovskite, A 2 FeMoO 6.0 , with iron in the mixed-valence II/III state, the valence value of Fe is not precisely fixed at 2.5 but may be fine-tuned by means of applying chemical pressure at the A-cation site. This is shown through a systematic 57 Fe Moessbauer spectroscopy study using a series of A 2 FeMoO 6.0 [A=(Ba,Sr) or (Sr,Ca)] samples with high degree of Fe/Mo order, the same stoichiometric oxygen content and also almost the same grain size. The isomer shift values and other hyperfine parameters obtained from the Moessbauer spectra confirm that Fe remains in the mixed-valence state within the whole range of A constituents. However, upon increasing the average cation size at the A site the precise valence of Fe is found to decrease such that within the A=(Ba,Sr) regime the valence of Fe is closer to II, while within the A=(Sr,Ca) regime it is closer to the actual mixed-valence II/III state. As the valence of Fe approaches II, the difference in charges between Fe and Mo increases, and parallel with this the degree of Fe/Mo order increases. Additionally, for the less-ordered samples an increased tendency of clustering of the antisite Fe atoms is deduced from the Moessbauer data

  15. Bond graph modeling and simulation of impact dynamics of an automotive crash

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.

    2007-01-01

    With increase in the speeds of automotives, safety has become more and more important aspect of designers to care for. Thus, it is necessary to design the automobile body structure keeping in view all the safety requirements. As a result of the above-mentioned facts, in the recent years, the designers in making automotives more safe, more collision resistant and crash worthy have focused increased attention on designing automotives, which provides greater protection for the drivers and the passengers in case of an accident. Before a new model is launched into the market, a complete collision analysis is carried out to check the damage reduction capabilities and impact protection of automotives in case of an accident. Research in the field of automotive collision and impact analysis is a continuing activity and dedicated groups of engineers are devoting their full time and efforts for this. In this research work, the main attention is focused to provide a detailed knowledge about automotive collision analysis. The objective of this research paper is to develop an understanding of the automotive collision response. For this, we have done a simulation experiment in which, on a railroad, a train car is separated from a train and is moving towards two stationary train cars. By using a bond graph model of the system its state-space equations are found. Then by using software, the simulation is carried out. The bond graph method is a graphical presentation of the power flow using bonds. (author)

  16. Feedback-related negativity codes outcome valence, but not outcome expectancy, during reversal learning.

    Science.gov (United States)

    von Borries, A K L; Verkes, R J; Bulten, B H; Cools, R; de Bruijn, E R A

    2013-12-01

    Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures--that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model predicts an FRN on negative prediction errors, as well as implying a role for the FRN in learning and the adaptation of behavior. However, these predictions have recently been challenged. Notably, studies so far have used tasks in which the outcomes have been contingent on the response. In these paradigms, the need to adapt behavioral responses is present only for negative, not for positive feedback. The goal of the present study was to investigate the effects of positive as well as negative violations of expectancy on FRN amplitudes, without the usual confound of behavioral adjustments. A reversal-learning task was employed in which outcome value and outcome expectancy were orthogonalized; that is, both positive and negative outcomes were equally unexpected. The results revealed a double dissociation, with effects of valence but not expectancy on the FRN and, conversely, effects of expectancy but not valence on the P300. While FRN amplitudes were largest for negative-outcome trials, irrespective of outcome expectancy, P300 amplitudes were largest for unexpected-outcome trials, irrespective of outcome valence. These FRN effects were interpreted to reflect an evaluation along a good-bad dimension, rather than reflecting a negative prediction error or a role in behavioral adaptation. By contrast, the P300 reflects the updating of information relevant for behavior in a changing context.

  17. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus

    2013-01-01

    Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme

  18. A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Stener, M.; Decleva, P. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); CNR-IOM, Trieste (Italy); Coriani, S. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienze e Tecnologia dei Materiali, INSTM, Unità di Trieste (Italy); Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C (Denmark)

    2016-09-30

    Highlights: • The valence shell photoabsorption spectrum of s-triazine has been measured. • Electronic structure calculated with TDDFT and coupled cluster approaches. • Assignments proposed for Rydberg and valence states. • Mixing between Rydberg and valence states important. - Abstract: The absolute photoabsorption cross section of s-triazine has been measured between 4 and 40 eV, and is dominated by bands associated with valence states. Structure due to Rydberg excitations is both weak and irregular. Jahn-Teller interactions affect the vibronic structure observed in the Rydberg absorption bands due to excitation from the 1e″ or 6e′ orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important.

  19. One period coupon bond valuation with revised first passage time approach and the application in Indonesian corporate bond

    Science.gov (United States)

    Maruddani, Di Asih I.; Rosadi, Dedi; Gunardic, Abdurakhman

    2015-02-01

    The value of a corporate bond is conventionally expressed in terms of zero coupon bond. In practice, the most common form of debt instrument is coupon bond and allows early default before maturity as safety covenant for the bondholder. This paper study valuation for one period coupon bond, a coupon bond that only give one time coupon at the bond period. It assumes that the model give bondholder the right to reorganize a firm if its value falls below a given barrier. Revised first passage time approach is applied for default time rule. As a result, formulas of equity, liability, and probability of default is derived for this specified model. Straightforward integration under risk neutral pricing is used for deriving those formulas. For the application, bond of Bank Rakyat Indonesia (BRI) as one of the largest bank in Indonesia is analyzed. R computing show that value of the equity is IDR 453.724.549.000.000, the liability is IDR 2.657.394.000.000, and the probability if default is 5.645305E-47 %.

  20. Music, emotion, and time perception: the influence of subjective emotional valence and arousal?

    Science.gov (United States)

    Droit-Volet, Sylvie; Ramos, Danilo; Bueno, José L. O.; Bigand, Emmanuel

    2013-01-01

    The present study used a temporal bisection task with short (2 s) stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow) (Experiment 1) or their instrumentation (orchestral vs. piano pieces). The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant) vs. atonal (unpleasant) versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music. PMID:23882233

  1. Music, Emotion and Time Perception: The influence of subjective emotional valence and arousal?

    Directory of Open Access Journals (Sweden)

    SYLVIE eDROIT-VOLET

    2013-07-01

    Full Text Available The present study used a temporal bisection task with short (< 2 s and long (> 2 s stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow (Experiment 1 or their instrumentation (orchestral vs. piano pieces. The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant versus atonal (unpleasant versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music.

  2. Music, emotion, and time perception: the influence of subjective emotional valence and arousal?

    Science.gov (United States)

    Droit-Volet, Sylvie; Ramos, Danilo; Bueno, José L O; Bigand, Emmanuel

    2013-01-01

    The present study used a temporal bisection task with short (2 s) stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow) (Experiment 1) or their instrumentation (orchestral vs. piano pieces). The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant) vs. atonal (unpleasant) versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music.

  3. Microstructure and hydrogen bonding in water-acetonitrile mixtures.

    Science.gov (United States)

    Mountain, Raymond D

    2010-12-16

    The connection of hydrogen bonding between water and acetonitrile in determining the microheterogeneity of the liquid mixture is examined using NPT molecular dynamics simulations. Mixtures for six, rigid, three-site models for acetonitrile and one water model (SPC/E) were simulated to determine the amount of water-acetonitrile hydrogen bonding. Only one of the six acetonitrile models (TraPPE-UA) was able to reproduce both the liquid density and the experimental estimates of hydrogen bonding derived from Raman scattering of the CN stretch band or from NMR quadrupole relaxation measurements. A simple modification of the acetonitrile model parameters for the models that provided poor estimates produced hydrogen-bonding results consistent with experiments for two of the models. Of these, only one of the modified models also accurately determined the density of the mixtures. The self-diffusion coefficient of liquid acetonitrile provided a final winnowing of the modified model and the successful, unmodified model. The unmodified model is provisionally recommended for simulations of water-acetonitrile mixtures.

  4. Pricing catastrophic bonds for earthquakes in Mexico

    OpenAIRE

    Cabrera, Brenda López

    2006-01-01

    After the occurrence of a natural disaster, the reconstruction can be financed with catastrophic bonds (CAT bonds) or reinsurance. For insurers, reinsurers and other corporations CAT bonds provide multi year protection without the credit risk present in reinsurance. For investors CAT bonds offer attractive returns and reduction of portfolio risk, since CAT bonds defaults are uncorrelated with defaults of other securities. As the study of natural catastrophe models plays an important role in t...

  5. Mechanics of wafer bonding: Effect of clamping

    Science.gov (United States)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  6. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  7. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    Directory of Open Access Journals (Sweden)

    Marissa A Gorlick

    Full Text Available Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB and one-prototype (AN prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  8. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    Science.gov (United States)

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  9. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry

    Science.gov (United States)

    Zabolotnyy, V. B.; Fürsich, K.; Green, R. J.; Lutz, P.; Treiber, K.; Min, Chul-Hee; Dukhnenko, A. V.; Shitsevalova, N. Y.; Filipov, V. B.; Kang, B. Y.; Cho, B. K.; Sutarto, R.; He, Feizhou; Reinert, F.; Inosov, D. S.; Hinkov, V.

    2018-05-01

    Samarium hexaboride (SmB6), a Kondo insulator with mixed valence, has recently attracted much attention as a possible host for correlated topological surface states. Here, we use a combination of x-ray absorption and reflectometry techniques, backed up with a theoretical model for the resonant M4 ,5 absorption edge of Sm and photoemission data, to establish laterally averaged chemical and valence depth profiles at the surface of SmB6. We show that upon cleaving, the highly polar (001) surface of SmB6 undergoes substantial chemical and valence reconstruction, resulting in boron termination and a Sm3 + dominated subsurface region. Whereas at room temperature, the reconstruction occurs on a timescale of less than 2 h, it takes about 24 h below 50 K. The boron termination is eventually established, irrespective of the initial termination. Our findings reconcile earlier depth resolved photoemission and scanning tunneling spectroscopy studies performed at different temperatures and are important for better control of surface states in this system.

  10. Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid

    2012-11-01

    We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.

  11. Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration

    2012-11-15

    We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.

  12. Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe

    International Nuclear Information System (INIS)

    Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.

    1992-01-01

    Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation

  13. Not always a matter of context: direct effects of red on arousal but context-dependent moderations on valence

    Directory of Open Access Journals (Sweden)

    Vanessa L. Buechner

    2016-09-01

    Full Text Available The arousal theory of color proposes that red is associated with arousal. Research on the color-in-context theory, in turn, states that the context in which red is perceived influences its valence-related meaning and behavioral responses to it. This study faces and integrates these theories by examining the influence of red on both arousal and valence perceptions of test-relevant and neutral stimuli, rendering a color 2 (red vs. blue × context 2 (test vs. neutral between-subjects design. Participants rated different pictures regarding their arousal and valence component, respectively. In line with the assumptions of both theories, red increased arousal perceptions of stimuli irrespective of their valence but a context × color interaction was found for valence perceptions: for participants viewing test-relevant pictures, red increased their perceptions of negativity compared to neutral pictures. The present study shows that both theories are actually compatible when differentiating the arousal and valence component.

  14. Modeling on-column reduction of trisulfide bonds in monoclonal antibodies during protein A chromatography.

    Science.gov (United States)

    Ghose, Sanchayita; Rajshekaran, Rupshika; Labanca, Marisa; Conley, Lynn

    2017-01-06

    Trisulfides can be a common post-translational modification in many recombinant monoclonal antibodies. These are a source of product heterogeneity that add to the complexity of product characterization and hence, need to be reduced for consistent product quality. Trisulfide bonds can be converted to the regular disulfide bonds by incorporating a novel cysteine wash step during Protein A affinity chromatography. An empirical model is developed for this on-column reduction reaction to compare the reaction rates as a function of typical operating parameters such as temperature, cysteine concentration, reaction time and starting level of trisulfides. The model presented here is anticipated to assist in the development of optimal wash conditions for the Protein A step to effectively reduce trisulfides to desired levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  16. [Biological and neural bases of partner preferences in rodents: models to understand human pair bonds].

    Science.gov (United States)

    Coria-Avila, G A; Hernández-Aguilar, M E; Toledo-Cárdenas, R; García-Hernández, L I; Manzo, J; Pacheco, P; Miquel, M; Pfaus, J G

    To analyse the biological and neural bases of partner preference formation in rodents as models to understand human pair bonding. Rodents are social individuals, capable of forming short- or long-lasting partner preferences that develop slowly by stimuli like cohabitation, or rapidly by stimuli like sex and stress. Dopamine, corticosteroids, oxytocin, vasopressin, and opioids form the neurochemical substrate for pair bonding in areas like the nucleus accumbens, the prefrontal cortex, the piriform cortex, the medial preoptic area, the ventral tegmental area and the medial amygdala, among others. Additional areas may participate depending on the nature of the conditioned stimuli by which and individual recognizes a preferred partner. Animal models help us understand that the capacity of an individual to display long-lasting and selective preferences depends on neural bases, selected throughout evolution. The challenge in neuroscience is to use this knowledge to create new solutions for mental problems associated with the incapacity of an individual to display a social bond, keep one, or cope with the disruption of a consolidated one.

  17. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  18. Open-Minded Midwifes, Literate Butchers, and Greedy Hooligans—The Independent Contributions of Stereotype Valence and Consistency on Evaluative Judgments

    Science.gov (United States)

    Schubert, Lisa; Körner, Anita; Lindau, Berit; Strack, Fritz; Topolinski, Sascha

    2017-01-01

    Do people evaluate an open-minded midwife less positively than a caring midwife? Both open-minded and caring are generally seen as positive attributes. However, consistency varies—the attribute caring is consistent with the midwife stereotype while open-minded is not. In general, both stimulus valence and consistency can influence evaluations. Six experiments investigated the respective influence of valence and consistency on evaluative judgments in the domain of stereotyping. In an impression formation paradigm, valence and consistency of stereotypic information about target persons were manipulated orthogonally and spontaneous evaluations of these target persons were measured. Valence reliably influenced evaluations. However, for strongly valenced stereotypes, no effect of consistency was observed. Parameters possibly preventing the occurrence of consistency effects were ruled out, specifically, valence of inconsistent attributes, processing priority of category information, and impression formation instructions. However, consistency had subtle effects on evaluative judgments if the information about a target person was not strongly valenced and experimental conditions were optimal. Concluding, in principle, both stereotype valence and consistency can play a role in evaluative judgments of stereotypic target persons. However, the more subtle influence of consistency does not seem to substantially influence evaluations of stereotyped target persons. Implications for fluency research and stereotype disconfirmation are discussed. PMID:29062289

  19. Open-Minded Midwifes, Literate Butchers, and Greedy Hooligans-The Independent Contributions of Stereotype Valence and Consistency on Evaluative Judgments.

    Science.gov (United States)

    Schubert, Lisa; Körner, Anita; Lindau, Berit; Strack, Fritz; Topolinski, Sascha

    2017-01-01

    Do people evaluate an open-minded midwife less positively than a caring midwife? Both open-minded and caring are generally seen as positive attributes. However, consistency varies-the attribute caring is consistent with the midwife stereotype while open-minded is not. In general, both stimulus valence and consistency can influence evaluations. Six experiments investigated the respective influence of valence and consistency on evaluative judgments in the domain of stereotyping. In an impression formation paradigm, valence and consistency of stereotypic information about target persons were manipulated orthogonally and spontaneous evaluations of these target persons were measured. Valence reliably influenced evaluations. However, for strongly valenced stereotypes, no effect of consistency was observed. Parameters possibly preventing the occurrence of consistency effects were ruled out, specifically, valence of inconsistent attributes, processing priority of category information, and impression formation instructions. However, consistency had subtle effects on evaluative judgments if the information about a target person was not strongly valenced and experimental conditions were optimal. Concluding, in principle, both stereotype valence and consistency can play a role in evaluative judgments of stereotypic target persons. However, the more subtle influence of consistency does not seem to substantially influence evaluations of stereotyped target persons. Implications for fluency research and stereotype disconfirmation are discussed.

  20. Open-Minded Midwifes, Literate Butchers, and Greedy Hooligans—The Independent Contributions of Stereotype Valence and Consistency on Evaluative Judgments

    Directory of Open Access Journals (Sweden)

    Lisa Schubert

    2017-10-01

    Full Text Available Do people evaluate an open-minded midwife less positively than a caring midwife? Both open-minded and caring are generally seen as positive attributes. However, consistency varies—the attribute caring is consistent with the midwife stereotype while open-minded is not. In general, both stimulus valence and consistency can influence evaluations. Six experiments investigated the respective influence of valence and consistency on evaluative judgments in the domain of stereotyping. In an impression formation paradigm, valence and consistency of stereotypic information about target persons were manipulated orthogonally and spontaneous evaluations of these target persons were measured. Valence reliably influenced evaluations. However, for strongly valenced stereotypes, no effect of consistency was observed. Parameters possibly preventing the occurrence of consistency effects were ruled out, specifically, valence of inconsistent attributes, processing priority of category information, and impression formation instructions. However, consistency had subtle effects on evaluative judgments if the information about a target person was not strongly valenced and experimental conditions were optimal. Concluding, in principle, both stereotype valence and consistency can play a role in evaluative judgments of stereotypic target persons. However, the more subtle influence of consistency does not seem to substantially influence evaluations of stereotyped target persons. Implications for fluency research and stereotype disconfirmation are discussed.