This paper combines algebraic and Lagrangian geometry to construct a special basis in every space of conformal blocks, the Bohr-Sommerfeld (BS) basis. We use the method of Borthwick-Paul-Uribe, in which every vector of a BS basis is determined by some half-weight Legendrian distribution coming from a Bohr-Sommerfeld fibre of a real polarization of the underlying symplectic manifold. The advantage of BS bases (compared to the bases of theta functions) is that we can use the powerful methods of asymptotic analysis of quantum states. This shows that Bohr-Sommerfeld bases are quasiclassically unitary. Thus we can apply these bases to compare the Hitchin connection and the KZ connection defined by the monodromy of the Knizhnik-Zamolodchikov equation in the combinatorial theory
The Bohr-Sommerfeld atom theory. Sommerfeld's extension of Bohr's atomic model 1915/16
In December 6th 1915 and January 8th 1916 Arnold Sommerfeld put the Bavarian Academy of Sciences two treatises in the amount of 75 printed pages before, by which he extended Bohr's atomic model from the year 1913 to the Bohr-Sommerfeld atom theory. In Sommerfeld's collected works only the publication submitted 1916 by Sommerfeld in the Annals of Physics about this is found.''My spectral lines are finally printed in the Academy to the impure. In the Annals they will appear in purer form'', so Sommerfeld has announced in this publication in February 10th 1916 to the editor of the Annals of Physics. From the science-historical view however for the extension of Bohr's atom theory just the Academy-treatises published before the purification process are of special interest. To the reproduction of these Academy-treatises an extensive physics-historical essay is prepended.
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n...
We consider an oscillator subjected to a sudden change in equilibrium position or in effective spring constant, or both-to a squeeze in the language of quantum optics. We analyze the probability of transition from a given initial state to a final state, in its dependence on final-state quantum number. We make use of five sources of insight: Bohr-Sommerfeld quantization via bands in phase space, area of overlap between before-squeeze band and after-squeeze band, interference in phase space, Wigner function as quantum update of B-S band and near-zone Fresnel diffraction as mockup Wigner function
Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant
Thylwe, Karl-Erik [KTH-Mechanics, Royal Institute of Technology, S-10044 Stockholm (Sweden); McCabe, Patrick [CCDC, 12 Union Road, CB2 1EZ Cambridge (United Kingdom)
2013-05-15
It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Miller, William H; Cotton, Stephen J
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements. PMID:27586896
Irreversibility and quantum mechanics
Quantum mechanisms has a dual structure: while Schroedinger equation corresponds to a deterministic and time-reversible description, measurement introduces irreversibility and stochasticity. This contrasts with the Bohr-Sommerfeld-Einsten theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of a stochastic process. A new form of quantum theory is summarized here, which contains an intrinsic form of irreversibility, independent of observation
Quantum de Sitter Space-Time and the Dark Energy
Liu, Liao
2007-01-01
Three years ago, we introduced a new way to quantize the static Schwarzschild black hole(SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole.[1] Now in this short report, we try to extend the above method to quantize the static de Sitter(SDS) space-time and establish a quantum theory of both SDS space and dark energy.
Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant
LIU Liao
2008-01-01
@@ Previously we introduce a new way to quantize the static Schwarzschild black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS space and the energy density contributed from the cosmological constant.
Theory of superfluidity macroscopic quantum waves
A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs
Rise and fall of the old quantum theory
Bucher, Manfred
2008-01-01
The old quantum theory of Bohr and Sommerfeld was abandonned for the wrong reason. Its contradictions were caused not by the orbit concept but by a mental barrier--the inconceivability that an electron might collide with the atomic nucleus. Removing that barrier resolves the theory's main failures--incorrect orbital momenta, He atom, H2+ molecule ion. The inclusion of electron oscillations through the nucleus--a concept called "Coulomb oscillator"--renders the old quantum theory consistent with quantum mechanics (although devoid of wave character). The triple success of the Bohr-Sommerfeld model is its correct description of the H atom (and one-electron ions) concerning (1) the energy levels Enl, (2) the orbital angular momenta Lnl--if corrected as Lnl^2 = l(l+1) hbar^2 and with the Coulomb oscillator included--and (3) the orbits' space quantization--with (Lnl)z = ml hbar. These achievements are succinctly represented by the principal, angular and magnetic quantum numbers (n, l, ml) and visualized by orbital ...
On the quantum levels of isolated spherically symmetric gravitational systems
Kastrup, H A
1996-01-01
The known canonical quantum theory of a spherically symmetric pure (Schwarzschild) gravitational system describes isolated black holes by plane waves exp(-iMc^2\\tau/\\hbar) with respect to their continuous masses M and the proper time \\tau of observers at spatial infinity. On the other hand Bekenstein and Mukhanov postulated discrete mass levels for such black holes in the spirit of the Bohr- Sommerfeld quantisation in atomic physics. The two approaches can be related by postulating periodic boundary conditions in time for the plane waves and by iden- tifying the period \\Delta in real time with the period \\Delta_H = 8\\pi GM/c^3 in Euclidean time. This yields the mass spectrum M_n = (1/2)\\sqrt{n}m_P, n=1,2,...
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Discrete-charge quantum circuits in semiclassical approach
Utreras-Díaz, C.A.; J. C. Flores
2006-01-01
We discuss a new approach to describe mesoscopic systems, based on the ideas of quantum electrical circuits with charge discreteness. This approach has allowed us to propose a simple alternative descriptions of some mesoscopic systems, with interesting results for some mesoscopic systems. In his work, we show that the application of the Bohr-Sommerfeld quantization rules to the Quantum $LC$ circuit with discrete charge allows us to easily reproduce previous results.
This textbook for students of physics is oriented in the selection of matter by the contents of a two-semester course about quantum theory. Thereby the foundations of quantum theory, among them the quantum-mechanical measurement process, the mathematical formalism, and Bell's inequalities, are extensively treated. Also modern concepts like feynman's path integral are regarded. This work is equally suited for a self-study, as course-accompanying lecture, and for preparations of examina. Application examples, supplementary explanations, and numerous illustration take car for a good understanding of the theoretical contents
Bohm, David
1951-01-01
This superb text by David Bohm, formerly Princeton University and Emeritus Professor of Theoretical Physics at Birkbeck College, University of London, provides a formulation of the quantum theory in terms of qualitative and imaginative concepts that have evolved outside and beyond classical theory. Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of t
Discretization on the cosmic scale inspired from the Old Quantum Mechanics
Agnese, A. G.; Festa, R
1998-01-01
The Old Quantum Mechanics actions discretization rules for periodic motions on the atomic scale (Bohr-Sommerfeld) have been suitably modified in order to account the gravitational field instead of the electrostatic one. The new rules are used to calculate a few mechanical quantities pertinent to the periodic motions of celestial bodies. Several values have been obtained which result in reasonable agreement with the corresponding experimental data. A gravitational dimensionless structure const...
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Murdin, P.
2000-11-01
A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...
Silveirinha, Mario G.
2013-01-01
Here, we develop a comprehensive quantum theory for the phenomenon of quantum friction. Based on a theory of macroscopic quantum electrodynamics for unstable systems, we calculate the quantum expectation of the friction force, and link the friction effect to the emergence of system instabilities related to the Cherenkov effect. These instabilities may occur due to the hybridization of particular guided modes supported by the individual moving bodies, and selection rules for the interacting mo...
Algebraic quantum field theory
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Quantum electronics basic theory
Fain, V M; Sanders, J H
1969-01-01
Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2015-01-01
The research article presents the highly innovative theoretical research results: 1) the new quantum microeconomics theory in the quantum econophysics science is formulated; the idea on the existence of the discrete-time induced quantum transitions of firm’s earnings (the firm’s value) in the quantum microeconomics theory in the quantum econophysics science is proposed; 2) the formulas (1, 2) to compute the firm’s discrete-time EBITDA (the firm’s value) changes at the different time moments i...
Here, we develop a comprehensive quantum theory for the phenomenon of quantum friction. Based on a theory of macroscopic quantum electrodynamics for unstable systems, we calculate the quantum expectation of the friction force at zero temperature, and link the friction effect to the emergence of system instabilities related to the Cherenkov effect. These instabilities may occur due to the hybridization of particular guided modes supported by the individual moving bodies, and selection rules for the interacting modes are derived. It is proven that the quantum friction effect can take place even when the interacting bodies are lossless and made of nondispersive dielectrics. (paper)
Lassig, Michael
2011-01-01
A systematic theory is introduced that describes stochastic effects in game theory. In a biological context, such effects are relevant for the evolution of finite populations with frequency-dependent selection. They are characterized by quantum Nash equilibria, a generalization of the well-known Nash equilibrium points in classical game theory. The implications of this theory for biological systems are discussed in detail.
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Reverse Engineering Quantum Field Theory
Oeckl, Robert
2012-01-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Schumacher, Benjamin; Westmoreland, Michael D.
2012-01-01
Modal quantum theory (MQT) is a "toy model" of quantum theory in which amplitudes are elements of a general field. The theory predicts, not the probabilities of a measurement result, but only whether or not a result is possible. In this paper we review MQT and extend it to include mixed states, generalized measurements and open system dynamics. Even though MQT does not have density operators, superoperators or any concept of "positivity", we can nevertheless establish a precise analogue to th...
Effective quantum field theories
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
This book is composed of 10 chapters. It starts by introducing classical principle of action. It adds quantal principle of action, which is divided into two cases that the degree of freedom is limited and limitless. It continues to basic quantum field theories, Green's function and functional differential equation toward green sources, solvable models, formal value of functional differential equation: quantization method of path integral formulation, approximate calculation of greens function, Representation Method of Schrodinger of quantum field theory and expansion of quantum field theory.
Quantum Gravity as Topological Quantum Field Theory
Barrett, John W.
1995-01-01
The physics of quantum gravity is discussed within the framework of topological quantum field theory. Some of the principles are illustrated with examples taken from theories in which space-time is three dimensional.
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Alvarez-Gaumé, Luís
1996-01-01
Quantum Field Theory provides the most fundamental language known to express the fundamental laws of Nature. It is the consequence of trying to describe physical phenomena within the conceptual framework of Quantum Mechanics and Special Relativity. The aim of these lectures will be to present a number of concepts and methods in the subject which many of us find difficult to understand. They may include (depending on time) : the need to introduce quantum fields, the realization of symmetries, the renormalization group, non-perturbative phenomena, infrared divergences and jets, etc. Some familiarity with the rudiments of Feynman diagrams and relativistic quantum mechanics will be appreciated.
We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x2 + 1 = 0, and thus permits an elegant complex representation of the extended field by adjoining i=√(−1). Quantum theories over these fields recover much of the structure of conventional quantum theory except for the condition that vanishing inner products arise only from null states; unnaturally strong computational power may still occur. Finally, we are led to consider one more framework, with further restrictions on the finite fields, that recovers a local transitive order and a locally-consistent notion of inner product with a new notion of cardinal probability. In this framework, conventional quantum mechanics and quantum computation emerge locally (though not globally) as the size of the underlying field increases. Interestingly, the framework allows one to choose separate finite fields for system description and for measurement: the size of the first field quantifies the resources needed to describe the system and the size of the second quantifies the resources used by the observer. This resource-based perspective potentially provides insights into quantitative measures for actual computational power, the complexity of quantum system definition and evolution, and the independent question of the cost of the measurement process. (paper)
Quantum group gauge theory on quantum spaces
Brzezinski, Tomasz; Majid, Shahn
1992-01-01
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on $SU_q(2)$ . The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-co...
Quantum Field Theory without Divergences: Quantum Spacetime
Gadiyar, G. H.
1994-01-01
A fundamental length is introduced into physics in a way which respects the principles of relativity and quantum field theory. This improves the properties of quantum field theory: divergences are removed. How to quantize gravity is also indicated. When the fundamental length tends to zero the present version of quantum field theory is recovered.
Superluminality in Quantum Theory
Fantasia, Giovanni Andrea
2003-01-01
In the present work we investigate the possibility of superluminal information transmission in quantum theory. We give simple and general arguments to prove that the general structure (Hilbert's space plus instantaneous state reduction) of the theory allows the existence of superluminal communication. We discuss how this relates with existing no-signalling theorems.
Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance
Alexis Larra？ aga; Luis Cabarique; Manuel Londo？ o
2012-01-01
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.
Quantum Algorithms for Quantum Field Theories
Jordan, Stephen P.; Lee, Keith S. M.; Preskill, John
2012-01-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We develop a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (phi-fourth theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling...
Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The
Quantum group gauge theory on quantum spaces
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SUq(2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)
Dissipative quantum theory: Implications for quantum entanglement
Rajagopal, A. K.; Rendell, R. W.
2001-01-01
Three inter-related topics are discussed here. One, the Lindblad dynamics of quantum dissipative systems; two, quantum entanglement in composite systems and its quantification based on the Tsallis entropy; and three, robustness of entanglement under dissipation. After a brief review of the Lindblad theory of quantum dissipative systems and the idea of quantum entanglement in composite quantum systems illustrated by describing the three particle systems, the behavior of entanglement under the ...
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Quantum Field Theory of Fluids
Gripaios, Ben; Sutherland, Dave
2015-01-01
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a...
Hoehn, Philipp A
2016-01-01
We reconstruct the explicit formalism of qubit quantum theory from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's `catalogue of knowledge' about S; no ontic assumptions are necessary. From the rules we derive the state spaces for N qubits and show that (a) they coincide with the set of density matrices over N qubit Hilbert spaces; (b) states evolve unitarily under the group $\\rm{PSU}(2^N)$ according to the von Neumann evolution equation; and (c) the binary questions by means of which O interrogates the systems corresponds to projective measurements on Pauli operators with outcome probabilities given by the Born rule. Besides offering a novel conceptual perspective on qubit quantum theory, the reconstruction also unravels new structural insights. Namely, we show that, in a quadratic information measure, (d) qubits satisfy informational complementarity inequalities...
Hoehn, Philipp A; Wever, Christopher(Institute of Nuclear and Particle Physics, NCSR ‘Demokritos’,, Agia Paraskevi, 15310, Greece)
2015-01-01
We reconstruct the explicit formalism of qubit quantum theory from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's `catalogue of knowledge' about S. From the rules we derive the state spaces for N elementary systems and show that (a) they coincide with the set of density matrices over an N-qubit Hilbert space; (b) states evolve unitarily under the...
Kouri, Donald J
2017-01-01
This book provides a detailed exposition of quantum scattering theory as applied to chemical physics. It includes the fundamental mathematics of scattering, details of how it applies to atom-molecule, molecule-molecule collisions, as well as collisions with surfaces. A variety of computational methods for solving scattering problems are presented. In addition, some discussion of fully quantal approximations is included. Both inelastic and reactive scattering are treated in detail. Both time-dependent and time-independent approaches to scattering theory and scattering computation are included. The book will reflect the research done over approximately 50 years by the author.
The Quantum Underground: Early quantum theory textbooks
Gearhart, Clayton
2011-04-01
Quantum theory had its beginnings in 1900, when Max Planck derived his famous formula for the energy density of black-body radiation. But the early quantum theory textbooks we remember today--for example, those of Arnold Summerfeld (1919), Fritz Reiche (1921), and a shorter Report by James Jeans (1914), did not appear until some years later, and all were written by physicists who were themselves active participants in early quantum theory. Surprisingly, not all early texts fit this pattern. Reiche himself had written a review article on quantum theory for general readers in Die Naturwissenschaften in 1913, long before his research had shifted to quantum topics. And a year later, textbooks by Hermann Sieveking and Sigfried Valentiner treated quantum theory for students and non-specialists, although neither was active in quantum theoretical research. A third and better known author, Owen Richardson, also treated quantum theory in a 1914 book on electromagnetism. I will describe these early and little-known treatments of quantum theory, all of which were written by physicists whose primary research and professional interests lay elsewhere.
Studies in quantum field theory
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Homogeneous Field and WKB Approximation in Deformed Quantum Mechanics with Minimal Length
Jun Tao
2015-01-01
Full Text Available In the framework of the deformed quantum mechanics with a minimal length, we consider the motion of a nonrelativistic particle in a homogeneous external field. We find the integral representation for the physically acceptable wave function in the position representation. Using the method of steepest descent, we obtain the asymptotic expansions of the wave function at large positive and negative arguments. We then employ the leading asymptotic expressions to derive the WKB connection formula, which proceeds from classically forbidden region to classically allowed one through a turning point. By the WKB connection formula, we prove the Bohr-Sommerfeld quantization rule up to Oβ2. We also show that if the slope of the potential at a turning point is too steep, the WKB connection formula is no longer valid around the turning point. The effects of the minimal length on the classical motions are investigated using the Hamilton-Jacobi method. We also use the Bohr-Sommerfeld quantization to study statistical physics in deformed spaces with the minimal length.
Quantum computation and complexity theory
Svozil, K.
1994-01-01
The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applications to quantum computing. Standard interferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed.
Gripaios, Ben
2014-01-01
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.
Quantum Information Theory - an Invitation
Werner, R. F.
2001-01-01
We give a non-technical introduction of the basic concepts of Quantum Information Theory along the distinction between possible and impossible machines. We then proceed to describe the mathematical framework of Quantum Information Theory. The capacities of a quantum channel for classical and for quantum information are defined in a unified scheme, and a mathematical characterization of all teleportation and dense coding schemes is given.
Quantum Information and Relativity Theory
Peres, Asher; Terno, Daniel R.
2002-01-01
Quantum mechanics, information theory, and relativity theory are the basic foundations of theoretical physics. The acquisition of information from a quantum system is the interface of classical and quantum physics. Essential tools for its description are Kraus matrices and positive operator valued measures (POVMs). Special relativity imposes severe restrictions on the transfer of information between distant systems. Quantum entropy is not a Lorentz covariant concept. Lorentz transformations o...
Theory of interacting quantum fields
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Cunningham, Bruce
2009-11-01
The Initial Condition (that which existed prior to the universe) is compared as an infinite thermodynamic system (reservoir and system) to a two-component blackbody system, where one component, composed of unbound bosons, contained a symmetry breaking potential. Symmetry breaking resulted in the moment of inflation in a subsystem (small part) of one component, which in turn ignited an unloading wave. The ensuing Big Bang Unloading Wave created a continuously expanding cavity in that component. The cavity is the universe. Within the expanding unloading wave, the first energy cascade has continuously produced intense plasma effects, superelectric fields, and supermagnetic effects. The intense plasma produces violent pinch effects propelling superelectric-magnetic particles to the speed of light c impacting them within the other component (bound boson Fermi-Dirac particles) as original energy particles representing the apex of the spectral ladder and the beginning of the second energy cascade. Here quench factors freeze persistent superconducting current vibrations into place prior to application of the algorithmic ladder of the quantum field theory time line. Energies evolve to include the formation of std model physics (QM,QED,QCD) general theory of relativity (GRT), special theory (SRT), linear momentum, and angular momentum, etc.
Is Quantum Gravity a Super-Quantum Theory?
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2013-01-01
We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.
The next stage: quantum game theory
Piotrowski, Edward W.; Jan Sladkowski
2003-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper presents the history, basic ideas and recent development in quantum game theory. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society.
Quantum Transition-State Theory
Hele, Timothy J H
2014-01-01
This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.
The quantum theory of measurement
Busch, Paul; Mittelstaedt, Peter
1996-01-01
The amazing accuracy in verifying quantum effects experimentally has recently renewed interest in quantum mechanical measurement theory. In this book the authors give within the Hilbert space formulation of quantum mechanics a systematic exposition of the quantum theory of measurement. Their approach includes the concepts of unsharp objectification and of nonunitary transformations needed for a unifying description of various detailed investigations. The book addresses advanced students and researchers in physics and philosophy of science. In this second edition Chaps. II-IV have been substantially rewritten. In particular, an insolubility theorem for the objectification problem has been formulated in full generality, which includes unsharp object observables and unsharp pointers.
Quantum Cosmology: Effective Theory
Bojowald, Martin
2012-01-01
Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be deri...
Recoverability in quantum information theory
Wilde, Mark M
2015-01-01
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information...
Topics in quantum field theory
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Time, chance and quantum theory
Sudbery, Anthony
2016-01-01
I propose an understanding of Everett and Wheeler's relative-state interpretation of quantum mechanics, which restores the feature of indeterminism to the theory. This incorporates a theory of probability as truth values in a many-valued logic for future statements, and a contextual theory of truth which gives objective and subjective perspectives equal validity.
A Note on Instanton Effects in ABJM Theory
Wang, Xian-fu; Huang, Min-xin
2014-01-01
We consider the quantum spectral problem appearing the Fermi gas formulation of the ABJM (Aharony-Bergman-Jafferis-Maldacena) matrix model. This is known to related to the refined topological string on local P^1*P^1 Calabi-Yau geometry. In the ABJM setting the problem is formulated by an integral equation, and is somewhat different from the one formulated directly in terms of the Calabi-Yau geometry and studied in our earlier paper. We use the similar method in our earlier paper to determine the non-perturbative contributions to the quantum phase volume in the ABJM case from the Bohr-Sommerfeld quantization condition. As in our earlier paper, the non-perturbative contributions contain higher order smooth corrections beyond those required by singularity cancellations with the perturbative contributions proposed by Kallen and Marino. Our results imply possible new contributions to the grand potential of the ABJM matrix model.
A note on instanton effects in ABJM theory
Wang, Xian-fu; Wang, Xin; Huang, Min-xin
2014-11-01
We consider the quantum spectral problem appearing the Fermi gas formulation of the ABJM (Aharony-Bergman-Jafferis-Maldacena) matrix model. This is known to related to the refined topological string on local ℙ1 × ℙ1 Calabi-Yau geometry. In the ABJM setting the problem is formulated by an integral equation, and is somewhat different from the one formulated directly in terms of the Calabi-Yau geometry and studied in our earlier paper. We use the similar method in our earlier paper to determine the non-perturbative contributions to the quantum phase volume in the ABJM case from the Bohr-Sommerfeld quantization condition. As in our earlier paper, the non-perturbative contributions contain higher order smooth corrections beyond those required by singularity cancellations with the perturbative contributions proposed by Kallen and Marino. Our results imply possible new contributions to the grand potential of the ABJM matrix model.
Quantum Theory is an Information Theory
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Quantum Theory: Exact or Approximate?
Adler, Stephen L.; Bassi, Angelo
2009-01-01
Quantum mechanics has enjoyed a multitude of successes since its formulation in the early twentieth century. At the same time, it has generated puzzles that persist to this day. These puzzles have inspired a large literature in physics and philosophy. There are two distinct approaches. One is to assume that quantum theory is exact, but that the interpretive postulates need modification, to eliminate apparent contradictions. The second approach is to assume that quantum mechanics is not exact,...
Quantum theory of excess noise
Bardroff, P. J.; Stenholm, S
1999-01-01
We analyze the excess noise in the framework of the conventional quantum theory of laser-like systems. Our calculation is conceptually simple and our result also shows a correction to the semi-classical result derived earlier.
Quantum Game Theory in Finance
Piotrowski, Edward W.; Jan Sladkowski
2004-01-01
This is a short review of the background and recent development in quantum game theory and its possible application in economics and finance. The intersection of science and society is also discussed. The review is addressed to non--specialists.
Quantum theory a wide spectrum
Manoukian, E B
2006-01-01
Suitable for instructors and graduate students in Physics, and researchers and professional scientists in Theoretical Physics, this textbook focuses on Quantum Theory. It includes traditional topics and contains numerous problems some of which are challenging enough for research
Quantum Field Theory in Graphene
Fialkovsky, I. V.; Vassilevich, D. V.
2011-01-01
This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Spinors in Quantum Geometrical Theory
Galehouse, Daniel C.
2002-01-01
Spinors have played an essential but enigmatic role in modern physics since their discovery. Now that quantum-gravitational theories have started to become available, the inclusion of a description of spin in the development is natural and may bring about a profound understanding of the mathematical structure of fundamental physics. A program to attempt this is laid out here. Concepts from a known quantum-geometrical theory are reviewed: (1) Classical physics is replaced by a suitable geometr...
Classical and quantum effective theories
Polonyi, Janos
2014-01-01
A generalization of the action principle of classical mechanics, motivated by the Closed Time Path (CTP) scheme of quantum field theory, is presented to deal with initial condition problems and dissipative forces. The similarities of the classical and the quantum cases are underlined. In particular, effective interactions which describe classical dissipative forces represent the system-environment entanglement. The relation between the traditional effective theories and their CTP extension is briefly discussed and few qualitative examples are mentioned.
Introduction to quantum field theory
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Quantum decision theory as quantum theory of measurement
We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Vukmirovic, Nenad
2010-01-01
This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Fractional statistics and quantum theory
Khare, Avinash
1997-01-01
This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced research workers with a reasonable background in quantum and statistical mechanics. The main emphasis will be on explaining new concepts. Topics in the first part of the book includes the flux tube model of anyons, the braid group and quantum and statistical mechanics of noninteracting anyon gas. The second part of the book provides a detailed discussion about f
Quantum Hamilton-Jacobi theory.
Roncadelli, Marco; Schulman, L S
2007-10-26
Quantum canonical transformations have attracted interest since the beginning of quantum theory. Based on their classical analogues, one would expect them to provide a powerful quantum tool. However, the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We overcome this difficulty. We show that solutions to the QHJE can be constructed by a simple prescription starting from the propagator of the associated Schrödinger equation. Our result opens the possibility of practical use of quantum Hamilton-Jacobi theory. As an application, we develop a surprising relation between operator ordering and the density of paths around a semiclassical trajectory. PMID:17995307
Measurement theory in quantum mechanics
It is assumed that consciousness, memory and liberty (within the limits of the quantum mechanics indeterminism) are fundamental properties of elementary particles. Then, using this assumption it is shown how measurements and observers may be introduced in a natural way in the quantum mechanics theory. There are no longer fundamental differences between macroscopic and microscopic objects, between classical and quantum objects, between observer and object. Thus, discrepancies and paradoxes have disappeared from the conventional quantum mechanics theory. One consequence of the cumulative memory of the particles is that the sum of negentropy plus information is a constant. Using this theory it is also possible to explain the 'paranormal' phenomena and what is their difference from the 'normal' ones
Quantum information and relativity theory
This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment
GRAVITATIONAL WAVES AND QUANTUM THEORY
Trunev A. P.
2014-01-01
In this article we consider gravitation theory in multidimensional space. The model of the metric satisfying the basic requirements of quantum theory is proposed. It is shown that gravitational waves are described by the Liouville equation. Schrödinger conjecture about the Schrödinger wave function and gravitational waves has been proved
[Studies in quantum field theory
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
The Ontology of Quantum Theory
An interpretation of the quantum theory is proposed, allowing an explanation of the origins of the theory principles and its mathematical formalism. In contrast to the hitherto interpretations it is based on the ontology assuming existence of omniscience. The interpretation proposed explains - in consistence with the relativity theory - the results of the correlation experiments implying that an unobserved elementary particle does not exist objectively (beyond our consciousness) or that a quantum system makes o non - divisive unity bound through non-spacetime interactions. According to this interpretation, both these possibilities occur simultaneously. (author)
Quantum Link Models and Quantum Simulation of Gauge Theories
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
Propensity, Probability, and Quantum Theory
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Bohmian Mechanics and Quantum Field Theory
Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino
2003-01-01
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which in particular ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines fo...
Foundations of quantum theory and quantum information applications
Galvao, Ernesto F.
2002-01-01
This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity pr...
The paper puts together some loosely connected observations, old and new, on the concept of a quantum field and on the properties of Feynman amplitudes. We recall, in particular, the role of (exceptional) elementary induced representations of the quantum mechanical conformal group SU(2,2) in the study of gauge fields and their higher spin generalization. A recent revival of the (Bogolubov-)Epstein-Glaser approach to position space renormalization is reviewed including an application to the calculation of residues of primitively divergent graphs. We end up with an optimistic outlook of current developments of analytic methods in perturbative QFT which combine the efforts of theoretical physicists, algebraic geometers and number theorists
An invitation to Quantum Game Theory
Piotrowski, Edward W.; Jan Sladkowski
2002-01-01
Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper presents the history, basic ideas and recent development in quantum game theory. In this context, a new application of the Ising chain model is proposed.
Experimental quantum field theory
The CERN-JINR School of Physics is meant to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. This paper presents what the author regards to be the essential minmum of quantum field thoery that should be known to experimental particle physicists. (B.D.)
General covariance and quantum theory
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Field theories of quantum gravity
Attempts at constructing a satisfactory quantum field theory of gravity have been an active area of research for many years. We shall review various aspects of this problem restricting ourselves to the ''covariant'', rather than the ''canonical'', approach. This still leaves a vast area, and many interesting topics will have to be omitted. We discuss the violation of classical symmetries in quantum theory, i.e. the question of anomalies, and, in particular, gravitational anomalies; the ultraviolet problem in Einstein gravity and its supersymmetric extensions; the renormalizable ''higher derivative'' theory, and the status of the unitarity problem; and the further extension to strings, i.e. extended objects and infinite component field theories, and their ''low energy'' local field theory limit. (author)
A Naturally Renormalized Quantum Field Theory
Rouhani, S.; Takook, M. V.
2006-01-01
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...
A general approach, within the framework of canonical quantization, is described for analyzing the quantum behavior of complicated electronic circuits. This approach is capable of dealing with electrical networks having nonlinear or dissipative elements. The techniques are used to analyze a degenerate parametric amplifier, a device capable of generating squeezed coherent state signals. A circuit capable of performing back-action-evading electrical measurements is also discussed. (author)
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Matrix String Theory As A Generalized Quantum Theory
Minic, Djordje
1997-01-01
Matrix String Theory of Banks, Fischler, Shenker and Susskind can be understood as a generalized quantum theory (provisionally named "quansical" theory) which differs from Adler's generalized trace quantum dynamics. The effective Matrix String Theory Hamiltonian is constructed in a particular fermionic realization of Matrix String Theory treated as an example of "quansical" theory.
Holography, Quantum Geometry, and Quantum Information Theory
P. A. Zizzi
2000-03-01
Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.
Fundamentals of Quantum Information Theory
Keyl, M.
2002-01-01
In this paper we give a self contained introduction to the conceptional and mathematical foundations of quantum information theory. In the first part we introduce the basic notions like entanglement, channels, teleportation etc. and their mathematical description. The second part is focused on a presentation of the quantitative aspects of the theory. Topics discussed in this context include: entanglement measures, channel capacities, relations between both, additivity and continuity propertie...
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Discretization on the cosmic scale inspired from the Old Quantum Mechanics
Agnese, A G
1998-01-01
The Old Quantum Mechanics actions discretization rules for periodic motions on the atomic scale (Bohr-Sommerfeld) have been suitably modified in order to account the gravitational field instead of the electrostatic one. The new rules are used to calculate a few mechanical quantities pertinent to the periodic motions of celestial bodies. Several values have been obtained which result in reasonable agreement with the corresponding experimental data. A gravitational dimensionless structure constant has been determined, using the data relative to the solar sistem, which allows to quantitatively account for phenomena on a much wider scale. In particular, some information is acquired about the recently discovered extrasolar planetary systems and about the general empirical law which connects the spin of a celestial body with the square of its mass.
Jump processes in quantum theories
In this lecture we show that actually the use of jump processes naturally arises in large class of problems and that they are not necessarily associated with a specified representation of the quantum mechanics. In Section 2, we recall the basic structure and properties of this object. In Section 3, we derive an integral representation 'a la Feynman' for the time evolution of the Wigner function by a stochastic flow on the phase space. In Section 4, we use previous representations to discuss the existence of relativistic quantum flow associated with trigonometric models of relativistic quantum field theory. In the last section, we are interested in the classical limit of quantum mechanics time evolution. (orig./HSI)
Quantum Field Theory: Where We Are
Fredenhagen, Klaus; Rehren, Karl-Henning; Seiler, Erhard
2007-01-01
We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory.
Interference and inequality in quantum decision theory
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Interference and inequality in quantum decision theory
Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)
2010-12-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Interpreting quantum theory a therapeutic approach
Friederich, Simon
2014-01-01
Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.
Quantum corrections in classicalon theories
P. Asimakis
2015-04-01
Full Text Available We use the heat kernel in order to compute the one-loop effective action on a classicalon background. We find that the UV divergences are suppressed relative to the predictions of standard perturbation theory in the interior of the classicalon. There is a strong analogy with the suppression of quantum fluctuations in Galileon theories, within the regions where the Vainshtein mechanism operates (discussed in arXiv:1401.2775. Both classicalon and Galileon theories display reduced UV sensitivity on certain backgrounds.
Quantum theory of collective motion
This is the third in a series of papers which intends to develop a new microscopic theory capable by itself to determine the ''maximal-decoupled'' collective subspace in the many-particle Hilbert space as well as the collective Hamiltonian specifying the subspace. The fundamental principle to formulate the theory is called the Invariance principle of the Schroedinger equation. The main purpose of this paper is to show that, when we positively utilize the invariance principle, we can directly obtain a quantum theory of collective motion going beyond the random phase approximation. (author)
Time-Symmetrized Counterfactuals in Quantum Theory
Vaidman, L.
1998-01-01
Recently, several authors have criticized the time-symmetrized quantum theory originated by the work of Aharonov et al. (1964). The core of this criticism was a proof, appearing in various forms, which showed that the counterfactual interpretation of time-symmetrized quantum theory cannot be reconciled with standard quantum theory. I argue here that the apparent contradiction is due to a logical error. I analyze the concept of counterfactuals in quantum theory and introduce time-symmetrized c...
Transfer principle in quantum set theory
Ozawa, Masanao
2006-01-01
In 1981, Takeuti introduced quantum set theory as the quantum counterpart of Boolean valued models of set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed subspaces in a Hilbert space and showed that appropriate quantum counterparts of ZFC axioms hold in the model. Here, Takeuti's formulation is extended to construct a model of set theory based on the logic represented by the lattice of projections in an arbitrary vo...
Quasi Hopf quantum symmetry in quantum theory
In quantum theory, internal symmetries more general than groups are possible. We show that quasi-triangular quasi Hopf algebras G* ('quasi quantum groups') permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators. All this remains true when Drinfeld's axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasi-triangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G* admits a *-operation with certain properties. Invariance properties of Green functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like Uq(sl2) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasi-triangular quasi Hopf algebra G* is canonically associated with Uq(sl2) if qp=1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)
Preskill, John
2016-01-01
This is the 10th and final chapter of my book on Quantum Information, based on the course I have been teaching at Caltech since 1997. An early version of this chapter (originally Chapter 5) has been available on the course website since 1998, but this version is substantially revised and expanded. The level of detail is uneven, as I've aimed to provide a gentle introduction, but I've also tried to avoid statements that are incorrect or obscure. Generally speaking, I chose to include topics that are both useful to know and relatively easy to explain; I had to leave out a lot of good stuff, but on the other hand the chapter is already quite long. This is a working draft of Chapter 10, which I will continue to update. See the URL on the title page for further updates and drafts of other chapters, and please send me an email if you notice errors. Eventually, the complete book will be published by Cambridge University Press.
Quantum theory of acoustoelectric interaction
Mosekilde, Erik
1974-01-01
Within the self-consistent-field approximation, a quantum-mechanical derivation is given for the dielectric response function of an arbitrarily degenerate free-electron gas which is subjected to a drift field. Neglecting in the equation of motion for the one-electron density operator a convection...... term, significant in the classical-collision-dominated regime only, the dielectric response function and the acoustic gain factor for a piezoelectrically active sound wave are obtained for the quantum and semiclassical-microscopic regimes. The manner in which the theory can be extended to the collision...
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Beable-Guided Quantum Theories: Generalising Quantum Probability Laws
Kent, Adrian
2013-01-01
We introduce the idea of a {\\it beable-guided quantum theory}. Beable-guided quantum theories (BGQT) are generalisations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realised configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. BGQT can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterise the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrise how far we are from a standard quantum explanation. Less co...
Quantum theory of human communication
Slowikowski, Wojtek; Nielsen, Erik B.
2004-01-01
We use notions and techniques of Quantum Field Theory to formulate and investigate basic concepts and mechanisms of human communication. We start with attitudes which correspond to photons frequencies, then we introduce states-of-mind which correspond to wave functions. Finally, by way of the second quantization, we come to states-of-opinions which correspond to states of quantized radiation fields. In the present paper we shall only investigate superpositions of pairs of coherent states (e.g...
Quantum Theory and Time Asymmetry
Zeh, H. D.
2003-01-01
The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as of information about them. The concept of relevance being used in all statistical theories of irreversible thermodynamics is shown to be based on the same observer-relatedness....
Gravitation, Thermodynamics, and Quantum Theory
Wald, Robert M.
1999-01-01
During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...
The Quantum Double in Integrable Quantum Field Theory
Bernard, D.; Leclair, A.
1992-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2d quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. Multiplicative presentations of the Yangian double are analyzed.
Quantum backreaction in string theory
There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum theory can be collectively verified
Mitra, Arindam
2009-01-01
No theory of physics has been collectively scientifically verified in an experiment so far. It is pointed out that probabilistic structure of quantum theory can be collectively scientifically verified in an experiment. It is also argued that experimentalist point of view quantum theory is a complete theory.
Quasi Hopf quantum symmetry in quantum theory
In quantum theory, internal symmetries more general than groups are possible. We show that quasitriangular quasi Hopf algebras G* as introduced by Drinfeld permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators as proposed by Froehlich. All this remains true when Drinfelds axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasitriangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G* admits a*-operation with certain properties. Invariance properties of Greens functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like Uq(sl2) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasitriangular quasi Hopf algebra G* is canonically associated with Uq(sl2) if qP=-1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)
Nekrasov functions from exact Bohr-Sommerfeld periods: the case of SU(N)
Mironov, A [Lebedev Physics Institute, Moscow (Russian Federation); Morozov, A, E-mail: mironov@itep.r, E-mail: mironov@lpi.r, E-mail: morozov@itep.r [ITEP, Moscow (Russian Federation)
2010-05-14
We suggested in 2009 that the Nekrasov function with one non-vanishing deformation parameter {epsilon} is obtained by the standard Seiberg-Witten (SW) contour-integral construction. The only difference is that the SW differential pdx is substituted by its quantized version for the corresponding integrable system, and contour integrals become exact monodromies of the wavefunction. This provides an explicit formulation of the earlier guess by Nekrasov and Shatashvili in 2009. In this paper, we successfully check this suggestion in the first order in {epsilon}{sup 2} and the first order in instanton expansion for the SU(N) model, where the consistency of the so-deformed SW equations is already non-trivial.
The Nonlinear Quantum Gauge Theory-Superrelativity
Leifer, Peter
1997-01-01
A new type of a nonlinear gauge quantum theory (superrelativity) has been proposed. Such theory demands a radical reconstruction of both the quantum field conception and spacetime structure, and this paves presumably way to the comprehension of the quantum nature of inertia.
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
From quantum gravity to quantum field theory via noncommutative geometry
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
A theory of quantum gravity based on quantum computation
Lloyd, Seth
2005-01-01
This paper proposes a method of unifying quantum mechanics and gravity based on quantum computation. In this theory, fundamental processes are described in terms of pairwise interactions between quantum degrees of freedom. The geometry of space-time is a construct, derived from the underlying quantum information processing. The computation gives rise to a superposition of four-dimensional spacetimes, each of which obeys the Einstein-Regge equations. The theory makes explicit predictions for t...
Towards A Theory Of Quantum Computability
Guerrini, Stefano; Martini, Simone; Masini, Andrea
2015-01-01
We propose a definition of quantum computable functions as mappings between superpositions of natural numbers to probability distributions of natural numbers. Each function is obtained as a limit of an infinite computation of a quantum Turing machine. The class of quantum computable functions is recursively enumerable, thus opening the door to a quantum computability theory which may follow some of the classical developments.
An Introduction to Quantum Game Theory
Grabbe, J O
2005-01-01
This essay gives a self-contained introduction to quantum game theory, and is primarily oriented to economists with little or no acquaintance with quantum mechanics. It assumes little more than a basic knowledge of vector algebra. Quantum mechanical notation and results are introduced as needed. It is also shown that some fundamental problems of quantum mechanics can be formulated as games.
Renormalizable noncommutative quantum field theory
We discuss special Euclidean noncommutative φ4-quantum field theory models in two and four dimensions They are examples of renormalizable field theories. Using a Ward identity, it has been shown, that the beta function for the coupling constant vanishes to all orders in perturbation theory. We extend this work and obtain from the Schwinger-Dyson equation a non-linear integral equation for the renormalised two-point function alone. The non-trivial renormalised four-point function fulfils a linear integral equation with the inhomogeneity determined by the two-point function. We obtain such relations for the four as well for the two dimensional situation. We expect to learn about renormalisation from this almost solvable models.
Quartic quantum theory: an extension of the standard quantum mechanics
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher-dimensional convex body MNQ of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in the N-dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalization of the standard quantum theory for which K = N2. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K = N
Quantum Information Theory for Quantum Communication
Koashi, Masato
This chapter gives a concise description of the fundamental concepts of quantum information and quantum communication, which is pertinent to the discussions in the subsequent chapters. Beginning with the basic set of rules that dictate quantum mechanics, the chapter explains the most general ways to describe quantum states, measurements, and state transformations. Convenient mathematical tools are also presented to provide an intuitive picture of a qubit, which is the simplest unit of quantum information. The chapter then elaborates on the distinction between quantum communication and classical communication, with emphasis on the role of quantum entanglement as a communication resource. Quantum teleportation and dense coding are then explained in the context of optimal resource conversions among quantum channels, classical channels, and entanglement.
Axiomatic quantum field theory in curved spacetime
Hollands, S
2008-01-01
The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features--such as Poincare invariance and the existence of a preferred vacuum state--that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is locally and covariantly constructed from the spacetime metric), a microlocal spectrum condition, an "associativity" condition, and t...
Quantum Theory, namely the pure and reversible theory of information
Chiribella, G; Perinotti, P
2012-01-01
After more than a century since its birth, Quantum Theory still eludes our understanding. If asked to describe it, we have to resort to abstract and ad hoc principles about complex Hilbert spaces. How is it possible that a fundamental physical theory cannot be described using the ordinary language of Physics? Here we offer a contribution to the problem from the angle of Quantum Information, providing a short non-technical presentation of a recent derivation of Quantum Theory from information-theoretic principles. The broad picture emerging from the principles is that Quantum Theory is the only standard theory of information compatible with the purity and reversibility of physical processes.
Numerical calculations in quantum field theories
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
The decoupling approach to quantum information theory
Dupuis, Frédéric
2010-01-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and ha...
Quantum Cohomology and Quantum Hydrodynamics from Supersymmetric Quiver Gauge Theories
Bonelli, Giulio; Tanzini, Alessandro; Vasko, Petr
2015-01-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Quantum theory. 2. rev. and enl. ed.
This textbook for studyings of physics is oriented in the selection of matter on the contents of a two-semester course about quantum theory. Thereby the foundations of quantum theory, among these the quantum-mechanical measuring process, the mathematical formalism, and Bell's inequalities are extensively treated. Also modern concepts like Feynman's path integral are regarded.The second edition was supplemented by chapters about relativistic quantum mechanics, the quantization of the radiation field, and the spontaneous emission of radiation.
A Topos Theory Foundation for Quantum Mechanics
Corbett, John V.
2012-01-01
The theory of quantum mechanics is examined using non-standard real numbers, called quantum real numbers (qr-numbers), that are constructed from standard Hilbert space entities. Our goal is to resolve some of the paradoxical features of the standard theory by providing the physical attributes of quantum systems with numerical values that are Dedekind real numbers in the topos of sheaves on the state space of the quantum system. The measured standard real number values of a physical attribute ...
Quantum control theory and applications: A survey
Dong, Daoyi; Petersen, Ian R.
2009-01-01
This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and q...
Quantum Theory of Probability and Decisions
Deutsch, David
1999-01-01
The probabilistic predictions of quantum theory are conventionally obtained from a special probabilistic axiom. But that is unnecessary because all the practical consequences of such predictions follow from the remaining, non-probabilistic, axioms of quantum theory, together with the non-probabilistic part of classical decision theory.
Linear response theory for quantum open systems
J. H. Wei; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
A first course in topos quantum theory
Written by a leading researcher in the field. Concise course-tested textbook. Includes worked-out problems In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory's unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics - such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility of talking about systems without reference to an external observer - is through a reformulation of quantum theory in terms of a different mathematical framework called topos theory. This course-tested primer sets out to explain to graduate students and newcomers to the field alike, the reasons for choosing topos theory to resolve the above-mentioned issues and how it brings quantum physics back to looking more like a ''neo-realist'' classical physics theory again.
A first course in topos quantum theory
Flori, Cecilia [Perimeter Institute for Theoretical Studies, Waterloo, ON (Canada)
2013-06-01
Written by a leading researcher in the field. Concise course-tested textbook. Includes worked-out problems In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory's unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics - such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility of talking about systems without reference to an external observer - is through a reformulation of quantum theory in terms of a different mathematical framework called topos theory. This course-tested primer sets out to explain to graduate students and newcomers to the field alike, the reasons for choosing topos theory to resolve the above-mentioned issues and how it brings quantum physics back to looking more like a ''neo-realist'' classical physics theory again.
Quantum theory of human communication
Slowikowski, W; Slowikowski, Wojtek; Nielsen, Erik B.
2004-01-01
We use notions and techniques of Quantum Field Theory to formulate and investigate basic concepts and mechanisms of human communication. We start with attitudes which correspond to photons frequencies, then we introduce states-of-mind which correspond to wave functions. Finally, by way of the second quantization, we come to states-of-opinions which correspond to states of quantized radiation fields. In the present paper we shall only investigate superpositions of pairs of coherent states (e.g. the government and the opposition in a democratic country).
Minimal theory of quantum electrodynamics
Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion
Introduction to the quantum theory
Park, David
2005-01-01
More than a chance to gain new insights into physics, this book offers students the opportunity to look at what they already know about the subject in an improved way. Geared toward upper-level undergraduates and graduate students, this self-contained first course in quantum mechanics consists of two parts: the first covers basic theory, and the second part presents selected applications. Numerous problems of varying difficulty examine not only the steps of the proofs but also related ideas.Starting with an introduction that ventures beyond classical physics, the first part examines the physic
Quantum field perturbation theory revisited
Matone, Marco
2016-03-01
Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.
General relativity, torsion, and quantum theory
Singh, Tejinder P
2015-01-01
We recall some of the obstacles which arise when one tries to reconcile the general theory of relativity with quantum theory. We consider the possibility that gravitation theories which include torsion, and not only curvature, provide better insight into a quantum theory of gravity. We speculate on how the Dirac equation and Einstein gravity could be thought of as limiting cases of a gravitation theory which possesses torsion.
Quantum Hall Physics in String Theory
Bergman, Oren
2004-01-01
In certain backgrounds string theory exhibits quantum Hall-like behavior. These backgrounds provide an explicit realization of the effective non-commutative gauge theory description of the fractional quantum Hall effect (FQHE), and of the corresponding large N matrix model. I review results on the string theory realization of the two-dimensional fractional quantum Hall fluid (FQHF), and describe new results on the stringy description of higher-dimensional analogs.
Localisation in Quantum Field Theory
Balachandran, A P
2016-01-01
In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...
Multichannel quantum defect theory: a quantum Poincaré map
Leyvraz, F.; Méndez-Sánchez, R. A.; Lombardi, M.; Seligman, T. H.
2000-01-01
International audience The multichannel quantum defect theory (MQDT) can be reinterpreted as a quantum Poincaré map in representation of angular momentum. This has two important implications: we have a paradigm of a true quantum Poincaré map without semi-classical input and we get an entirely new insight into the significance of MQDT.
Learning quantum field theory from elementary quantum mechanics
The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem
Fundamental problems in quantum field theory
Fujita, Takehisa
2013-01-01
Quantum physics is based on four fundamental interactions of electromagnetic, weak, gravitational and strong forces. All the interactions are expressed in terms of fermion and boson fields which can describe the quantum states of electrons, nucleons and photons in atoms or nuclei. Correct behaviors of these particles can now be described by the basic field theory terminology, and this textbook explains, for the first time, quantum field theory in a unifying method. At present, modern quantum theory is at a critical junction between different theories, and this textbook presents a clear descrip
Thermodynamics and the structure of quantum theory
Krumm, Marius; Barrett, Jonathan; Mueller, Markus P
2016-01-01
Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Results in quantum gravity and general ideas of what a fundamental theory should look like suggest that thermodynamics plays a major role in the foundations of physics. In this paper, we address the question of which parts of quantum theory are already determined by compatibility with thermodynamics, and which aspects may still admit modification. We employ two postulates that any probabilistic theory with reasonable thermodynamic behavior should arguably satisfy. In the framework of generalized probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechan...
Gift S.
2009-01-01
Full Text Available In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done under a relaxation of the requirement of covariance for Lorentz Boost Transformations. A modified form of local gauge invariance in which fermion field phase is allowed to vary with each space point but not each time point, leads to the introduction of a new compensatory field different from the electromagnetic field associated with the photon. This new field is coupled to the magnetic flux of the fermions and has quanta called magnatons, which are massless spin 1 particles. The associated equation of motion yields the Poisson equation for magnetostatic potentials. The magnatons mediate the magnetic interaction between magnetic dipoles including magnets and provide plausi- ble explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical Bonds. This new interaction has been confirmed by numerical experiments. It estab- lishes magnetism as a force entirely separate from the electromagnetic interaction and converts all of classical magnetism into a quantum theory.
Gift S.
2009-01-01
Full Text Available In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done under a relaxation of the requirement of covariance for Lorentz Boost Transformations. A modified form of local gauge invariance in which fermion field phase is allowed to vary with each space point but not each time point, leads to the introduction of a new compensatory field different from the electromagnetic field associated with the photon. This new field is coupled to the magnetic flux of the fermions and has quanta called magnatons, which are massless spin 1 particles. The associated equation of motion yields the Poisson equation for magnetostatic potentials. The magnatons mediate the magnetic interaction between magnetic dipoles including magnets and provide plausible explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical Bonds. This new interaction has been confirmed by numerical experiments. It establishes magnetism as a force entirely separate from the electromagnetic interaction and converts all of classical magnetism into a quantum theory.
The concepts of quantal states and complementarity introduced by Niels Bohr in an intuitive though definitive manner more than a generation ago have come to form cornerstones in our description of nature. The Centenary Symposium celebrating Niels Bohr pays tribute to his work which gave birth to contemporary physics and nourished related fields of knowledge. The book is divided into three parts. Part One consists of two communications to the Royal Danish Academy of Sciences and Letters in memory of Niels Bohr. Part Two containing the main theme of the proceedings is divided into three sections. The title of the first, The Lesson of Quantum Theory, is an expression often used by Niels Bohr as time and again he endeavoured an ever deeper analysis of this lesson and its succinct formulation. For Bohr the lesson of quantum theory went beyond physics encompassing not only the natural sciences but all human conceptions. Thus the second section, Unity of Knowledge, conveys the progress in neighbouring disciplines in which Bohr took a particular interest. The last section, Niels Bohr, is dedicated to his personality, his activities, and his world of thought. Part three renders speeches and anecdotes presented during the evening gathering at Ny Carlsberg Glyptoteket on Niels Bohr's one hundredth birthday. (Auth.)
The role of quantum discord in quantum information theory
Quantum correlations beyond entanglement - in particular represented by quantum discord - have become a major research field in the last few years. In this talk we report on the role of quantum discord in several fundamental tasks in quantum information theory. Starting with the role of quantum discord in the quantum measurement process, we also discuss its role in the tasks of information sharing and entanglement distribution. Finally, we also show the limits of these results and present possible ways to go beyond these limits.
Einstein's strugges with quantum theory a reappraisal
Home, Dipankar
2007-01-01
Einstein’s Struggles with Quantum Theory: A Reappraisal by Dipankar Home and Andrew Whitaker provides a detailed account of Albert Einstein’s thinking in regard to quantum physics. Until recently, most of Einstein’s views on quantum physics were dismissed and even ridiculed; some critics even suggested that Einstein was not able to grasp the complexities of the formalism of quantum theory and subtleties of the standard interpretation of this theory known as the Copenhagen interpretation put forward by Niels Bohr and his colleagues. But was that true? Modern scholarship argues otherwise, insist Drs. Home and Whitaker, who painstakingly explain the questions Einstein raised as well as offer a detailed discussion of Einstein’s position and major contributions to quantum theory, connecting them with contemporary studies on fundamental aspects of this theory. This unique book presents a mathematical as well as a non-mathematical route through the theories, controversies, and investigations, making the disc...
Quantum entanglement: theory and applications
Schuch, N.
2007-10-10
This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum
Quantum entanglement: theory and applications
This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum
Space--Time from Topos Quantum Theory
Flori, Cecilia
One of the main challenges in theoretical physics in the past 50 years has been to define a theory of quantum gravity, i.e. a theory which consistently combines general relativity and quantum theory in order to define a theory of space-time itself seen as a fluctuating field. As such, a definition of space-time is of paramount importance, but it is precisely the attainment of such a definition which is one of the main stumbling blocks in quantum gravity. One of the striking features of quantum gravity is that although both general relativity and quantum theory treat space-time as a four-dimensional (4D) manifold equipped with a metric, quantum gravity would suggest that, at the microscopic scale, space-time is somewhat discrete. Therefore the continuum structure of space-time suggested by the two main ingredients of quantum gravity seems to be thrown into discussion by quantum gravity itself. This seems quite an odd predicament, but it might suggest that perhaps a different mathematical structure other than a smooth manifold should model space-time. These considerations seem to shed doubts on the use of the continuum in general in a possible theory of quantum gravity. An alternative would be to develop a mathematical formalism for quantum gravity in which no fundamental role is played by the continuum and where a new concept of space-time, not modeled on a differentiable manifold, will emerge. This is precisely one of the aims of the topos theory approach to quantum theory and quantum gravity put forward by Isham, Butterfield, and Doering and subsequently developed by other authors. The aim of this article is to precisely elucidate how such an approach gives rise to a new definition of space-time which might be more appropriate for quantum gravity.
Uncertainty relation revisited from quantum estimation theory
Watanabe, Yu [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sagawa, Takahiro [Hakubi Center, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan); Ueda, Masahito [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); ERATO Macroscopic Quantum Control Project, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2011-10-15
We use quantum estimation theory to formulate bounds of errors in quantum measurement for arbitrary quantum states and observables in a finite-dimensional Hilbert space. We prove that the measurement errors of two noncommuting observables satisfy Heisenberg-type uncertainty relation, find the achievable bound, and propose a strategy to achieve it.
Mathematical Techniques for Quantum Communication Theory
Fuchs, Christopher A.; Caves, Carlton M.
1996-01-01
We present mathematical techniques for addressing two closely related questions in quantum communication theory. In particular, we give a statistically motivated derivation of the Bures-Uhlmann measure of distinguishability for density operators, and we present a simplified proof of the Holevo upper bound to the mutual information of quantum communication channels. Both derivations give rise to novel quantum measurements.
Probabilistic and Statistical Aspects of Quantum Theory
Holevo, Alexander S
2011-01-01
This book is devoted to aspects of the foundations of quantum mechanics in which probabilistic and statistical concepts play an essential role. The main part of the book concerns the quantitative statistical theory of quantum measurement, based on the notion of positive operator-valued measures. During the past years there has been substantial progress in this direction, stimulated to a great extent by new applications such as Quantum Optics, Quantum Communication and high-precision experiments. The questions of statistical interpretation, quantum symmetries, theory of canonical commutation re
Some Issues in Quantum Information Theory
Run-Yao Duan; Zheng-Feng Ji; Yuan Feng; Ming-Sheng Ying
2006-01-01
Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer science, information theory, and applied mathematics. It provides completely new paradigms to do information processing tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quantum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis,multiple-copy entanglement transformation, and partial entanglement recovery.
Is quantum theory predictably complete?
Quantum theory (QT) provides statistical predictions for various physical phenomena. To verify these predictions a considerable amount of data has been accumulated in the 'measurements' performed on the ensembles of identically prepared physical systems or in the repeated 'measurements' on some trapped 'individual physical systems'. The outcomes of these measurements are, in general, some numerical time series registered by some macroscopic instruments. The various empirical probability distributions extracted from these time series were shown to be consistent with the probabilistic predictions of QT. More than 70 years ago the claim was made that QT provided the most complete description of 'individual' physical systems and outcomes of the measurements performed on 'individual' physical systems were obtained in an intrinsically random way. Spin polarization correlation experiments (SPCEs), performed to test the validity of Bell inequalities, clearly demonstrated the existence of strong long-range correlations and confirmed that the beams hitting far away detectors somehow preserve the memory of their common source which would be destroyed if the individual counts of far away detectors were purely random. Since the probabilities describe the random experiments and are not the attributes of the 'individual' physical systems, the claim that QT provides a complete description of 'individual' physical systems seems not only unjustified but also misleading and counter productive. In this paper, we point out that we even do not know whether QT is predictably complete because it has not been tested carefully enough. Namely, it was not proven that the time series of existing experimental data did not contain some stochastic fine structures that could have been averaged out by describing them in terms of the empirical probability distributions. In this paper, we advocate various statistical tests that could be used to search for such fine structures in the data and to
Toward a Quantum Theory of Observation
Zeh, H. D.
2003-01-01
The program of a physical concept of information is outlined in the framework of quantum theory. A proposal is made for how to avoid the introduction of axiomatic observables. The conventional (collapse) and the Everett interpretations of quantum theory may in principle lead to different dynamical consequences. Finally, a formal ensemble description not based on a concept of lacking information is discussed.
Spectral problems from quantum field theory
Dmitri V. Vassilevich
2004-01-01
We describe how spectral functions of differential operators appear in the quantum field theory context. We formulate consistency conditions which should be satisfied by the operators and by the boundary conditions. We review some modern developments in quantum field theory and strings and show which new spectral and boundary value problems arise.
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2007-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f
Operator Deformations in Quantum Measurement Theory
Andersson, Andreas
2013-01-01
We describe rigorous quantum measurement theory in the Heisenberg picture by applying operator deformation techniques previously used in noncommutative quantum field theory. This enables the conventional observables (represented by unbounded operators) to play a role also in the more general setting.
Zeno's paradox in quantum theory
A quantum-theoretic expression is sought for the probability that an unstable particle prepared initially in a well-defined state will be found to decay sometime during a given interval. It is argued that probabilities like this which pertain to continuous monitoring possess operational meaning. A simple natural approach to this problem leads to the startling conclusion that an unstable particle which is continuously observed whether it decays will never be found to decay. Since recording the track of an unstable particle (which can be distinguished from its decay products) realizes such continuous observations to a close degree of approximation, the above conclusion poses a paradox which we call Zeno's Paradox in Quantum Theory. Its implications and possible resolutions are briefly discussed. The mathematical transcription of the above-mentioned conclusion is a structure theorem concerning semigroups. Although special cases of this theorem are known, the general formulation and the proof given here are believed to be new. The known ''no-go'' theorem concerning the semigroup law for the reduced evolution of any physical system (including decaying systems) is subsumed under the theorem as a direct corollary
Guide to Mathematical Concepts of Quantum Theory
Heinosaari, Teiko; Ziman, Mario
2008-01-01
Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review paper we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole pi...
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Quantum communication, reference frames and gauge theory
van Enk, S. J.
2006-01-01
We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communi...
Quantum communication, reference frames, and gauge theory
We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model
Singularities in quantum field theory
The short-range behaviour of certain Feynman integrals reveals mathematical properties which are not those of either functions or distributions - they contain terms which are more singular than distributions and possess inherent ambiguities. Two classes of singularities exist: To the first one belong all those singularities which have a physical meaning in the sense that in a convergent (regluarized) quantum field theory they contribute to observable quantities, frequently as renormalization constants. Most of the singularities of the second, the spurious type, violate the symmetries of the Lagrangian. It is demonstrated that they are associated with certain mathematical difficulties of unregularized theories. Much of the analysis deals with the isolation of singularities of this type and with the study of the properties of the singular products of distribution. It is argued that the four-dimensional integration leading to the S-matrix in the perturbation expansion must be carried out over an open domain which leaves out the contributions from singularities of the contact type, that is terms proportional to delta4(x-y). (author)
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
Processing Information in Quantum Decision Theory
Vyacheslav I. Yukalov
2009-12-01
Full Text Available A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. The self-consistent procedure of decision making, in the frame of the quantum decision theory, takes into account both the available objective information as well as subjective contextual effects. This quantum approach avoids any paradox typical of classical decision theory. Conditional maximization of entropy, equivalent to the minimization of an information functional, makes it possible to connect the quantum and classical decision theories, showing that the latter is the limit of the former under vanishing interference terms.
A Resource Framework for Quantum Shannon Theory
Devetak, I; Winter, A
2005-01-01
Quantum Shannon theory is loosely defined as a collection of coding theorems, such as classical and quantum source compression, noisy channel coding theorems, entanglement distillation, etc., which characterize asymptotic properties of quantum and classical channels and states. In this paper we advocate a unified approach to an important class of problems in quantum Shannon theory, consisting of those that are bipartite, unidirectional and memoryless. We formalize two principles that have long been tacitly understood. First, we describe how the Church of the larger Hilbert space allows us to move flexibly between states, channels, ensembles and their purifications. Second, we introduce finite and asymptotic (quantum) information processing resources as the basic objects of quantum Shannon theory and recast the protocols used in direct coding theorems as inequalities between resources. We develop the rules of a resource calculus which allows us to manipulate and combine resource inequalities. This framework si...
Guide to mathematical concepts of quantum theory
Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review paper we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole picture of quantum measurement will be developed and concepts of observables, instruments and measurement models representing the three different descriptions on experiments will be introduced. In the second stage, we enrich the model of the experiment by introducing the concept of quantum channel describing the system changes between preparations and measurements. At the very end we review the elementary properties of quantum entanglement. The text contains many examples and exercise covering also many topics from quantum information theory and quantum measurement theory. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory. (author)
Quantum theory informational foundations and foils
Spekkens, Robert
2016-01-01
This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Renormalizable Quantum Gauge Theory of Gravity
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Quantum gravity from theory to experimental search
Kiefer, Claus; Lämmerzahl, Claus
2003-01-01
The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.
The Impact of Quantum Cosmology on Quantum Field Theory
Esposito, Giampiero
1995-01-01
The basic problem of quantum cosmology is the definition of the quantum state of the universe, with appropriate boundary conditions on Riemannian three-geometries. This paper describes recent progress in the corresponding analysis of quantum amplitudes for Euclidean Maxwell theory and linearized gravity. Within the framework of Faddeev-Popov formalism and zeta-function regularization, various choices of mixed boundary conditions lead to a deeper understanding of quantized gauge fields and qua...
Quantum fermions and quantum field theory from classical statistics
Wetterich, C.
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schr\\"odinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
Emergence of classical theories from quantum mechanics
Hajicek, Petr
2012-01-01
Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is ...
Supergeometry in locally covariant quantum field theory
Hack, Thomas-Paul; Schenkel, Alexander
2015-01-01
In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Quantum Estimation Theory of Error and Disturbance in Quantum Measurement
Watanabe, Yu; Ueda, Masahito
2011-01-01
We formulate the error and disturbance in quantum measurement by invoking quantum estimation theory. The disturbance formulated here characterizes the non-unitary state change caused by the measurement. We prove that the product of the error and disturbance is bounded from below by the commutator of the observables. We also find the attainable bound of the product.
A general theory of quantum relativity
Minic, Djordje; Tze, Chia-Hsiung
2004-02-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics.
QUANTUM GRAVITY AND YANG-MILLS THEORY
Trunev A. P.
2014-01-01
Full Text Available In this paper, we consider Einstein's theory of gravitation in connection with Yang-Mills theory. The model of the metric satisfying the basic requirements of quantum theory is proposed. The mechanism of generation of baryonic matter of dark energy is discussed
Asymptotic theory of quantum statistical inference
Hayashi, Masahito
Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure
Discrete Quantum Gravity and Quantum Field Theory
Gudder, Stan
2016-01-01
We introduce a discrete 4-dimensional module over the integers that appears to have maximal symmetry. By adjoining the usual Minkowski distance, we obtain a discrete 4-dimensional Minkowski space. Forming universe histories in this space and employing the standard causal order, the histories become causal sets. These causal sets increase in size rapidly and describe an inflationary period for the early universe. We next consider the symmetry group $G$ for the module. We show that $G$ has order 24 and we construct its group table. In a sense $G$ is a discrete approximation to the Lorentz group. However, we note that it contains no boosts and is essentially a rotation group. Unitary representations of $G$ are constructed. The energy-momentum space dual to the discrete module is obtained and a quantum formalism is derived. A discrete Fock space is introduced on this structure and free quantum fields are considered. Finally, we take the first step in a study of interacting quantum fields.
Representation Theory of Algebraic Groups and Quantum Groups
Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki
2010-01-01
Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
Quantum mechanics as a complete physical theory
Slavnov, D A
2002-01-01
We show that the principles of a ''complete physical theory'' and the conclusions of the standard quantum mechanics do not irreconcilably contradict each other as is commonly believed. In the algebraic approach, we formulate axioms that allow constructing a renewed mathematical scheme of quantum mechanics. This scheme involves the standard mathematical formalism of quantum mechanics. Simultaneously, it contains a mathematical object that adequately describes a single experiment. We give an example of the application of the proposed scheme.
Quantum mechanics as the objective local theory
Slavnov, D A
2002-01-01
In the work it is shown that the principles "the objective local theory" and corollaries of the standard quantum mechanics are not in such antagonistic inconsistency as it is usually supposed. In the framework of algebraic approach, the postulates are formulated which allow constructing the updated mathematical scheme of quantum mechanics. This scheme incorporates the standard mathematical apparatus of quantum mechanics. Simultaneously, in it there is a mathematical object, which adequately describes individual experiment.
Is quantum theory compatible with special relativity?
M Bahrami; A Shafiee; M Saravani; M Golshani
2013-03-01
How a proposed quantum nonlocal phenomenon could be incompatible with the requirements of special relativity is studied. To show this, the least set of assumptions about the formalism and the interpretation of non-relativistic quantum theory is considered. Then, without any reference to the collapse assumption or any other stochastic processes, an experiment is proposed, involving two quantum systems, that interacted at an arbitrary time, with results which seem to be in conflict with requirements of special relativity.
Quantum to classical transition in quantum field theory
Lombardo, F C
1998-01-01
We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the cri...
Steps in the philosophy of quantum theory
1. Interpretation. The Copenhagen Interpretation (CI) is a minimal semantics to quantum theory, expressing what we know at least. It can be extended into a universal Quantum Theory, applied to the observer as well as to the observed object. 2. A Universal Theory as a Philosophical Problem. A circular epistemology is proposed, consisting of non-hierarchical realism, empirism, apriorism and evolutionism, combined in a description of time: past as discrete facts, future as continuous possibilities. 3. Quantum Logic and the Reconstruction of Quantum Theory. Non-distributive logic and Bell's theorem are discussed following Doebner and Luecke. Reconstruction is briefly described. 4. Further Philosophical Questions. Mind-body problem and holism are briefly discussed. (orig.)
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Aspects of Time in Quantum Theory
Yearsley, James M
2011-01-01
We consider a number of aspects of the problem of defining time observables in quantum theory. Time observables are interesting quantities in quantum theory because they often cannot be associated with self-adjoint operators. Their definition therefore touches on foundational issues in quantum theory. Various operational approaches to defining time observables have been proposed in the past. Two of the most common are those based on pulsed measurements in the form of strings of projection operators and continuous measurements in the form of complex potentials. One of the major achievements of this thesis is to prove that these two operational approaches are equivalent. However operational approaches are somewhat unsatisfying by themselves. To provide a definition of time observables which is not linked to a particular measurement scheme we employ the decoherent, or consistent, histories approach to quantum theory. We focus on the arrival time, one particular example of a time observable, and we use the relati...
Parameterized quantum field theory without Haag's theorem
Seidewitz, Ed
2015-01-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...
Quantum Measure Theory: A New Interpretation
Ghazi-Tabatabai, Yousef
2009-01-01
Quantum measure theory can be introduced as a histories based reformulation (and generalisation) of Copenhagen quantum mechanics in the image of classical stochastic theories. These classical models lend themselves to a simple interpretation in which a single history (a single element of the sample space) is deemed to be 'real'; we require only that this real history should not be ruled out by the dynamics, the axioms of which ensure that not all histories are precluded. However, applying this interpretation naively to quantum measure theory we can find experimentally realisable systems (notably the Peres-Kochen-Specker system) in which every history is ruled out by the dynamics, challenging us to formulate a deeper realist framework. Our first response is to hold on to our existing interpretative framework and attempt a revision of the dynamics that would reduce quantum measure theory to a classical dynamics. We explore this approach by examining the histories formulation of a stochastic-collapse model on a ...
Quantum field theories on the Lefschetz thimble
Cristoforetti, M; Mukherjee, A; Scorzato, L
2013-01-01
In these proceedings, we summarize the Lefschetz thimble approach to the sign problem of Quantum Field Theories. In particular, we review its motivations, and we summarize the results of the application of two different algorithms to two test models.
Quantum theory and the lattice join
An informal explanation is presented of Birkhoff's and von Neumann's proposal according to which it is necessary, due to quantum theory, to replace the well-known lattice of properties, which is a heritage from George Boole, by a new quantum lattice of properties mirroring the structure of the Hilbert space. (Z.S.). 4 figs., 12 refs
"Scars" connect classical and quantum theory
Monteiro, T
1990-01-01
Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).
Nonperturbative Quantum Field Theory in Astrophysics
Mazur, Dan
2012-01-01
The extreme electromagnetic or gravitational fields associated with some astrophysical objects can give rise to macroscopic effects arising from the physics of the quantum vacuum. Therefore, these objects are incredible laboratories for exploring the physics of quantum field theories. In this dissertation, we explore this idea in three astrophysical scenarios.
Group Field Theory and Loop Quantum Gravity
Oriti, D
2014-01-01
We introduce the group field theory formalism for quantum gravity, mainly from the point of view of loop quantum gravity, stressing its promising aspects. We outline the foundations of the formalism, survey recent results and offer a perspective on future developments.
Quantum theory - essential from cosmos to consciousness
Quantum theory is the most successful physical theory. About one third of the gross national product in the developed countries results from its applications. But very often quantum theory is still declared as 'crazy' or 'not understandable'. However, quantum theory has a clear mathematical structure that expresses well-known experiences from every day life: A whole is often more than the sum of its parts, and not only the facts also the possibilities can act. If such structures become important then the consequences differ from the models of classical physics which rests on the fundamental differences between matter and motion, material and force, localization and extension, fullness and emptiness. From quantum theory one can learn that all these differences are useful in many cases but are not fundamental. There are equivalences between them, and these can be extended even to the equivalence between matter, energy and abstract quantum information. It is cosmological funded and is denominated as 'Protyposis' to avoid the connotation of information and meaning. Protyposis enables a fundamentally new understanding of matter which can be seen as 'formed', 'condensed' or 'designed' abstract quantum information. One result of the Protyposis is a derivation of Einstein's equations from the abstract quantum information. Another consequence is the ontological reality of the mind and its connection to a brain which can be explained without any dualistic model.
Principle of general covariance and quantum theory
The authors emphasise the distinction between formal and operational notions of general covariance. Classical, formal covariance implies operational covariance. This is not true in quantum theory. Two observers may not agree on the results of measurement of a tensorial object like T/sub ik/ (stress tensor) in quantum theory. In particular, one observer might conclude that the measured value is zero while another might attribute non-zero value to it
Geometric continuum regularization of quantum field theory
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Quantum feedback control and classical control theory
Doherty, Andrew C.; Habib, Salman; Jacobs, Kurt; Mabuchi, Hideo; Tan, Sze M.
1999-01-01
We introduce and discuss the problem of quantum feedback control in the context of established formulations of classical control theory, examining conceptual analogies and essential differences. We describe the application of state-observer-based control laws, familiar in classical control theory, to quantum systems and apply our methods to the particular case of switching the state of a particle in a double-well potential.
High energy approximations in quantum field theory
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given
Quantum theory from the perspective of general probabilistic theories
Al-Safi, Sabri Walid
2015-01-01
This thesis explores various perspectives on quantum phenomena, and how our understanding of these phenomena is informed by the study of general probabilistic theories. Particular attention is given to quantum nonlocality, and its interaction with areas of physical and mathematical interest such as entropy, reversible dynamics, information-based games and the idea of negative probability. We begin with a review of non-signaling distributions and convex operational theories, including ?black b...
The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory
Frey, Kimberly
The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum
From Planck's energy quantum to Yukawa's heavy quantum - the development of quantum theory
Brief history of quantum theory has been presented in this review. Part 1 deals with the pre-quantum mechanical development (roughly 1900-1925). Part 2 deals with the central discovery of quantum and wave mechanics (roughly 1925-1928), and Part 3 finally gives the essential fundamental applications and extensions of the new atomic theory (roughly 1926-1935)
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo; Fredenhagen, Klaus; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna
2016-01-01
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are pr...
Cosmological perturbation theory and quantum gravity
Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna
2016-01-01
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
The decoupling approach to quantum information theory
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Generalizing Prototype Theory: A Formal Quantum Framework
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
The facets of relativistic quantum field theory
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Quantum stability of chameleon field theories.
Upadhye, Amol; Hu, Wayne; Khoury, Justin
2012-07-27
Chameleon scalar fields are dark-energy candidates which suppress fifth forces in high density regions of the Universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound m0.0042 eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. PMID:23006073
On The Quantum Theory of Hall Effect
Ghaboussi, F.
1996-01-01
We discuss a model of both classical and integer quantum Hall-effect which is based on a semi-classical Schroedinger-Chern-Simons-action, where the Ohm-equations result as equations of motion. The quantization of the classical Chern-Simons-part of action under typical quantum Hall conditions results in the quantized Hall conductivity. We show further that the classical Hall-effect is described by a theory which arises as the classical limit of a theory of quantum Hall-effect. The model explai...
Tests of alternative quantum theories with neutrons
Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.; Hasegawa, Y. [Atominstitut, Vienna University of Technology (Austria); Klepp, J. [Faculty of Physics, University of Vienna (Austria); Schmitzer, C.; Bartosik, H. [CERN, Geneve (Switzerland)
2014-12-04
According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.
Quantum information theory with Gaussian systems
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum coding theory with realistic physical constraints
Yoshida, Beni
2010-01-01
The following open problems, which concern a fundamental limit on coding properties of quantum codes with realistic physical constraints, are analyzed and partially answered here: (a) the upper bound on code distances of quantum error-correcting codes with geometrically local generators, (b) the feasibility of a self-correcting quantum memory. To investigate these problems, we study stabilizer codes supported by local interaction terms with translation and scale symmetries on a $D$-dimensional lattice. Our analysis uses the notion of topology emerging in geometric shapes of logical operators, which sheds a surprising new light on theory of quantum codes with physical constraints.
Random matrix techniques in quantum information theory
Collins, Benoît, E-mail: collins@math.kyoto-u.ac.jp [Department of Mathematics, Kyoto University, Kyoto 606-8502 (Japan); Département de Mathématique et Statistique, Université d’Ottawa, 585 King Edward, Ottawa, Ontario K1N6N5 (Canada); CNRS, Lyon (France); Nechita, Ion, E-mail: nechita@irsamc.ups-tlse.fr [Zentrum Mathematik, M5, Technische Universität München, Boltzmannstrasse 3, 85748 Garching (Germany); Laboratoire de Physique Théorique, CNRS, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse (France)
2016-01-15
The purpose of this review is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review and of more detailed examples—coming mainly from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.
Quantum information theory with Gaussian systems
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Random matrix techniques in quantum information theory
The purpose of this review is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review and of more detailed examples—coming mainly from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
From Classical to Quantum Shannon Theory
Wilde, Mark M
2011-01-01
The aim of this book is to develop "from the ground up" all of the major, exciting, pre- and post-millenium developments in the general area of study known as quantum Shannon theory. As such, we spend a significant amount of time on quantum mechanics for quantum information theory (Part II), we give a careful study of the important unit protocols of teleportation, super-dense coding, and entanglement distribution (Part III), and we develop many of the tools necessary for understanding information transmission or compression (Part IV). Parts V and VI are the culmination of this book, where all of the tools developed come into play for understanding many of the important results in quantum Shannon theory.
Relativistic Quantum Mechanics and Field Theory
Gross, Franz
1999-04-01
An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
A Quantum field theory of dyons
Lechner, K
1999-01-01
We construct a classical field theory action which upon quantization via thefunctional integral approach, gives rise to a consistent Dirac-stringindependent quantum field theory. The approach entails a systematic derivationof the correlators of all gauge invariant observables, and also of chargeddyonic fields. Manifest SO(2)-duality invariance and Lorentz invariance areensured by the PST-approach.
Quantum theory of laser-stimulated desorption
Slutsky, M. S.; George, T. F.
1978-01-01
A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.