WorldWideScience

Sample records for blue galaxy intrinsic

  1. Starbursts in Blue compact dwarf galaxies

    International Nuclear Information System (INIS)

    Thuan, T.X.

    1987-01-01

    We summarize all the arguments for a bursting mode of star formation in blue compact dwarf galaxies. We show in particular how spectral synthesis of far ultraviolet spectra of Blue compact dwarf galaxy constitutes a powerful way for studying the star formation history in these galaxies. Blue compact dwarf galaxy luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, helping us to count and date the bursts

  2. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    Science.gov (United States)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  3. The Intrinsic Shape of Galaxies in SDSS/Galaxy Zoo

    OpenAIRE

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-01-01

    By modelling the axis ratio distribution of SDSS DR8 galaxies we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of $E_0 = 0.284^{+0.015}_{-0.026}$ in the SDSS r band. We als...

  4. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    Science.gov (United States)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  5. Separating intrinsic alignment and galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Blazek, Jonathan; Seljak, Uroš; Mandelbaum, Rachel; Nakajima, Reiko

    2012-01-01

    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and typical ( ∼ L * ) source galaxies with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. While these constraints depend on source selection and redshift quality, the method can be applied to any measurement that uses photometric redshifts. We obtain a model-independent upper-limit of roughly 10% IA contamination for projected separations of r p ≈ 0.1–10 h −1 Mpc. With more stringent photo-z cuts and reasonable assumptions about the physics of intrinsic alignments, this upper limit is reduced to 1–2%. These limits are well below the statistical error of the current lensing measurements. Our results suggest that IA will not present intractable challenges to the next generation of galaxy-galaxy lensing experiments, and the methods presented here should continue to aid in our understanding of alignment processes and in the removal of IA from the lensing signal

  6. On the Nature and History of Blue Amorphous Galaxies

    Science.gov (United States)

    Marlowe, Amanda True

    1998-07-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 blue amorphous galaxies (BAGs) whose properties suggest that they are dwarf galaxies in a starburst or post-burst state. It seems likely that BAGs are related to other 'starburst' dwarfs such as blue compact dwarfs (BCDs) and HII galaxies. The BAGs in our sample, however, are considerably closer than BCDs and HII galaxies in other samples, and therefore easier to study. These galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of BAGs in evolutionary scenarios for dwarf galaxies, we present and analyze Hα and UBVI data for our sample. BAGs, like BCDs and HII galaxies, have surface brightness profiles that are exponential in the outer regions but have a predominantly blue central blue excess, suggesting a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The starbursting regions are young events compared to the older underlying galaxy, which follow an exponential surface brightness law. Not all of the galaxies develop superwinds: the appearance of superwinds is most sensitive to the concentration and rate of star formation in the starbursting core. The underlying exponential galaxies are very similar to those found in BCDs and HII galaxies, though the 'burst' colors are slightly redder than those found in HII galaxies. BAGs are structurally similar to BCDs and HII galaxies. How BAGs fit into the dwarf galaxy evolutionary debate is less clear. While some compact dIs have properties similar to those of the underlying exponential galaxy in our sample, issues such as mass loss from superwinds, the impact of the starbursting core on the underlying galaxy, and

  7. The Taxonomy of Blue Amorphous Galaxies. II. Structure and Evolution

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.

    1999-09-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution, and starbursts are believed to affect the structure and evolution of dwarf galaxies strongly. We have therefore embarked on a systematic study of 12 of the nearest dwarf galaxies thought to be undergoing bursts of star formation. These were selected primarily by their morphological type (blue ``amorphous'' galaxies). We show that these blue amorphous galaxies are not physically distinguishable from dwarfs selected as starbursting by other methods, such as blue compact dwarfs (BCDs) and H II galaxies. All these classes exhibit surface brightness profiles that are exponential in the outer regions (r>~1.5re) but often have a predominantly central blue excess, suggesting a young burst in an older, redder galaxy. Typically, the starbursting ``cores'' are young (~107-108 yr) events compared to the older (~109-1010 yr) underlying galaxy (the ``envelope''). The ratio of the core to envelope in blue light ranges from essentially zero to about 2. These starbursts are therefore modest events involving only a few percent of the stellar mass. The envelopes have surface brightnesses that are much higher than typical dwarf irregular (dI) galaxies, so it is unlikely that there is a straightforward evolutionary relation between typical dIs and dwarf starburst galaxies. Instead we suggest that amorphous galaxies may repeatedly cycle through starburst and quiescent phases, corresponding to the galaxies with strong and weak/absent cores, respectively. Once amorphous galaxies use up the available gas (either through star formation or galactic winds) so that star formation is shut off, the faded remnants would strongly resemble dwarf elliptical galaxies. However, in the current cosmological epoch, this is evidently a slow process that is the aftermath of a series of many weak, recurring bursts. Present-day dE's must have experienced more rapid and intense evolution than this in the distant past.

  8. The Taxonomy of Blue Amorphous Galaxies. I. Hα and UBVI Data

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.; Schommer, Robert

    1997-10-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 nearby dwarf galaxies (most of which have been classified as amorphous) selected preferentially by their blue colors. The properties of the galaxies in the sample suggest that they are in a burst or postburst state. It seems likely that these amorphous galaxies are closely related to other ``starburst'' dwarfs such as blue compact dwarfs (BCDs) and H II galaxies but are considerably closer and therefore easier to study. If so, these galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of starbursts in evolutionary scenarios for dwarf galaxies, we present Hα and UBVI data for our sample. Blue amorphous galaxies, like BCDs and H II galaxies, have surface brightness profiles that are exponential in the outer regions (r >~ 1.5re) but have a predominantly blue central excess, which suggests a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double-peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The underlying exponential galaxies are very similar to those found in BCDs and H II galaxies. How amorphous galaxies fit into the dwarf irregular-``starburst dwarf''-dwarf elliptical evolutionary debate is less clear. In this paper, we present our data and make some preliminary comparisons between amorphous galaxies and other classes of dwarf galaxies. In a future companion paper, we will compare this sample more quantitatively with other dwarf galaxy samples in an effort to determine if amorphous galaxies are a physically different class of object from other starburst dwarfs such as BCDs and H II galaxies and also investigate their place in dwarf galaxy evolution scenarios.

  9. The Blue Compact Dwarf Galaxy IZw18

    NARCIS (Netherlands)

    Musella, I.; Marconi, M.; Fiorentino, G.; Clementini, G.; Aloisi, A.; Annibali, F.; Contreras, R.; Saha, A.; Tosi, M.; van der Marel, R. P.

    2012-01-01

    We present the results obtained for the Blue compact galaxy IZw18 on the basis of ACS HST data obtained from our group. In particular, we discuss the stellar population and the variable stars content of this galaxy to get information about its star formation history and distance.

  10. Cosmological information in the intrinsic alignments of luminous red galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: nchisari@astro.princeton.edu, E-mail: cdvorkin@ias.edu [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  11. Kinematical tests for the intrinsic shapes of galaxies

    International Nuclear Information System (INIS)

    Capaccioli, M.; Fasano, G.

    1984-01-01

    Determining the intrinsic shape of elliptical galaxies has been an illusive enterprise, but one fundamental to the understanding of their internal dynamics and formation. Here the problem is approached dynamically; noting that the velocity dispersion is largest when sighted down the longest axis, the correlations are derived of velocity dispersion with observed eccentricity expected, after the known trend of velocity dispersion with luminosity is removed. Using a compilation of published data, the relation between luminosity and velocity dispersion is determined more accurately. The residuals are examined as a function of axis ratio in order to construct a test for the intrinsic shape of galaxies. The effects of projection are modelled and possible intrinsic variations are examined. (author)

  12. Galaxy And Mass Assembly (GAMA): deconstructing bimodality - I. Red ones and blue ones

    Science.gov (United States)

    Taylor, Edward N.; Hopkins, Andrew M.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Colless, Matthew; Driver, Simon; Norberg, Peder; Robotham, Aaron S. G.; Alpaslan, Mehmet; Brough, Sarah; Cluver, Michelle E.; Gunawardhana, Madusha; Kelvin, Lee S.; Liske, Jochen; Conselice, Christopher J.; Croom, Scott; Foster, Caroline; Jarrett, Thomas H.; Lara-Lopez, Maritza; Loveday, Jon

    2015-01-01

    We measure the mass functions for generically red and blue galaxies, using a z 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing measurements stems from how `red' and `blue' galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterize the two populations without having to specify a priori which galaxies are `red' and `blue'. Our results then provide the means to derive objective operational definitions for the terms `red' and `blue', which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that (1) after accounting for dust, the stellar colours of `blue' galaxies do not depend strongly on mass; (2) the tight, flat `dead sequence' does not extend much below log M* ˜ 10.5; instead, (3) the stellar colours of `red' galaxies vary rather strongly with mass, such that lower mass `red' galaxies have bluer stellar populations; (4) below log M* ˜ 9.3, the `red' population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, (5) it is hard to meaningfully constrain the shape, including the existence of an upturn, of the `red' galaxy mass function below log M* ˜ 9.3. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.

  13. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  14. Can physical stellar collisions explain the blue stragglers in the dwarf spheroidal galaxies?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.

    1993-01-01

    The hypothesis that the blue stragglers in the dwarf spheroidal galaxie have a collisional origin is considered. If all of the dark matter in these galaxies is in the form of low-mass stars and the binary frequency is ≅ 50%, then it is quite possible that ≅ 10% to 20% of their blue stragglers have been produced by physical stellar collisions

  15. Two micron spectroscopy of the Blue Compact Dwarf Galaxy Haro 2

    International Nuclear Information System (INIS)

    Davidge, T.J.; Maillard, J.P.

    1990-01-01

    This paper discusses the results of 2-micron spectroscopic observations of the Blue Compact Dwarf Galaxy (BCDG) Haro 2, obtained with the 3.6-m Canada-France-Hawaii Telescope. The spectrum contains emission lines of H I, He I, Fe II, and H2 and strong absorption originating from Delta-v = 2 transitions of CO. The strengths of the various features are discussed and the extinction in the 2-micron region is estimated. The spectrum of Haro 2 is compared with those of other BCDGs and the starburst galaxies NGC 253 and M82. It is found that, in many respects, Haro 2 is a typical starburst galaxy and that its blue near-IR colors are not necessarily a sign of youth. 35 refs

  16. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  17. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin.

    Science.gov (United States)

    Bhattacharya, Arpan; Bhowmik, Soumitra; Singh, Amit K; Kodgire, Prashant; Das, Apurba K; Mukherjee, Tushar Kanti

    2017-10-10

    The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.

  18. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    Science.gov (United States)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K 0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  19. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C. M.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697 (United States); Scoville, N. Z. [California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Sanders, D. B.; Lee, N. [Institute for Astronomy, University of Hawai' i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Finkelstein, S. L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Capak, P. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); De Zotti, G. [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Le Floc' h, E. [CEA-Saclay, Orme des Merisiers, bât. 709, F-91191 Gif-sur-Yvette Cedex (France); Ilbert, O. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de marseille, UMR 7326, F-13388 Marseille (France); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Takeuchi, T. T. [Nagoya University, Division of Particle and Astrophysical Science, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  20. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  1. THE ENVIRONMENTAL DEPENDENCE OF THE FRACTION OF 'UNCONVENTIONAL' GALAXIES: RED LATE TYPES AND BLUE EARLY TYPES

    International Nuclear Information System (INIS)

    Deng Xinfa; He Jizhou; Wu Ping; Ding Yingping

    2009-01-01

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 6, we construct two volume-limited samples with the luminosity -20.0 ≤ M r ≤ -18.5 and -22.40 ≤ M r ≤ -20.16, respectively, to explore the environmental dependence of the fraction of 'unconventional' galaxies: red late types and blue early types. We use the density estimator within the distance to the fifth nearest neighbor, and construct two samples at both extremes of density and perform comparative studies between them for each volume-limited sample. Results of two volume-limited samples show the same conclusions: the fraction of red late-type galaxies rises considerably with increasing local density, and that one of the blue early-type galaxies declines substantially with increasing local density. In addition, we note that bluer galaxies preferentially are late types, but the red galaxies are not dominated by early types.

  2. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8582 (Japan); Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); Fritz, Jacopo [Sterrenkundig Observatorium Vakgroep Fysica en Sterrenkunde Universiteit Gent, Krijgslaan 281, S9 B-9000 Gent (Belgium); Calvi, Rosa; Paccagnella, Angela [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova, vicolo Osservatorio 2, I-35122 Padova (Italy)

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 Galaxy Group Catalog, we use the (U – B) {sub rf} color and morphologies to characterize galaxies, in particular those that show signs of an ongoing or recent transformation of their star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  3. Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations

    Science.gov (United States)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang

    2018-01-01

    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.

  4. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  5. Galaxies clustering around QSOs with z = 0.9-1.5 and the origin of blue field galaxies

    Science.gov (United States)

    Hintzen, Paul; Romanishin, W.; Valdes, Francisco

    1991-01-01

    Deep CCD images were obtained in Mould-Cousins R and I passbands of 16 radio quasars with z values between 0.9 and 1.5 and absolute values of b above 35 deg, chosen from the Veron-Cetty and Veron (1984) catalog. Results indicate that, in this population of radio quasars, there is a statistically significant excess of galaxies within 15 arcsec of the quasars and brighter than R = 23 and I = 22. However, contrary to the report of Tyson (1986), no excess was found of galaxies with R less than 21 lying within 30 arcsec of quasars in this redshift range. Data were also obtained for very blue galaxies seen among objects in the general field, all of which are bluer in R-I than Magellanic irregulars at any redshift less than 3. It is suggested that this population might be comprised of low-redshift low-luminosity (H II region) galaxies of the type studied by French (1980) and/or higher redshift galaxies with strong cooling flows and forbidden O II lines.

  6. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    International Nuclear Information System (INIS)

    Leaman, Ryan

    2012-01-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity σ(Z) 2 . A plot of σ(Z) 2 versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the σ(Z) 2 - Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy σ(Z) 2 - Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the σ(Z) 2 - Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the σ(Z) 2 - Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy simulation models to reproduce.

  7. POX 186: the ultracompact blue compact dwarf galaxy reveals its nature

    Science.gov (United States)

    Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.

    2000-01-01

    High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.

  8. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    Science.gov (United States)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z small angular and physical sizes {d POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  9. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  10. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    Science.gov (United States)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  11. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  12. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  13. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  14. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    Science.gov (United States)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  15. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    Science.gov (United States)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  16. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    International Nuclear Information System (INIS)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni

    2014-01-01

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T eff indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  17. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    Energy Technology Data Exchange (ETDEWEB)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A.; Przybilla, Norbert [Institute for Astro and Particle Physics, A-6020 Innsbruck University (Austria); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh (United Kingdom); Pietrzyński, Grzegorz; Gieren, Wolfgang [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Carraro, Giovanni, E-mail: mwhosek@ifa.hawaii.edu, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu, E-mail: Miguel.Urbaneja-Perez@uibk.ac.at, E-mail: Norbert.Przybilla@uibk.ac.at, E-mail: chris.evans@stfc.ac.uk, E-mail: pietrzyn@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: gcarraro@eso.org [European Southern Observatory, La Silla Paranal Observatory (Chile)

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  18. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  19. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Science.gov (United States)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  20. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  1. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  2. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    Science.gov (United States)

    Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2008-01-01

    Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.

  3. The chemical composition and age of the blue compact dwarf galaxy Haro 2

    International Nuclear Information System (INIS)

    Davidge, T.J.

    1989-01-01

    Spectroscopic observations are presented of the central star-forming nebula in the blue compact dwarf galaxy Haro 2 (MrK 33). Using the strengths of various emission lines, it is found that the electron temperature is roughly 9250 K and that the O abundance is comparable with that of the LMC. Weak Mg b 5175-A and Fe I 5335-A absorption lines have also been identified. An effort has been made to investigate the origin of these lines using synthetic spectra. It is concluded that, contrary to the findings of Loose and Thuan (1986), Haro 2 probably contains an old stellar substrate. Finally, it is suggested that Haro 2 may eventually evolve into a nucleated dwarf elliptical galaxy. 44 refs

  4. INTRINSIC SHAPE OF STAR-FORMING BzK GALAXIES AT z ∼ 2 IN GOODS-N

    International Nuclear Information System (INIS)

    Yuma, Suraphong; Ohta, Kouji; Yabe, Kiyoto; Kajisawa, Masaru; Ichikawa, Takashi

    2011-01-01

    We study the structure of star-forming galaxies at z ∼ 2 in a Great Observatories Origins Deep Survey North field selected as star-forming BzK (sBzK) galaxies down to K AB B > C, we find that the mean B/A ratio is 0.61 +0.05 -0.08 and disk thickness C/A is 0.28 +0.03 -0.04 . This indicates that the single-component sBzK galaxies at z ∼ 2 have a bar-like or oval shape rather than a round disk shape. The shape seems to resemble a bar/oval structure that forms through bar instability; if this is the case, the intrinsic shape may give us a clue to understand dynamical evolution of baryonic matter in a dark matter halo.

  5. Spectroscopy of Luminous Compact Blue Galaxies in Distant Clusters. I. Spectroscopic Data

    Science.gov (United States)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.; Hon, Kimo

    2011-11-01

    We used the DEIMOS spectrograph on the Keck II Telescope to obtain spectra of galaxies in the fields of five distant, rich galaxy clusters over the redshift range 0.5 reported in the literature, except for 11 targets which we believe were previously in error. Within our sample, we confirm the presence of 53 LCBGs in the five galaxy clusters. The clusters all stand out as distinct peaks in the redshift distribution of LCBGs with the average number density of LCBGs ranging from 1.65 ± 0.25 Mpc-3 at z = 0.55 to 3.13 ± 0.65 Mpc-3 at z = 0.8. The number density of LCBGs in clusters exceeds the field density by a factor of 749 ± 116 at z = 0.55; at z = 0.8, the corresponding ratio is E = 416 ± 95. At z = 0.55, this enhancement is well above that seen for blue galaxies or the overall cluster population, indicating that LCBGs are preferentially triggered in high-density environments at intermediate redshifts. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  6. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    Science.gov (United States)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides, but there is a hint

  7. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    Science.gov (United States)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  8. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Youichi; Hota, Ananda [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2013-04-20

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  9. DISCOVERY OF A POSSIBLY SINGLE BLUE SUPERGIANT STAR IN THE INTRA-CLUSTER REGION OF VIRGO CLUSTER OF GALAXIES

    International Nuclear Information System (INIS)

    Ohyama, Youichi; Hota, Ananda

    2013-01-01

    IC 3418 is a dwarf irregular galaxy falling into the Virgo cluster, and a 17 kpc long trail is seen behind the galaxy, which is considered to have formed due to ram pressure stripping. The trail contains compact knots and diffuse blobs of ultraviolet and blue optical emission and, thus, it is a clear site of recent star formation but in an unusual environment, surrounded by a million degree intra-cluster medium. We report on our optical spectroscopy of a compact source in the trail, SDSS J122952.66+112227.8, and show that the optical spectrum is dominated by emission from a massive blue supergiant star. If confirmed, our report would mark the farthest star with spectroscopic observation. We interpret that a massive O-type star formed in situ in the trail has evolved recently out of the main sequence into this blue supergiant phase, and now lacks any detectable spectral sign of its associated H II region. We argue that turbulence within the ram pressure striped gaseous trail may play a dominant role for the star formation within such trails.

  10. THE INTRINSIC EDDINGTON RATIO DISTRIBUTION OF ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Mackenzie L.; Hickox, Ryan C.; Black, Christine S.; Hainline, Kevin N.; DiPompeo, Michael A. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Goulding, Andy D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-20

    An important question in extragalactic astronomy concerns the distribution of black hole accretion rates of active galactic nuclei (AGNs). Based on observations at X-ray wavelengths, the observed Eddington ratio distribution appears as a power law, while optical studies have often yielded a lognormal distribution. There is increasing evidence that these observed discrepancies may be due to contamination by star formation and other selection effects. Using a sample of galaxies from the Sloan Digital Sky Survey Data Release 7, we test whether or not an intrinsic Eddington ratio distribution that takes the form of a Schechter function is consistent with previous work suggesting that young galaxies in optical surveys have an observed lognormal Eddington ratio distribution. We simulate the optical emission line properties of a population of galaxies and AGNs using a broad, instantaneous luminosity distribution described by a Schechter function near the Eddington limit. This simulated AGN population is then compared to observed galaxies via their positions on an emission line excitation diagram and Eddington ratio distributions. We present an improved method for extracting the AGN distribution using BPT diagnostics that allows us to probe over one order of magnitude lower in Eddington ratio, counteracting the effects of dilution by star formation. We conclude that for optically selected AGNs in young galaxies, the intrinsic Eddington ratio distribution is consistent with a possibly universal, broad power law with an exponential cutoff, as this distribution is observed in old, optically selected galaxies and X-rays.

  11. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Sung, Eon-Chang; Kyeong, Jaemann [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Humphrey, Andrew, E-mail: jiwon@cnu.ac.kr, E-mail: screy@cnu.ac.kr [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762, Porto (Portugal)

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  12. Surface brightness and color distributions in blue compact dwarf galaxies. I. Haro 2, an extreme example of a star-forming young elliptical galaxy

    International Nuclear Information System (INIS)

    Loose, H.H.; Thuan, T.X.; Virginia Univ., Charlottesville, VA)

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The missing mass problem of Haro 2 is also discussed. 28 references

  13. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    International Nuclear Information System (INIS)

    Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.; Weiner, Benjamin; Charlot, Stéphane

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 s bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  14. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Brown, Michael J. I.; Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S.; Dey, Arjun; Jannuzi, Buell T.; Moustakas, John

    2012-01-01

    We present the galaxy optical luminosity function for the redshift range 0.05 2 in the Boötes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z) (0.54±0.64) for red galaxies and (1 + z) (1.64±0.39) for blue galaxies.

  15. SPECTROSCOPIC CONFIRMATION OF A z = 6.740 GALAXY BEHIND THE BULLET CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Bradac, Marusa; Hall, Nicholas [Department of Physics, University of California, Davis, CA 95616 (United States); Vanzella, Eros [INAF, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste (Italy); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Fontana, Adriano [INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio (Italy); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Clowe, Douglas [Department of Physics and Astronomy, Ohio University, Clippinger Labs 251B, Athens, OH 45701 (United States); Zaritsky, Dennis; Clement, Benjamin [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Stiavelli, Massimo, E-mail: marusa@physics.ucdavis.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z{sub 850LP}-band dropout behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 A at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 {+-} 0.003. The integrated line flux is f = (0.7 {+-} 0.1 {+-} 0.3) Multiplication-Sign 10{sup -17} erg{sup -1} s{sup -1} cm{sup -2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 {+-} 0.2 the intrinsic (corrected for lensing) flux is f {sup int} = (0.23 {+-} 0.03 {+-} 0.10 {+-} 0.02) Multiplication-Sign 10{sup -17} erg{sup -1} s{sup -1} cm{sup -2} (additional uncertainty due to magnification), which is {approx}2-3 times fainter than other such measurements in z {approx} 7 galaxies. The intrinsic H{sub 160W}-band magnitude of the object is m{sup int}{sub H{sub 1{sub 6{sub 0{sub W}}}}}=27.57{+-}0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.

  16. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Science.gov (United States)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  17. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Moustakas, John [Center for Astrophysics and Space Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  18. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    Science.gov (United States)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  19. Multi-spectral study of a new sample of blue compact dwarf galaxies

    CERN Document Server

    Doublier, V; Comte, G

    1999-01-01

    For pt.I see ibid., vol.124, no.3, p.405-24 (1997). We present the results of surface photometry on a new sample of blue compact dwarf galaxies (BCDGs), in continuation to a previous paper (Doublier et al. 1997). The 22 galaxies $9 (plus two companions) discussed in the present paper have been selected in the Southern Hemisphere, from several lists. An atlas containing isophotal maps, surface brightnesses and B-R color profiles of the sample is given, together $9 with the tables containing the photometric parameters. The results are consistent with those for objects selected from the Byurakan surveys in the Northern Hemisphere. Similarly, we find about one fourth of the BCDGs showing a $9 dominant r/sup 1/4/ brightness distribution component, one fourth of the BCDGs showing a dominant exponential surface brightness profile, and about half of them show composite brightness distributions. Integrated properties, colors, $9 mean surface brightnesses and luminosity-radius relations are investigated and discussed f...

  20. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  1. A millimeter-wave survey of CO emission in Seyfert galaxies

    International Nuclear Information System (INIS)

    Heckman, T.M.; Blitz, L.; Wilson, A.S.; Armus, L.; Miley, G.K.

    1989-01-01

    Emission in the 115 GHz 1-0 line of CO has been detected in 18 Seyfert galaxies in a sample of 43. The CO properties of 29 Seyferts in the Revised Shapley Ames Catalog (RSA) are compared with the CO properties of normal galaxies of the same Hubble type. These RSA type 2 Seyferts have an average ratio of CO-to-blue luminosity that is about twice as large as that of the normal galaxies, but the RSA type 1 Seyferts have normal CO luminosities. The RSA type 2 Seyfert galaxies have an unusually large average ratio of CO luminosity-to-H I mass compared to normal disk galaxies. The RSA type 2 Seyferts have an average far-IR luminosity that is about four times larger than a non-Seyfert comparison sample, while the RSA type 1 Seyferts are not significantly more luminous than the non-Seyferts. The result imply that the two classes of Seyferts are intrinsically different from one another and that one class cannot evolve into another in less than a few million years. 129 refs

  2. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  3. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  4. Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range

    Science.gov (United States)

    Huertas-Company, M.; Primack, J. R.; Dekel, A.; Koo, D. C.; Lapiner, S.; Ceverino, D.; Simons, R. C.; Snyder, G. F.; Bernardi, M.; Chen, Z.; Domínguez-Sánchez, H.; Lee, C. T.; Margalef-Bentabol, B.; Tuccillo, D.

    2018-05-01

    We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-forming phase in the central regions of many growing galaxies that follows an earlier phase of gas compaction and is followed by a central quenching phase. We train a convolutional neural network (CNN) with mock “observed” images of simulated galaxies at three phases of evolution— pre-BN, BN, and post-BN—and demonstrate that the CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the CNN within a time window of ∼0.15 Hubble times. When the trained CNN is applied to observed galaxies from the CANDELS survey at z = 1–3, it successfully identifies galaxies at the three phases. We find that the observed BNs are preferentially found in galaxies at a characteristic stellar mass range, 109.2–10.3 M ⊙ at all redshifts. This is consistent with the characteristic galaxy mass for BNs as detected in the simulations and is meaningful because it is revealed in the observations when the direct information concerning the total galaxy luminosity has been eliminated from the training set. This technique can be applied to the classification of other astrophysical phenomena for improved comparison of theory and observations in the era of large imaging surveys and cosmological simulations.

  5. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  6. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  7. The intrinsic shape of bulges in the CALIFA survey

    Science.gov (United States)

    Costantin, L.; Méndez-Abreu, J.; Corsini, E. M.; Eliche-Moral, M. C.; Tapia, T.; Morelli, L.; Dalla Bontà, E.; Pizzella, A.

    2018-02-01

    Context. The intrinsic shape of galactic bulges in nearby galaxies provides crucial information to separate bulge types. Aims: We aim to derive accurate constraints to the intrinsic shape of bulges to provide new clues on their formation mechanisms and set new limitations for future simulations. Methods: We retrieved the intrinsic shape of a sample of CALIFA bulges using a statistical approach. Taking advantage of GalMer numerical simulations of binary mergers we estimated the reliability of the procedure. Analyzing the i-band mock images of resulting lenticular remnants, we studied the intrinsic shape of their bulges at different galaxy inclinations. Finally, we introduced a new (B/A, C/A) diagram to analyze possible correlations between the intrinsic shape and the properties of bulges. Results: We tested the method on simulated lenticular remnants, finding that for galaxies with inclinations of 25° ≤ θ ≤ 65° we can safely derive the intrinsic shape of their bulges. We found that our CALIFA bulges tend to be nearly oblate systems (66%), with a smaller fraction of prolate spheroids (19%), and triaxial ellipsoids (15%). The majority of triaxial bulges are in barred galaxies (75%). Moreover, we found that bulges with low Sérsic indices or in galaxies with low bulge-to-total luminosity ratios form a heterogeneous class of objects; additionally, bulges in late-type galaxies or in less massive galaxies have no preference for being oblate, prolate, or triaxial. On the contrary, bulges with high Sérsic index, in early-type galaxies, or in more massive galaxies are mostly oblate systems. Conclusions: We concluded that various evolutionary pathways may coexist in galaxies, with merging events and dissipative collapse being the main mechanisms driving the formation of the most massive oblate bulges and bar evolution reshaping the less massive triaxial bulges.

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unbiased estimate of the growth rate of structure at ⟨z⟩ = 0.85 using the clustering of luminous blue galaxies

    Science.gov (United States)

    Mohammad, F. G.; Granett, B. R.; Guzzo, L.; Bel, J.; Branchini, E.; de la Torre, S.; Moscardini, L.; Peacock, J. A.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.

    2018-02-01

    We used the VIMOS Public Extragalactic Redshift Survey (VIPERS) final data release (PDR-2) to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically selected volume-limited samples of blue and red galaxies as to minimise the systematic error on the estimate of the growth rate of structure fσ8 from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we defined the red or blue fractional contribution of each object through a weight based on the (U - V ) colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of fσ8 to be minimised when using a volume-limited sample of luminous blue galaxies. We modelled non-linear corrections via the Scoccimarro extension of the Kaiser model (with updated fitting formulae for the velocity power spectra), finding systematic errors on fσ8 of below 1-2%, using scales as small as 5 h-1 Mpc. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured ξ(rp,π) from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measured a value of fσ8 = 0.45 ± 0.11 over the single redshift range 0.6 ≤ z ≤ 1.0, corresponding to an effective redshift for the blue galaxies ⟨z⟩=0.85. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error

  9. On the Evolution of Helium in Blue Compact Galaxies

    International Nuclear Information System (INIS)

    Fields, B.D.; Olive, K.A.

    1998-01-01

    We discuss the chemical evolution of dwarf irregular and blue compact galaxies in light of recent data, new stellar yields, and chemical evolution models. We examine the abundance data for evidence of H ii region self-enrichment effects, which would lead to correlations in the scatter of helium, nitrogen, and oxygen abundances around their mean trends. The observed helium abundance trends show no such correlations, although the nitrogen-oxygen trend does show strong evidence for real scatter beyond observational error. We construct simple models for the chemical evolution of these galaxies, using the most recent yields of 4 He, C, N, and O in intermediate- and high-mass stars. The effects of galactic outflows, which can arise both from bulk heating and evaporation of the interstellar medium and from the partial escape of enriched supernova ejecta are included. In agreement with other studies, we find that supernova-enriched outflows can roughly reproduce the observed He, C, N, and O trends; however, in models that fit N versus O, the slopes ΔY/ΔO and ΔY/ΔN consistently fall more than 2 σ below the fit to observations. We discuss the role of the models and their uncertainties in the extrapolation of primordial helium from the data. We also explore the model dependence arising from nucleosynthesis uncertainties associated with nitrogen yields in intermediate-mass stars, the fate of 8 endash 11 M circle-dot stars, and massive star winds. copyright copyright 1998. The American Astronomical Society

  10. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang [University of California, Riverside, CA 92512 (United States); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Guo, Yicheng; Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Papovich, Casey, E-mail: shoubaneh.hemmati@ucr.edu [Texas A and M University, College Station, TX 77843 (United States)

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given

  11. Infrared galaxies in the IRAS minisurvey

    Science.gov (United States)

    Soifer, B. T.; Neugebauer, G.; Rowan-Robinson, M.; Clegg, P. E.; Emerson, J. P.; Houck, J. R.; De Jong, T.; Aumann, H. H.; Beichman, C. A.; Boggess, N.

    1984-01-01

    A total of 86 galaxies have been detected at 60 microns in the high galactic latitude portion of the IRAS minisurvey. The surface density of detected galaxies with flux densities greater than 0.5 Jy is 0.25 sq deg. Virtually all the galaxies detected are spiral galaxies and have an infrared to blue luminosity ratio ranging from 50 to 0.5. For the infrared-selected sample, no obvious correlation exists between infrared excess and color temperature. The infrared flux from 10 to 100 microns contributes approximately 5 percent of the blue luminosity for galaxies in the magnitude range 14 less than m(pg) less than 18 mag. The fraction of interacting galaxies is between one-eighth and one-fourth of the sample.

  12. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Kassin, Susan A.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 < z < 1.4 from the All-Wavelength Extended Groth Strip International Survey. This consists in the Bayesian analysis of the observed galaxy spectral energy distributions with a comprehensive library of synthetic spectra assembled using realistic, hierarchical star formation, and chemical enrichment histories from cosmological simulations. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R, I, and K{sub s} bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  13. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  14. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z ⊙ ). We also find that the remnants of these mergers can have rather high mass densities (10 4 M ⊙ pc −3 ) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs

  15. FORMATION OF ULTRA-COMPACT BLUE DWARF GALAXIES AND THEIR EVOLUTION INTO NUCLEATED DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia 35 Stirling Highway, Crawley Western Australia, 6009 (Australia)

    2015-10-10

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers can have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.

  16. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  17. The metallicity evolution of blue compact dwarf galaxies from the intermediate redshift to the local Universe

    OpenAIRE

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range in [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope (MMT). More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD sampl...

  18. Beyond the Borders of a Galaxy

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms. The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms. Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy. In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer

  19. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    Science.gov (United States)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  20. The IRX-β dust attenuation relation in cosmological galaxy formation simulations

    Science.gov (United States)

    Narayanan, Desika; Davé, Romeel; Johnson, Benjamin D.; Thompson, Robert; Conroy, Charlie; Geach, James

    2018-02-01

    We utilize a series of galaxy formation simulations to investigate the relationship between the ultraviolet (UV) slope, β, and the infrared excess (IRX) in the spectral energy distributions (SEDs) of galaxies. Our main goals are to understand the origin of and scatter in the IRX-β relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-β relation; and to understand systematic deviations from the canonical local IRX-β relations in particular populations of high-redshift galaxies. Our main results follow. Young galaxies with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-β relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star-forming galaxies drive galaxies towards blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downwards in the IRX-β plane due to lowered near-ultraviolet/far-ultraviolet extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back towards the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-β plane: z ˜ 2-4 dusty star-forming galaxies and z > 5 star-forming galaxies.

  1. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    Science.gov (United States)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  2. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D n (4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D n (4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models

  3. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fang, Guanwen, E-mail: ljhhw@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D{sub n}(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D{sub n}(4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  4. H1 in RSA galaxies

    Science.gov (United States)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  5. THE SINS/zC-SINF SURVEY OF z ∼ 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    International Nuclear Information System (INIS)

    Newman, Sarah F.; Genzel, Reinhard; Förster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter; Shapiro Griffin, Kristen; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie; Bouché, Nicolas; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Hicks, Erin K. S.; Naab, Thorsten

    2013-01-01

    We analyze the spectra, spatial distributions, and kinematics of Hα, [N II], and [S II] emission in a sample of 38, z ∼ 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z ∼ 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  6. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89deg 2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric

  7. AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2

    International Nuclear Information System (INIS)

    Mendez, Alexander J.; Coil, Alison L.; Moustakas, John; Lotz, Jennifer; Salim, Samir; Simard, Luc

    2011-01-01

    We present quantitative morphologies of ∼300 galaxies in the optically defined green valley at 0.4 20 . We find that the green galaxy population is intermediate between the red and blue galaxy populations in terms of concentration, asymmetry, and morphological type and merger fraction estimated using Gini/M 20 . We find that most green galaxies are not classified as mergers; in fact, the merger fraction in the green valley is lower than in the blue cloud. We show that at a given stellar mass, green galaxies have higher concentration values than blue galaxies and lower concentration values than red galaxies. Additionally, we find that 12% of green galaxies have B/T = 0 and 21% have B/T ≤ 0.05. Our results show that green galaxies are generally massive (M * ∼ 10 10.5 M sun ) disk galaxies with high concentrations. We conclude that major mergers are likely not the sole mechanism responsible for quenching star formation in this population and that either other external processes or internal secular processes play an important role both in driving gas toward the center of these galaxies and in quenching star formation.

  8. STScI-PRC02-11a FARAWAY GALAXIES PROVIDE A STUNNING 'WALLPAPER' BACKDROP FOR A RUNAWAY GALAXY

    Science.gov (United States)

    2002-01-01

    Against a stunning backdrop of thousands of galaxies, this odd-looking galaxy with the long streamer of stars appears to be racing through space, like a runaway pinwheel firework. This picture of the galaxy UGC 10214 was taken by the Advanced Camera for Surveys (ACS), which was installed aboard NASA's Hubble Space Telescope in March during Servicing Mission 3B. Dubbed the 'Tadpole,' this spiral galaxy is unlike the textbook images of stately galaxies. Its distorted shape was caused by a small interloper, a very blue, compact galaxy visible in the upper left corner of the more massive Tadpole. The Tadpole resides about 420 million light-years away in the constellation Draco. Seen shining through the Tadpole's disk, the tiny intruder is likely a hit-and-run galaxy that is now leaving the scene of the accident. Strong gravitational forces from the interaction created the long tail of debris, consisting of stars and gas that stretch out more than 280,000 light-years. Numerous young blue stars and star clusters, spawned by the galaxy collision, are seen in the spiral arms, as well as in the long 'tidal' tail of stars. Each of these clusters represents the formation of up to about a million stars. Their color is blue because they contain very massive stars, which are 10 times hotter and 1 million times brighter than our Sun. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. These clusters will eventually become old globular clusters similar to those found in essentially all halos of galaxies, including our own Milky Way. Two prominent clumps of young bright blue stars in the long tail are separated by a 'gap' -- a section that is fainter than the rest of the tail. These clumps of stars will likely become dwarf galaxies that orbit in the Tadpole's halo. The galactic carnage and torrent of star birth are playing out against a spectacular backdrop: a 'wallpaper pattern' of 6,000 galaxies. These

  9. THE GRAVITATIONAL SHEAR-INTRINSIC ELLIPTICITY CORRELATION FUNCTIONS OF LUMINOUS RED GALAXIES IN OBSERVATION AND IN THE ΛCDM MODEL

    International Nuclear Information System (INIS)

    Okumura, Teppei; Jing, Y. P.

    2009-01-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σ θ = 34.9 +1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  10. THE SINS/zC-SINF SURVEY OF z {approx} 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, Padova I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Bouche, Nicolas [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Burkert, Andreas [Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: sfnewman@berkeley.edu [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2013-04-20

    We analyze the spectra, spatial distributions, and kinematics of H{alpha}, [N II], and [S II] emission in a sample of 38, z {approx} 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z {approx} 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  11. Infrared photometry of galaxies in the Butcher-Oemler cluster 0024+1654

    International Nuclear Information System (INIS)

    Lilly, S.J.; Gunn, J.E.

    1985-01-01

    Infrared photometry is presented for 21 galaxies that are spectroscopically confirmed members of the Butcher-Oemler cluster C10024+1654 at z=0.39. These data are combined with optical CCD photometry and transformed to produce rest-frame UBVK colours. The distribution of colours in the (U-V)/(V-K) plane is analysed. The 11 'red' galaxies have colours that are broadly similar to those of nearby elliptical galaxies. All but one of the 10 'blue' galaxies have the colours of nearby spiral galaxies, including one Im-type galaxy, and other interpretations, e.g. a young age, may be discounted. The (V-K) colour of the remaining 'blue' galaxy, however, suggests the presence of a substantial intermediate age (approx. 1 Gyr) stellar population. (author)

  12. Spatially Resolved HST Grism Spectroscopy of a Lensed Emission Line Galaxy at z ~ 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-01

    We take advantage of gravitational lensing amplification by A1689 (z = 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i 775 = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of ≈4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M * ≈ 2 × 109 M ⊙) with a high specific star formation rate (≈20 Gyr-1). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 ± 0.2). We break the continuous line-emitting region of this giant arc into seven ~1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (Hβ) and f ([Ne III])/f (Hβ) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction. Based, in part, on data obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Photometric Signatures of Starbursts in Interacting Galaxies and the Butcher-Oemler Effect

    Science.gov (United States)

    Rakos, Karl D.; Maindl, Thomas I.; Schombert, James M.

    1996-01-01

    This paper presents new and synthetic narrow band photometry of ellipticals, spirals, Seyferts and interacting galaxies in an attempt to identify the cause of the unusually high fraction of blue cluster galaxies in distant clusters (the Butcher-Oemler Effect). The properties and distribution of the low redshift sample specifically points to starbursts as the origin of the blue narrow band colors in interacting Arp galaxies.

  14. H I IMAGING OBSERVATIONS OF SUPERTHIN GALAXIES. II. IC 2233 AND THE BLUE COMPACT DWARF NGC 2537

    International Nuclear Information System (INIS)

    Matthews, Lynn D.; Uson, Juan M.

    2008-01-01

    We have used the Very Large Array to image the H I 21 cm line emission in the edge-on Sd galaxy IC 2233 and the blue compact dwarf NGC 2537. We also present new optical B, R, and Hα imaging of IC 2233 obtained with the WIYN telescope. Despite evidence of localized massive star formation in the form of prominent H II regions and shells, supergiant stars, and a blue integrated color, IC 2233 is a low surface brightness system with a very low global star formation rate (∼ sun yr -1 ), and we detect no significant 21 cm radio continuum emission from the galaxy. The H I and ionized gas disks of IC 2233 are clumpy and vertically distended, with scale heights comparable to that of the young stellar disk. Both the stellar and H I disks of IC 2233 appear flared, and we also find a vertically extended, rotationally anomalous component of H I extending to ∼ 2.4d 10 kpc from the midplane. The H I disk exhibits a mild lopsidedness as well as a global corrugation pattern with a period of ∼7d 10 kpc and an amplitude of ∼150d 10 pc. To our knowledge, this is the first time corrugations of the gas disk have been reported in an external galaxy; these undulations may be linked to bending instabilities or to underlying spiral structure and suggest that the disk is largely self-gravitating. Lying at a projected distance of 16'.7 from IC 2233, NGC 2537 has an H I disk with a bright, tilted inner ring and a flocculent, dynamically cold outer region that extends to ∼3.5 times the extent of the stellar light (D 25 ). Although NGC 2537 is rotationally-dominated, we measure H I velocity dispersions as high as σ V.HI ∼25 km s -1 near its center, indicative of significant turbulent motions. The inner rotation curve rises steeply, implying a strong central mass concentration. Our data indicate that IC 2233 and NGC 2537 do not constitute a bound pair and most likely lie at different distances. We also find no compelling evidence of a recent minor merger in either IC 2233 or NGC

  15. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  16. Evolution of disk galaxies and the origin of SO galaxies

    International Nuclear Information System (INIS)

    Larson, R.B.; Tinsley, B.M.; Caldwell, C.N.

    1980-01-01

    We reconsider the relation between spiral and SO galaxies in the light of recent data on the colors and morphology of disk systems, and on the content of clusters at different redshifts. Star formation will strongly deplete the gas in most spirals in a fraction of the Hubble time, so we suggest that the gas in spirals has been replenished by infall from residual envelopes, probably including gas-rich companions and tidal debris. SO's may then be disk systems that lost their gas-rich envelopes at an early stage and consumed their remaining gas by star formation. This picture is consistent with the color of SO's if most of their star formation stopped at least a few gigayears ago, and it is consistent with their small disk-to-bulge ratios relative to spirals, since this is a direct result of the early truncation of star formation. Numerical simulations show that the gas envelopes of disk galaxies in clusters are largely stripped away when the clusters collapse, but star formation can continue in the spirals for several gigayears while their remaining disk gas is consumed. These results can explain the blue galaxies observed by Butcher and Oemler in two condensed clusters at zapprox.0.4: these clusters are seen just before most of their galaxies run out of gas, so that star formation is still occurring in them but will soon die out, causing the spirals to evolve into SO's with normal present colors. A rapid evolution of the galaxy content of condensed clusters is predicted at moderate redshifts, ranging from a large fraction of blue galaxies at zapprox.0.4 to very few at zapprox.0

  17. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  18. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  19. INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION

    International Nuclear Information System (INIS)

    Hao Jiangang; Kubo, Jeffrey M.; Feldmann, Robert; Annis, James; Johnston, David E.; Lin Huan; McKay, Timothy A.

    2011-01-01

    We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure (≥90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant (≥3σ) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.

  20. SEARCH FOR BLUE COMPACT DWARF GALAXIES DURING QUIESCENCE. II. METALLICITIES OF GAS AND STARS, AGES, AND STAR FORMATION RATES

    International Nuclear Information System (INIS)

    Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C.; Vazdekis, A.

    2009-01-01

    We examine the metallicity and age of a large set of Sloan Digital Sky Survey/Data Release 6 galaxies that may be blue compact dwarf (BCD) galaxies during quiescence (QBCDs). The individual spectra are first classified and then averaged to reduce noise. The metallicity inferred from emission lines (tracing ionized gas) exceeds by ∼0.35 dex the metallicity inferred from absorption lines (tracing stars). Such a small difference is significant according to our error budget estimate. The same procedure was applied to a reference sample of BCDs, and in this case the two metallicities agree, being also consistent with the stellar metallicity in QBCDs. Chemical evolution models indicate that the gas metallicity of QBCDs is too high to be representative of the galaxy as a whole, but it can represent a small fraction of the galactic gas, self-enriched by previous starbursts. The luminosity-weighted stellar age of QBCDs spans the whole range between 1 and 10 Gyr, whereas it is always smaller than 1 Gyr for BCDs. Our stellar ages and metallicities rely on a single stellar population spectrum fitting procedure, which we have specifically developed for this work using the stellar library MILES.

  1. The Dependence of galaxy colors on luminosity and environment at z~0.4

    Energy Technology Data Exchange (ETDEWEB)

    Yee, H.K.C.; /Toronto U., Astron. Dept.; Hsieh, B.C.; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Lin, Huan; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-08-01

    The authors analyze the B-R{sub c} colors of galaxies as functions of luminosity and local galaxy density using a large photometric redshift catalog based on the Red-Sequence Cluster Survey. They select two samples of galaxies with a magnitude limit of M{sub R{sub e}} < -18.5 and redshift ranges of 0.2 {le} z < 0.4 and 0.4 {le} x < 0.6 containing 10{sup 5} galaxies each. they model the color distributions of subsamples of galaxies and derive the red galaxy fraction and peak colors of red and blue galaxies as functions of galaxy luminosity and environment. The evolution of these relationships over the redshift range of x {approx} 0.5 to z {approx} 0.05 is analyzed in combination with published results from the Sloan Digital Sky Survey. They find that there is a strong evolution in the restframe peak color of bright blue galaxies in that they become redder with decreasing redshift, while the colors of faint blue galaxies remain approximately constant. This effect supports the ''downsizing'' scenario of star formation in galaxies. While the general dependence of the galaxy color distributions on the environment is small, they find that the change of red galaxy fraction with epoch is a function of the local galaxy density, suggesting that the downsizing effect may operate with different timescales in regions of different galaxy densities.

  2. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  3. Galaxy number counts: Pt. 2

    International Nuclear Information System (INIS)

    Metcalfe, N.; Shanks, T.; Fong, R.; Jones, L.R.

    1991-01-01

    Using the Prime Focus CCD Camera at the Isaac Newton Telescope we have determined the form of the B and R galaxy number-magnitude count relations in 12 independent fields for 21 m ccd m and 19 m ccd m 5. The average galaxy count relations lie in the middle of the wide range previously encompassed by photographic data. The field-to-field variation of the counts is small enough to define the faint (B m 5) galaxy count to ±10 per cent and this variation is consistent with that expected from galaxy clustering considerations. Our new data confirm that the B, and also the R, galaxy counts show evidence for strong galaxy luminosity evolution, and that the majority of the evolving galaxies are of moderately blue colour. (author)

  4. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.

    1986-01-01

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  5. Clustering of galaxies around AGNs in the HSC Wide survey

    Science.gov (United States)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  6. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

    Science.gov (United States)

    Haines, C. P.; Iovino, A.; Krywult, J.; Guzzo, L.; Davidzon, I.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Granett, B. R.; de la Torre, S.; De Lucia, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Gargiulo, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Siudek, M.

    2017-08-01

    We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z 1. We trace the extents and evolutions of both the blue cloud and red sequence by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0 1011M⊙, d4000 web site is http://www.vipers.inaf.it/

  7. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  8. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    Science.gov (United States)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  9. Imprint of inflation on galaxy shape correlations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Fabian [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: fabians@MPA-Garching.MPG.DE, E-mail: elisa.chisari@physics.ox.ac.uk, E-mail: cora.dvorkin@cfa.harvard.edu [Institute for Theory and Computation, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)

    2015-10-01

    We show that intrinsic (not lensing-induced) correlations between galaxy shapes offer a new probe of primordial non-Gaussianity and inflationary physics which is complementary to galaxy number counts. Specifically, intrinsic alignment correlations are sensitive to an anisotropic squeezed limit bispectrum of the primordial perturbations. Such a feature arises in solid inflation, as well as more broadly in the presence of light higher spin fields during inflation (as pointed out recently by Arkani-Hamed and Maldacena). We present a derivation of the all-sky two-point correlations of intrinsic shapes and number counts in the presence of non-Gaussianity with general angular dependence, and show that a quadrupolar (spin-2) anisotropy leads to the analog in galaxy shapes of the well-known scale-dependent bias induced in number counts by isotropic (spin-0) non-Gaussianity. Moreover, in the presence of non-zero anisotropic non-Gaussianity, the quadrupole of galaxy shapes becomes sensitive to far superhorizon modes. These effects come about because long-wavelength modes induce a local anisotropy in the initial power spectrum, with which galaxies will correlate. We forecast that future imaging surveys could provide constraints on the amplitude of anisotropic non-Gaussianity that are comparable to those from the Cosmic Microwave Background (CMB). These are complementary as they probe different physical scales. The constraints, however, depend on the sensitivity of galaxy shapes to the initial conditions which we only roughly estimate from observed tidal alignments.

  10. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    Science.gov (United States)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  11. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  12. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  13. 150 southern compact and bright-nucleus galaxies

    International Nuclear Information System (INIS)

    Fairall, A.P.

    1977-01-01

    Galaxies having regions of exceptionally high surface brightness have been selected from the ESO Quick Blue Survey and investigated by 'grating photography' -direct photography plus low-dispersion slitless spectroscopy. Two new Seyfert galaxies and a peculiar multiple system have been discovered. Differences in red continua are also noted. (author)

  14. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  15. The Intrinsic Far-infrared Continua of Type-1 Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, George H., E-mail: jianwei@email.arizona.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-06-01

    The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ∼20 μ m and can be matched by an Elvis et al.-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ ∼ 20–100 μ m, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR.

  16. The visibility of high-redshift galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.

    1990-01-01

    The most visible galaxies - that is, those which have the largest apparent sizes and isophotal luminosities when seen at a given distance - are those with a particular observed surface brightness. Extending this argument to high-redshift galaxies, it is clear that this optimum surface brightness moves progressively to brighter intrinsic surface brightnesses, so as to counteract the effect of K-corrections and cosmological dimming. Thus the galaxies appearing in faint surveys will be from a population distinctly different from those 'normal' galaxies observed nearby. Galaxies in deep surveys are more likely to be spirals and to be of high surface brightness. This has very important implications for observational studies of galaxy evolution. (author)

  17. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    International Nuclear Information System (INIS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-01-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  18. LUMINOUS BURIED ACTIVE GALACTIC NUCLEI AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi

    2009-01-01

    We present the results of Spitzer Infrared Spectrograph 5-35 μm low-resolution spectroscopic energy diagnostics of ultraluminous infrared galaxies (ULIRGs) at z> 0.15, classified optically as non-Seyferts. Based on the equivalent widths of polycyclic aromatic hydrocarbon emission and the optical depths of silicate dust absorption features, we searched for signatures of intrinsically luminous, but optically elusive, buried active galactic nuclei (AGNs) in these optically non-Seyfert ULIRGs. We then combined the results with those of non-Seyfert ULIRGs at z IR 12 L sun . We found that the energetic importance of buried AGNs clearly increases with galaxy infrared luminosity, becoming suddenly discernible in ULIRGs with L IR > 10 12 L sun . For ULIRGs with buried AGN signatures, a significant fraction of infrared luminosities can be accounted for by the detected buried AGN and modestly obscured (A V < 20 mag) starburst activity. The implied masses of spheroidal stellar components in galaxies for which buried AGNs become important roughly correspond to the value separating red massive and blue less-massive galaxies in the local universe. Our results may support the widely proposed AGN-feedback scenario as the origin of galaxy downsizing phenomena, where galaxies with currently larger stellar masses previously had higher AGN energetic contributions and star formation originating infrared luminosities, and have finished their major star formation more quickly, due to stronger AGN feedback.

  19. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Science.gov (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  20. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kounavis, P., E-mail: pkounavis@upatras.gr [Department of Electrical and Computer Engineering, School of Engineering, University of Patras, 26504 Patras (Greece)

    2016-06-28

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  1. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    International Nuclear Information System (INIS)

    Kounavis, P.

    2016-01-01

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominant extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.

  2. Spectroscopic Confirmation of a z = 6.740 Galaxy behind the Bullet Cluster

    Science.gov (United States)

    Bradač, Maruša; Vanzella, Eros; Hall, Nicholas; Treu, Tommaso; Fontana, Adriano; Gonzalez, Anthony H.; Clowe, Douglas; Zaritsky, Dennis; Stiavelli, Massimo; Clément, Benjamin

    2012-08-01

    We present the first results of our spectroscopic follow-up of 6.5 dropout behind the Bullet Cluster. We detect an emission line at λ = 9412 Å at >5σ significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Lyα at z = 6.740 ± 0.003. The integrated line flux is f = (0.7 ± 0.1 ± 0.3) × 10-17 erg-1 s-1 cm-2 (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Lyα flux detected at these redshifts. Given the magnification of μ = 3.0 ± 0.2 the intrinsic (corrected for lensing) flux is f int = (0.23 ± 0.03 ± 0.10 ± 0.02) × 10-17 erg-1 s-1 cm-2 (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int_{H_160W}=27.57+/- 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe. Observations were carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID 088.A-0542. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs GO10200, GO10863, and GO11099.

  3. Census of the Local Universe (CLU) Hα Galaxy Survey: Characterization of Galaxy Catalogs from Preliminary Fields

    Science.gov (United States)

    Cook, David O.; Kasliwal, Mansi; Van Sistine, Anglea; Kaplan, David; iPTF

    2018-01-01

    In this talk I introduce the Census of the Local Universe (CLU) galaxy survey. The survey uses 4 wavelength-adjacent, narrowband filters to search for emission-line (Hα) sources across ~3π (26,470 deg2) of the sky and out to distance of 200 Mpc. I will present an analysis of galaxy candidates in 14 preliminary fields (out of 3626) to assess the limits of the survey and the potential for finding new galaxies in the local Universe. We anticipate finding tens-of-thousands of new galaxies in the full ~3π survey. In addition, I present some interesting galaxies found in these fields, which include: newly discovered blue compact dwarfs (e.g., blueberries), 1 new green pea, 1 new QSO, and a known planetary nebula. The majority of the CLU galaxies show properties similar to normal star-forming galaxies; however, the newly discovered blueberries tend to have high star formation rates for their given stellar mass.

  4. EXPLORING THE INTERSTELLAR MEDIA OF OPTICALLY COMPACT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Most, Hans P.; Cannon, John M.; Engstrom, Eric; Fliss, Palmer [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L., E-mail: hmost@macalester.edu, E-mail: jcannon@macalester.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, VA 22030 (United States)

    2013-06-15

    We present new Very Large Array H I spectral line, archival Sloan Digital Sky Survey, and archival Spitzer Space Telescope imaging of eight star-forming blue compact dwarf galaxies that were selected to be optically compact (optical radii <1 kpc). These systems have faint blue absolute magnitudes (M{sub B} {approx}> -17), ongoing star formation (based on emission-line selection by the H{alpha} or [O III] lines), and are nearby (mean velocity = 3315 km s{sup -1} {approx_equal} 45 Mpc). One galaxy in the sample, ADBS 113845+2008, is found to have an H I halo that extends 58 r-band scale lengths from its stellar body. In contrast, the rest of the sample galaxies have H I radii to optical-scale-length ratios ranging from 9.3 to 26. The size of the H I disk in the 'giant disk' dwarf galaxy ADBS 113845+2008 appears to be unusual as compared with similarly compact stellar populations.

  5. Ultraviolet Extinction in Backlit Galaxies - from Galaxy Zoo to GALEX

    Science.gov (United States)

    Keel, William C.; Manning, A.; Holwerda, B. W.; Lintott, C.; Schawinski, K.; Galaxy Zoo Team

    2012-01-01

    We examine the ultraviolet extinction of galaxies on large scales, combining optical and GALEX UV data on backlit galaxies (most found in the Galaxy Zoo citizen-science project). We analyze the images in matching ways, modelling both foreground and background galaxies by symmetry or elliptical isophote families as appropriate, and using the non-overlapping regions of the galaxies to estimate errors in the derived transmission T=e-κ. Spirals appear less symmetric in the UV, as star-forming regions become more dominant, so that our most reliable results are mean values across multiple regions and multiple galaxies. Our mean effective extinction curve is dominated by the contribution of luminous spirals,and shows a fairly flat gray" extinction law into the ultraviolet. For example, the median of κNUV/κB in spiral arms is only 1.3. Along with previous high-resolution HST studies of a few nearby backlit galaxies, this suggests that on kpc scales the effective extinction is dominated by the dust clumping rather than the intrinsic reddening law. This implies that extrapolation of local properties to short wavelengths, a step toward the history of dust in galaxies through comparison of local properties with a similar analysis in deep HST fields, can be done without introducing much additional error. This work was supported by NASA Astrophysics Data Analysis Program grant NNX10AD54G.

  6. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  7. Supernova rates, galaxy emission, and Hubble type

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1991-01-01

    Supernova discovery frequency is found to correlate with emission-line (H-alpha + forbidden N II line) equivalent width, except for the most active galaxies in which some supernovae might be hidden by dust. SNII occur preferentially in active galaxies with emission-line EW not less than 20 A, whereas SNIa favor less active galaxies with EW less than 20 A. The intrinsic frequency of supernovae is found to be an order of magnitude higher in Sc galaxies than it is in early type spirals. The relatively high frequency of SNIa in late-type galaxies suggests that not all such objects have old progenitors. 13 refs

  8. Photometric redshifts of galaxies from SDSS and 2MASS

    International Nuclear Information System (INIS)

    Wang Tao; Gu Qiusheng; Huang Jiasheng

    2009-01-01

    In order to find the physical parameters which determine the accuracy of photometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of ∼ 80000 SDSS-2MASS galaxies. Photo-z's in this paper are estimated by using the artificial neural network photometric redshift method (ANNz). For a subset of ∼40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshift distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (J, H, K s ) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to ∼ 10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.

  9. Clusters of galaxies associated with quasars. I. 3C 206

    International Nuclear Information System (INIS)

    Ellingson, E.; Yee, H.K.C.; Green, R.F.; Kinman, T.D.

    1989-01-01

    Multislit spectroscopy and three-color CCD photometry of the galaxies in the cluster associated with the quasar 3C 206 (PKS 0837-12) at z = 0.198 are presented. This cluster is the richest environment of any low-redshift quasar observed in an Abell richness class 1 cluster. The cluster has a very flattened structure and a very concentrated core about the quasar. Most of the galaxies in this field have colors and luminosities consistent with normal galaxies at this redshift. The background-corrected blue fraction of galaxies is consistent with values for other rich clusters. The existence of several blue galaxies in the concentrated cluster core is an anomaly for a region of such high galaxy density, however, suggesting the absence of a substantial intracluster medium. This claim is supported by the Fanaroff-Riley (1974) class II morphology of the radio source. The velocity dispersion calculated from 11 spectroscopically confirmed cluster members is 500 + or - 110 km/s, which is slightly lower than the average for Abell class 1 clusters. A high frequency of interaction between the quasar host galaxy and cluster core members at low relative velocities, and a low intracluster gas pressure, may comprise a favorable environment for quasar activity. The properties of the cluster of galaxies associated with 3C 206 are consistent with this model. 59 refs

  10. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    Science.gov (United States)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  11. THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5

    International Nuclear Information System (INIS)

    Brammer, G. B.; Whitaker, K. E.; Van Dokkum, P. G.; Marchesini, D.; Lee, K.-S.; Muzzin, A.; Labbe, I.; Franx, M.; Quadri, R. F.; Kriek, M.; Illingworth, G.; Rudnick, G.

    2009-01-01

    We select 25,000 galaxies from the NEWFIRM Medium Band Survey (NMBS) to study the rest-frame U - V color distribution of galaxies at 0 < z ∼< 2.5. The five unique NIR filters of the NMBS enable the precise measurement of photometric redshifts and rest-frame colors for 9900 galaxies at 1 < z < 2.5. The rest-frame U - V color distribution at all z ∼< 2.5 is bimodal, with a red peak, a blue peak, and a population of galaxies in between (the green valley). Model fits to the optical-NIR spectral energy distributions and the distribution of MIPS-detected galaxies indicate that the colors of galaxies in the green valley are determined largely by the amount of reddening by dust. This result does not support the simplest interpretation of green valley objects as a transition from blue star forming to red quiescent galaxies. We show that correcting the rest-frame colors for dust reddening allows a remarkably clean separation between the red and blue sequences up to z ∼ 2.5. Our study confirms that dusty-starburst galaxies can contribute a significant fraction to red-sequence samples selected on the basis of a single rest-frame color (i.e., U - V), so extra care must be taken if samples of truly 'red and dead' galaxies are desired. Interestingly, of galaxies detected at 24 μm, 14% remain on the red sequence after applying the reddening correction.

  12. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  13. LEDA 074886: A REMARKABLE RECTANGULAR-LOOKING GALAXY

    International Nuclear Information System (INIS)

    Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Janz, Joachim; Moore, Ben

    2012-01-01

    We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of –17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e,disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot /σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this 'emerald cut galaxy' having very boxy isophotes with a 4 /a = –0.05 to –0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both 'wet' and 'dry' galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.

  14. THE SLOAN GREAT WALL. MORPHOLOGY AND GALAXY CONTENT

    International Nuclear Information System (INIS)

    Einasto, M.; Liivamaegi, L. J.; Tempel, E.; Saar, E.; Tago, E.; Einasto, P.; Enkvist, I.; Einasto, J.; MartInez, V. J.; Heinaemaeki, P.; Nurmi, P.

    2011-01-01

    We present the results of a study of the morphology and galaxy content of the Sloan Great Wall (SGW), the richest galaxy system in the nearby universe. We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V 3 and the morphological signature (the K 1 -K 2 shapefinder curve) to show the different morphologies of the SGW, from a single filament to a multibranching, clumpy planar system. We show that the richest supercluster in the SGW, SCl 126, and especially its core, resembles a very rich filament, while another rich supercluster in the SGW, SCl 111, resembles a 'multispider'-an assembly of high-density regions connected by chains of galaxies. We study the substructure of individual galaxy populations determined by their color in these superclusters using Minkowski functionals and find that in the high-density core of the SGW the clumpiness of red and blue galaxies is similar, but in the outskirts of superclusters the distribution of red galaxies is clumpier than that of blue galaxies. At intermediate densities, the systems of blue galaxies have tunnels through them. We assess the statistical significance of our results using the halo model and smoothed bootstrap. We study the galaxy content and the properties of groups of galaxies in the two richest superclusters of the SGW, paying special attention to bright red galaxies (BRGs) and the first ranked (the most luminous) galaxies in SGW groups. The BRGs are the nearby luminous red galaxies; they are mostly bright and red and typically reside in groups (several groups host five or more BRGs). About one-third of the BRGs are spirals. The scatter of colors of elliptical BRGs is smaller than that of spiral BRGs. About half of the BRGs and of first ranked galaxies in groups have large peculiar velocities. Groups with elliptical BRGs as their first ranked galaxies populate superclusters more uniformly than the groups that have a spiral BRG as their first ranked

  15. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  16. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  17. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  18. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    Science.gov (United States)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z0.55. Stellar contamination is estimated to be 1.8%.

  19. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    International Nuclear Information System (INIS)

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-01-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the ≤15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be ∼35% to redshift z ∼ 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B gc and a red-sequence redshift estimator. We measure the intrinsic scatter of the B gc -mass relation to be approximately log normal with σ log10M ∼0.25 and we demonstrate photometric redshift accuracies for massive clusters at the ∼3% level out to z ∼ 0.7.

  20. Intrinsic shapes of discy and boxy ellipticals

    International Nuclear Information System (INIS)

    Fasano, Giovanni

    1991-01-01

    Statistical tests for intrinsic shapes of elliptical galaxies have given so far inconclusive and sometimes contradictory results. These failures have been often charged to the fact that classical tests consider only the two axisymmetric shapes (oblate versus prolate), while ellipticals are truly triaxial bodies. On the other hand, recent analyses indicate that the class of elliptical galaxies could be a mixture of (at least) two families having different morphology and dynamical behaviour: (i) a family of fast-rotating, disc-like ellipticals (discy); (ii) a family of slow-rotating, box-shaped ellipticals (boxy). In this paper we review the tests for instrinsic shapes of elliptical galaxies using data of better quality (CCD) with respect to previous applications. (author)

  1. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  2. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    International Nuclear Information System (INIS)

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-01

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 ∼ 23 -O 32 plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  3. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); McGrath, Elizabeth J. [Department of Physics and Astronomy, Colby College, Waterville, ME 04901 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Haeussler, Boris [Schools of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Barden, Marco [Institute of Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Hathi, Nimish P., E-mail: chang@mpia.de [Observatories of the Carnegie Institution for Science, Pasadena, CA (United States); and others

    2013-08-20

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a {approx} 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10{sup 10} < M{sub *}/M{sub Sun} < 10{sup 11}), because the oblate fraction among massive (M{sub *} {approx} 10{sup 11} M{sub Sun }) was much higher in the past: 0.59 {+-} 0.10 at z > 1, compared to 0.20 {+-} 0.02 at z {approx} 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M{sub *}/M{sub Sun }) < 10

  4. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1985-01-01

    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  5. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Douglass, Kelly A.; Vogeley, Michael S.

    2017-01-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T e  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  6. Analysis of 'Coma strip' galaxy redshift catalog

    International Nuclear Information System (INIS)

    Klypin, A.A.; Karachentsev, I.D.; Lebedev, V.S.

    1990-01-01

    We present results of the analysis of a galaxy redshift catalog made at the 6-m telescope by Karachentsev and Kopylov (1990. Mon. Not. R. astr. Soc., 243, 390). The catalog covers a long narrow strip on the sky (10 arcmin by 63 0 ) and lists 283 galaxies up to limiting blue magnitude m B = 17.6. The strip goes through the core of Coma cluster and this is called the 'Coma strip' catalog. The catalog is almost two times deeper than the CfA redshift survey and creates the possibility of studying the galaxy distribution on scales of 100-250 Mpc. Due to the small number of galaxies in the catalog, we were able to estimate only very general and stable parameters of the distribution. (author)

  7. QUENCHING DEPENDS ON MORPHOLOGIES: IMPLICATIONS FROM THE ULTRAVIOLET-OPTICAL RADIAL COLOR DISTRIBUTIONS IN GREEN VALLEY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Li, Jinrong; Kong, Xu [Center of Astrophysics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026 (China); Wang, Jing, E-mail: panzz@shao.ac.cn, E-mail: linwp@shao.ac.cn [CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710 (Australia)

    2014-09-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u – r colors of early-type galaxies (ETGs) are flat out to R {sub 90}, while the colors monotonously turn blue when r > 0.5 R {sub 50} for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV – r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R {sub 90}. The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ∼50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable ''blue-cores'' and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI.

  8. QUENCHING DEPENDS ON MORPHOLOGIES: IMPLICATIONS FROM THE ULTRAVIOLET-OPTICAL RADIAL COLOR DISTRIBUTIONS IN GREEN VALLEY GALAXIES

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Lin, Weipeng; Li, Jinrong; Kong, Xu; Wang, Jing

    2014-01-01

    In this Letter, we analyze the radial ultraviolet-optical color distributions in a sample of low redshift green valley galaxies, with the Galaxy Evolution Explorer (GALEX)+Sloan Digital Sky Survey (SDSS) images, to investigate how the residual recent star formation is distributed in these galaxies. We find that the dust-corrected u – r colors of early-type galaxies (ETGs) are flat out to R 90 , while the colors monotonously turn blue when r > 0.5 R 50 for late-type galaxies (LTGs). More than half of the ETGs are blue-cored and have remarkable positive NUV – r color gradients, suggesting that their star formations are centrally concentrated. The rest have flat color distributions out to R 90 . The centrally concentrated star formation activity in a large portion of ETGs is confirmed by the SDSS spectroscopy, showing that ∼50% of the ETGs have EW(Hα) >6.0 Å. Of the LTGs, 95% show uniform radial color profiles, which can be interpreted as a red bulge plus an extended blue disk. The links between the two kinds of ETGs, e.g., those objects having remarkable ''blue-cores'' and those having flat color gradients, are less known and require future investigations. It is suggested that the LTGs follow a general model by which quenching first occurs in the core regions, and then finally extend to the rest of the galaxy. Our results can be re-examined and have important implications for the IFU surveys, such as MaNGA and SAMI

  9. Gravitational instability, evolution of galaxies and star formation

    International Nuclear Information System (INIS)

    Palous, J.

    1979-01-01

    The gravitational collapse is the key to the theories of galaxy and star formation. The observations, showing intrinsic differences between elliptical and spiral galaxies, guide our fundamental conceptions on the formation and evolution of systems in question. Stars in elliptical galaxies and in spherical components of spiral galaxies were formed in a short period of time during early phases of protogalactic collapse, at a time of violent star formation. The disc-like components of spiral galaxies, however, were built gradually in the course of galactic evolution. Star formation in elliptical galaxies is described by the collision model of interstellar clouds, while star formation in discs is characterised by several processes: the expansion of HII regions, the expansion of supernovae remnants and the shock wave related to the presence of the spiral structure. (author)

  10. 21 centimeter study of spiral galaxies in the Coma supercluster

    International Nuclear Information System (INIS)

    Gavazzi, G.

    1987-01-01

    High-sensitivity, 21 cm line observations of 130 galaxies in the Coma/A1367 Supercluster region are presented and used to study the large-scale distribution of galaxies in the direction of the Coma Supercluster and the H I content in spiral galaxies as a function of the local galaxy density. Groups of galaxies are found to form a quasi-continuous structure that connects the Local Supercluster to the Coma Supercluster. This structure is composed of real filaments only in the vicinity of the Coma Cluster. Spiral galaxies in the surveyed groups and multiple systems have H I content not dissimilar from that of isolated galaxies. Galaxies within about 1 Abell radius from the Coma Cluster contain about three times less hydrogen on average than isolated galaxies. There is a strong tendency for galaxies that are more severely H I-depleted to be redder and of earlier Hubble type. In the Coma Cluster a considerable fraction of late-type, blue galaxies have large deficiency parameters. 51 references

  11. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.

    1980-01-01

    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  12. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    Science.gov (United States)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  13. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field

  14. A model of the formation of spiral galaxies

    International Nuclear Information System (INIS)

    Brown, W.K.; Gritzo, L.A.

    1980-01-01

    It has been verified that the analytical results in a previous article for elliptical galaxies may also be used to describe spiral galaxies. Exploration of the model for small values of the principal parameter THETA yields surface mass density distributions as functions of radius which, while always displaying the exponential disk, describe both of the subcategories of spiral galaxies. Within the constraints of the model, the two main questions concerning spirals posed some years ago by Freeman appear to be successfully addressed. An intrinsic model mechanism has been identified that could account for the extended state of elliptical galaxies, as opposed to the flat disks of spirals. In general, the model correctly describes the relative sizes of the various types of galaxies. (orig.)

  15. Halo models of HI selected galaxies

    Science.gov (United States)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  16. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    Science.gov (United States)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  17. STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS

    International Nuclear Information System (INIS)

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo Yicheng; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Wuyts, Stijn; Häussler, Boris; Barden, Marco; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han; Galametz, Audrey; Dekel, Avishai; Hathi, Nimish P.

    2013-01-01

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a ∼ 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and—at a given mass—on redshift. For present-day and z 1, this trend is much weaker over the mass range explored here (10 10 * /M ☉ 11 ), because the oblate fraction among massive (M * ∼ 10 11 M ☉ ) was much higher in the past: 0.59 ± 0.10 at z > 1, compared to 0.20 ± 0.02 at z ∼ 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log (M * /M ☉ ) 1 to 0.72 ± 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts

  18. Associated HI Absorption in the z = 3.4 Radio Galaxy B2 0902 + 343 ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of star formation (Einsenhardt & Dickinson 1992). The spatial ... on the blue-ward side of the narrow absorption feature has been reported by ..... associated with a merging galaxy located near the hot spot or dwarf galaxy along the line of sight ...

  19. On the origin of the Hubble sequence: I. Insights on galaxy color migration from cosmological simulations

    International Nuclear Information System (INIS)

    Cen, Renyue

    2014-01-01

    An analysis of more than 3000 galaxies resolved at better than 114 h –1 pc at z = 0.62 in a 'LAOZI' cosmological adaptive mesh refinement hydrodynamic simulation is performed and insights are gained on star formation quenching and color migration. The vast majority of red galaxies are found to be within three virial radii of a larger galaxy at the onset of quenching, when the specific star formation rate experiences the sharpest decline to fall below ∼10 –2 -10 –1 Gyr –1 (depending on the redshift). Thus, we shall call this mechanism 'environment quenching', which encompasses satellite quenching. Two physical processes are largely responsible: Ram pressure stripping first disconnects the galaxy from the cold gas supply on large scales, followed by a longer period of cold gas starvation taking place in a high velocity-dispersion environment, in which during the early part of the process, the existing dense cold gas in the central region (≤10 kpc) is consumed by in situ star formation. On average, quenching is found to be more efficient (i.e., a larger fraction of galaxies being quenched) but not faster (i.e., the duration being weakly dependent on the environment) in a denser environment. Throughout this quenching period and the ensuing one in the red sequence, galaxies follow nearly vertical tracks in the color-stellar mass diagram. In contrast, individual galaxies of all masses grow most of their stellar masses in the blue cloud, prior to the onset of quenching, and progressively more massive blue galaxies with already relatively older mean stellar ages continue to enter the red sequence. Consequently, correlations among observables of red galaxies—such as the age-mass relation— are largely inherited from their blue progenitors at the onset of quenching. While the color makeup of the entire galaxy population strongly depends on the environment, which is a direct result of environment quenching, physical properties of blue

  20. A Radial Measurement of the Galaxy Tidal Alignment Magnitude with BOSS Data

    Science.gov (United States)

    Martens, Daniel; Hirata, Christopher M.; Ross, Ashley J.; Fang, Xiao

    2018-05-01

    The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted onto its correlation function. We use the LOWZ and CMASS catalogs of SDSS-III BOSS Data Release 12 to divide galaxies into two sub-samples based on their offset from the Fundamental Plane, which should be correlated with orientation. These sub-samples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each sub-sample and compare them in order to calculate the dimensionless parameter B, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured B was -0.024 ± 0.015 (-0.030 ± 0.016). This result can be compared to the theoretical predictions of Hirata (2009), who argued that since galaxy formation physics does not depend on the direction of the "observer," the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is 0.51 ± 0.32 (0.77 ± 0.41) for CMASS (LOWZ). We combine the results to obtain a total Obs/Theory = 0.61 ± 0.26. This measurement constitutes evidence (between 2 and 3σ) for radial intrinsic alignments, and is consistent with theoretical expectations (<2σ difference).

  1. Genesis of dwarf galaxies in interacting system

    International Nuclear Information System (INIS)

    Duc, Pierre-Alain

    1995-01-01

    This research thesis addresses the study of interacting and merging galaxies, and more particularly the associated stellar formation episodes. The author first reports an analysis of the central regions of these objects by studying a specific class among them, i.e. galaxies discovered by the IRAS satellite which are ultra-luminous in the far infrared. The author presents results obtained by optical and infrared imagery and spectroscopy of a complete sample of objects located in the southern hemisphere. In the second part, the author focusses on outside regions of interacting galaxies, discusses the observation of filaments formed under the influence of tidal forces acting during galactic collisions, and of condensations which are as luminous as dwarf galaxies. Then a multi-wavelength study of several neighbouring systems revealed the existence of a specific class of objects, the tidal dwarf galaxies, which are formed from stellar and gaseous material snatched from the disk of interacting galaxies. Gas-rich tidal dwarf galaxies contain, like dwarf irregular galaxies or blue compact galaxies, newly formed stars. But, in opposition with these ones, they are richer in heavy elements: this is one of the consequences of a specific mode of galactic formation based on a cosmic recycling [fr

  2. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    CERN Document Server

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  3. Low-Metallicity Blue Compact Dwarfs as Templates for Primordial Star Formation

    OpenAIRE

    Hunt, L. K.; Hirashita, H.; Thuan, T. X.; Izotov, Y. I.; Vanzi, L.

    2003-01-01

    Understanding how galaxies formed their first stars is a vital cosmological question, but the study of high-redshift objects, caught in the act of forming their first stars, is difficult. Here we argue that two extremely low-metallicity Blue Compact Dwarf galaxies (BCDs), IZw18 and SBS0335-052, could be local templates for primordial star formation, since both lack evolved ($> $1 Gyr) stellar populations; but they form stars differently.

  4. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey

    Science.gov (United States)

    Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu

    2018-04-01

    We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.

  5. Galaxy clusters in the cosmic web

    Science.gov (United States)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4DAFT/FADA survey, which combines deep large field multi-band imaging and spectroscopic data, in order to detect filaments and/or structures around these clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  6. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    Science.gov (United States)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; hide

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  7. A mathematical model of star formation in the Galaxy

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2012-06-01

    Full Text Available This paper is generally concerned with star formation in the Galaxy, especially blue stars. Blue stars are the most luminous, massive and the largest in radius. A simple mathematical model of the formation of the stars is established and put in computational algorithm. This algorithm enables us to know more about the formation of the star. Some real and artificial examples had been used to justify this model.

  8. Photometric properties of galaxies in the SDSS

    Science.gov (United States)

    Hogg, D. W.; Blanton, M.; SDSS Collaboration

    2001-12-01

    We analyze the number density distribution of galaxy properties in a sample of 8x 104 galaxies from the Sloan Digital Sky Survey, in the redshift range 0.02calculated for each galaxy. The photometry is of excellent quality; every galaxy has CCD imaging with signal-to-noise for the flux well above 100. The distribution of galaxies in the (six-dimensional) space spanned by four colors, central surface-brightness, and radial concentration is described and analyzed, with the following results: \\textsl{(1)} The galaxies occupy only a small part of the six-dimensional space. \\textsl{(2)} The distribution of galaxy number density in the space is a strong function of intrinsic galaxy luminosity. \\textsl{(3)} Elliptical (or early type) and spiral (or late type) galaxies are clearly separated in the space. The ratio of early-type to late-type galaxy contributions to the luminosity density of the Universe is computed, as a function of wavelength. At 1 {μm }, early-type galaxies dominate the luminosity density. \\textsl{(4)} Outliers in color tend to be lower surface-brightness galaxies. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, NASA, NSF, DOE, the Japanese Monbukagakusho, and the Max Planck Society. This research has been supported by the NYU Faculty of Arts and Sciences.

  9. The Stellar Kinematics of E+A Galaxies in SDSS IV-MaNGA

    Science.gov (United States)

    Johnson, Amalya; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Kerrison, Nicole; Marinelli, Mariarosa; Melchert, Nancy; Ojanen, Winonah; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    E+A galaxies, hypothesized to be “transition” galaxies between the blue cloud and the red sequence, are valuable sources for studying the evolution of galaxies. Using data from the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, a large scale integral field spectroscopic survey of nearby galaxies from 3600 to 10300 Å, we identifed galaxies that exhibitted E+A characteristics within their optical spectra. We analyzed the 2,812 galaxies thus far observed by MaNGA to identify those that showed evidence of a starburst about 1 billion years ago, followed by cessation of star formation and quenching of the galaxy. Through this process we identifed 39 E+A galaxies by directly looking at the optical spectra and ensuring they exhibited the necessary properties of an E+A spectra, including a strong break at the 4000 Å mark, little to no Hα emission and absorption through the Balmer series, and a blue slope of the continuum past ~5000 Å as the flux decreases. We analyzed the stellar kinematics of these galaxies to determine whether or not they were fast or slow rotators, a proposed indicator of a major merger in their recent past. Using Voronoi binned graphs from the MaNGA Marvin database, we measured their stellar rotation curves in order to more clearly show the range of velocities within the galaxies. Among our 39 E+A candidates, all but two exhibited significant, orderly rotation across the galaxy, and 29 out of 39 of our galaxies show rotation faster than 30 km/s. With the caveat that our selection process was biased toward galaxies with orderly rotation, this prevalence of rotation challenges the belief that all E+A galaxies are created from major mergers. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  10. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Science.gov (United States)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  11. Semi-analytic models for the CANDELS survey: comparison of predictions for intrinsic galaxy properties

    International Nuclear Information System (INIS)

    Lu, Yu; Wechsler, Risa H.; Somerville, Rachel S.; Croton, Darren; Porter, Lauren; Primack, Joel; Moody, Chris; Behroozi, Peter S.; Ferguson, Henry C.; Koo, David C.; Guo, Yicheng; Safarzadeh, Mohammadtaher; White, Catherine E.; Finlator, Kristian; Castellano, Marco; Sommariva, Veronica

    2014-01-01

    We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the 'Bolshoi' high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs

  12. Semi-analytic models for the CANDELS survey: comparison of predictions for intrinsic galaxy properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Somerville, Rachel S. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Croton, Darren [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Porter, Lauren; Primack, Joel; Moody, Chris [Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Behroozi, Peter S.; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Koo, David C.; Guo, Yicheng [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Safarzadeh, Mohammadtaher; White, Catherine E. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Finlator, Kristian [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Castellano, Marco; Sommariva, Veronica, E-mail: luyu@stanford.edu, E-mail: rwechsler@stanford.edu [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio (Italy)

    2014-11-10

    We compare the predictions of three independently developed semi-analytic galaxy formation models (SAMs) that are being used to aid in the interpretation of results from the CANDELS survey. These models are each applied to the same set of halo merger trees extracted from the 'Bolshoi' high-resolution cosmological N-body simulation and are carefully tuned to match the local galaxy stellar mass function using the powerful method of Bayesian Inference coupled with Markov Chain Monte Carlo or by hand. The comparisons reveal that in spite of the significantly different parameterizations for star formation and feedback processes, the three models yield qualitatively similar predictions for the assembly histories of galaxy stellar mass and star formation over cosmic time. Comparing SAM predictions with existing estimates of the stellar mass function from z = 0-8, we show that the SAMs generally require strong outflows to suppress star formation in low-mass halos to match the present-day stellar mass function, as is the present common wisdom. However, all of the models considered produce predictions for the star formation rates (SFRs) and metallicities of low-mass galaxies that are inconsistent with existing data. The predictions for metallicity-stellar mass relations and their evolution clearly diverge between the models. We suggest that large differences in the metallicity relations and small differences in the stellar mass assembly histories of model galaxies stem from different assumptions for the outflow mass-loading factor produced by feedback. Importantly, while more accurate observational measurements for stellar mass, SFR and metallicity of galaxies at 1 < z < 5 will discriminate between models, the discrepancies between the constrained models and existing data of these observables have already revealed challenging problems in understanding star formation and its feedback in galaxy formation. The three sets of models are being used to construct catalogs

  13. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  14. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Science.gov (United States)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  15. GLOBULAR CLUSTERS INDICATE THAT ULTRA-DIFFUSE GALAXIES ARE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Michael A.; Trujillo, Ignacio, E-mail: beasley@iac.es [Instituto de Astrofisica de Canarias, Calle Via Láctea, La Laguna, Tenerife (Spain)

    2016-10-10

    We present an analysis of archival HST /ACS imaging in the F475W ( g {sub 475}), F606W ( V {sub 606}), and F814W ( I {sub 814}) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5 σ completeness limit of the imaging ( I {sub 814} = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V -band specific frequency S {sub N} = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ∼9.0 × 10{sup 10} M {sub ⊙} and a dark-to-stellar mass ratio M {sub vir}/ M {sub star} ∼ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g {sub 475}– I {sub 814} = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  16. Ellipticities of Elliptical Galaxies in Different Environments

    Science.gov (United States)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  17. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.; Consiglio Nazionale delle Ricerche, Frascati

    1989-01-01

    In principle, a good model of galactic chemical evolution should fulfil the majority of well established observational constraints. The goal of this paper is to review the observational data together with the existing chemical evolution models for the Milky Way (the disk), Blue Compact and Elliptical galaxies and to show how well the models can account for the observations. Some open problems and future prospects are also discussed. (author)

  18. Infrared photometry of the nuclei of early-type radio galaxies

    International Nuclear Information System (INIS)

    Sparks, W.B.; Bailey, J.

    1986-01-01

    J,H,K,L' two-aperture photometry and single-aperture 10-μm(N) photometry of the nuclei of 44 nearby radio elliptical and SO galaxies are presented. Clear infrared excesses are found from the galaxies with broad emission-lines, the BL Lac objects, and two other galaxies, one of which appears to have an extended infrared excess. In addition, the sample as a whole appears to have positive 10-μm emission which is believed to be largely due to starlight. The near-infrared colours in general are characteristic of normal starlight, with only the strongest 10-μm emitters showing a significant near-infrared excess. These latter galaxies have blue optical colours. (author)

  19. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    International Nuclear Information System (INIS)

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-01-01

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M 500 ∼ 10 14 -10 15 M ☉ ), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L i and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L i and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L i ≅ 1.7 ± 0.2 M ☉ /L i, ☉ , a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L i

  20. GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-01-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ∼10 times larger sample, with galaxies spanning a redshift range ∼>2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ∼10 9 M sun . However, for galaxies with high EW(Hβ), ≥ 100 A, it is only ∼7 x 10 8 M sun . The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr -1 , with a median value of ∼4 M sun yr -1 , a factor of ∼3 lower than in high-redshift star-forming galaxies at z ∼> 3. The specific star formation rates in LCGs are extremely high and vary in the range ∼10 -9 -10 -7 yr -1 , comparable to those derived in high-redshift galaxies.

  1. Dependence between the colour of galaxies in pairs (Holmberg effect)

    International Nuclear Information System (INIS)

    Demin, V.V.; Zasov, A.V.; Dibaj, Eh.A.; Tomov, A.N.

    1984-01-01

    Proceeding from the data of photoelectric photometpy by Tomov, the colours of galaxies in double systems are studied For the most of the paips formed by elliptical (EE) or by spiral (SS) galaxies, the difference between the corrected colour indices (B-V)sub(T)sup(0) of components does not exceed 0.10 and does not depend on the difference ΔT of their morphological types The correlation between the colours of galaxies in EE-pairs can be explained by the similaritins of element abundances but not of the luminosities of galaxies. The elliptical and SO-galaxies in pairs with the spiral galaxies ape noticeably bluep on the avepage. The relation between the colours of galaxies in ES-pairs is possible. The colours of early-type spiral galaxies (T < 4) in most of the SS-systems are more blue as compared to the mean colours of galaxies of the same type T. A similarity of the colours of the galaxies in many of the SS-pairs can be a result of the periodically repeated bursts of star formation which take place in both galaxies simultaneously

  2. Alignment between Satellite and Central Galaxies in the SDSS DR7: Dependence on Large-scale Environment

    Science.gov (United States)

    Wang, Peng; Luo, Yu; Kang, Xi; Libeskind, Noam I.; Wang, Lei; Zhang, Youcai; Tempel, Elmo; Guo, Quan

    2018-06-01

    The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environmental dependence of this alignment are still unknown. In an attempt to determine these variables, we use data constructed from Sloan Digital Sky Survey DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignment’s dependence on the color of the central galaxy. We find a very strong large-scale environmental dependence of the satellite–central alignment (SCA) in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axes of the centrals, and the alignment angle decreases with environment, namely, when going from knots to voids. The alignment angle strongly depends on the {}0.1(g-r) color of centrals. We suggest that the SCA is the result of a competition between satellite accretion within large-scale structure (LSS) and galaxy evolution inside host halos. For groups containing red central galaxies, the SCA is mainly determined by the evolution effect, while for blue central dominated groups, the effect of the LSS plays a more important role, especially in knots. Our results provide an explanation for how the SCA forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements, such as the formation of the Milky Way and Centaurus A’s satellite system.

  3. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  4. Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites

    International Nuclear Information System (INIS)

    Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi

    2016-01-01

    The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.

  5. The visibility of galaxies as a function of central surface brightness

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.

    1983-01-01

    The likelihood of a galaxy with given intrinsic profile appearing in a photograph catalogue with limiting criteria on apparent magnitude and angular size will depend on the maximum distance at which such a galaxy can lie and still obey both criteria. It is demonstrated that the corresponding volume in which the galaxy will be visible is a sensitive function of the galaxy's central surface brightness as well as its absolute magnitude. Before the observed concentrations around preferred values of surface brightness can be regarded as real, it will be necessary to make allowance for this selection effect. (author)

  6. The evolution of galaxies at moderate redshift

    International Nuclear Information System (INIS)

    Lilly, S.J.

    1987-01-01

    Optical and infrared photometric data on 53 galaxies in five clusters at 0.38 < z < 0.58 are described and analysed to produce the rest-frame (U-V) and (V-H) colours. The 36 red galaxies form a homogeneous population in each cluster. The colours of the 17 blue galaxies clearly distinguish between the normal spirals and the peculiar 'A-type' galaxies found in these Butcher-Oemler clusters and suggest for the latter a substantial intermediate age 1-Gyr population as indicated by optical spectra. The average colours of the red elliptical galaxies at z ∼ 0.45 are systematically 0.12 mag bluer in the rest-frame (U-V), as expected from conventional evolutionary models, but are about 0.1 mag redder in (V-H), which is not predicted by the models. It is shown, however, that inclusion of the evolution of the upper Asymptotic Giant Branch, which is usually neglected, into a simple evolutionary model can explain the observed evolution vector in the (U-V)/(V-H) plane. (author)

  7. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W., E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: olive@physics.umn.edu, E-mail: kmcquinn@astro.umn.edu [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  8. Three-dimensional morphological segregation in rich clusters of galaxies

    International Nuclear Information System (INIS)

    Salvador-Sole, E.; Sanroma, M.; Jordana, J.J.R.

    1989-01-01

    The implications of the observed correlation between morphological fractions and projected number density of galaxies in rich clusters are analyzed. It is found that this correlation is the result of a well-defined intrinsic correlation that depends on cluster concentration, whether the observed correlation is strictly universal or not. This dependence is in overall agreement with that expected from the action of mechanisms of environment-induced morphological evolution of galaxies. 30 references

  9. The RSA survey of dwarf galaxies, 1: Optical photometry

    Science.gov (United States)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  10. Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey

    International Nuclear Information System (INIS)

    Smith, M.G.

    1975-01-01

    A selection of objects from the first plates of a low-dispersion, objective-prism survey for emission-line galaxies and quasars is used to illustrate the application of the survey to the following lines of research in extragalactic astronomy: quasi-stellar objects, Seyfert galaxies, instabilities in galaxies produced by tidal interaction or explosive events, and rates of star formation and the general chemical evolution of galaxies. Included in the discussion is a description of how the survey provides a new, purely optical, color-independent method for the direct isolation of bright, high-redshift QSOs with strong emission lines (Lα is often directly visible on the Schmidt-survey plates). The newly discovered objects used for illustration are a radio-quiet QSO of redshift 2.07, a luminous, class 2 Seyfert galaxy, a compact blue emission-line galaxy with a jet or streamer, yet with no obvious interacting companion, and a blue galaxy with Hβ flux 50 times that of 30 Doradus, and low metal abundances, which is undergoing a very intense burst of star formation. These objects are to be discussed in greater detail in subsequent papers in this series

  11. H II region-like galaxies

    International Nuclear Information System (INIS)

    French, H.B.

    1979-01-01

    Line fluxes in the region 3700 to 7100A are presented for 14 galaxies with strong, sharp, H II region-like emission lines. Ten of these galaxies are low luminosity objects (M > -17); the others have M approx. < -20. Ratios of the line fluxes are used to derive electron temperatures and densities, and the abundances of helium, oxygen, nitrogen, neon, and sulfur relative to hydrogen. The low luminosity galaxies are generally found to have oxygen abundances about 30% of normal, while the high luminosity ones generally have about 60% of normal. These galaxies are found to be almost certainly photoionized by hot main sequence stars. The velocity dispersion has been measured for one object; the mass of stars derived for it is several times smaller than the mass of neutral hydrogen which has previously been found in an extended halo around this object. The continuum colors of these galaxies are very blue, and are indistinguishable from those of extragalactic H II regions. No older red population has been convincingly detected. Galactic chemical evolution is investigated through a comparison of the relative abundances in these galaxies with their normal values. It is found that: (i) there is a primary contribution to the nitrogen abundance ((N/O)/sub p = 0.019), but that 80% of the nitrogen in the Galaxy today is of secondary origin; (ii) Ne/O appears to be constant for all objects (Ne/O = 0.23); and (iii) S/O decreases with increasing oxygen abundance, implying that most sulfur is produced in the most massive stars

  12. Multiwavelength search and studies of active galaxies and quasars

    Science.gov (United States)

    Mickaelian, Areg M.

    2017-12-01

    The Byurakan Astrophysical Observatory (BAO) has always been one of the centres for surveys and studies of active galaxies. Here we review our search and studies of active galaxies during last 30 years using various wavelength ranges, as well as some recent related works. These projects since late 1980s were focused on multiwavelength search and studies of AGN and Starbursts (SB). 1103 blue stellar objects (BSOs) on the basis of their UV-excess were selected using Markarian Survey (First Byurakan Survey, FBS) plates and Markarian's criteria used for the galaxies. Among many blue stars, QSOs and Seyfert galaxies were found by follow-up observations. 1577 IRAS point sources were optically identified using FBS low-dispersion spectra and many AGN, SB and high-luminosity IR galaxies (LIRG/ULIRG) were discovered. 32 extremely high IR/opt flux ratio galaxies were studies with Spitzer. 2791 ROSAT FSC sources were optically identified using Hamburg Quasar Survey (HQS) low-dispersion spectra and many AGN were discovered by follow-up observations. Fine analysis of emission line spectra was carried out using spectral line decomposition software to establish true profiles and calculate physical parameters for the emitting regions, as well as to study the spectral variability of these objects. X-ray and radio selection criteria were used to find new AGN and variable objects for further studies. We have estimated AGN content of X-ray sources as 52.9%. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed us to estimate AGN content among IR sources as 23.7%. Multiwavelength approach allowed revealing many new AGN and SB and obtaining a number of interesting relations using their observational characteristics and physical properties.

  13. Large-Scale Environment Properties of Narrow-Line Seyfert 1 Galaxies at z < 0.4

    Energy Technology Data Exchange (ETDEWEB)

    Järvelä, Emilia [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Lähteenmäki, A. [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Tartu Observatory, Tõravere (Estonia); Lietzen, H., E-mail: emilia.jarvela@aalto.fi [Tartu Observatory, Tõravere (Estonia)

    2017-11-30

    The large-scale environment is believed to affect the evolution and intrinsic properties of galaxies. It offers a new perspective on narrow-line Seyfert 1 galaxies (NLS1) which have not been extensively studied in this context before. We study a large and diverse sample of 960 NLS1 galaxies using a luminosity-density field constructed using Sloan Digital Sky Survey. We investigate how the large-scale environment is connected to the properties of NLS1 galaxies, especially their radio loudness. Furthermore, we compare the large-scale environment properties of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to shed light on their possible relations. In general NLS1 galaxies reside in less dense large-scale environments than any of our comparison samples, thus supporting their young age. The average luminosity-density and distribution to different luminosity-density regions of NLS1 sources is significantly different compared to BLS1 galaxies. This contradicts the simple orientation-based unification of NLS1 and BLS1 galaxies, and weakens the hypothesis that BLS1 galaxies are the parent population of NLS1 galaxies. The large-scale environment density also has an impact on the intrinsic properties of NLS1 galaxies; the radio loudness increases with the increasing luminosity-density. However, our results suggest that the NLS1 population is indeed heterogeneous, and that a considerable fraction of them are misclassified. We support a suggested description that the traditional classification based on the radio loudness should be replaced with the division to jetted and non-jetted sources.

  14. Distribution Of Maximal Luminosity Of Galaxies In The Sloan Digital Sky Survey

    CERN Document Server

    Regós, E; Rácz, Z; Taghizadeh, M; Ozogany, K

    2010-01-01

    Extreme value statistics (EVS) is applied to the pixelized distribution of galaxy luminosities in the Sloan Digital Sky Survey (SDSS). We analyze the DR6 Main Galaxy Sample (MGS), divided into red and blue subsamples, as well as the Luminous Red Galaxy Sample (LRGS). A non-parametric comparison of the EVS of the luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for independent variables distributed by the Press-Schechter law) indicates a good agreement provided uncertainties arising both from the finite size of the samples and from the sample size distribution are accounted for.

  15. Classifying the Optical Morphology of Shocked POststarburst Galaxies

    Science.gov (United States)

    Stewart, Tess; SPOGs Team

    2018-01-01

    The Shocked POststarburst Galaxy Survey (SPOGS) is a sample of galaxies in transition from blue, star forming spirals to red, inactive ellipticals. These galaxies are earlier in the transition than classical poststarburst samples. We have classified the physical characteristics of the full sample of 1067 SPOGs in 7 categories, covering (1) their shape; (2) the relative prominence of their nuclei; (3) the uniformity of their optical color; (4) whether the outskirts of the galaxy were indicative of on-going star formation; (5) whether they are engaged in interactions with other galaxies, and if so, (6) the kinds of galaxies with which they are interacting; and (7) the presence of asymmetrical features, possibly indicative of recent interactions. We determined that a plurality of SPOGs are in elliptical galaxies, indicating morphological transformations may tend to conclude before other indicators of transitions have faded. Further, early-type SPOGs also tend to have the brightest optical nuclei. Most galaxies do not show signs of current or recent interactions. We used these classifications to search for correlations between qualitative and quantitative characteristics of SPOGs using Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer magnitudes. We find that relative optical nuclear brightness is not a good indicator of the presence of an active galactic nuclei and that galaxies with visible indications of active star formation also cluster in optical color and diagnostic line ratios.

  16. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  17. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  18. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  19. Model for Spiral Galaxys Rotation Curves

    Science.gov (United States)

    Hodge, John

    2003-11-01

    A model of spiral galaxy dynamics is proposed. An expression describing the rotation velocity of particles v in a galaxy as a function of the distance from the center r (RC) is developed. The resulting, intrinsic RC of a galaxy is Keplerian in the inner bulge and rising in the disk region without modifying the Newtonian gravitational potential (MOND) and without unknown dark matter. The v^2 is linearly related to r of the galaxy in part of the rapidly rising region of the HI RC (RRRC) and to r^2 in another part of the RRRC. The r to discontinuities in the surface brightness versus r curve is related to the 21 cm line width, the measured mass of the central supermassive black hole (SBH), and the maximum v^2 in the RRRC. The distance to spiral galaxies can be calculated from these relationships that tightly correlates with the distance calculated using Cepheid variables. Differing results in measuring the mass of the SBH from differing measurement procedures are explained. This model is consistent with previously unexplained data, has predicted new relationships, and suggests a new model of the universe. Full text: http://web.infoave.net/ ˜scjh.

  20. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  1. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    Science.gov (United States)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  2. Discovery of Highly Obscured Galaxies in the Zone of Avoidance

    Science.gov (United States)

    2008-08-01

    the optical (e.g., Roman et al. 2000), near-infrared (DENIS, Schroder et al. 1999; Two Micron All Sky Survey ( 2MASS ), Jarrett et al. 2000), far... 2MASS (Skrutskie et al. 2006), downloaded directly from the NASA/IPAC Infrared Science Archive (IRSA).5 The boundaries of our search were set by the...Figure 3. 2MASS J (blue), H (green), and /is (red) color composite images of the same galaxies. The galaxies are displayed in the same order as shown

  3. Photometry of the rich cluster of galaxies 0004.8-3450

    International Nuclear Information System (INIS)

    Carter, D.

    1980-01-01

    Photographic photometry in b, r and i wavebands of an extremely rich cluster of galaxies at 00sup(h)04sup(m).8 - 34 0 50'is presented. The cluster is centred on an unusually elongated cD galaxy. The brighter members of this cluster tend to lie along the axis of the cD. The luminosity function for 1552 galaxies shows, after application of a suitable correction for non-members, a form more characteristic of loose clusters with some spirals than of clusters with cD galaxies. The colour-magnitude and colour-colour diagrams for a smaller sample of galaxies are discussed. The distributions of very red and blue galaxies show no evidence for a significant proportion of either being cluster members. The cluster probably contains few spirals, although it appears to lie in a supercluster which may contain spirals. A few galaxies are unusually bright in the i band, their properties are discussed briefly. There is some evidence for a deficiency of other elongated galaxies with the same position angle as the cD. The cluster itself is aligned with the cD. (author)

  4. Intrinsically photosensitive retinal ganglion cell function in relation to age

    DEFF Research Database (Denmark)

    Herbst, Kristina; Sander, Birgit; Lund-Andersen, Henrik

    2012-01-01

    The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim...... of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC....

  5. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    Science.gov (United States)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  6. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  7. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Vacca, W.D.; Torres-Dodgen, A.V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates. 78 refs

  8. MAGIICAT I. THE Mg II ABSORBER-GALAXY CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nikole M.; Churchill, Christopher W. [New Mexico State University, Las Cruces, NM 88003 (United States); Kacprzak, Glenn G.; Murphy, Michael T., E-mail: nnielsen@nmsu.edu [Swinburne University of Technology, Victoria 3122 (Australia)

    2013-10-20

    We describe the Mg II Absorber-Galaxy Catalog, MAGIICAT, a compilation of 182 spectroscopically identified intermediate redshift (0.07 ≤ z ≤ 1.1) galaxies with measurements of Mg II λλ2796, 2803 absorption from their circumgalactic medium within projected distances of 200 kpc from background quasars. In this work, we present 'isolated' galaxies, which are defined as having no spectroscopically identified galaxy within a projected distance of 100 kpc and a line of sight velocity separation of 500 km s{sup –1}. We standardized all galaxy properties to the ΛCDM cosmology and galaxy luminosities, absolute magnitudes, and rest-frame colors to the B- and K-band on the AB system. We present galaxy properties and rest-frame Mg II equivalent width, W{sub r} (2796), versus galaxy redshift. The well-known anti-correlation between W{sub r} (2796) and quasar-galaxy impact parameter, D, is significant to the 8σ level. The mean color of MAGIICAT galaxies is consistent with an Sbc galaxy for all redshifts. We also present B- and K-band luminosity functions for different W{sub r} (2796) and redshift subsamples: 'weak absorbing' [W{sub r} (2796) < 0.3 Å], 'strong absorbing' [W{sub r} (2796) ≥ 0.3 Å], low redshift (z < (z)), and high redshift (z ≥ (z)), where (z) = 0.359 is the median galaxy redshift. Rest-frame color B – K correlates with M{sub K} at the 8σ level for the whole sample but is driven by the strong absorbing, high-redshift subsample (6σ). Using M{sub K} as a proxy for stellar mass and examining the luminosity functions, we infer that in lower stellar mass galaxies, Mg II absorption is preferentially detected in blue galaxies and the absorption is more likely to be weak.

  9. Dark Matter in Galaxy Clusters: Shape, Projection, and Environment

    Science.gov (United States)

    Groener, Austen M.

    We explore the intrinsic distribution of dark matter within galaxy clusters, by combining insights from the largest N-body simulations as well as the largest observational dataset of its kind. Firstly, we study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimate of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of 3D concentrations (c200) and isodensity shape on weak and strong lensing scales. We find this difference to be ˜ 18% (˜ 9%) for low (medium) mass cluster halos with intrinsically low concentrations (c200=1- 3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well-aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ˜ 30°. We also present a value-added catalog of our analysis results, which we have made publicly available to download. Following that, we then turn to observational measurements galaxy clusters. Scaling relations of clusters have made them particularly important cosmological probes of structure formation. In this work, we present a comprehensive study of the relation between two profile observables, concentration (cvir ) and mass (Mvir). We have collected the largest known sample of measurements from the literature which make use of one or more of the following reconstruction techniques: Weak gravitational lensing (WL), strong gravitational lensing (SL), Weak+Strong Lensing (WL+SL), the Caustic Method (CM), Line-of-sight Velocity Dispersion (LOSVD), and X-ray. We find that the concentration-mass (c-M) relation

  10. DETECTION OF H i IN EMISSION IN THE LY α EMITTING GALAXY HARO 11

    International Nuclear Information System (INIS)

    Pardy, Stephen A.; Cannon, John M.; Östlin, Göran; Hayes, Matthew; Bergvall, Nils

    2016-01-01

    We present the first robust detection of H i 21 cm emission in the blue compact galaxy Haro 11 using the 100 m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Ly α and the Lyman continuum. We detect (5.1 ± 0.7 × 10 8 ) M ⊙ of H i gas at an assumed distance of 88 Mpc, making this galaxy H i deficient compared to other local galaxies with similar optical properties. Given this small H i mass, Haro 11 has an elevated M H2 / M Hi ratio and a very low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The H i emission has a linewidth of 71 km s − 1 and is offset 60 km s −1 redward of the optical line center. It is undergoing a starburst after a recent merger that has elevated the star formation rate, and will deplete the gas supply in <0.2 Gyr. Although this starburst has elevated the star formation rate (SFR) compared to galaxies with similar H i masses and line widths, Haro 11 matches a trend of lower gas fractions toward higher SFRs and is below the general trend of increasing H i mass with increasing luminosity. Taken together, our results paint Haro 11 as a standard low-mass galaxy that is undergoing an unusually efficient star formation episode.

  11. SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Rich, Jeffrey A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cales, Sabrina L. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, New Haven, CT 06511 (United States); Appleton, Philip N.; Lanz, Lauranne [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Kewley, Lisa J.; Medling, Anne M. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Lacy, Mark; Nyland, Kristina, E-mail: kalatalo@carnegiescience.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  12. NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY

    International Nuclear Information System (INIS)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David; Gil de Paz, Armando; Seibert, Mark; Madore, Barry F.; Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd; Rich, R. Michael; Yi, Sukyoung; Neff, Susan

    2010-01-01

    We have discovered recent star formation in the outermost portion ((1-4) x R 25 ) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density (Σ SFR ) is ∼2.2 x 10 -5 M sun yr -1 kpc -2 . Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10 -3 M sun yr -1 . The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to ∼1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.

  13. A MINUET OF GALAXIES

    Science.gov (United States)

    2002-01-01

    This troupe of four galaxies, known as Hickson Compact Group 87 (HCG 87), is performing an intricate dance orchestrated by the mutual gravitational forces acting between them. The dance is a slow, graceful minuet, occurring over a time span of hundreds of millions of years. The Wide Field and Planetary Camera 2 on NASA's Hubble Space Telescope (HST) provides a striking improvement in resolution over previous ground-based imaging. In particular, this image reveals complex details in the dust lanes of the group's largest galaxy member (HCG 87a), which is actually disk-shaped, but tilted so that we see it nearly edge-on. Both 87a and its elliptically shaped nearest neighbor (87b) have active galactic nuclei which are believed to harbor black holes that are consuming gas. A third group member, the nearby spiral galaxy 87c, may be undergoing a burst of active star formation. Gas flows within galaxies can be intensified by the gravitational tidal forces between interacting galaxies. So interactions can provide fresh fuel for both active nuclei and starburst phenomena. These three galaxies are so close to each other that gravitational forces disrupt their structure and alter their evolution. From the analysis of its spectra, the small spiral near the center of the group could either be a fourth member or perhaps an unrelated background object. The HST image was made by combining images taken in four different color filters in order to create a three-color picture. Regions of active star formation are blue (hot stars) and also pinkish if hot hydrogen gas is present. The complex dark bands across the large edge-on disk galaxy are due to interstellar dust silhouetted against the galaxy's background starlight. A faint tidal bridge of stars can be seen between the edge-on and elliptical galaxies. HCG 87 was selected for Hubble imaging by members of the public who visited the Hubble Heritage website (http://heritage.stsci.edu) during the month of May and registered their votes

  14. RELICS: A Candidate Galaxy Arc at z~10 and Other Brightly Lensed z>6 Galaxies

    Science.gov (United States)

    Salmon, Brett; Coe, Dan; Bradley, Larry; Bradac, Marusa; Huang, Kuang-Han; Oesch, Pascal; Brammer, Gabriel; Stark, Daniel P.; Sharon, Keren; Trenti, Michele; Avila, Roberto J.; Ogaz, Sara; Acebron, Ana; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Cibirka, Nathália; Dawson, William; Frye, Brenda; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Paterno-Mahler, Rachel; Rodney, Steven; Umetsu, Keiichi; Zitrin, Adi; RELICS

    2018-01-01

    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here some of the most brightly lensed z>6 galaxy candidates known from the Reionization Lensing Cluster Survey (RELICS) and the discovery of a particularly fortuitous z~10 galaxy candidate which has been arced by the effects of strong gravitational lensing. The z~10 candidate has a lensed H-band magnitude of 25.8 AB mag and a high lensing magnification (~4-7). The inferred upper limits on the stellar mass (log [M_star /M_Sun]=9.5) and star formation rate (log [SFR/(M_Sun/yr)]=1.5) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M_star relation. We rule out the only low-z solution as unphysical based on the required stellar mass, dust attenuation, size, and [OIII] EW needed for a z~2 SED to match the data. Finally, we reconstruct the source-plane image and estimate the candidate's physical size at z~10, finding a half-light radius of r_e 9 candidates. While the James Webb Space Telescope will detect z>10 with ease, this rare candidate offers the potential for unprecedented spatial resolution less than 500 Myr after the Big Bang.

  15. The VANDELS survey: dust attenuation in star-forming galaxies at z = 3-4

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.; Carnall, A. C.; Bourne, N.; Castellano, M.; Cimatti, A.; Cirasuolo, M.; Elbaz, D.; Fynbo, J. P. U.; Garilli, B.; Koekemoer, A.; Marchi, F.; Pentericci, L.; Talia, M.; Zamorani, G.

    2018-05-01

    We present the results of a new study of dust attenuation at redshifts 3 Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2 ≤ log (M⋆/M⊙) ≤ 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z ≃ 3.5 is similar in shape to the commonly adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV = 4.18 ± 0.29. In contrast, we find that an average attenuation curve as steep as the SMC extinction law is strongly disfavoured. We show that the optical attenuation (AV) versus stellar mass (M⋆) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2 < z < 3 in the Hubble Ultra Deep Field (HUDF), as well as empirical AV - M⋆ relations predicted by a Calzetti-like law. In fact, our results, combined with other literature data, suggest that the AV-M⋆ relation does not evolve over the redshift range 0 < z < 5, at least for galaxies with log(M⋆/M⊙) ≳ 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at lower masses log(M⋆/M⊙) ≲ 9.0.

  16. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    Science.gov (United States)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  17. MOIRCS DEEP SURVEY. V. A UNIVERSAL RELATION FOR STELLAR MASS AND SURFACE BRIGHTNESS OF GALAXIES

    International Nuclear Information System (INIS)

    Ichikawa, Takashi; Kajisawa, Masaru; Yamada, Toru; Akiyama, Masayuki; Yoshikawa, Tomohiro; Onodera, Masato; Konishi, Masahiro

    2010-01-01

    We present a universal linear correlation between the stellar mass and surface brightness (SB) of galaxies at 0.3 -2.0∼-0.8 , in addition to dimming as (1 + z) 4 by the cosmological expansion effect. The brightening depends on galaxy color and stellar mass. The blue population (rest-frame U - V -0.8±0.3 in the rest-V band. On the other hand, the red population (U - V>0) and the massive galaxies (M * >10 10 M sun ) show stronger brightening, (1 + z) -1.5±0.1 . By comparison with galaxy evolution models, the phenomena are well understood by the pure luminosity evolution of galaxies out to z ∼ 3.

  18. Older Galaxy Pair Has Surprisingly Youthful Glow

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Poster Version A pair of interacting galaxies might be experiencing the galactic equivalent of a mid-life crisis. For some reason, the pair, called Arp 82, didn't make their stars early on as is typical of most galaxies. Instead, they got a second wind later in life -- about 2 billion years ago -- and started pumping out waves of new stars as if they were young again. Arp 82 is an interacting pair of galaxies with a strong bridge and a long tail. NGC 2535 is the big galaxy and NGC 2536 is its smaller companion. The disk of the main galaxy looks like an eye, with a bright 'pupil' in the center and oval-shaped 'eyelids.' Dramatic 'beads on a string' features are visible as chains of evenly spaced star-formation complexes along the eyelids. These are presumably the result of large-scale gaseous shocks from a grazing encounter. The colors of this galaxy indicate that the observed stars are young to intermediate in age, around 2 million to 2 billion years old, much less than the age of the universe (13.7 billion years). The puzzle is: why didn't Arp 82 form many stars earlier, like most galaxies of that mass range? Scientifically, it is an oddball and provides a relatively nearby lab for studying the age of intermediate-mass galaxies. This picture is a composite captured by Spitzer's infrared array camera with light at wavelength 8 microns shown in red, NASA's Galaxy Evolution Explorer combined 1530 and 2310 Angstroms shown in blue, and the Southeastern Association for Research in Astronomy Observatory light at 6940 Angstroms shown in green.

  19. VizieR Online Data Catalog: Global properties of z=1~2 GMASS galaxies (Tang+, 2014)

    Science.gov (United States)

    Tang, Y.; Giavalisco, M.; Guo, Y.; Kurk, J.

    2017-04-01

    The sample of galaxies discussed here is extracted from the Galaxy Mass Assembly Spectroscopic Survey (GMASS) described by Kurk et al. (2013, J/A+A/549/A63), a program of spectroscopic observations of a mid-IR magnitude-limited (mAB of IRAC 4.510 hr for the blue masks and 20-30 hr for the red masks. (1 data file).

  20. A new strong-lensing galaxy at z=0.066: Another elliptical galaxy with a lightweight IMF

    Science.gov (United States)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-05-01

    We report the discovery of a new low-redshift galaxy-scale gravitational lens, identified from a systematic search of publicly available MUSE observations. The lens galaxy, 2MASXJ04035024-0239275, is a giant elliptical at z = 0.06604 with a velocity dispersion of σ = 314 km s-1. The lensed source has a redshift of 0.19165 and forms a pair of bright images on either side of the lens centre. The Einstein radius is 1.5 arcsec, projecting to 1.8 kpc, which is just one quarter of the galaxy effective radius. After correcting for an estimated 19 per cent dark matter contribution, we find that the stellar mass-to-light ratio from lensing is consistent with that expected for a Milky Way initial mass function (IMF). Combining the new system with three previously-studied low-redshift lenses of similar σ, the derived mean mass excess factor (relative to a Kroupa IMF) is ⟨α⟩ = 1.09±0.08. With all four systems, the intrinsic scatter in α for massive elliptical galaxies can be limited to <0.32, at 90 per cent confidence.

  1. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  2. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  3. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  4. A NuSTAR survey of nearby ultraluminous infrared galaxies

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Rigby, Jane R.; Stern, Daniel

    2015-01-01

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously......] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths....

  5. The mass-temperature relation for clusters of galaxies

    DEFF Research Database (Denmark)

    Hjorth, J.; Oukbir, J.; van Kampen, E.

    1998-01-01

    A tight mass-temperature relation, M(r)/r proportional to T-x, is expected in most cosmological models if clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the dark matter. We here calibrate this relation using eight clusters with well-defined global...... with wide-held HST imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation, resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In addition, as M(r)/r las derived from lensing) is dependent on the cosmological model at high...

  6. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G.; Cooke, Jeff [Swinburne University of Technology, Victoria 3122 (Australia); Martin, Crystal L.; Ho, Stephanie H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane [CNRS, Institut de Recherche en Astrophysique et Planétologie (IRAP) de Toulouse, 14 Avenue E. Belin, F-31400 Toulouse (France); Churchill, Christopher W.; Klimek, Elizabeth, E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  7. Observing Galaxy Mergers in Simulations

    Science.gov (United States)

    Snyder, Gregory

    2018-01-01

    I will describe results on mergers and morphology of distant galaxies. By mock-observing 3D cosmological simulations, we aim to contrast theory with data, design better diagnostics of physical processes, and examine unexpected signatures of galaxy formation. Recently, we conducted mock surveys of the Illustris Simulations to learn how mergers would appear in deep HST and JWST surveys. With this approach, we reconciled merger rates estimated using observed close galaxy pairs with intrinsic merger rates predicted by theory. This implies that the merger-pair observability time is probably shorter in the early universe, and therefore that major mergers are more common than implied by the simplest arguments. Further, we show that disturbance-based diagnostics of late-stage mergers can be improved significantly by combining multi-dimensional image information with simulated merger identifications to train automated classifiers. We then apply these classifiers to real measurements from the CANDELS fields, recovering a merger fraction increasing with redshift in broad agreement with pair fractions and simulations, and with statistical errors smaller by a factor of two than classical morphology estimators. This emphasizes the importance of using robust training sets, including cosmological simulations and multidimensional data, for interpreting observed processes in galaxy evolution.

  8. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  9. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  10. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power...

  11. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  12. Spectroscopy of 125 QSO candidates and radio galaxies

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    Spectroscopic observations of 125 QSO candidates and radio galaxies are reported, many of which are optical identifications of radio sources in the deep survey in progress at the University of Texas Radio Astronomy Observatory (UTRAO). The remainder include optical identifications of sources in other radio surveys and radio-quiet objects selected by their ultraviolet continua or optical variability. Optical positions are given with O''.5 accuracy for 56 of the objects.Forty objects are confirmed as QSOs; redshifts are given for 38 of them and for 18 galaxies. There are also seven objects with apparently continuous spectra: some of them were already known or suspected to be BL Lacertae objects. Twenty-nine objects were found to be Galactic stars, and the results for the remaining 31 are inconclusive, although 12 of them are probable QSOs and six are probable stars.Our spectroscopy of a sample of 90 blue stellar objects found within 3'' of the UTRAO radio positions (including results from two earlier papers) shows that 81 (90%) are QSOs, with inconclusive results fo the other nine; none of the 90 is known to be a star. Even within 5'' of the UTRAO positions, 111 of 128 blue objects (87%) are QSOs, and only five (4%) are known or suspected to be stars. Among 21 red or neutral-color, apparently stellar objects within 3'' of the UTRAO positions, six are QSOs or compact galaxies, 13 are stars, and the results for two more are inconclusive

  13. On the Scatter of the Present-day Stellar Metallicity–Mass Relation of Cluster Dwarf Galaxies

    Science.gov (United States)

    Engler, Christoph; Lisker, Thorsten; Pillepich, Annalisa

    2018-04-01

    We examine the scatter of the relation between stellar mass and stellar metallicity for cluster dwarf galaxies in the cosmological simulation Illustris. The mass-metallicity relation exhibits the smallest intrinsic scatter at the galaxies' times of peak stellar mass, suggesting stellar mass stripping to be the primary effect responsible for the rather broad relation at present. However, for about 40% of galaxies in the high-metallicity tail of the relation, we find mass stripping to coincide with an increased enrichment of stellar metallicity, possibly caused by the stripping of low-metallicity stars in the galaxy outskirts.

  14. POX 186: A Dwarf Galaxy Under Construction?

    Science.gov (United States)

    Corbin, M. R.; Vacca, W. D.

    2000-12-01

    We have obtained deep images of the ultracompact ( ~ 3'') blue compact dwarf galaxy POX 186 in the F336W, F555W, and F814W filters of the Planetary Camera of the Hubble Space Telescope. We have additionally obtained a low-resolution near ultraviolet spectrum of the object with STIS and combine this with a ground-based spectrum covering the visible continuum and emission lines. Our images confirm this object to be highly compact, with a maximum projected size of only ~ 240 pc, making it one of the smallest galaxies known. We also confirm that the outer regions of the galaxy consist of an evolved stellar population, ruling out earlier speculations that POX 186 is a protogalaxy. However, the PC images reveal the galaxy to have a highly irregular morphology, with a pronounced tidal arm on its western side. This morphology is strongly suggestive of a recent collision between two smaller components which has in turn triggered the central starburst. The F336W image also shows that the material in this tidal stream is actively star forming. Given the very small ( ~ 100 pc) sizes of the colliding components, POX 186 may be a dwarf galaxy in the early stages of formation, which would be consistent with current ``downsizing'' models of galaxy formation in which the least massive objects are the last to form. This work is supported by NASA and the Space Telescope Science Institute.

  15. Main-sequence turnoff of the Draco dwarf galaxy

    International Nuclear Information System (INIS)

    Stetson, P.B.; Mcclure, R.D.; Vandenberg, D.A.; Victoria Univ., Canada)

    1985-01-01

    Deep photometry on the B,V system for 182 stars in the dwarf spheroidal galaxy in Draco was obtained with a CCD camera at the Cassegrain focus of the Canada-France-Hawaii 3.6-m telescope. Draco's main-sequence turnoff if found near V(to) = 23.5, which is about 3.4 magnitudes below the galaxy's horizontal branch. This leads to the interpretation that Draco is not measurably younger than the clusters or Ursa Minor: the age of Draco is about 18 Gyr according to current star-revolution chronologies. No blue stragglers are definitely detected in Draco, and it is concluded that any young population in Draco probably represents less than 10 percent of the total. 30 references

  16. Minimal spanning trees, filaments and galaxy clustering

    International Nuclear Information System (INIS)

    Barrow, J.D.; Sonoda, D.H.

    1985-01-01

    A graph theoretical technique for assessing intrinsic patterns in point data sets is described. A unique construction, the minimal spanning tree, can be associated with any point data set given all the inter-point separations. This construction enables the skeletal pattern of galaxy clustering to be singled out in quantitative fashion and differs from other statistics applied to these data sets. This technique is described and applied to two- and three-dimensional distributions of galaxies and also to comparable random samples and numerical simulations. The observed CfA and Zwicky data exhibit characteristic distributions of edge-lengths in their minimal spanning trees which are distinct from those found in random samples. (author)

  17. Work Identity and Marital Adjustment in Blue-Collar Men.

    Science.gov (United States)

    Gaesser, David L.; Whitbourne, Susan Krauss

    1985-01-01

    Investigated the relationship between work-identity and satisfaction and marital adjustment in 40 married male blue-collar workers, ages 25 to 41 years. Satisfaction with extrinsic work factors related to marital adjustment, while satisfaction with intrinsic work factors negatively related to secondary role salience. Age negatively related to…

  18. PRIMUS: Galaxy clustering as a function of luminosity and color at 0.2 < z < 1

    Energy Technology Data Exchange (ETDEWEB)

    Skibba, Ramin A.; Smith, M. Stephen M.; Coil, Alison L.; Mendez, Alexander J. [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Aird, James [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bray, Aaron D.; Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cool, Richard J. [MMT Observatory, 1540 E Second Street, University of Arizona, Tucson, AZ 85721 (United States); Wong, Kenneth C. [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Zhu, Guangtun, E-mail: rskibba@ucsd.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-04-01

    We present measurements of the luminosity and color-dependence of galaxy clustering at 0.2 < z < 1.0 in the Prism Multi-object Survey. We quantify the clustering with the redshift-space and projected two-point correlation functions, ξ(r{sub p} , π) and w{sub p} (r{sub p} ), using volume-limited samples constructed from a parent sample of over ∼130, 000 galaxies with robust redshifts in seven independent fields covering 9 deg{sup 2} of sky. We quantify how the scale-dependent clustering amplitude increases with increasing luminosity and redder color, with relatively small errors over large volumes. We find that red galaxies have stronger small-scale (0.1 Mpc h {sup –1} < r{sub p} < 1 Mpc h {sup –1}) clustering and steeper correlation functions compared to blue galaxies, as well as a strong color dependent clustering within the red sequence alone. We interpret our measured clustering trends in terms of galaxy bias and obtain values of b {sub gal} ≈ 0.9-2.5, quantifying how galaxies are biased tracers of dark matter depending on their luminosity and color. We also interpret the color dependence with mock catalogs, and find that the clustering of blue galaxies is nearly constant with color, while redder galaxies have stronger clustering in the one-halo term due to a higher satellite galaxy fraction. In addition, we measure the evolution of the clustering strength and bias, and we do not detect statistically significant departures from passive evolution. We argue that the luminosity- and color-environment (or halo mass) relations of galaxies have not significantly evolved since z ∼ 1. Finally, using jackknife subsampling methods, we find that sampling fluctuations are important and that the COSMOS field is generally an outlier, due to having more overdense structures than other fields; we find that 'cosmic variance' can be a significant source of uncertainty for high-redshift clustering measurements.

  19. The influence of galaxy environment on the stellar initial mass function of early-type galaxies

    Science.gov (United States)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-06-01

    In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  20. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    Science.gov (United States)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  1. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    Science.gov (United States)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  2. COLOR-MAGNITUDE RELATIONS OF EARLY-TYPE DWARF GALAXIES IN THE VIRGO CLUSTER: AN ULTRAVIOLET PERSPECTIVE

    International Nuclear Information System (INIS)

    Kim, Suk; Rey, Soo-Chang; Lisker, Thorsten; Sohn, Sangmo Tony

    2010-01-01

    We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. We also find that the UV CMRs of dEs in the outer cluster region are slightly steeper than that of their counterparts in the inner region, due to the existence of faint, blue dEs in the outer region. We explore the observed CMRs with population models of a luminosity-dependent delayed exponential star formation history. We confirm that the feature of delayed star formation of early-type dwarf galaxies in the Virgo cluster is strongly correlated with their morphology and environment. The observed CMR of dS0s is well matched by models with relatively long delayed star formation. Our results suggest that dS0s are most likely transitional objects at the stage of subsequent transformation of late-type progenitors to ordinary red dEs in the cluster environment. In any case, UV photometry provides a powerful tool to disentangle the diverse subpopulations of early-type dwarf galaxies and uncover their evolutionary histories.

  3. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    Science.gov (United States)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  4. AKARI OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT z = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES

    International Nuclear Information System (INIS)

    Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Jeon, Yiseul; Shim, Hyunjin; Hwang, Ho Seong; Willmer, Christopher N. A.; Weiner, Benjamin J.; Malkan, Matthew A.; Papovich, Casey; Matsuhara, Hideo; Takagi, Toshinobu; Oyabu, Shinki

    2012-01-01

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z ∼ 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg 2 ) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 μm)-mid-IR (11 μm) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominated star-forming galaxies that have star formation rates lower by ∼4 × than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (10 10 M ☉ * 10.5 M ☉ ) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to * > 10 10.5 M ☉ ) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 10 10 M ☉ * 11 M ☉ also decreases as the density and mass increase. In particular, ∼42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.

  5. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    Science.gov (United States)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  6. Confirmation of Faint Dwarf Galaxies in the M81 Group

    Science.gov (United States)

    Chiboucas, Kristin; Jacobs, Bradley A.; Tully, R. Brent; Karachentsev, Igor D.

    2013-11-01

    We have followed up on the results of a 65 deg2 CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M_{r^{\\prime }} = -10, we find a galaxy luminosity function slope of -1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size Re ~ 100 pc and total magnitude estimates M_{r^{\\prime }} = -6.8 and MI ~ -9.1.

  7. IC 3475: A stripped dwarf galaxy in the Virgo cluster

    International Nuclear Information System (INIS)

    Vigroux, L.; Thuan, T.X.; Vader, J.P.; Lachieze-Rey, M.

    1986-01-01

    We have obtained B and R CCD and H I observations of the Virgo dwarf galaxy IC 3475. The galaxy is remarkable for its very large diameter (approx.10 kpc for a Virgo distance modulus of 31) and is comparable in size to the large dwarfs discussed by Sandage and Binggeli. Its light profile is best fitted by an exponential law, characteristic of a dwarf Magellanic irregular galaxy. It possesses a central bar with many knots and inclusions concentrated toward the center of the galaxy. These knots and inclusions have the same color (B-Rapprox.1.5) as the rest of the galaxy and are best explained as intermediate-age (1--7 x 10 9 yr) star clusters such as those found in the Magellanic Clouds. Despite possessing the photometric structure of a dwarf Magellanic irregular galaxy, IC 3475 contains less than 5.3 x 10 6 M/sub sun/ of neutral hydrogen. Its hydrogen mass to blue light ratio is less than 0.01, approx.60 times less than the mean value observed for dwarf Magellanic irregulars. It is most likely that IC 3475, which is located near the core of the Virgo cluster, is a stripped dwarf galaxy. The very large size of the galaxy (its diameter is approx.1.8 times larger than that of ''normal'' dwarfs) appears to rule out evolution of IC 3475 from a normal dwarf irregular or to a normal dwarf elliptical

  8. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    Science.gov (United States)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities ~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.

  9. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  10. THE LICK AGN MONITORING PROJECT: THE M BH-σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle L.; Bentz, Misty C.; Wright, Shelley A.; Filippenko, Alexei V.; Li, Weidong; Martini, Paul; Canalizo, Gabriela; Gates, Elinor; Greene, Jenny; Malkan, Matthew A.; Stern, Daniel; Minezaki, Takeo

    2010-01-01

    To investigate the black hole mass versus stellar velocity dispersion (M BH -σ * ) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 10 6 BH /M sun 9 . We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the M BH -σ * relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σ int = 0.43 ± 0.08 dex in the relation log(M BH /M sun ) = α + β log(σ * /200 km s -1 ), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the M BH -σ * relation of quiescent galaxies; using the quiescent M BH -σ * relation determined by Gueltekin et al., we find log f = 0.72 +0.09 -0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the

  11. A SPECTROSCOPIC STUDY OF BLUE SUPERGIANT STARS IN THE SCULPTOR GALAXY NGC 55: CHEMICAL EVOLUTION AND DISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Kudritzki, R. P.; Ho, I.-T.; Bresolin, F. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Castro, N. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Urbaneja, M. A.; Przybilla, N. [Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck (Austria); Gieren, W.; Pietrzyński, G. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile)

    2016-10-01

    Low-resolution (4.5–5 Å) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities, and metallicities (from iron peak and α -elements). A metallicity gradient of −0.22 ± 0.06 dex/ R {sub 25} is detected. The central metallicity on a logarithmic scale relative to the Sun is [ Z ] = −0.37 ± 0.03. A chemical evolution model using the observed distribution of column densities of the stellar and interstellar medium gas mass reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extraplanar metal-poor H ii regions detected in previous work 1.13 to 2.22 kpc above the galactic plane are ionized by massive stars formed in situ outside the disk. For a subsample of supergiants, for which Hubble Space Telescope photometry is available, the flux-weighted gravity–luminosity relationship is used to determine a distance modulus of 26.85 ± 0.10 mag.

  12. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  13. Evolution of galaxies in clusters. V. A study of populations since zapprox.0.5

    International Nuclear Information System (INIS)

    Butcher, H.; Oemler, A. Jr.

    1984-01-01

    In this paper we analyze photometry of 33 clusters of galaxies, with redshifts between 0.003 (the Virgo Cluster) and 0.54 (Cl 0016+16) to search for evolution of the colors of cluster populations. In each cluster we select these galaxies brighter than M/sub V/ = -20 which are within the circular area containing the inner 30% of the total Jupiter population. From the distribution of these galaxies in the color-magnitude plane, we determine the fraction of galaxies whose rest-frame B-V colors are at least 0.2 mag bluer than the ridge line of the early type galaxies at that magnitude. We define this to be the blue galaxy population, f/sub B/, and find it to have the following characteristics in compact, concentrated clusters: (1) For z or approx. =0.1 f/sub B/ increases with redshift reaching f/sub B/approx.0.25 at z = 0.5. (3) The values of f/sub B/ seen in clusters at a particular redshift are mostly consistent with clusters being random samples of one homogeneous galaxy population, but there is some evidence that processes within individual clusters may also affect the galaxy content

  14. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    International Nuclear Information System (INIS)

    Akujor, C.E.

    1989-01-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs

  15. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  16. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    International Nuclear Information System (INIS)

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M.; Bell, E. F.; Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M.; Ferguson, H. C.; Brammer, G.; Kassin, S. A.; Giavalisco, M.; Skelton, R.; Whitaker, K.; Momcheva, I.; Van Dokkum, P. G.; Dekel, A.; Ceverino, D.; Franx, M.

    2014-01-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10 9 -10 11 M ☉ are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M * > 10 10 M ☉ ) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10 9 M ☉ (10 10 M ☉ ) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks

  17. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, R.; Lilly, S. J. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Kacprzak, G. G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, C. W., E-mail: rongmonb@phys.ethz.ch [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with

  18. Do Galaxies Follow Darwinian Evolution?

    Science.gov (United States)

    2006-12-01

    , France, who coordinates the VIMOS VLT Deep Survey team that made the discovery. "They suggest that galaxies as we see them today are the product of their inherent genetic information, evolved over time, as well as complex interactions with their environments, such as mergers." Scientists have known for several decades that galaxies in the Universe's past look different to those in the present-day Universe, local to the Milky Way [3]. Today, galaxies can be roughly classified as red, when few or no new stars are being born, or blue, where star formation is still ongoing. Moreover, a strong correlation exists between a galaxy's colour and the environment it resides in: the more sociable types found in dense clusters are more likely to be red than the more isolated ones. By looking back at a wide range of galaxies of a variety of ages, the astronomers were aiming to study how this peculiar correlation has evolved over time. "Using VIMOS, we were able to use the largest sample of galaxies currently available for this type of study, and because of the instrument's ability to study many objects at a time we obtained many more measurements than previously possible," said Angela Iovino, from the Brera Astronomical Observatory, Italy, another member of the team. The team's discovery of a marked variation in the 'colour-density' relationship, depending on whether a galaxy is found in a cluster or alone, and on its luminosity, has many potential implications. The findings suggest for example that being located in a cluster quenches a galaxy's ability to form stars more quickly compared with those in isolation. Luminous galaxies also run out of star-forming material at an earlier time than fainter ones. They conclude that the connection between galaxies' colour, luminosity and their local environment is not merely a result of primordial conditions 'imprinted' during their formation - but just as for humans, galaxies' relationship and interactions can have a profound impact on their

  19. Stellar mass estimation based on IRAC photometry for Spitzer SWIRE-field galaxies

    International Nuclear Information System (INIS)

    Zhu Yinan; Wu Hong; Li Haining; Cao Chen

    2010-01-01

    We analyze the feasibility of estimating the stellar mass of galaxies by mid-infrared luminosities based on a large sample of galaxies cross-identified from Spitzer SWIRE fields and the SDSS spectrographic survey. We derived the formulae to calculate the stellar mass by using IRAC 3.6 μm and 4.5 μm luminosities. The mass-to-luminosity ratios of IRAC 3.6 μm and 4.5 μm luminosities are more sensitive to the star formation history of galaxies than to other factors, such as the intrinsic extinction, metallicity and star formation rate. To remove the effect of star formation history, we used g - r color to recalibrate the formulae and obtain a better result. Researchers must be more careful when estimating the stellar mass of low metallicity galaxies using our formulae. Due to the emission from dust heated by the hottest young stars, luminous infrared galaxies present higher IRAC 4.5 μm luminosities compared to IRAC 3.6 μm luminosities. For most of type-II AGNs, the nuclear activity cannot enhance 3.6 μm and 4.5 μm luminosities compared with normal galaxies. Star formation in our AGN-hosting galaxies is also very weak, almost all of which are early-type galaxies.

  20. POX 4 and Tol 35: Two Peculiar Wolf-Rayet Dwarf Galaxies

    Science.gov (United States)

    Méndez, David I.; Esteban, César

    1999-12-01

    We present results of narrowband (Hα and adjacent continuum) and broadband (U, B, and V) optical CCD imaging together with high-resolution Hα spectroscopy of the blue compact Wolf-Rayet dwarf galaxies POX 4 and Tol 35. POX 4 has a fainter, irregular, and diffuse companion located 20.5" (4.7 kpc) along the minor axis of the galaxy, which is visible also in the Hα emission. The difference in recession velocity between the galaxy and the companion is about 130 km s-1. The observational results lead us to propose that POX 4 could be interpreted as a low-mass ring galaxy, produced by a head-on intrusion of the fainter companion. Regarding the other object, a spectrum taken along the major axis of Tol 35 shows the coexistence of systems of motion with a velocity difference of about 50 km s-1. Moreover, the deep continuum-subtracted Hα image of the galaxy shows very faint features that resemble the beginning of crossed tidal tails or gaseous filaments powered by the mechanical action of the young stellar population. In this sense, Tol 35 could be interpreted either as an object in an intermediate-stage merging process between two gas-rich dwarf galaxies or as an object suffering the effect of a galactic wind.

  1. Cosmological measurements with general relativistic galaxy correlations

    International Nuclear Information System (INIS)

    Raccanelli, Alvise; Montanari, Francesco; Durrer, Ruth; Bertacca, Daniele; Doré, Olivier

    2016-01-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  2. A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey

    Science.gov (United States)

    Meusinger, H.; Brünecke, J.; Schalldach, P.; in der Au, A.

    2017-01-01

    Context. The galaxy population in the contemporary Universe is characterised by a clear bimodality, blue galaxies with significant ongoing star formation and red galaxies with only a little. The migration between the blue and the red cloud of galaxies is an issue of active research. Post starburst (PSB) galaxies are thought to be observed in the short-lived transition phase. Aims: We aim to create a large sample of local PSB galaxies from the Sloan Digital Sky Survey (SDSS) to study their characteristic properties, particularly morphological features indicative of gravitational distortions and indications for active galactic nuclei (AGNs). Another aim is to present a tool set for an efficient search in a large database of SDSS spectra based on Kohonen self-organising maps (SOMs). Methods: We computed a huge Kohonen SOM for ∼106 spectra from SDSS data release 7. The SOM is made fully available, in combination with an interactive user interface, for the astronomical community. We selected a large sample of PSB galaxies taking advantage of the clustering behaviour of the SOM. The morphologies of both PSB galaxies and randomly selected galaxies from a comparison sample in SDSS Stripe 82 (S82) were inspected on deep co-added SDSS images to search for indications of gravitational distortions. We used the Portsmouth galaxy property computations to study the evolutionary stage of the PSB galaxies and archival multi-wavelength data to search for hidden AGNs. Results: We compiled a catalogue of 2665 PSB galaxies with redshifts z 3 Å and z cloud, in agreement with the idea that PSB galaxies represent the transitioning phase between actively and passively evolving galaxies. The relative frequency of distorted PSB galaxies is at least 57% for EW(Hδ) > 5 Å, significantly higher than in the comparison sample. The search for AGNs based on conventional selection criteria in the radio and MIR results in a low AGN fraction of ∼2-3%. We confirm an MIR excess in the mean SED of

  3. Vulcan - A low-resolution spectrophotometer for measuring the integrated colors of galaxies

    International Nuclear Information System (INIS)

    Rakos, K.D.; Weiss, W.W.; Mueller, S.; Pressberger, R.; Wachtler, P.

    1990-01-01

    Recent advances in fiber optics, holographic gratings, and blue CCD sensitivity have been combined to develop a low-resolution spectrophotometer. Combining the principles of aperture photometry and spectroscopy, this device is designed specifically to measure the light from galaxies with low contrast to the sky brightness (i.e., low surface brightness galaxies). The instrument consists of two large apertures (up to several arcmin) with fast-field lens for imaging the entrance pupil onto a fiber-optics cable. The circular configuration for the input end of the fiber cable is modified to a rectangular slit at the output end. The output is then imaged onto a concave holographic grating producing a spectrum from 3200 A to 7600 A with a resolution of 140 A. The main purpose of this instrument is to obtain narrow-band optical colors for low surface brightness galaxies, which can then be applied to the study of stellar populations in these galaxies. 11 refs

  4. CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Chiboucas, Kristin [Gemini Observatory, 670 North A' ohoku Pl, Hilo, HI 96720 (United States); Jacobs, Bradley A.; Tully, R. Brent [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96821 (United States); Karachentsev, Igor D., E-mail: kchibouc@gemini.edu, E-mail: bjacobs@ifa.hawaii.edu, E-mail: tully@ifa.hawaii.edu, E-mail: ikar@luna.sao.ru [Special Astrophysical Observatory (SAO), Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)

    2013-11-01

    We have followed up on the results of a 65 deg{sup 2} CFHT/MegaCam imaging survey of the nearby M81 Group searching for faint and ultra-faint dwarf galaxies. The original survey turned up 22 faint candidate dwarf members. Based on two-color HST ACS/WFC and WFPC2 photometry, we now confirm 14 of these as dwarf galaxy members of the group. Distances and stellar population characteristics are discussed for each. To a completeness limit of M{sub r{sup '}}= -10, we find a galaxy luminosity function slope of –1.27 ± 0.04 for the M81 Group. In this region, there are now 36 M81 Group members known, including 4 blue compact dwarfs; 8 other late types including the interacting giants M81, NGC 3077, and M82; 19 early type dwarfs; and at least 5 potential tidal dwarf galaxies. We find that the dSph galaxies in M81 appear to lie in a flattened distribution, similar to that found for the Milky Way and M31. One of the newly discovered dSph galaxies has properties similar to the ultra-faint dwarfs being found in the Local Group with a size R{sub e} ∼ 100 pc and total magnitude estimates M{sub r{sup '}}= -6.8 and M{sub I} ∼ –9.1.

  5. Galaxy Evolution Insights from Spectral Modeling of Large Data Sets from the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, Erik A. [Johns Hopkins Univ., Baltimore, MD (United States)

    2007-10-01

    This thesis centers on the use of spectral modeling techniques on data from the Sloan Digital Sky Survey (SDSS) to gain new insights into current questions in galaxy evolution. The SDSS provides a large, uniform, high quality data set which can be exploited in a number of ways. One avenue pursued here is to use the large sample size to measure precisely the mean properties of galaxies of increasingly narrow parameter ranges. The other route taken is to look for rare objects which open up for exploration new areas in galaxy parameter space. The crux of this thesis is revisiting the classical Kennicutt method for inferring the stellar initial mass function (IMF) from the integrated light properties of galaxies. A large data set (~ 105 galaxies) from the SDSS DR4 is combined with more in-depth modeling and quantitative statistical analysis to search for systematic IMF variations as a function of galaxy luminosity. Galaxy Hα equivalent widths are compared to a broadband color index to constrain the IMF. It is found that for the sample as a whole the best fitting IMF power law slope above 0.5 M is Γ = 1.5 ± 0.1 with the error dominated by systematics. Galaxies brighter than around Mr,0.1 = -20 (including galaxies like the Milky Way which has Mr,0.1 ~ -21) are well fit by a universal Γ ~ 1.4 IMF, similar to the classical Salpeter slope, and smooth, exponential star formation histories (SFH). Fainter galaxies prefer steeper IMFs and the quality of the fits reveal that for these galaxies a universal IMF with smooth SFHs is actually a poor assumption. Related projects are also pursued. A targeted photometric search is conducted for strongly lensed Lyman break galaxies (LBG) similar to MS1512-cB58. The evolution of the photometric selection technique is described as are the results of spectroscopic follow-up of the best targets. The serendipitous discovery of two interesting blue compact dwarf galaxies is reported. These

  6. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  7. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-01-01

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  8. The Size Difference between Red and Blue Globular Clusters is not due to Projection Effects

    Science.gov (United States)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-01

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  9. Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Smit, R.; Bouwens, R. J.; Labbé, I. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Zheng, W.; Lemze, D.; Ford, H. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Bradley, L.; Coe, D.; Postman, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Moustakas, J. [Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Umetsu, K. [Institute of Astronomy and Astrophysics, Academia Sinica, P. O. Box 23-141, Taipei 10617, Taiwan (China); Zitrin, A.; Bartelmann, M. [Institut fur Theoretische Astrophysik, ZAH, Albert-Ueberle-Straß e 2, 69120 Heidelberg (Germany); Gonzalez, V. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Benítez, N.; Jimenez-Teja, Y. [Instituto de Astrofisica de Andalucia (CSIC), C/Camino Bajo de Huetor 24, Granada 18008 (Spain); Broadhurst, T. [Department of Theoretical Physics, University of the Basque Country, P. O. Box 644, 48080 Bilbao (Spain); Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Infante, L. [Departamento de Astronoia y Astrofisica, Pontificia Universidad Catolica de Chile, V. Mackenna 4860, Santiago 22 (Chile); and others

    2014-03-20

    Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ∼ 5-7 galaxies. This line emission makes z ∼ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ∼ 7, and we present a strategy for an improved measurement of the sSFR at z ∼ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ∼ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H {sub 160} < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr{sup –1} on the sSFR of our sample based on the mean spectral energy distribution.

  10. Extended maximum likelihood analysis of apparent flattenings of S0 and spiral galaxies

    International Nuclear Information System (INIS)

    Okamura, Sadanori; Takase, Bunshiro; Hamabe, Masaru; Nakada, Yoshikazu; Kodaira, Keiichi.

    1981-01-01

    Apparent flattenings of S0 and spiral galaxies compiled by Sandage et al. (1970) and van den Bergh (1977), and those listed in the Second Reference Catalogue (RC2) are analyzed by means of the extended maximum likelihood method which was recently developed in the information theory for statistical model identification. Emphasis is put on the possible difference in the distribution of intrinsic flattenings between S0's and spirals as a group, and on the apparent disagreements present in the previous results. The present analysis shows that (1) One cannot conclude on the basis of the data in the Reference Catalogue of Bright Galaxies (RCBG) that the distribution of intrinsic flattenings of spirals is almost identical to that of S0's; spirals have wider dispersion than S0's, and there are more round systems in spirals than in S0's. (2) The distribution of intrinsic flattenings of S0's and spirals derived from the data in RC2 again indicates a significant difference from each other. (3) The distribution of intrinsic flattenings of S0's exhibits different characteristics depending upon the surface-brightness level; the distribution with one component is obtained from the data at RCBG level (--23.5 mag arcsec -2 ) and that with two components at RC2 level (25 mag arcsec -2 ). (author)

  11. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  12. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  13. Optical and x-ray survey of s-type Markarian galaxies

    International Nuclear Information System (INIS)

    Hutter, D.J.; Mufson, S.L.

    1981-01-01

    We report here the results of a study of 23 compact, lineless Markarian galaxies using broadband optical photometry and x-ray satellite observations. Our photometry shows that the sample can be broken into four groups. In one group (Mrk 180, 421, and 501) are composite objects in which a BL Lacertae object is embedded in an elliptical galaxy. For this group, we present the results of multiepoch x-ray observations using the HEAO-1 and -2 satellites. In addition, we use our photometry to decompose the optical emission into nonthermal and galactic components. In the second group are objects showing a small ultraviolet excess relative to normal galaxies. The x-ray survey indicates that the x-ray luminosity of objects in group 2 is much lower than those in group 1. This suggests that there is an intrinsic difference between objects in groups 1 and 2. The third and fourth groups are objects whose colors are indistinguishable from those of normal field galaxies and those of galactic stars, respectively. No x-ray emission was detected from objects in either of these groups

  14. Are We Really Missing Small Galaxies?

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    dark matter, however, the team included baryons in their simulations. They then produced mock observations of the resulting galaxy velocities to see what an observed velocity function would look like for their simulated galaxies.No Problem After All?Comparison of theoretical velocity functions to observations. The black dashed line shows the original, dark-matter-only model predictions; the black solid line includes the effects of detectability. Blue lines show the authors new model, including the effects of detectability and inclusion of baryons. The red and teal data points from observations match this corrected model well. [Brooks et al. 2017]Based on their baryon-inclusive simulations, Brooks and collaborators argue that there are two main factors that have contributed to the seeming theory/observation mismatch of the missing dwarf problem:Galaxies with low velocities arent detectable by our current surveys.The authors found that the detectable fraction of their simulated galaxies plunges as soon as galaxy velocity drops below 35 km/s. They conclude that were probably unable to see a large fraction of the smallest galaxies.Were not correctly inferring the circular velocity of the galaxies.Circular velocity is usually measured by looking at the line width of a gas tracer like HI. The authors find that this doesnt trace the full potential wells of the dwarf galaxies, however, resulting in an incorrect interpretation of their velocities.The authors show that the inclusion of these effects in the theoretical model significantly changes the predicted shape of the galaxy velocity function. This new function beautifully matches observations, neatly eliminating the missing dwarf problem. Perhaps this long-standing mystery has been a problem of interpretation all along!CitationAlyson M. Brooks et al 2017 ApJ 850 97. doi:10.3847/1538-4357/aa9576

  15. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    Science.gov (United States)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  16. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    Science.gov (United States)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  17. A Robust Classification of Galaxy Spectra: Dealing with Noisy and Incomplete Data

    Science.gov (United States)

    Connolly, A. J.; Szalay, A. S.

    1999-05-01

    Over the next few years new spectroscopic surveys (from the optical surveys of the Sloan Digital Sky Survey and the 2dF Galaxy Survey through to space-based ultraviolet satellites such as GALEX) will provide the opportunity and challenge of understanding how galaxies of different spectral type evolve with redshift. Techniques have been developed to classify galaxies based on their continuum and line spectra. Some of the most promising of these have used the Karhunen & Loève transform (or principal component analysis) to separate galaxies into distinct classes. Their limitation has been that they assume that the spectral coverage and quality of the spectra are constant for all galaxies within a given sample. In this paper we develop a general formalism that accounts for the missing data within the observed spectra (such as the removal of sky lines or the effect of sampling different intrinsic rest-wavelength ranges due to the redshift of a galaxy). We demonstrate that by correcting for these gaps we can recover an almost redshift-independent classification scheme. From this classification we can derive an optimal interpolation that reconstructs the underlying galaxy spectral energy distributions in the regions of missing data. This provides a simple and effective mechanism for building galaxy spectral energy distributions directly from data that may be noisy, incomplete, or drawn from a number of different sources.

  18. Topics in Galaxy Evolution: Early Star Formation and Quenching

    Science.gov (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  19. Structure and stellar content of dwarf elliptical galaxies

    International Nuclear Information System (INIS)

    Caldwell, N.

    1983-01-01

    A small number of low-luminosity elliptical galaxies in the Virgo cluster and around other prominent galaxies have been studied using photoelectric and photographic techniques. The color-magnitude relation for ellipticals now extends from M/sub v/ = -23 to -15, and is linear over that range with a slope of 0.10 in U-V per visual magnitude. Galaxies which are known to contain a large number of young stars (''extreme cases'') are from 0.10 to 0.20 mag bluer in U-V than the lower envelope of the dwarf elliptical color-magnitude relation. This difference can be accounted for if the dwarf elliptical galaxies are young, but do not contain the massive blue stars that probably exist in the young populations of the extreme cases. Surface brightness profiles of the dwarfs have revealed some interesting distinctions between themselves and the brighter E's. In general, their intensity profiles are shallower than those of the bright E's, meaning they are of lower mean density. These mean densities are also a function of the total luminosity. Unlike the bright E's, the surface brightnesses near the centers are also a strong function of the total luminosity. The presence of a nucleation, which can be as much as 2 mag brighter than what the outer envelope would predict, does not appear to depend on any other measurable property of the galaxies. The variation in surface brightness profiles at the same total luminosity is suggestive that the low-luminosity dwarfs formed in more than one way. The flattening distribution of the dwarfs is like that of the bright ellipticals, and is also similar to the flattening distribution of field irregular galaxies

  20. Angular ellipticity correlations in a composite alignment model for elliptical and spiral galaxies and inference from weak lensing

    Science.gov (United States)

    Tugendhat, Tim M.; Schäfer, Björn Malte

    2018-05-01

    We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.

  1. Galaxies in the First Billion Years After the Big Bang

    Science.gov (United States)

    Stark, Daniel P.

    2016-09-01

    In the past five years, deep imaging campaigns conducted with the Hubble Space Telescope (HST) and ground-based observatories have delivered large samples of galaxies at 6.5space density of luminous galaxies has been shown to decrease by 15-20× over 4Space Telescope demonstrates that z>6 UV-selected galaxies are relatively compact with blue UV continuum slopes, low stellar masses, and large specific star formation rates. In the last year, ALMA (the Atacama Large Millimeter Array) and ground-based infrared spectrographs have begun to complement this picture, revealing minimal dust obscuration and hard radiation fields, and providing evidence for metal-poor ionized gas. Weak low-ionization absorption lines suggest a patchy distribution of neutral gas surrounds O and B stars, possibly aiding in the escape of ionizing radiation. Gamma ray burst afterglows and Lyman-α surveys have provided evidence that the intergalactic medium (IGM) evolves from mostly ionized at z≃6-6.5 ([Formula: see text]) to considerably neutral at z≃7-8 ([Formula: see text]). The reionization history that emerges from considering the UV output of galaxies over 6galaxies can complete reionization by z≃6 and reproduce the Thomson scattering optical depth faced by cosmic microwave background photons if the luminosity function extends ≃4 mag below current surveys and a moderate fraction ([Formula: see text]) of ionizing radiation escapes from galaxies.

  2. STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING

    International Nuclear Information System (INIS)

    Fadely, Ross; Willman, Beth; Hogg, David W.

    2012-01-01

    Ground-based optical surveys such as PanSTARRS, DES, and LSST will produce large catalogs to limiting magnitudes of r ∼> 24. Star-galaxy separation poses a major challenge to such surveys because galaxies—even very compact galaxies—outnumber halo stars at these depths. We investigate photometric classification techniques on stars and galaxies with intrinsic FWHM best ) where the training data are (unrealistically) a random sampling of the data in both signal-to-noise and demographics and (2) a more realistic scenario where training is done on higher signal-to-noise data (SVM real ) at brighter apparent magnitudes. Testing with COSMOS ugriz data, we find that HB outperforms ML, delivering ∼80% completeness, with purity of ∼60%-90% for both stars and galaxies. We find that no algorithm delivers perfect performance and that studies of metal-poor main-sequence turnoff stars may be challenged by poor star-galaxy separation. Using the Receiver Operating Characteristic curve, we find a best-to-worst ranking of SVM best , HB, ML, and SVM real . We conclude, therefore, that a well-trained SVM will outperform template-fitting methods. However, a normally trained SVM performs worse. Thus, HB template fitting may prove to be the optimal classification method in future surveys.

  3. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertrand; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J.

    2015-01-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique

  4. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  5. An unusually brilliant transient in the galaxy M85.

    Science.gov (United States)

    Kulkarni, S R; Ofek, E O; Rau, A; Cenko, S B; Soderberg, A M; Fox, D B; Gal-Yam, A; Capak, P L; Moon, D S; Li, W; Filippenko, A V; Egami, E; Kartaltepe, J; Sanders, D B

    2007-05-24

    Historically, variable and transient sources have both surprised astronomers and provided new views of the heavens. Here we report the discovery of an optical transient in the outskirts of the lenticular galaxy Messier 85 in the Virgo cluster. With a peak absolute R magnitude of -12, this event is distinctly brighter than novae, but fainter than type Ia supernovae (which are expected in a population of old stars in lenticular galaxies). Archival images of the field do not show a luminous star at that position with an upper limit in the g filter of about -4.1 mag, so it is unlikely to be a giant eruption from a luminous blue variable star. Over a two-month period, the transient source emitted radiation energy of almost 10(47) erg and subsequently faded in the optical sky. It is similar to, but six times more luminous at peak than, an enigmatic transient in the galaxy M31 (ref. 1). A possible origin of M85 OT2006-1 is a stellar merger. If so, searches for similar events in nearby galaxies will not only allow study of the physics of hyper-Eddington sources, but also probe an important phase in the evolution of stellar binary systems.

  6. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    NASA/ESA Hubble Space Telescope, the ESA Infrared Space Observatory (ISO) satellite and the NRAO Very Large Array. With the Very Large Telescope, observations were performed on Antu and Kueyen over a two-year period using the quasi-twin instruments FORS1 and FORS2 in the visible and ISAAC in the infrared. In both cases, it was essential to rely on the unique capabilities of the VLT to obtain high-quality spectra with the required resolution. A fleet of results ESO PR Photo 02a/05 ESO PR Photo 02a/05 Luminosity - Oxygen Abundance Relation for Galaxies [Preview - JPEG: 400 x 455 pix - 81k] [Normal - JPEG: 800 x 910 pix - 208k] Caption: ESO PR Photo 02a/05 shows the oxygen abundance (expressed in fraction of the solar value) as a function of the luminosity of the galaxies (in logarithm scale). This relation is fundamental in astrophysics. The relation for local galaxies is shown by the solid red line. The blue dots are the values derived from VLT spectra in a subset of the studied galaxies. They reveal for the first time that this relation is changing with time: for a given value of the luminosity, galaxies of different ages present different values of the oxygen abundance. From their extensive set of data, the astronomers could draw a number of important conclusions. First, based on the near-infrared luminosities of the galaxies, they infer that most of the galaxies they studied contain between 30,000 million and 300,000 million times the mass of the Sun in the form of stars. This is roughly a factor 0.2 to 2 the amount of mass locked in stars in our own Milky Way. Second, they discovered that contrary to the local Universe where so-called Luminous Infrared Galaxies (LIRGs; [3]) are very rare objects, at a redshift from 0.4 to 1, that is, 4,000 to 8,000 million years ago, roughly one sixth of bright galaxies were LIRGs. Because this peculiar class of galaxies is believed to be going through a very active phase of star formation, with a doubling of the stellar mass

  7. A DOZEN NEW GALAXIES CAUGHT IN THE ACT: GAS STRIPPING AND EXTENDED EMISSION LINE REGIONS IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari; Yoshida, Michitoshi; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha

    2010-01-01

    We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ∼ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds.

  8. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Greggio, L.; Pignata, G.; Della Valle, M.; Grado, A.; Limatola, L.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Haeussler, B.; Harutyunyan, V.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Tomasella, L.; Turatto, M.; Vaccari, M.

    2017-02-01

    Aims: This is the second paper of a series in which we present measurements of the supernova (SN) rates from the SUDARE survey. The aim of this survey is to constrain the core collapse (CC) and Type Ia SN progenitors by analysing the dependence of their explosion rate on the properties of the parent stellar population averaging over a population of galaxies with different ages in a cosmic volume and in a galaxy sample. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the masses of the parent galaxies. To constrain the SN progenitors we compare the observed rates with model predictions assuming four progenitor models for SNe Ia with different distribution functions of the time intervals between the formation of the progenitor and the explosion, and a mass range of 8-40 M⊙ for CC SN progenitors. Methods: We considered a galaxy sample of approximately 130 000 galaxies and a SN sample of approximately 50 events. The wealth of photometric information for our galaxy sample allows us to apply the spectral energy distribution (SED) fitting technique to estimate the intrinsic rest frame colours, the stellar mass and star formation rate (SFR) for each galaxy in the sample. The galaxies have been separated into star-forming and quiescent galaxies, exploiting both the rest frame U-V vs. V-J colour-colour diagram and the best fit values of the specific star formation rate (sSFR) from the SED fitting. Results: We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies, identified as such both on the U-V vs. V-J colour-colour diagram and for their sSFR. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy

  9. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  10. SYSTEMATIC SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Luis, A. B.; Sanchez Almeida, J.; Aguerri, J. A. L.; Munoz-Tunon, C., E-mail: abml@iac.es, E-mail: jos@iac.es, E-mail: cmt@iac.es, E-mail: jalfonso@iac.es [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2011-12-10

    We carry out a systematic search for extremely metal-poor (XMP) galaxies in the spectroscopic sample of Sloan Digital Sky Survey (SDSS) data release 7 (DR7). The XMP candidates are found by classifying all the galaxies according to the form of their spectra in a region 80 A wide around H{alpha}. Due to the data size, the method requires an automatic classification algorithm. We use k-means. Our systematic search renders 32 galaxies having negligible [N II] lines, as expected in XMP galaxy spectra. Twenty-one of them have been previously identified as XMP galaxies in the literature-the remaining 11 are new. This was established after a thorough bibliographic search that yielded only some 130 galaxies known to have an oxygen metallicity 10 times smaller than the Sun (explicitly, with 12 + log (O/H) {<=} 7.65). XMP galaxies are rare; they represent 0.01% of the galaxies with emission lines in SDSS/DR7. Although the final metallicity estimate of all candidates remains pending, strong-line empirical calibrations indicate a metallicity about one-tenth solar, with the oxygen metallicity of the 21 known targets being 12 + log (O/H) {approx_equal} 7.61 {+-} 0.19. Since the SDSS catalog is limited in apparent magnitude, we have been able to estimate the volume number density of XMP galaxies in the local universe, which turns out to be (1.32 {+-} 0.23) Multiplication-Sign 10{sup -4} Mpc{sup -3}. The XMP galaxies constitute 0.1% of the galaxies in the local volume, or {approx}0.2% considering only emission-line galaxies. All but four of our candidates are blue compact dwarf galaxies, and 24 of them have either cometary shape or are formed by chained knots.

  11. Galaxies Gather at Great Distances

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Distant Galaxy Cluster Infrared Survey Poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] Bird's Eye View Mosaic Bird's Eye View Mosaic with Clusters [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 9.1 Billion Light-Years 8.7 Billion Light-Years 8.6 Billion Light-Years Astronomers have discovered nearly 300 galaxy clusters and groups, including almost 100 located 8 to 10 billion light-years away, using the space-based Spitzer Space Telescope and the ground-based Mayall 4-meter telescope at Kitt Peak National Observatory in Tucson, Ariz. The new sample represents a six-fold increase in the number of known galaxy clusters and groups at such extreme distances, and will allow astronomers to systematically study massive galaxies two-thirds of the way back to the Big Bang. A mosaic portraying a bird's eye view of the field in which the distant clusters were found is shown at upper left. It spans a region of sky 40 times larger than that covered by the full moon as seen from Earth. Thousands of individual images from Spitzer's infrared array camera instrument were stitched together to create this mosaic. The distant clusters are marked with orange dots. Close-up images of three of the distant galaxy clusters are shown in the adjoining panels. The clusters appear as a concentration of red dots near the center of each image. These images reveal the galaxies as they were over 8 billion years ago, since that's how long their light took to reach Earth and Spitzer's infrared eyes. These pictures are false-color composites, combining ground-based optical images captured by the Mosaic-I camera on the Mayall 4-meter telescope at Kitt Peak, with infrared pictures taken by Spitzer's infrared array camera. Blue and green represent visible light at wavelengths of 0.4 microns and 0.8 microns

  12. The SAMI Galaxy Survey: gas content and interaction as the drivers of kinematic asymmetry

    Science.gov (United States)

    Bloom, J. V.; Croom, S. M.; Bryant, J. J.; Schaefer, A. L.; Bland-Hawthorn, J.; Brough, S.; Callingham, J.; Cortese, L.; Federrath, C.; Scott, N.; van de Sande, J.; D'Eugenio, F.; Sweet, S.; Tonini, C.; Allen, J. T.; Goodwin, M.; Green, A. W.; Konstantopoulos, I. S.; Lawrence, J.; Lorente, N.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Sharp, R.

    2018-05-01

    In order to determine the causes of kinematic asymmetry in the Hα gas in the SAMI (Sydney-AAO Multi-object IFS) Galaxy Survey sample, we investigate the comparative influences of environment and intrinsic properties of galaxies on perturbation. We use spatially resolved Hα velocity fields from the SAMI Galaxy Survey to quantify kinematic asymmetry (\\overline{v_asym}) in nearby galaxies and environmental and stellar mass data from the Galaxy And Mass Assembly survey. We find that local environment, measured as distance to nearest neighbour, is inversely correlated with kinematic asymmetry for galaxies with log (M*/M⊙) > 10.0, but there is no significant correlation for galaxies with log (M*/M⊙) < 10.0. Moreover, low-mass galaxies [log (M*/M⊙) < 9.0] have greater kinematic asymmetry at all separations, suggesting a different physical source of asymmetry is important in low-mass galaxies. We propose that secular effects derived from gas fraction and gas mass may be the primary causes of asymmetry in low-mass galaxies. High gas fraction is linked to high σ _m/V (where σm is Hα velocity dispersion and V the rotation velocity), which is strongly correlated with \\overline{v_asym}, and galaxies with log (M*/M⊙) < 9.0 have offset \\overline{σ _m/V} from the rest of the sample. Further, asymmetry as a fraction of dispersion decreases for galaxies with log (M*/M⊙) < 9.0. Gas mass and asymmetry are also inversely correlated in our sample. We propose that low gas masses in dwarf galaxies may lead to asymmetric distribution of gas clouds, leading to increased relative turbulence.

  13. ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691

    Energy Technology Data Exchange (ETDEWEB)

    Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); and others

    2016-05-10

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enable the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.

  14. 3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan

    2012-01-01

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ∼10 8 M ☉ , sSFR ∼ 100 Gyr –1 , and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r e ∼300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.

  15. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  16. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    International Nuclear Information System (INIS)

    Niino, Yuu

    2012-01-01

    We investigate the relation between stellar mass (M * ), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M * and SFR are sampled from different redshifts, and there is degeneracy between M * /SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  17. KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering

    Science.gov (United States)

    van Uitert, Edo; Joachimi, Benjamin; Joudaki, Shahab; Amon, Alexandra; Heymans, Catherine; Köhlinger, Fabian; Asgari, Marika; Blake, Chris; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Harnois-Déraps, Joachim; Hildebrandt, Hendrik; Hoekstra, Henk; Kitching, Thomas D.; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Miller, Lance; Nakajima, Reiko; Schneider, Peter; Valentijn, Edwin; Viola, Massimo

    2018-06-01

    We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ˜450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S_8≡ σ _8 √{Ω _m/0.3}=0.800_{-0.027}^{+0.029}, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28 {per cent} in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination.

  18. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  19. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    Science.gov (United States)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  20. Caught in the rhythm. I. How satellites settle into a plane around their central galaxy

    Science.gov (United States)

    Welker, C.; Dubois, Y.; Pichon, C.; Devriendt, J.; Chisari, N. E.

    2018-05-01

    Context. The anisotropic distribution of satellites around the central galaxy of their host halo is both well-documented in observations and predicted by the ΛCDM model. However its amplitude, direction and possible biases associated to the specific dynamics of such satellite galaxies are still highly debated. Aims: Using the cosmological hydrodynamics simulation Horizon-AGN, we aim to quantify the anisotropy of the spatial distribution of satellite galaxies relative to their central counterpart and explore its connexion to the local cosmic web, in the redshift range between 0.3 and 0.8. Methods: Haloes and galaxies were identified and their kinematics computed using their dark matter and stellar particles respectively. Sub-haloes were discarded and galaxies lying within 5 Rvir of a given halo are matched to it. The filamentary structure of the cosmic web was extracted from the density field - smoothed over a 3 h-1 Mpc typical scale - as a network of contiguous segments. We then investigated the distribution function of relevant angles, most importantly the angle α between the central-to-satellite separation vector and the group's nearest filament, aside with the angle between this same separation and the central minor axis. This allowed us to explore the correlations between filamentary infall, intra-cluster inspiralling and the resulting distribution of satellites around their central counterpart. Results: We find that, on average, satellites tend to be located on the galactic plane of the central object. This effect is detected for central galaxies with a stellar mass larger than 1010 M⊙ and found to be strongest for red passive galaxies, while blue galaxies exhibit a weaker trend. For galaxies with a minor axis parallel to the direction of the nearest filament, we find that the coplanarity is stronger in the vicinity of the central galaxy, and decreases when moving towards the outskirts of the host halo. By contrast, the spatial distribution of satellite

  1. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    Science.gov (United States)

    2000-07-01

    been necessary to detect a few distant novae [3]. VLT observations of NGC 1316 in the Fornax Cluster ESO PR Photo 18a/00 ESO PR Photo 18a/00 [Preview - JPEG: 400 x 448 pix - 28k] [Normal - JPEG: 800 x 895 pix - 136k] [Full-Res - JPEG: 1941 x 2172 pix - 904k] Caption : Colour composite photo of the central area of NGC 1316 , a giant elliptical galaxy in the Fornax cluster of galaxies. Many dark dust clouds and lanes are visible. Some of the star-like objects in the field are globular clusters of stars that belong to the galaxy. It is based on CCD exposures, obtained with the 8.2-m VLT/ANTU telescope and the FORS-1 multi-mode instrument through B (blue), V (green-yellow) and I (here rendered as red) filters, respectively. The "pyramids" above and below the bright centre of the galaxy and the vertical lines at some of the brighter stars are caused by overexposure ("CCD bleeding"). The field measures 6.8 x 6.8 arcmin 2 , with 0.2 arcsec/pixel. The image quality of this composite is about 0.9 arcsec. North is up and East is left. NGC 1316 is a giant "dusty" galaxy ( PR Photo 18a/00 ), located in the Fornax cluster seen in the southern constellation of that name ("The Oven"). This galaxy is of special interest in connection with current attempts to establish an accurate distance scale in the Universe. In 1980 and 1981, NGC 1316 was the host of two supernovae of type Ia , a class of object that is widely used as a "cosmological standard candle" to determine the distance to very distant galaxies, cf. ESO PR 21/98. A precise measurement of the distance to NGC 1316 may therefore provide an independent calibration of the intrinsic brightness of these supernovae. The new observations were performed during 8 nights distributed over the period from January 9 to 19, 2000. They were made in service mode at the 8.2-m VLT/ANTU telescope with the FORS-1 multi-mode instrument, using a 2k x 2k CCD camera with 0.2 arcsec pixels and a field of 6.8 x 6.8 arcmin 2. The exposures lasted 20 min

  2. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  3. STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: Hα IMAGING OF A2151

    International Nuclear Information System (INIS)

    Cedres, Bernabe; Iglesias-Paramo, Jorge; VIlchez, Jose Manuel; Reverte, Daniel; Petropoulou, Vasiliki; Hernandez-Fernandez, Jonathan

    2009-01-01

    This paper presents the first results of an Hα imaging survey of galaxies in the central regions of the A2151 cluster. A total of 50 sources were detected in Hα, from which 41 were classified as secure members of the cluster and 2 as likely members based on spectroscopic and photometric redshift considerations. The remaining seven galaxies were classified as background contaminants and thus excluded from our study on the Hα properties of the cluster. The morphologies of the 43 Hα selected galaxies range from grand design spirals and interacting galaxies to blue compacts and tidal dwarfs or isolated extragalactic H II regions, spanning a range of magnitudes of -21 ≤ M B ≤ -12.5 mag. From these 43 galaxies, 7 have been classified as active galactic nucleus (AGN) candidates. These AGN candidates follow the L(Hα) versus M B relationship of the normal galaxies, implying that the emission associated with the nuclear engine has a rather secondary impact on the total Hα emission of these galaxies. A comparison with the clusters Coma and A1367 and a sample of field galaxies has shown the presence of cluster galaxies with L(Hα) lower than expected for their M B , a consequence of the cluster environment. This fact results in differences in the L(Hα) versus EW(Hα) and L(Hα) distributions of the clusters with respect to the field, and in cluster-to-cluster variations of these quantities, which we propose are driven by a global cluster property as the total mass. In addition, the cluster Hα emitting galaxies tend to avoid the central regions of the clusters, again with different intensity depending on the cluster total mass. For the particular case of A2151, we find that most Hα emitting galaxies are located close to the regions with the higher galaxy density, offset from the main X-ray peak. Overall, we conclude that both the global cluster environment and the cluster merging history play a non-negligible role in the integral star formation properties of

  4. CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2

    International Nuclear Information System (INIS)

    Lee, Bomee; Giavalisco, Mauro; Williams, Christina C.; Guo Yicheng; Faber, S. M.; Lotz, Jennifer; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman; Van der Wel, Arjen; Kocevski, Dale; Conselice, Christopher J.; Wuyts, Stijn; Dekel, Avishai; Kartaltepe, Jeyhan; Bell, Eric F.

    2013-01-01

    We discuss the state of the assembly of the Hubble sequence in the mix of bright galaxies at redshift 1.4 AB ∼ 26, selected from the HST/ACS and WFC3 images of the GOODS-South field obtained as part of the GOODS and CANDELS observations. We investigate the relationship between the star formation properties and morphology using various parametric diagnostics, such as the Sérsic light profile, Gini (G), M 20 , concentration (C), asymmetry (A), and multiplicity (Ψ) parameters. Our sample clearly separates into massive, red, and passive galaxies versus less massive, blue, and star-forming ones, and this dichotomy correlates very well with the galaxies' morphological properties. Star-forming galaxies show a broad variety of morphological features, including clumpy structures and bulges mixed with faint low surface brightness features, generally characterized by disky-type light profiles. Passively evolving galaxies, on the other hand, very often have compact light distribution and morphology typical of today's spheroidal systems. We also find that artificially redshifted local galaxies have a similar distribution with z ∼ 2 galaxies in a G-M 20 plane. Visual inspection between the rest-frame optical and UV images show that there is a generally weak morphological k-correction for galaxies at z ∼ 2, but the comparison with non-parametric measures show that galaxies in the rest-frame UV are somewhat clumpier than rest-frame optical. Similar general trends are observed in the local universe among massive galaxies, suggesting that the backbone of the Hubble sequence was already in place at z ∼ 2

  5. THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5

    International Nuclear Information System (INIS)

    Straatman, Caroline M. S.; Labbé, Ivo; Van Houdt, Josha; Spitler, Lee R.; Cowley, Michael; Quadri, Ryan F.; Papovich, Casey; Tran, Kim-Vy H.; Tomczak, Adam; Alcorn, Leo; Broussard, Adam; Forrest, Ben; Kawinwanichakij, Lalitwadee; Glazebrook, Karl; Nanayakkara, Themiya; Allen, Rebecca; Kacprzak, Glenn G.; Persson, S. Eric; Brammer, Gabriel B.; Van Dokkum, Pieter

    2016-01-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin 2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5–26.5 AB mag, 5 σ , total), and >80% complete to K s < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters ( J 1 , J 2 , J 3 , H s , H l ) as well as broad-band K s at 1.05–2.16 μ m to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μ m. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z ,pairs = 0.01–0.02 at 1 < z < 2.5. We quantify how σ z ,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z ,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z ,pairs . Including FourStar medium bands reduces σ z ,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer /MIPS and Herschel /PACS data. We derive rest-frame U − V and V − J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15.

  6. KINEMATICS OF EXTREMELY METAL-POOR GALAXIES: EVIDENCE FOR STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Olmo-García, A.; Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Méndez-Abreu, J., E-mail: jos@iac.es [School of Physics and Astronomy, University of St Andrews, St Andrews (United Kingdom)

    2017-01-10

    The extremely metal-poor (XMP) galaxies analyzed in a previous paper have large star-forming regions with a metallicity lower than the rest of the galaxy. Such a chemical inhomogeneity reveals the external origin of the metal-poor gas fueling star formation, possibly indicating accretion from the cosmic web. This paper studies the kinematic properties of the ionized gas in these galaxies. Most XMPs have a rotation velocity around a few tens of km s{sup −1}. The star-forming regions appear to move coherently. The velocity is constant within each region, and the velocity dispersion sometimes increases within the star-forming clump toward the galaxy midpoint, suggesting inspiral motion toward the galaxy center. Other regions present a local maximum in velocity dispersion at their center, suggesting a moderate global expansion. The H α line wings show a number of faint emission features with amplitudes around a few per cent of the main H α component, and wavelength shifts between 100 and 400 km s{sup −1}. The components are often paired, so that red and blue emission features with similar amplitudes and shifts appear simultaneously. Assuming the faint emission to be produced by expanding shell-like structures, the inferred mass loading factor (mass loss rate divided by star formation rate) exceeds 10. Since the expansion velocity far exceeds the rotational and turbulent velocities, the gas may eventually escape from the galaxy disk. The observed motions involve energies consistent with the kinetic energy released by individual core-collapse supernovae. Alternative explanations for the faint emission have been considered and discarded.

  7. Weak lensing galaxy cluster field reconstruction

    Science.gov (United States)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  8. Spectral energy distributions for galaxies in high-redshift clusters

    International Nuclear Information System (INIS)

    Ellis, R.S.; Couch, W.J.; MacLaren, Iain

    1985-01-01

    The distant cluster 0016+16 (z=0.54) has been imaged through six intermediate-bandwidth filters ranging in wavelength from 418 to 862 nm, maintaining a photometric precision of 10 per cent to a limiting magnitude of F=22. It is found that the field-subtracted colour distributions are not compatible with a single uniformly red population of early-type members at z=0.54. A significant intermediate colour component identified with a spectroscopic object at z=0.30 is also present, thus reducing the possibility that the z=0.54 cluster exhibits an excess of blue galaxies. It is demonstrated how the six-colour data can be used to individually classify the galaxies by type and approximate redshift so that it is possible to identify which objects are members of the z=0.54 cluster. (author)

  9. ESO 113-IG45 galaxy and/or quasar?

    CERN Document Server

    West, R M; Danks, A C

    1978-01-01

    Spectroscopy, UBV photometry and photography have been obtained of the extraordinary 13th magnitude object ESO 113-IG45 identified as a Seyfert galaxy by Fairall (1977); R.A.=01/sup h/ 21/sup m/.9; Decl .=-59 degrees 04' (1950). V/sub 0/=13630+or-50 km s/sup -1/; M/sub V /=-24/sup m/.0; largest diameter 75 kpc or more (with H/sub 0/=55 km s /sup -1/ Mpc/sup -1/). The nucleus is stellar-like and several times more luminous than the surrounding envelope which has a well-developed lane-structure. It is the intrinsically most luminous Seyfert nuclear yet known, and may be described as a 'quasar in the center of a (spiral) galaxy'. It is probably associated with the X-ray source 2A0120-591. (14 refs).

  10. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  11. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  12. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of

  13. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  14. MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yingjie; Lilly, Simon J.; Carollo, Marcella [Institute of Astronomy, ETH Zurich, 8093 Zurich (Switzerland); Renzini, Alvio [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2012-09-20

    We extend the phenomenological study of the evolving galaxy population of Peng et al. (2010) to the central/satellite dichotomy in Yang et al. Sloan Digital Sky Survey (SDSS) groups. We find that satellite galaxies are responsible for all the environmental effects in our earlier work. The fraction of centrals that are red does not depend on their environment but only on their stellar masses, whereas that of the satellites depends on both. We define a relative satellite quenching efficiency {epsilon}{sub sat}, which is the fraction of blue centrals that are quenched upon becoming the satellite of another galaxy. This is shown to be independent of stellar mass, but to depend strongly on local overdensity, {delta}, ranging between 0.2 and at least 0.8. The red fraction of satellites correlate much better with the local overdensity {delta}, a measure of location within the group, than with the richness of the group, i.e., dark matter halo mass. This, and the fact that satellite quenching depends on local density and not on either the stellar mass of the galaxy or the dark matter halo mass, gives clues as to the nature of the satellite-quenching process. We furthermore show that the action of mass quenching on satellite galaxies is also independent of the dark matter mass of the parent halo. We then apply the Peng et al. approach to predict the mass functions of central and satellite galaxies, split into passive and active galaxies, and show that these match very well the observed mass functions from SDSS, further strengthening the validity of this phenomenological approach. We highlight the fact that the observed M* is exactly the same for the star-forming centrals and satellites and the observed M* for the star-forming satellites is independent of halo mass above 10{sup 12} M{sub Sun }, which emphasizes the universality of the mass-quenching process that we identified in Peng et al. Post-quenching merging modifies the mass function of the central galaxies but can

  15. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  16. The GOODS UV Legacy Fields: A Full Census of Faint Star-Forming Galaxies at z~0.5-2

    Science.gov (United States)

    Oesch, Pascal

    2014-10-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. While we and others have been making every effort to use existing UV imaging data, a large fraction of the prior data were taken without post-flash and are not photometric. We now propose to obtain a robust legacy dataset for a complete census of faint star-forming galaxies at z~0.5-2, akin to what is achieved at z>3, using the unique capabilities of the WFC3/UVIS camera to obtain very deep UV imaging to 27.5-28.0 mag over the CANDELS Deep fields in GOODS North and South. We directly sample the FUV at z>~0.5 and we make these prime legacy fields for JWST with unique and essential UV/blue HST coverage. Together with the exquisite ancillary multi-wavelength data at high spatial resolution from ACS and WFC3/IR our program will result in accurate photometric redshifts for very faint sources and will enable a wealth of research by the community. This includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. The lack of a future UV space telescope makes the acquisition of such legacy data imperative for the JWST era and beyond.

  17. A Picture-perfect Pure-disc Galaxy

    Science.gov (United States)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through

  18. The evolution of early-type galaxies in distant clusters

    International Nuclear Information System (INIS)

    Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M.

    1998-01-01

    We present results from an optical-infrared photometric study of early-type (E+S0) galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from Hubble Space Telescope (HST) WFPC2 images and is photometrically defined in the K band in order to minimize redshift-dependent selection biases. Using new ground-based photometry in five optical and infrared bands for each cluster, we examine the evolution of the color-magnitude relation for early-type cluster galaxies, considering its slope, intercept, and color scatter around the mean relation. New multiwavelength photometry of galaxies in the Coma Cluster is used to provide a baseline sample at z∼0 with which to compare the distant clusters. The optical - IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift and does not depend strongly on the optical richness or X-ray luminosity of the cluster, which suggests that the history of early-type galaxies is relatively insensitive to environment, at least above a certain density threshold. The slope of the color-magnitude relationship shows no significant change out to z=0.9, which provides evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical - IR colors of the galaxies is small and nearly constant with redshift, which indicates that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently

  19. NGC2403: a flocculent galaxy with two principal centres of star formation

    International Nuclear Information System (INIS)

    Beckman, J.; Cepa, J.; Prieto, M.; Munoz Tunon, C.

    1987-01-01

    We have mapped the nearby flocculent spiral galaxy in the visible U, B and V bands, as well as in the near infrared J, H and K bands, with a linear resolution of 900 pc. The galaxy, which does not show marked spiral structure in visible photographs (Tammann and Sandage, 1968) nor in the 21 cm line of HI (Wevers, 1984) is found to have two principal current centres of large-scale star formation, signposted by centres of ultraviolet and blue flux. One is in the nucleus, defined by the geometrical centre of the HI emission, and the other at some 1.5 kpc radial distance away. The outer star-forming region is the more intense and the younger of the two, and corresponds to a local peak in the HI surface density. We use the colours of the star-forming regions and of the integrated galaxy to make a first order estimate of the stellar population distribution. (Author)

  20. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    Science.gov (United States)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  1. Maximal lens bounds on QSO-galaxy association

    International Nuclear Information System (INIS)

    Kovner, I.

    1989-01-01

    The maximal possible enhancement of QSO number counts that can be produced by any ensemble of lenses which conserve brightness and in which the magnification probability is negligibly correlated with the intrinsic QSO flux is obtained. Under the assumption of the Boyle et al. (1988) number-magnitude relation for the QSOs unaffected by lenses, the theory is applied to the QSO-galaxy association sample of Webster et al. (1988). The results suggest that the background QSOs of Webster et al. may be appreciably affected by lensing. 17 refs

  2. A COMPREHENSIVE X-RAY AND MULTIWAVELENGTH STUDY OF THE COLLIDING GALAXY PAIR NGC 2207/IC 2163

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Rappaport, S. [37-602B, M.I.T. Department of Physics and Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Levine, A.; Homan, J. [M.I.T. Kavli Institute for Astrophysics and Space Research, Room 37-575, 70 Vassar Street, Cambridge, MA 02139 (United States); Pooley, D. [Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602 (United States); Steinhorn, B., E-mail: smineo@cfa.harvard.edu, E-mail: sar@mit.edu, E-mail: aml@space.mit.edu, E-mail: jeroen@space.mit.edu, E-mail: dave@shsu.edu, E-mail: bsteinho@mit.edu [Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115 (United States)

    2014-12-20

    We present a comprehensive study of the total X-ray emission from the colliding galaxy pair NGC 2207/IC 2163, based on Chandra, Spitzer, and GALEX data. We detect 28 ultraluminous X-ray sources (ULXs), 7 of which were not detected previously because of X-ray variability. Twelve sources show significant long-term variability, with no correlated spectral changes. Seven sources are transient candidates. One ULX coincides with an extremely blue star cluster (B – V = –0.7). We confirm that the global relation between the number and luminosity of ULXs and the integrated star-formation rate (SFR) of the host galaxy also holds on local scales. We investigate the effects of dust extinction and age on the X-ray binary (XRB) population on subgalactic scales. The distributions of N {sub X} and L {sub X} are peaked at L {sub IR}/L {sub NUV} ∼ 1, which may be associated with an age of ∼10 Myr for the underlying stellar population. We find that approximately one-third of the XRBs are located in close proximity to young star complexes. The luminosity function of the XRBs is consistent with that typical for high-mass XRBs and appears unaffected by variability. We disentangle and compare the X-ray diffuse spectrum with that of the bright XRBs. The hot interstellar medium dominates the diffuse X-ray emission at E ≲ 1 keV and has a temperature kT=0.28{sub −0.04}{sup +0.05} keV and intrinsic 0.5-2 keV luminosity of 7.9×10{sup 40} erg s{sup −1}, a factor of ∼2.3 higher than the average thermal luminosity produced per unit SFR in local star-forming galaxies. The total X-ray output of NGC 2207/IC 2163 is 1.5×10{sup 41} erg s{sup −1}, and the corresponding total integrated SFR is 23.7 M {sub ☉} yr{sup –1}.

  3. On the Evolution of the Central Density of Quiescent Galaxies

    International Nuclear Information System (INIS)

    Tacchella, Sandro; Carollo, C. Marcella; Woo, Joanna; Faber, S. M.; Koo, David C.; Cibinel, Anna; Dekel, Avishai; Renzini, Alvio

    2017-01-01

    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ_1) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ_1 at z ∼ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ_1– M _⋆ plane, which we refer to as Σ_1 ridgeline. Colors of ( B − I ) and ( I − J ) are used to divide QGs into three age categories: young ( 4 Gyr). At fixed stellar mass, old QGs on the Σ_1 ridgeline have higher Σ_1 than young QGs. This shows that galaxies landing on the Σ_1 ridgeline at later epochs arrive with lower Σ_1, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ_1 ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ_1 at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age–Σ_1 trend for central galaxies.

  4. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    Science.gov (United States)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    Context: Evidence has grown over the past few years that the neutral phase of blue compact dwarf (BCD) galaxies may be metal-deficient as compared to the ionized gas of their H ii regions. These results have strong implications for our understanding of the chemical evolution of galaxies, and it is essential to strengthen the method, as well as to find possible explanations. Aims: We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Methods: Interstellar lines of H i, N i, O i, Si ii, P ii, Ar i, and Fe ii are detected. Column densities are derived directly from the observed line profiles except for H i, whose lines are contaminated by stellar absorption, thus needing the stellar continuum to be removed. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The observed far-UV flux agrees with an equivalent number of ~300 B0 stars. The fit of the interstellar H i line gives a column density of 1020.3±0.4 cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical, probing the ionized gas of the H ii regions. Results: Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ≈1/35 Z_⊙. Elemental depletion is not problematic because of the low dust content along the selected lines of sight. In contrast, the ionized gas shows a clear depletion pattern, with iron being strongly depleted. Conclusions: The abundance discontinuity between the neutral and ionized phases

  5. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose

    International Nuclear Information System (INIS)

    Hashimoto, T.; Yokosaka, K.; Habuki, H.

    1987-01-01

    The TL spectrometry of natural quartz exposed to a gamma radiation dose of 8.8 kGy proved that the red TL, mainly from volcanically originated quartz, has a broad emission band with a peak around 620 nm, while the blue TL from plutonically originated quartz also has a broad emission band giving a peak around 470 nm. These typical red or blue intrinsic colours were also confirmed on the thermoluminescence colour images (TLCI). Exceptionally, a pegmatite quartz changed its TLCI colour from red to blue when the absorbed dose was increased. By using colour filter assemblies, all these quartz samples were shown to emit mainly blue and red TLs, which have distinctly different TL responses to the absorbed dose; the blue invariably showed a supralinearity relation between 1 and 10 kGy dose. For the purpose of dating, the use of red TL, is preferable. The red TL component is related to the impurity Eu content in quartz minerals. (author)

  6. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    Science.gov (United States)

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  8. THE ROLE OF MERGERS IN EARLY-TYPE GALAXY EVOLUTION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Schawinski, Kevin; Dowlin, Nathan; Urry, C. Megan; Thomas, Daniel; Edmondson, Edward

    2010-01-01

    Models of galaxy formation invoke the major merger of gas-rich progenitor galaxies as the trigger for significant phases of black hole growth and the associated feedback that suppresses star formation to create red spheroidal remnants. However, the observational evidence for the connection between mergers and active galactic nucleus (AGN) phases is not clear. We analyze a sample of low-mass early-type galaxies known to be in the process of migrating from the blue cloud to the red sequence via an AGN phase in the green valley. Using deeper imaging from Sloan Digital Sky Survey Stripe 82, we show that the fraction of objects with major morphological disturbances is high during the early starburst phase, but declines rapidly to the background level seen in quiescent early-type galaxies by the time of substantial AGN radiation several hundred Myr after the starburst. This observation empirically links the AGN activity in low-redshift early-type galaxies to a significant merger event in the recent past. The large time delay between the merger-driven starburst and the peak of AGN activity allows for the merger features to decay to the background and hence may explain the weak link between merger features and AGN activity in the literature.

  9. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    International Nuclear Information System (INIS)

    Park, Changbom; Hwang, Ho Seong

    2009-01-01

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  10. INTERACTIONS OF GALAXIES IN THE GALAXY CLUSTER ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Changbom; Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)], E-mail: cbp@kias.re.kr, E-mail: hshwang@kias.re.kr

    2009-07-10

    We study the dependence of galaxy properties on the clustercentric radius and the environment attributed to the nearest neighbor galaxy using the Sloan Digital Sky Survey galaxies associated with the Abell galaxy clusters. We find that there exists a characteristic scale where the properties of galaxies suddenly start to depend on the clustercentric radius at fixed neighbor environment. The characteristic scale is 1-3 times the cluster virial radius depending on galaxy luminosity. Existence of the characteristic scale means that the local galaxy number density is not directly responsible for the morphology-density relation in clusters because the local density varies smoothly with the clustercentric radius and has no discontinuity in general. What is really working in clusters is the morphology-clustercentric radius-neighbor environment relation, where the neighbor environment means both neighbor morphology and the local mass density attributed to the neighbor. The morphology-density relation appears working only because of the statistical correlation between the nearest neighbor distance and the local galaxy number density. We find strong evidence that the hydrodynamic interactions with nearby early-type galaxies is the main drive to quenching star formation activity of late-type galaxies in clusters. The hot cluster gas seems to play at most a minor role down to one tenth of the cluster virial radius. We also find that the viable mechanisms which can account for the clustercentric radius dependence of the structural and internal kinematics parameters are harassment and interaction of galaxies with the cluster potential. The morphology transformation of the late-type galaxies in clusters seems to have taken place through both galaxy-galaxy hydrodynamic interactions and galaxy-cluster/galaxy-galaxy gravitational interactions.

  11. Star Formation Histories of Dwarf Galaxies from the Colour-Magnitude Diagrams of Their Resolved Stellar Populations

    Directory of Open Access Journals (Sweden)

    Michele Cignoni

    2010-01-01

    build synthetic CMDs and to exploit them to derive the SF histories (SFHs are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. To summarize: (1 only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; (2 a few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; (3 no galaxy experiencing now its first SF episode has been found yet; (4 no frequent evidence of strong SF bursts is found; (5 there is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.

  12. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    Science.gov (United States)

    2002-01-01

    in NGC 1409, either. The glancing blow between the galaxies was enough, however, to toss stars deep into space and ignite a rash of star birth in NGC 1410. The arms of NGC 1410, an active, gas-rich spiral galaxy classified as a Seyfert, are awash in blue, the signature color of star-forming regions. The bar of material bisecting the center of NGC 1409 also is a typical byproduct of galaxy collisions. Astronomers expect more fireworks to come. The galaxies are doomed to continue their game of 'bumper cars,' hitting each other and moving apart several times until finally merging in another 200 million years. The galaxies' centers are only 23,000 light-years apart, which is slightly less than Earth's distance from the center of the Milky Way. They are bound together by gravity, orbiting each other at 670,000 miles an hour (1 million kilometers an hour). The galaxies reside about 300 million light-years from Earth in the constellation Taurus. The Hubble picture was taken Oct. 25, 1999. Credits: NASA, William C. Keel (University of Alabama, Tuscaloosa)

  13. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  14. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  15. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Landez, Nancy J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Milne, Peter A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stritzinger, Maximilian D., E-mail: pbrown@physics.tamu.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-02-20

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening ( E ( B − V ) = 0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening ( E ( B − V ) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw 1 − v color than SN2011fe reddened to the same b − v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.

  16. An Interpretive Study of Meanings Citizen Scientists Make When Participating in Galaxy Zoo

    Science.gov (United States)

    Mankowski, T. S.; Slater, S. J.; Slater, T. F.

    2011-09-01

    As the Web 2.0 world lurches forward, so do intellectual opportunities for students and the general public to meaningfully engage in the scientific enterprise. In an effort to assess the intrinsic motivation afforded by participation in Galaxy Zoo, we have inductively analyzed more than 1,000 contributions in the Galaxy Zoo Forum and coded posts thematically. We find that participants overwhelmingly want to meaningfully contribute to a larger scientific enterprise as well as have seemingly unique access to high quality, professional astronomical data. While other citizen science projects work through large data sets, Galaxy Zoo is unique in its motivations and retention abilities. Many of these motivations originate in the aesthetic power of astronomical images, which Galaxy Zoo successfully harnesses, while not compromising the scientific value of the project. From the data emerged several trends of motivation, the primary being the sense of community created within the project that promotes professional-amateur collaboration; fulfilling a dream of being an astronomer, physicist, or astronaut; tapping into a potential well of interest created during the space race era; the spiritual aspect generated when the imagination interacts with Galaxy Zoo; and, uniting them all, the aesthetic appeal of the galaxy images. In addition, a very powerful tool also emerged as a method of retention unique to Galaxy Zoo. This tool, known as variable ratio reinforcement in behavioral psychology, uses the most appealing images as positive reinforcement to maintain classification rates over time.

  17. On the Evolution of the Central Density of Quiescent Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tacchella, Sandro; Carollo, C. Marcella; Woo, Joanna [Department of Physics, Institute for Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland); Faber, S. M.; Koo, David C. [Department of Astronomy and Astrophysics, University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA (United States); Cibinel, Anna [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Renzini, Alvio, E-mail: sandro.tacchella@phys.ethz.ch [INAF Osservatorio Astronomico di Padova, vicolo dellOsservatorio 5, I-35122 Padova (Italy)

    2017-07-20

    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ{sub 1}) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ{sub 1} at z ∼ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ{sub 1}– M {sub ⋆} plane, which we refer to as Σ{sub 1} ridgeline. Colors of ( B − I ) and ( I − J ) are used to divide QGs into three age categories: young (<2 Gyr), intermediate (2–4 Gyr), and old (>4 Gyr). At fixed stellar mass, old QGs on the Σ{sub 1} ridgeline have higher Σ{sub 1} than young QGs. This shows that galaxies landing on the Σ{sub 1} ridgeline at later epochs arrive with lower Σ{sub 1}, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ{sub 1} ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ{sub 1} at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age–Σ{sub 1} trend for central galaxies.

  18. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    Science.gov (United States)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  19. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Science.gov (United States)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  20. Ultra-low dispersion spectroscopy of stars and galaxies

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Parthasarathy, M.

    1977-01-01

    Application of ultra-low dispersion spectroscopy 10,000 A mm - 1 , is described to study the nuclei of elliptical galaxies, the quasi-stellar objects and for the discovery of faint OB stars, reddened stars and red stars. The instrument used is an f/2 slitless spectrograph with a three degree quartz prism at the Cassegrain focus of the 102-cm Ritchey-Chratien reflector at Kavalur. The spectra cover a field of 40 minutes of arc and the dispersion is 10,000 A mm - 1 . Ultra-low dispersion spectra (microspectra) were obtained for fifteen elliptical and three SO galaxies from the list of Ekers and Ekers (1973) who classified them as compact and extended sources from the observations of radio emission at 6 cms. From an analysis of micro-spectra and from direct photographs with graded exposure times, it is found that all compact radio galaxies in the Ekers list also have optically compact nuclei. Some of these elliptical galaxies with compact nuclei show enhancement of intensity in the blue violet region. From an examination of microspectra of forty-three of the known quasi-stellar objects of different redshifts it is found that the most striking characteristic of the spectra is their flat appearance. This characteristic flatness is also noticed in the microspectrum of the large redshift quasi-stellar objects like OH 471 and OQ 172 which do not have UV excess. Because of this characteristic difference in the appearance of the microspectra of the quasi-stellar objects and stellar objects, it is possible to detect new OSO's with this technique. An application of this technique to detect red stars in our galaxy and in the Large Magellanic cloud is discussed. (author)

  1. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space

    International Nuclear Information System (INIS)

    Hui, Lam; LoVerde, Marilena; Gaztanaga, Enrique

    2007-01-01

    It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separation of ∼100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z∼0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the ∼100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to ∼3% in the LOS orientation, and up to ∼0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys

  2. 3D-HST Grism Spectroscopy of a Gravitationally Lensed, Low-metallicity Starburst Galaxy at z = 1.847

    Science.gov (United States)

    Brammer, Gabriel B.; Sánchez-Janssen, Rubén; Labbé, Ivo; da Cunha, Elisabete; Erb, Dawn K.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Marchesini, Danilo; Momcheva, Ivelina; Nelson, Erica; Patel, Shannon; Quadri, Ryan; Rix, Hans-Walter; Skelton, Rosalind E.; Schmidt, Kasper B.; van der Wel, Arjen; van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.

    2012-10-01

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] λ5007 and Hβ emission lines with rest-frame equivalent widths of 2000 ± 100 and 520 ± 40 Å, respectively. The source has a stellar mass ~108 M ⊙, sSFR ~ 100 Gyr-1, and detection of [O III] λ4363 yields a metallicity of 12 + log (O/H) = 7.5 ± 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size re ~300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey. Based on observations made with the NASA/ESA Hubble Space Telescope, program 12328, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  3. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z ∼ 8

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-01-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y 105 -dropouts (Y 105 - J 125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y 105 -dropouts since the [O III] λ5007 emission line is redshifted into the J 125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 x 10 -4 Z sun ) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  4. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Jacob A. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Foster, Caroline, E-mail: romanow@ucolick.org [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW (Australia)

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  5. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  6. Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation

    Science.gov (United States)

    van Uitert, Edo; Joachimi, Benjamin

    2017-07-01

    We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey-Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ˜ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is A_IA^gen=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.

  7. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    Science.gov (United States)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  8. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  9. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  10. IMPACT OF BARYONIC PHYSICS ON INTRINSIC ALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Tenneti, Ananth; Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Feng, Yu, E-mail: vat@andrew.cmu.edu [Berkeley Center for Cosmological Physics, Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States)

    2017-01-10

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and active galactic nucleus feedback on intrinsic alignments of galaxies in cosmological simulations of the “MassiveBlack-II” family. Using smaller-volume simulations, we explore the parameter space of the subgrid star formation and feedback model and find remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientation of the stellar distribution. Our results are also consistent with a similar study by the EAGLE simulation team.

  11. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    International Nuclear Information System (INIS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Fevre, O. Le; Garilli, B.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; De la Torre, S.; De Ravel, L.; Iovino, A.

    2014-01-01

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log 10 [M * /M ☉ ] ≤ 10.7) and star formation rates (0.14 ≤ log 10 [SFR/M ☉ yr –1 ] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ SFR ) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s –1 ∼–200 km s –1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ☉ yr –1 and a mass loading factor (η = M-dot out /SFR) comparable to the star formation rates of the galaxies.

  12. THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo; Van Houdt, Josha [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R.; Cowley, Michael [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Quadri, Ryan F.; Papovich, Casey; Tran, Kim-Vy H.; Tomczak, Adam; Alcorn, Leo; Broussard, Adam; Forrest, Ben; Kawinwanichakij, Lalitwadee [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Glazebrook, Karl; Nanayakkara, Themiya; Allen, Rebecca; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Persson, S. Eric [Carnegie Observatories, Pasadena, CA 91101 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van Dokkum, Pieter, E-mail: straatman@mpia.de [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2016-10-10

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin{sup 2} in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K {sub s} -band detection images (25.5–26.5 AB mag, 5 σ , total), and >80% complete to K {sub s} < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters ( J {sub 1}, J {sub 2}, J {sub 3}, H {sub s} , H {sub l} ) as well as broad-band K {sub s} at 1.05–2.16 μ m to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μ m. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ {sub z} = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ {sub z} {sub ,pairs} = 0.01–0.02 at 1 < z < 2.5. We quantify how σ {sub z} {sub ,pairs} depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ {sub z} {sub ,pairs} is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ {sub z} {sub ,pairs}. Including FourStar medium bands reduces σ {sub z} {sub ,pairs} by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer /MIPS and Herschel /PACS data. We derive rest-frame U − V and V − J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15.

  13. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  14. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  15. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    Science.gov (United States)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  16. A study of the H I and optical properties of Low Surface Brightness galaxies: spirals, dwarfs, and irregulars

    Science.gov (United States)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.

    2018-06-01

    We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.

  17. Investigating a method of producing "red and dead" galaxies

    Science.gov (United States)

    Skory, Stephen

    2010-08-01

    In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles

  18. SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Imanishi, Masatoshi; Maiolino, Roberto; Nakagawa, Takao

    2010-01-01

    We present the results of Spitzer Infrared Spectrograph low-resolution infrared 5-35 μm spectroscopy of 17 nearby ultraluminous infrared galaxies (ULIRGs) at z 12 L sun , are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.

  19. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    International Nuclear Information System (INIS)

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results

  20. Measurement of the dipole in the cross-correlation function of galaxies

    CERN Document Server

    Gaztanaga, Enrique; Hui, Lam

    2017-01-01

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions that do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sam...

  1. ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5

    International Nuclear Information System (INIS)

    Papovich, C.; Quadri, R.; Tilvi, V.; Tran, K.-V.; Labbé, I.; Straatman, C. M. S.; Behroozi, P.; Ferguson, H. C.; Bell, E. F.; Glazebrook, K.; Kacprzak, G. G.; Spitler, L.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Inami, H.; Finkelstein, S. L.; Gawiser, E.; Faber, S. M.

    2015-01-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 10 10 M ☉ (defined here to be MW-mass) and 10 11 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ∼ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ∼ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the

  2. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    Science.gov (United States)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth

  3. SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies

    Science.gov (United States)

    Ibarra-Medel, Héctor J.; Sánchez, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-12-01

    Using the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling earlier (downsizing), though for a given mass, the global MGHs segregate by colour, specific star formation rate and morphological type. From the inferred radial mean MGHs, we find that at fractions of assembled mass larger than ˜80 per cent, the innermost regions formed stars, on average, in the inside-out mode. At earlier epochs, when the age estimation of the method becomes poor, the MGHs seem to be spatially homogeneous or even in the outside-in mode, especially for the red/quiescent/early-type galaxies. The innermost MGHs are, in general, less scattered around the mean than the outermost MGHs. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead, their radial MGHs are very diverse most of the time, with periods of outside-in and inside-out modes (or strong radial migration), suggesting this is an episodic star formation history. Blue/star-forming/late-type galaxies present, on average, a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching and radial migration. We also discuss the uncertainties and biases of the fossil record method and how these could affect our results.

  4. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.

    2016-09-26

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  5. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    Science.gov (United States)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2z<0.5, in the optical richness range 10-70. We tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  6. Discovery of a Lensed Ultrabright Submillimeter Galaxy at z = 2.0439

    Science.gov (United States)

    Díaz-Sánchez, A.; Iglesias-Groth, S.; Rebolo, R.; Dannerbauer, H.

    2017-07-01

    We report an ultrabright lensed submillimeter galaxy (SMG) at z = 2.0439, WISE J132934.18+224327.3, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed to search for bright analogs of the SMG SMM J2135, the Cosmic Eyelash. Inspection of archival SCUBA-2 observations of the candidates revealed a source with fluxes ({S}850μ {{m}}=130 mJy) consistent with the Planck measurements. The centroid of the SCUBA-2 source coincides within 1 arcsec with the position of the AllWISE mid-IR source, and, remarkably, with an arc-shaped lensed galaxy in HST images at visible wavelengths. Low-resolution rest-frame UV-optical spectroscopy of this lensed galaxy obtained with 10.4 m GTC reveals the typical absorption lines of a starburst galaxy. Gemini-N near-IR spectroscopy provided a clear detection of {{{H}}}α emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.44 modeling with Lenstool indicates a lensing amplification factor of 11 ± 2. We determine an intrinsic rest-frame 8-1000 μm luminosity, {L}{IR}, of (1.3+/- 0.1)× {10}13 {L}⊙ , and a likely star formation rate (SFR) of ˜ 500{--}2000 {M}⊙ {{yr}}-1. The SED shows a remarkable similarity with the Cosmic Eyelash from optical-mid/IR to submillimeter/radio, albeit at higher fluxes.

  7. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  8. Optical emission line spectra of Seyfert galaxies and radio galaxies

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1978-01-01

    Many radio galaxies have strong emission lines in their optical spectra, similar to the emission lines in the spectra of Seyfert galaxies. The range of ionization extends from [O I] and [N I] through [Ne V] and [Fe VII] to [Fe X]. The emission-line spectra of radio galaxies divide into two types, narrow-line radio galaxies whose spectra are indistinguishable from Seyfert 2 galaxies, and broad-line radio galaxies whose spectra are similar to Seyfert 1 galaxies. However on the average the broad-line radio galaxies have steeper Balmer decrements, stronger [O III] and weaker Fe II emission than the Seyfert 1 galaxies, though at least one Seyfert 1 galaxy not known to be a radio source has a spectrum very similar to typical broad-line radio galaxies. Intermediate-type Seyfert galaxies exist that show various mixtures of the Seyfert 1 and Seyfert 2 properties, and the narrow-line or Seyfert 2 property seems to be strongly correlated with radio emission. (Auth.)

  9. COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Vilchez, J. M.; Perez-Montero, E. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Haegele, G. F.; Firpo, V. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad de la Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Papaderos, P., E-mail: amorin@iaa.es [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-08-01

    Deep, high-resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z {approx} 0.1-0.3, most of them also known as green peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H{alpha}, [N II] {lambda}{lambda}6548, 6584, and [S II] {lambda}{lambda}6717, 6731, consisting of the superposition of different kinematical components on a spatial extent of few kiloparsecs: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their two-dimensional spectra, whereas for another one a faint detached H{alpha} blob lacking stellar continuum is detected at the same recessional velocity {approx}7 kpc away from the galaxy. The individual narrower H{alpha} components show high intrinsic velocity dispersion ({sigma} {approx} 30-80 km s{sup -1}), suggesting together with unsharped masking Hubble Space Telescope images that star formation proceeds in an ensemble of several compact and turbulent clumps, with relative velocities of up to {approx}500 km s{sup -1}. The broad underlying H{alpha} components indicate in all cases large expansion velocities (full width zero intensity {>=}1000 km s{sup -1}) and very high luminosities (up to {approx}10{sup 42} erg s{sup -1}), probably showing the imprint of energetic outflows from supernovae. These intriguing results underline the importance of green peas for studying the assembly of low-mass galaxies near and far.

  10. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Yang, Xiaohu; Zhang, Jun; Tweed, Dylan [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fu, Liping; Shu, Chenggang [Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Bosch, Frank C. van den [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Li, Ran [Key Laboratory for Computational Astrophysics, Partner Group of the Max Planck Institute for Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Liu, Xiangkun; Pan, Chuzhong [Department of Astronomy, Peking University, Beijing 100871 (China); Wang, Yiran [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Radovich, Mario, E-mail: walt@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [INAF-Osservatorio Astronomico di Napoli, via Moiariello 16, I-80131 Napoli (Italy)

    2017-02-10

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  11. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Grant R.; Davis, Timothy A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Gladders, Michael D.; Florian, Michael [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Baum, Stefi A.; O' Dea, Christopher P.; Cooke, Kevin C. [Chester F. Carlson Center for Imaging Science and School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Bayliss, Matthew B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Sharon, Keren [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Soto, Emmaris [Department of Physics, The Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States); Wuyts, Eva, E-mail: grant.tremblay@eso.org [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching bei München (Germany)

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  12. Gas, Dust, and Quenching of Dusty Galaxies in the Early Universe

    Science.gov (United States)

    Spilker, Justin Scott

    In this dissertation, I study various aspects related to the gas and star formation in dusty star-forming galaxies in the distant universe. My dissertation is heavily based on observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), observing a sample of gravitationally lensed high-redshift dusty galaxies originally discovered by the South Pole Telescope (SPT). In addition to the introductions to the individual chapters, Chapter 1 provides a broader background to the study of these objects and places them in the overall context of galaxy evolution. In Chapter 2 I describe a technique designed to search for faint molecular lines in the spectrum of high-redshift dusty galaxies. The brightest molecular lines in the spectra of these objects are due to carbon monoxide, but a host of other species are present in the interstellar media. These other molecules trace gas of a wide range of temperatures and densities, but are generally ten times fainter than the brighter CO lines. I detected several other molecular lines, and used them to characterize the conditions of the interstellar gas. This work was published in Spilker et al. (2014). In Chapter 3, I describe a technique for modeling the effects of gravitational lensing which is optimized for data from interferometers such as ALMA. Using these models and data for a large sample of objects from ALMA, I studied the intrinsic properties of the sample such as the source sizes and luminosities. I used these intrinsic properties to revisit topics from the literature which benefit from the additional size information I determined. This work was published in Spilker et al. (2016). In Chapter 4, I use the modeling technique I developed to investigate the relationship between the star formation and the cold molecular gas from which stars form in two objects selected from the SPT sample. Using the models of the source, I was able to determine the mass of molecular gas in these objects using several independent

  13. THE XMM CLUSTER SURVEY: GALAXY MORPHOLOGIES AND THE COLOR-MAGNITUDE RELATION IN XMMXCS J2215.9 - 1738 AT z = 1.46

    International Nuclear Information System (INIS)

    Hilton, Matt; Stanford, S. Adam; Stott, John P.; Collins, Chris A.; Hoyle, Ben; Nichol, Robert C.; Davidson, Michael; Mann, Robert G.; Hosmer, Mark; Liddle, Andrew R.; Lloyd-Davies, Ed; Mehrtens, Nicola; Romer, A. Kathy; Sabirli, Kivanc; Sahlen, Martin; Kay, Scott T.; Miller, Christopher J.; Viana, Pedro T. P.; West, Michael J.; Barbary, Kyle

    2009-01-01

    We present a study of the morphological fractions and color-magnitude relation (CMR) in the most distant X-ray selected galaxy cluster currently known, XMMXCS J2215.9 - 1738 at z = 1.46, using a combination of optical imaging data obtained with the Hubble Space Telescope Advanced Camera for Surveys, and infrared data from the Multi-Object Infrared Camera and Spectrograph, mounted on the 8.2 m Subaru telescope. We find that the morphological mix of the cluster galaxy population is similar to clusters at z ∼ 1. Within the central 0.5 Mpc, approximately ∼62% of the galaxies identified as likely cluster members are ellipticals or S0s; and ∼38% are spirals or irregulars. Therefore, early-type galaxies were already entrenched as the dominant galaxy population in at least some clusters approximately ∼4.5 Gyr after the big bang. We measure the CMRs for the early-type galaxies, finding that the slope in the z 850 -J relation is consistent with that measured in the Coma cluster, some ∼9 Gyr earlier, although the uncertainty is large. In contrast, the measured intrinsic scatter about the CMR is more than three times the value measured in Coma, after conversion to rest-frame U - V. From comparison with stellar population synthesis models, the intrinsic scatter measurements imply mean luminosity-weighted ages for the early-type galaxies in J2215.9 - 1738 of ∼3 Gyr, corresponding to the major epoch of star formation coming to an end at z f ∼ 3-5. We find that the cluster exhibits evidence of the 'downsizing' phenomenon: the fraction of faint cluster members on the red sequence expressed using the Dwarf-to-Giant Ratio (DGR) is 0.32 ± 0.18 within a radius of 0.5R 200 . This is consistent with extrapolation of the redshift evolution of the DGR seen in cluster samples at z 1 clusters, we find a lack of very bright galaxies within the cluster.

  14. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    International Nuclear Information System (INIS)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison; Montaña, Alfredo; Aretxaga, Itziar; Hughes, David; Limousin, Marceau; Marchesini, Danilo; Kado-Fong, Erin; Alberts, Stacey; Avila-Reese, Vladimir; Bermejo-Climent, José Ramón; Brammer, Gabriel; Bravo-Alfaro, Hector; Chary, Ranga-Ram; Keller, Erica

    2017-01-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10 10 L ⊙ and an obscured star formation rate of 14.6 ± 4.5 M ⊙ yr −1 . The unobscured star formation rate from the UV is only 4.1 ± 0.3 M ⊙ yr −1 , which means the total star formation rate (18.7 ± 4.5 M ⊙ yr −1 ) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10 9 M ⊙ , MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  15. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  16. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  17. Observations of High Dispersion Clusters of Galaxies: Constraints on Cold Dark Matter

    Science.gov (United States)

    Oegerle, William R.; Hill, John M.; Fitchett, Michael J.

    1995-07-01

    We have studied the dynamics of several Abell clusters of galaxies, which were previously reported to have large velocity dispersions, and hence very large masses. In particular, we have investigated the assertion of Frenk et al. (1990) that clusters with intrinsic velocity dispersions ~> 1200 km s^-1^ are extremely rare in the universe, and that large observed dispersions are due to projection effects. We report redshifts for 303 galaxies in the fields of A1775, A2029, A2142, and A2319, obtained with the Nessie multifiber spectrograph at the Mayall 4 m telescope. A1775 appears to be two poor, interacting clusters, separated in velocity space by ~3075 km s^-1^ (in the cluster rest frame). A2029 has a velocity dispersion of 1436 km s^-1^, based on 85 cluster member redshifts. There is evidence that a group or poor cluster of galaxies of slightly different redshift is projected onto (or is merging with) the core of A2029. However, the combined kinematic and x-ray data for A2029 argue for an intrinsically large dispersion for this cluster. Based on redshifts for 103 members of A2142, we find a dispersion of 1280 km s^-1^, and evidence for subclustering. With 130 redshifts in the A2319 field, we have isolated a subcluster ~10' NW of the cD galaxy. After its removal, A2319 has a velocity dispersion of 1324 km s^-1^. The data obtained here have been combined with recent optical and X-ray data for other supposedly high-mass clusters to study the cluster velocity dispersion distribution in a sample of Abell clusters. We find that clusters with true velocity dispersions ~> 1200 km s^-1^ are not extremely rare, but account for ~5% of all Abell clusters with R >= 0. If these clusters are in virial equilibrium, then our results are inconsistent with a high-bias (b~>22), high-density CDM model.

  18. ORIGIN OF 12 μm EMISSION ACROSS GALAXY POPULATIONS FROM WISE AND SDSS SURVEYS

    International Nuclear Information System (INIS)

    Donoso, E.; Yan Lin; Tsai, C.; Eisenhardt, P.; Stern, D.; Assef, R. J.; Leisawitz, D.; Jarrett, T. H.; Stanford, S. A.

    2012-01-01

    We cross-matched Wide-field Infrared Survey Explorer sources brighter than 1 mJy at 12 μm with the Sloan Digital Sky Survey galaxy spectroscopic catalog to produce a sample of ∼10 5 galaxies at (z) = 0.08, the largest of its kind. This sample is dominated (70%) by star-forming (SF) galaxies from the blue sequence, with total IR luminosities in the range ∼10 8 -10 12 L ☉ . We identify which stellar populations are responsible for most of the 12 μm emission. We find that most (∼80%) of the 12 μm emission in SF galaxies is produced by stellar populations younger than 0.6 Gyr. In contrast, the 12 μm emission in weak active galactic nuclei (AGNs; L [Oiii] 7 L . ) is produced by older stars, with ages of ∼1-3 Gyr. We find that L 12μm linearly correlates with stellar mass for SF galaxies. At fixed 12 μm luminosity, weak AGNs deviate toward higher masses since they tend to be hosted by massive, early-type galaxies with older stellar populations. SF galaxies and weak AGNs follow different L 12μm -SFR (star formation rate) relations, with weak AGNs showing excess 12 μm emission at low SFR (0.02-1 M ☉ yr –1 ). This is likely due to dust grains heated by older stars. While the specific star formation rate (SSFR) of SF galaxies is nearly constant, the SSFR of weak AGNs decreases by ∼3 orders of magnitude, reflecting the very different star formation efficiencies between SF galaxies and massive, early-type galaxies. Stronger type II AGNs in our sample (L[ Oiii] > 10 7 L . ), act as an extension of massive SF galaxies, connecting the SF and weak AGN sequences. This suggests a picture where galaxies form stars normally until an AGN (possibly after a starburst episode) starts to gradually quench the SF activity. We also find that 4.6-12 μm color is a useful first-order indicator of SF activity in a galaxy when no other data are available.

  19. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  20. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  1. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J., E-mail: fvogt@mso.anu.edu.au [Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  2. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Vieira, J. D.; Sreevani, J. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brandt, W. N. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Litke, K.; Marrone, D. P.; Spilker, J. S. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 37-582C, Cambridge, MA 02139 (United States); Murphy, E. J., E-mail: jingzhema@ufl.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M {sub ☉} yr{sup −1}) and SFR surface density Σ{sub SFR} (∼2000 M {sub ☉} yr{sup −1} kpc{sup −2}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10{sup 13} L {sub ☉} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ{sub SFR} of any known galaxy. This high Σ{sub SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  3. SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT z = 5.7

    International Nuclear Information System (INIS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Vieira, J. D.; Sreevani, J.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Breuck, C. de; Gullberg, B.; Bothwell, M. S.; Brandt, W. N.; Carlstrom, J. E.; Chapman, S. C.; Hezaveh, Y.; Litke, K.; Marrone, D. P.; Spilker, J. S.; Malkan, M.; McDonald, M.; Murphy, E. J.

    2016-01-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST , Spitzer , Herschel , Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (∼4500 M ☉ yr −1 ) and SFR surface density Σ SFR (∼2000 M ☉ yr −1 kpc −2 ) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 10 13 L ☉ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest Σ SFR of any known galaxy. This high Σ SFR , which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  4. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  5. An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies

    Science.gov (United States)

    Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi

    2018-05-01

    Using large samples containing nearly 2300 active galaxies of low radio luminosity (1.4 GHz luminosity between 2 × 1023 and 3 × 1025 W Hz‑1, essentially low-excitation radio galaxies) at z ≲ 0.3, we present a self-contained analysis of the dependence of the nuclear radio activity on both intrinsic and extrinsic properties of galaxies, with the goal of identifying the best predictors of the nuclear radio activity. While confirming the established result that stellar mass must play a key role on the triggering of radio activities, we point out that for the central, most massive galaxies, the radio activity also shows a strong dependence on halo mass, which is not likely due to enhanced interaction rates in denser regions in massive, cluster-scale halos. We thus further investigate the effects of various properties of the intracluster medium (ICM) in massive clusters on the radio activities, employing two standard statistical tools, principle component analysis and logistic regression. It is found that ICM entropy, local cooling time, and pressure are the most effective in predicting the radio activity, pointing to the accretion of gas cooling out of a hot atmosphere to be the likely origin in triggering such activities in galaxies residing in massive dark matter halos. Our analysis framework enables us to logically discern the mechanisms responsible for the radio activity separately for central and satellite galaxies.

  6. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  7. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  8. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  9. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  10. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  11. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Newman, S. F. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Burkert, A. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Carollo, C. M.; Lilly, S. J. [Institute for Astronomy, Department of Physics, Eidgenössische Technische Hochschule, 8093-CH Zürich (Switzerland); Cresci, G. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Daddi, E. [CEA Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Hicks, E. K. S. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mancini, C. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  12. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L.; Pawlik, Andreas H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, Sandy M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Newman, Jeffrey A., E-mail: stevenf@astro.as.utexas.edu [Department of Physics and Astronomy and Pitt-PACC, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to

  13. Must Star-forming Galaxies Rapidly Get Denser before They Quench?

    Science.gov (United States)

    Abramson, L. E.; Morishita, T.

    2018-05-01

    Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.

  14. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  15. Imaging the environment of a z = 6.3 submillimeter galaxy with SCUBA-2

    International Nuclear Information System (INIS)

    Robson, E. I.; Holland, W. S.; Ivison, R. J.; Smail, Ian; Geach, J. E.; Gibb, A. G.; Riechers, D.; Ade, P. A. R.; Bintley, D.; Bock, J.; Chapin, E. L.; Chapman, S. C.; Clements, D. L.; Conley, A.; Cooray, A.; Dunlop, J. S.; Farrah, D.

    2014-01-01

    We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.

  16. Imaging the environment of a z = 6.3 submillimeter galaxy with SCUBA-2

    Energy Technology Data Exchange (ETDEWEB)

    Robson, E. I.; Holland, W. S. [United Kingdom Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Ivison, R. J. [European Space Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Geach, J. E. [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Gibb, A. G. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Riechers, D. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Ade, P. A. R. [Astronomy and Instrumentation Group, Cardiff University, Cardiff, Wales CF10 3XQ (United Kingdom); Bintley, D. [Joint Astronomy Centre, 660 North Ahoku Place, University Park, Hilo, HI 96720 (United States); Bock, J. [Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA 91109 (United States); Chapin, E. L. [XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 79, E-28691 Villaneueva de la Canada, Madrid (Spain); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H 1A6 (Canada); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Farrah, D., E-mail: rob.ivison@gmail.com [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); and others

    2014-09-20

    We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed.

  17. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7

    Science.gov (United States)

    Mandelbaum, Rachel; Slosar, Anže; Baldauf, Tobias; Seljak, Uroš; Hirata, Christopher M.; Nakajima, Reiko; Reyes, Reinabelle; Smith, Robert E.

    2013-06-01

    Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy haloes, independent of the details of how galaxies populate dark matter haloes. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) data release 7. We generalize the approach of Baldauf et al. to remove small-scale information (below 2 and 4 h-1 Mpc for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 deg2, containing 69 150, 62 150 and 35 088 galaxies with mean redshifts of 0.11, 0.28 and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both σ8 and Ωm (and marginalize over non-linear galaxy bias) in a flat Λ cold dark matter model, the best-constrained quantity is σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 (1σ, stat. + sys.), where statistical and systematic errors (photometric redshift and shear calibration) have comparable contributions, and we have fixed ns = 0.96 and h = 0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) cosmic microwave background (CMB) data, constraints on σ8, Ωm, H0, wde and ∑mν become 30-80 per cent tighter than with CMB data alone, since our data break several parameter

  18. A Lyman Break Galaxy Candidate at z ~ 9

    Science.gov (United States)

    Henry, Alaina L.; Malkan, Matthew A.; Colbert, James W.; Siana, Brian; Teplitz, Harry I.; McCarthy, Patrick

    2008-06-01

    We report the discovery of a z ~ 9 Lyman break galaxy candidate, selected from the NICMOS Parallel Imaging Survey as a J-dropout with J110 - H160 = 1.7. Spitzer/IRAC photometry reveals that the galaxy has a blue H160 - 3.6 μm color and a spectral break between 3.6 and 4.5 μm. We interpret this break as the Balmer break and derive a best-fit photometric redshift of z ~ 9. We use Monte Carlo simulations to test the significance of this photometric redshift, and we show that there is a 96% probability of z >= 7. We estimate that the lower limit to the comoving number density of such galaxies at z ~ 9 is phi > 3.8 × 10-6 Mpc-3. If the high redshift of this galaxy is confirmed, this will indicate that the luminous end of the rest-frame UV luminosity function has not evolved substantially from z ~ 9 to z ~ 3. Still, some small degeneracy remains between this z ~ 9 model and models at z ~ 2-3 deep optical imaging (reaching IAB ~ 29) can rule out the lower z models. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This work is also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposals 9484, 9865, 10226, and 10899.

  19. P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH

    International Nuclear Information System (INIS)

    Li, Cheng; Wang, Enci; Lin, Lin; Xiao, Ting; Bershady, Matthew A.; Tremonti, Christy A.; Bundy, Kevin; Cheung, Edmond; Yan, Renbin; Bizyaev, Dmitry; Blanton, Michael; Gelfand, Joseph; Cales, Sabrina; Cherinka, Brian; Law, David R.; Drory, Niv; Emsellem, Eric; Fu, Hai; Lin, Lihwai; MacDonald, Nick

    2015-01-01

    We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D n (4000)), Hδ absorption (EW(Hδ A )), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D n (4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radial profiles of D n (4000), EW(Hδ A ), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D n (4000) decreases, while both EW(Hδ A ) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence

  20. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    International Nuclear Information System (INIS)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P.; Wei, Min

    2014-01-01

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. The properties of Hα emission-line galaxies at z = 2.24

    International Nuclear Information System (INIS)

    An, Fang Xia; Zheng, Xian Zhong; Wang, Wei-Hao; Huang, Jia-Sheng; Kong, Xu; Wang, Jun-Xian; Zhu, Feifan; Fang, Guan Wen; Gu, Qiu-Sheng; Wu, Hong; Hao, Lei; Xia, Xiao-Yang

    2014-01-01

    Using deep narrowband H 2 S1 and K s -band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα emission-line galaxies (ELGs) at z = 2.24 with the 5σ depths of H 2 S1 = 22.8 and K s = 24.8 (AB) over a 383 arcmin 2 area in the Extended Chandra Deep Field South. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα ELGs are detected in Chandra 4 Ms X-ray observations and two of them are classified as active galactic nuclei. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα ELGs are either merging systems or have a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z = 2-3. About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from spectral energy distributions. We find that dust extinction is generally correlated with Hα luminosity and stellar mass. Our results suggest that Hα ELGs are representative of star-forming galaxies. Applying extinction corrections to individual objects, we examine the intrinsic Hα luminosity function (LF) at z = 2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α = – 1.3. This is shallower than the typical slope of α ≅ –1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus the key to recovering the intrinsic LF as the extinction globally increases with Hα luminosity. Moreover, we find that our Hα LF mirrors the stellar mass function of star-forming galaxies at the same cosmic epoch. This finding indeed reflects the tight correlation between star formation rate and stellar mass for star-forming galaxies, i.e., the so-called main sequence.

  3. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  4. Wide-field kinematic structure of early-type galaxy halos

    Science.gov (United States)

    Arnold, Jacob Antony

    2013-12-01

    The stellar halos of nearby galaxies bare the signatures of the mass-assembly processes that have driven galaxy evolution over the last ˜10 Gyr. Finding and interpreting these relict clues in galaxies within and beyond the local group offers one of the most promising avenues for understanding how galaxies accumulate their stars over time. To tackle this problem we have performed a systematic study of the wide-field kinematic structure of nearby (Dspectroscopy out to several effective radii (˜3 R e). The 22 galaxies presented here span a range of environments (field, group, and cluster), intrinsic luminosities (-22.4 infrared Calcium II triplet. For each spectrum, we parameterize the line-of-sight velocity distribution (LOSVD) as a truncated Gauss-Hermite series convolved with an optimally weighted combination of stellar templates. These kinematic measurements (V, sigma, h3, and h4) are combined with literature values to construct spatially resolved maps of large-scale kinematic structure. A variety of kinematic behaviors are observed beyond ~1 Re, potentially reflecting the stochastic and chaotic assembly of stellar bulges and halos in early-type galaxies. Next, we describe a global analysis (out to 5 Re) of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging and multi-slit spectra of the field stars and globular clusters (GCs). Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly. At larger radii, the rotation declines dramatically, while the characteristic GC metallicities also decrease with radius. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers. To test this hypothesis

  5. EXPLORING THE LOW-MASS END OF THE MBH-σ* RELATION WITH ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Xiao Ting; Barth, Aaron J.; Greene, Jenny E.; Ludwig, Randi R.; Ho, Luis C.; Bentz, Misty C.; Jiang Yanfei

    2011-01-01

    We present new measurements of stellar velocity dispersions, using spectra obtained with the Keck Echellette Spectrograph and Imager (ESI) and the Magellan Echellette (MagE), for 76 Seyfert 1 galaxies from the recent catalog of Greene and Ho. These objects were selected from the Sloan Digital Sky Survey (SDSS) to have estimated black hole (BH) masses below 2 x 10 6 M sun . Combining our results with previous ESI observations of similar objects, we obtain an expanded sample of 93 galaxies and examine the relation between BH mass and velocity dispersion (the M BH -σ * relation) for active galaxies with low BH masses. The low-mass active galaxies tend to follow the extrapolation of the M BH -σ * relation of inactive galaxies. Including results for active galaxies of higher BH mass from the literature, we find a zero point α = 7.68 ± 0.08 and slope of β = 3.32 ± 0.22 for the M BH -σ * relation (in the form log M BH = α + βlog (σ * /200 km s -1 )), with intrinsic scatter of 0.46 ± 0.03 dex. This result is consistent, within the uncertainties, with the slope of the M BH -σ * relation for reverberation-mapped active galaxies with BH masses from 10 6 to 10 9 M sun . For the subset of our sample having morphological information from Hubble Space Telescope images, we examine the slope of the M BH -σ * relation separately for subsamples of barred and unbarred host galaxies, and find no significant evidence for a difference in slope. We do find a mild offset between low-inclination and high-inclination disk galaxies, such that more highly inclined galaxies tend to have larger σ * at a given value of BH mass, presumably due to the contribution of disk rotation within the spectroscopic aperture. We also find that the velocity dispersion of the ionized gas, measured from narrow emission lines including [N II] λ6583, [S II] λλ6716, 6731, and the core of [O III] λ5007 (with the blueshifted wing removed), trace the stellar velocity dispersion well for this large

  6. Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5 less than z Less Than 3

    Science.gov (United States)

    Kurczynski, Peter; Gawiser, Eric; Acquaviva, Viviana; Bell, Eric F.; Dekel, Avishai; De Mello, Duilia F.; Ferguson, Henry C.; Gardner, Jonathan P.; Grogin, Norman A.

    2016-01-01

    We present estimates of intrinsic scatter in the star formation rate (SFR)--stellar mass (M*) correlation in the redshift range 0.5 less than z less than 3.0 and in the mass range 10(exp 7) less than M* less than 10(exp 11) solar mass. We utilize photometry in the Hubble Ultradeep Field (HUDF12) and Ultraviolet Ultra Deep Field (UVUDF) campaigns and CANDELS/GOODS-S and estimate SFR, M* from broadband spectral energy distributions and the best-available redshifts. The maximum depth of the UDF photometry (F160W 29.9 AB, 5 sigma depth) probes the SFR--M* correlation down to M* approximately 10(exp 7) solar mass, a factor of 10-100 x lower in M* than previous studies, and comparable to dwarf galaxies in the local universe. We find the slope of the SFR-M* relationship to be near unity at all redshifts and the normalization to decrease with cosmic time. We find a moderate increase in intrinsic scatter with cosmic time from 0.2 to 0.4 dex across the epoch of peak cosmic star formation. None of our redshift bins show a statistically significant increase in intrinsic scatter approximately 100 Myr. Our results are consistent with a picture of gradual and self-similar assembly of galaxies across more than three orders of magnitude in stellar mass from as low as 10(exp 7) solar mass.

  7. Measuring the Stellar Masses of z ~ 7 Galaxies with the Spitzer UltRaFaint SUrvey Program (SURFS UP)

    Science.gov (United States)

    Ryan, R. E., Jr.; Gonzalez, A. H.; Lemaux, B. C.; Bradač, M.; Casertano, S.; Allen, S.; Cain, B.; Gladders, M.; Hall, N.; Hildebradt, H.; Hinz, J.; Huang, K.-H.; Lubin, L.; Schrabback, T.; Stiavelli, M.; Treu, T.; von der Linden, A.; Zaritsky, D.

    2014-05-01

    We present Spitzer/IRAC observations of nine z'-band dropouts highly magnified (2 ~ 7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star formation rate (SFR) of SFR ~ 1.3 M ⊙ yr-1 and stellar mass of M ~ 2.0 × 109 M ⊙, which gives a specific star formation rate of sSFR ~ 0.7 Gyr-1. If this galaxy had sustained this SFR since z ~ 20, it could have formed the observed stellar mass (to within a factor of ~2). We also discuss alternate star formation histories and argue that the exponentially increasing model is unlikely. Finally, based on the intrinsic SFR, we estimate that this galaxy has a likely [C II] flux of langf [C II]rang = 1.6 mJy. Observations were carried out using the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research is also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs Spitzer 3550, 60034, 90009, HST GO 10200, GO 10863, 11099, and 11591, and ESO Large Program 181.A-0485.

  8. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING FACE-ON SPIRAL GALAXY NGC 5194 (M51A)

    International Nuclear Information System (INIS)

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon

    2011-01-01

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 x 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec -2 to V = 17 mag arcsec -2 corresponds to a metallicity variation of Δ[Fe/H] ∼2 or an optical depth variation of Δτ V ∼ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V -2 , the color variation in the blue pixel sequence corresponds to an age variation from 5 Myr to 300 Myr under the assumption of solar metallicity and τ V = 1. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the pixel population distributions across the spiral arms agree with a compressing process by spiral density waves: dense dust → newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ∼ 100 pc and may be a photometric indicator of AGN properties.

  9. THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Ruff, Andrea J.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphael; Brault, Florence

    2011-01-01

    We present a joint gravitational lensing and stellar-dynamical analysis of 11 early-type galaxies (median deflector redshift z d = 0.5) from Strong Lenses in the Legacy Survey (SL2S). Using newly measured redshifts and stellar velocity dispersions from Keck spectroscopy with lens models from Paper I, we derive the total mass-density slope inside the Einstein radius for each of the 11 lenses. The average total density slope is found to be (γ') = 2.16 +0.09 -0.09 (ρ tot ∝r -γ ' ), with an intrinsic scatter of 0.25 +0.10 -0.07 . We also determine the dark matter fraction for each lens within half the effective radius, R eff /2, and find the average-projected dark matter mass fraction to be 0.42 +0.08 -0.08 with a scatter of 0.20 +0.09 -0.07 for a Salpeter initial mass function. By combining the SL2S results with those from the Sloan Lens ACS Survey (median z d = 0.2) and the Lenses Structure and Dynamics Survey (median z d = 0.8), we investigate cosmic evolution of γ' and find a mild trend ∂(γ')/∂z d = -0.25 +0.10 -0.12 . This suggests that the total density profile of massive galaxies has become slightly steeper over cosmic time. If this result is confirmed by larger samples, it would indicate that dissipative processes played some role in the growth of massive galaxies since z ∼ 1.

  10. The dynamics of aggregates of galaxies as related to their main galaxies

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Kaasik, A.; Vennik, J.

    1976-01-01

    The dynamics of the aggregates of galaxies is compared with the dynamics of their member galaxies. It is demonstrated that within a factor 1.5-2 the dispersion of relative line-of-sight velocities is constant from the nuclei of main galaxies to the periphery of an aggregate. This isothermality of aggregates of galaxies is observed in all aggregates studied so far, from poor groups to rich clusters. The fact that the velocity dispersion of stars in galaxies is equal to that of galaxies in aggregates applies only to main galaxies. The stars in all companion galaxies have a smaller velocity dispersion of stars. The dynamical evolution of both galaxies and aggregates of galaxies is very slow. Thus the above data suggest that galaxies and their aggregates were formed together. (orig.) [de

  11. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    Science.gov (United States)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  12. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Agertz, Oscar [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Teyssier, Romain; Feldmann, Robert [Centre for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, 8057 (Switzerland); Butler, Michael J. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, D-69120 Heidelberg (Germany); Choi, Jun-Hwan [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Keller, Ben W. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Lupi, Alessandro [Institut d’Astrophysique de Paris, Sorbonne Universites, UPMC Univ Paris 6 et CNRS, F-75014 Paris (France); Quinn, Thomas; Wallace, Spencer [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Revaz, Yves [Institute of Physics, Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Leitner, Samuel N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Shen, Sijing [Kavli Institute for Cosmology, University of Cambridge, Cambridge, CB3 0HA (United Kingdom); Smith, Britton D., E-mail: me@jihoonkim.org [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Collaboration: AGORA Collaboration; and others

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  13. Evolution in the Colors of Lyman Break Galaxies from z~4 to z~3

    Science.gov (United States)

    Papovich, Casey; Dickinson, Mark; Ferguson, Henry C.; Giavalisco, Mauro; Lotz, Jennifer; Madau, Piero; Idzi, Rafal; Kretchmer, Claudia; Moustakas, Leonidas A.; de Mello, Duilia F.; Gardner, Jonathan P.; Rieke, Marcia J.; Somerville, Rachel S.; Stern, Daniel

    2004-01-01

    The integrated colors of distant galaxies provide a means for interpreting the properties of their stellar content. Here we use rest-frame UV-to-optical colors to constrain the spectral energy distributions and stellar populations of color-selected, B-dropout galaxies at z~4 in the Great Observatories Origins Deep Survey (GOODS). We combine the Advanced Camera for Surveys data with ground-based near-infrared images, which extend the coverage of galaxies at z~4 to the rest-frame B band. We observe a color-magnitude trend in the rest-frame m(UV)-B versus B diagram for the z~4 galaxies that has a fairly well-defined ``blue envelope,'' and is strikingly similar to that of color-selected, U-dropout galaxies at z~3. We also find that although the co-moving luminosity density at rest-frame UV wavelengths (1600 Å) is roughly comparable at z~3 and ~4, the luminosity density at rest-frame optical wavelengths increases by about one-third from z~4 to ~3. Although the star formation histories of individual galaxies may involve complex and stochastic events, the evolution in the global luminosity density of the UV-bright galaxy population corresponds to an average star formation history with a star formation rate that is constant or increasing over these redshifts. This suggests that the evolution in the luminosity density corresponds to an increase in the stellar mass density of >~33%. Based on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555, and based on observations collected at the European Southern Observatory, Chile (ESO programs 168.A-0485, 64.O-0643, 66.A-0572, and 68.A-0544).

  14. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  15. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  16. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers

    International Nuclear Information System (INIS)

    Jasmine, Maria J.; Kavitha, Manniledam; Prasad, Edamana

    2009-01-01

    Solvent-induced aggregation and its effect on the intrinsic emission properties of amine, hydroxy and carboxylate terminated, poly(amidoamine) (PAMAM) dendrimers have been investigated in glycerol, ethylene glycol, methanol, ethylene diamine and water. Altering the solvent medium induces remarkable changes in the intrinsic emission properties of the PAMAM dendrimers at identical concentration. Upon excitation at 370 nm, amine terminated PAMAM dendrimer exhibits an intense emission at 470 nm in glycerol, ethylene glycol as well as glycerol-water mixtures. Conversely, weak luminescence is observed for hydroxy and carboxylate terminated PAMAM dendrimers in the same solvent systems. When the solvent is changed to ethylene diamine, hydroxy terminated PAMAM exhibits intense blue emission at 425 nm. While the emission intensity is varied when the solvent milieu is changed, excited state lifetime values of PAMAM dendrimers remain independent of the solvent used. UV-visible absorption and dynamic light scattering (DLS) experiments confirm the formation of solvent-controlled dendrimer aggregates in the systems. Comparison of the fluorescence and DLS data reveals that the size distribution of the dendrimer aggregates in each solvent system is distinct, which control the intrinsic emission intensity from PAMAM dendrimers. The experimental results suggest that intrinsic emission intensity from PAMAM dendrimers can be regulated by proper selection of solvents at neutral conditions and room temperature

  17. THE STAR FORMATION HISTORY OF THE VERY METAL-POOR BLUE COMPACT DWARF I Zw 18 FROM HST/ACS DATA

    Energy Technology Data Exchange (ETDEWEB)

    Annibali, F.; Cignoni, M.; Tosi, M.; Clementini, G.; Contreras Ramos, R.; Fiorentino, G. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Van der Marel, R. P.; Aloisi, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marconi, M.; Musella, I., E-mail: francesca.annibali@oabo.inaf.it [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli (Italy)

    2013-12-01

    We have derived the star formation history (SFH) of the blue compact dwarf galaxy I Zw 18 through comparison of deep HST/ACS data with synthetic color-magnitude diagrams (CMDs). A statistical analysis was implemented for the identification of the best-fit SFH and relative uncertainties. We confirm that I Zw 18 is not a truly young galaxy, having started forming stars earlier than ∼1 Gyr ago, and possibly at epochs as old as a Hubble time. In I Zw 18's main body we infer a lower limit of ≈2 × 10{sup 6} M {sub ☉} for the mass locked up in old stars. I Zw 18's main body has been forming stars very actively during the last ∼10 Myr, with an average star formation rate (SFR) as high as ≈1 M {sub ☉} yr{sup –1} (or ≈2 × 10{sup –5} M {sub ☉} yr{sup –1} pc{sup –2}). On the other hand, the secondary body was much less active at these epochs, in agreement with the absence of significant nebular emission. The high current SFR can explain the very blue colors and the high ionized gas content in I Zw 18, resembling primeval galaxies in the early universe. Detailed chemical evolution models are required to quantitatively check whether the SFH from the synthetic CMDs can explain the low measured element abundances, or if galactic winds with loss of metals are needed.

  18. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  19. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  20. NuSTAR reveals an intrinsically x-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Brandt, W. N.; Harrison, F. A.

    2014-01-01

    -ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may...

  1. POX 186: A Dwarf Galaxy in the Process of Formation?

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.

    2002-12-01

    We present deep U-, V-, and I-band images of the ``ultracompact'' blue dwarf galaxy POX 186 obtained with the Planetary Camera 2 of the Hubble Space Telescope. We have also obtained a near-ultraviolet spectrum of the object with the Space Telescope Imaging Spectrograph and combine this with a new ground-based optical spectrum. The images confirm the galaxy to be extremely small, with a maximum extent of only 300 pc, a luminosity of ~10-4L*, and an estimated mass of ~107 Msolar. Its morphology is highly asymmetric, with a tail of material on its western side that may be tidal in origin. The U-band image shows this tail to be part of a stream of material in which stars have recently formed. Most of the star formation in the galaxy is, however, concentrated in a central, compact (d~10-15 pc) star cluster. We estimate this cluster to have a total mass of ~105 Msolar, to be forming stars at a rate of less than 0.05 yr-1, and to have a maximum age of a few million years. The outer regions of the galaxy are significantly redder than the cluster, with V-I colors consistent with a population dominated by K and M stars. From our analysis of the optical spectrum we find the galaxy to have a metallicity Z~=0.06 Zsolar and to contain a significant amount of internal dust [E(B-V)~=0.28] both values agree with previous estimates. While these results rule out earlier speculation that POX 186 is a protogalaxy, its morphology, mass, and active star formation suggest that it represents a recent (within ~108 yr) collision between two clumps of stars of subgalactic size (~100 pc). POX 186 may thus be a very small dwarf galaxy that, dynamically speaking, is still in the process of formation. This interpretation is supported by the fact that it resides in a void, so its morphology cannot be explained as the result of an encounter with a more massive galaxy. Clumps of stars this small may represent the building blocks required by hierarchical models of galaxy formation, and these results

  2. Optical analysis of dust complexes in spiral galaxies

    International Nuclear Information System (INIS)

    Elmegreen, D.A.M.

    1979-01-01

    A method for quantitatively investigating properties of dust regions in external galaxies is presented. The technique involves matching radiative transfer models (with absorption plus scattering) to multicolor photographic and photometric observations. Dust features in each galaxy are modeled with two configurations; one is rectangular with a Gaussian distribution perpendicular to the plane of the galaxy, and the other is a uniform oblate spheroid with an arbitrary height from the midplane. It is found that it is possible to determine the intrinsic opacities in the clouds and in the nearby comparison regions, and that differention between high opacity low-lying clouds and low opacity clouds that are above the midplane can be made. This technique was used to study dust complexes in the late-type spiral galaxies NGC 628 (M74), NGC 5194 (M51), NGC 5457 (M101), and NGC 7793. Most of the features in the prominent dust lanes were found to have internal visual extinctions corresponding to 10 to 15 mag kpc -1 , while the adjacent comparison regions typically contained 4 mag kpc -1 . Thus the opacity through a dust lane is about 1.5 mag greater than the 0.5 to 1.0 mag of extinction through a comparison region. A noticeable deviation from this result was found for all of the dust lanes that occurred on the inner edges of the spiral arm branches. These features had internal densities that were approx. 10 times larger than in their comparison regions, in contrast to the normal dust lanes which had density enhancements of a factor of approx. 3. Dust features which were on the outer sides of spiral arms appeared to be no different than main inner dust lane features

  3. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  4. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  5. COMBINED EFFECTS OF GALAXY INTERACTIONS AND LARGE-SCALE ENVIRONMENT ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young

    2009-01-01

    We inspect the coupled dependence of physical parameters of the Sloan Digital Sky Survey galaxies on the small-scale (distance to and morphology of the nearest neighbor galaxy) and the large-scale (background density smoothed over 20 nearby galaxies) environments. The impacts of interaction on galaxy properties are detected at least out to the neighbor separation corresponding to the virial radius of galaxies, which is typically between 200 and 400 h -1 kpc for the galaxies in our sample. To detect these long-range interaction effects, it is crucial to divide galaxy interactions into four cases dividing the morphology of target and neighbor galaxies into early and late types. We show that there are two characteristic neighbor-separation scales where the galaxy interactions cause abrupt changes in the properties of galaxies. The first scale is the virial radius of the nearest neighbor galaxy r vir,nei . Many physical parameters start to deviate from those of extremely isolated galaxies at the projected neighbor separation r p of about r vir,nei . The second scale is at r p ∼ 0.05r vir,nei = 10-20 h -1 kpc, and is the scale at which the galaxies in pairs start to merge. We find that late-type neighbors enhance the star formation activity of galaxies while early-type neighbors reduce it, and that these effects occur within r vir,nei . The hot halo gas and cold disk gas must be participating in the interactions at separations less than the virial radius of the galaxy plus dark halo system. Our results also show that the role of the large-scale density in determining galaxy properties is minimal once luminosity and morphology are fixed. We propose that the weak residual dependence of galaxy properties on the large-scale density is due to the dependence of the halo gas property on the large-scale density.

  6. Significance of Environmental Density in Shocked Poststarburst Galaxy Evolution

    Science.gov (United States)

    Jaliff, Laura

    2018-01-01

    The Shocked POstarbusrt Galaxy Survey (SPOGS) comprises 1,066 galaxies undergoing the transformation from blue cloud late-type spirals to red sequence non-star-forming early-type ellipticals and lenticulars. They are selected via spectral analysis of ionized gas line ratios, which indicate shocked objects, and Balmer H-δ equivalent width, which select recently formed stars, but not active star formation. E+A galaxies (Zabludoff et al. 1996), like SPOGs, contain young stars but, unlike SPOGs, no emission lines consistent with star formation. They differ in that the quality used to discern SPOGs, their shocks, produces H-α lines that prevent them from being found via the same criteria as E+As. Thus, SPOGs can be found before being entirely stripped of their gas, and, while E+As are largely red and dead, found leaving the green valley, SPOGS are mostly entering it. The environmental density data for SPOGs was retrieved via the NASA Extragalactic Database (NED) radial velocity constrained cone tool, which provides counts and densities within spheres of radii 1, 5, and 10 Mpc from the center of search as well as relative positions and redshifts of objects. The kinematic morphology-density relation (Cappellari et al. 2011) is employed as a point of comparison for how SPOGs’ environmental densities might relate to morphological and spectroscopic factors, including tidal features, asymmetry, and color, in order to fully understand the role of environmental factors in SPOGS object evolution.

  7. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  8. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    International Nuclear Information System (INIS)

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.

    2016-01-01

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  9. P-MaNGA: GRADIENTS IN RECENT STAR FORMATION HISTORIES AS DIAGNOSTICS FOR GALAXY GROWTH AND DEATH

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Wang, Enci; Lin, Lin; Xiao, Ting [Partner Group of Max-Planck Institute for Astrophysics, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Bershady, Matthew A.; Tremonti, Christy A. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI 53706 (United States); Bundy, Kevin; Cheung, Edmond [Kavli Institute for the Physics and Mathematics of the universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Bizyaev, Dmitry [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Blanton, Michael; Gelfand, Joseph [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cales, Sabrina [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Cherinka, Brian; Law, David R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Drory, Niv [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Emsellem, Eric [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Lin, Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); MacDonald, Nick, E-mail: leech@shao.ac.cn [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); and others

    2015-05-10

    We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000 Å break (D{sub n}(4000)), Hδ absorption (EW(Hδ{sub A})), and Hα emission (EW(Hα)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D{sub n}(4000) measured in the central spaxel of each datacube exceeds 1.6. For each spaxel we generate both 2D maps and radial profiles of D{sub n}(4000), EW(Hδ{sub A}), and EW(Hα). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D{sub n}(4000) decreases, while both EW(Hδ{sub A}) and EW(Hα) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outward as it moves to the red sequence.

  10. Nuclei of dwarf spheroidal galaxies KKs 3 and ESO 269-66 and their counterparts in our Galaxy

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Kniazev, A. Y.

    2017-10-01

    We present the analysis of medium-resolution spectra obtained at the Southern African Large Telescope for nuclear globular clusters (GCs) in two dwarf spheroidal galaxies (dSphs). The galaxies have similar star formation histories, but they are situated in completely different environments. ESO 269-66 is a close neighbour of the giant S0 NGC 5128. KKs 3 is one of the few truly isolated dSphs within 10 Mpc. We estimate the helium abundance Y = 0.3, age = 12.6 ± 1 Gyr, [Fe/H] = -1.5, -1.55 ± 0.2 dex, and abundances of C, N, Mg, Ca, Ti, and Cr for the nuclei of ESO 269-66 and KKs 3. Our surface photometry results using Hubble Space Telescope images yield the half-light radius of the cluster in KKs 3, rh = 4.8 ± 0.2 pc. We demonstrate the similarities of medium-resolution spectra, ages, chemical compositions, and structure for GCs in ESO 269-66 and KKs 3 and for several massive Galactic GCs with [Fe/H] ∼ -1.6 dex. All Galactic GCs posses Extended Blue Horizontal Branches and multiple stellar populations. Five of the selected Galactic objects are iron-complex GCs. Our results indicate that the sample GCs observed now in different environments had similar conditions of their formation ∼1 Gyr after the Big Bang.

  11. Comparing Simulations and Observations of Galaxy Evolution: Methods for Constraining the Nature of Stellar Feedback

    Science.gov (United States)

    Hummels, Cameron

    Computational hydrodynamical simulations are a very useful tool for understanding how galaxies form and evolve over cosmological timescales not easily revealed through observations. However, they are only useful if they reproduce the sorts of galaxies that we see in the real universe. One of the ways in which simulations of this sort tend to fail is in the prescription of stellar feedback, the process by which nascent stars return material and energy to their immediate environments. Careful treatment of this interaction in subgrid models, so-called because they operate on scales below the resolution of the simulation, is crucial for the development of realistic galaxy models. Equally important is developing effective methods for comparing simulation data against observations to ensure galaxy models which mimic reality and inform us about natural phenomena. This thesis examines the formation and evolution of galaxies and the observable characteristics of the resulting systems. We employ extensive use of cosmological hydrodynamical simulations in order to simulate and interpret the evolution of massive spiral galaxies like our own Milky Way. First, we create a method for producing synthetic photometric images of grid-based hydrodynamical models for use in a direct comparison against observations in a variety of filter bands. We apply this method to a simulation of a cluster of galaxies to investigate the nature of the red-sequence/blue-cloud dichotomy in the galaxy color-magnitude diagram. Second, we implement several subgrid models governing the complex behavior of gas and stars on small scales in our galaxy models. Several numerical simulations are conducted with similar initial conditions, where we systematically vary the subgrid models, afterward assessing their efficacy through comparisons of their internal kinematics with observed systems. Third, we generate an additional method to compare observations with simulations, focusing on the tenuous circumgalactic

  12. Spectroscopy of the galaxy components of N and Seyfert galaxies

    International Nuclear Information System (INIS)

    Boroson, T.A.; Oke, J.B.; Palomar Observatory, Pasadena, CA)

    1987-01-01

    Nuclear and off-nuclear spectra of nine active galaxies are presented. The sample consists of four Seyfert galaxies, two N galaxies, one Seyfert radio galaxy, and one liner/Seyfert 2 galaxy. All of the objects show continuum emission off the nucleus. Four clearly show absorption features from a stellar population. Velocities have been measured for the off-nuclear emission and absorption lines. In the case of I Zw 1, the absorption-line velocities are inconsistent with 21-cm H I measurements of this object. 26 references

  13. Galaxy and Mass Assembly (GAMA): small-scale anisotropic galaxy clustering and the pairwise velocity dispersion of galaxies

    Science.gov (United States)

    Loveday, J.; Christodoulou, L.; Norberg, P.; Peacock, J. A.; Baldry, I. K.; Bland-Hawthorn, J.; Brown, M. J. I.; Colless, M.; Driver, S. P.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Lopez-Sanchez, A. R.; Taylor, E. N.

    2018-03-01

    The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard gravity and galaxy formation models. We describe measurements of the PVD of galaxies in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation and galaxy luminosity. Due to the faint magnitude limit (r PVD to smaller scales (r⊥ = 0.01 h - 1 Mpc) than previous work. The measured PVD at projected separations r⊥ ≲ 1 h - 1 Mpc increases near monotonically with increasing luminosity from σ12 ≈ 200 km s - 1 at Mr = -17 mag to σ12 ≈ 600 km s - 1 at Mr ≈ -22 mag. Analysis of the Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of the model placing too many low-luminosity galaxies in massive haloes.

  14. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  15. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  16. Galaxy-galaxy weak gravitational lensing in f(R) gravity

    Science.gov (United States)

    Li, Baojiu; Shirasaki, Masato

    2018-03-01

    We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.

  17. Globular Clusters Shine in a Galaxy Lacking Dark Matter

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b

  18. Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime: methodology, information, and forecasts

    OpenAIRE

    Wibking, Benjamin D.; Salcedo, Andrés N.; Weinberg, David H.; Garrison, Lehman H.; Ferrer, Douglas; Tinker, Jeremy; Eisenstein, Daniel; Metchnik, Marc; Pinto, Philip

    2017-01-01

    The combination of galaxy-galaxy lensing (GGL) with galaxy clustering is one of the most promising routes to determining the amplitude of matter clustering at low redshifts. We show that extending clustering+GGL analyses from the linear regime down to $\\sim 0.5 \\, h^{-1}$ Mpc scales increases their constraining power considerably, even after marginalizing over a flexible model of non-linear galaxy bias. Using a grid of cosmological N-body simulations, we construct a Taylor-expansion emulator ...

  19. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  20. Ly α and UV Sizes of Green Pea Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E.; Jiang, Tianxing [Arizona State University, School of Earth and Space Exploration (United States); Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 (United States); Wofford, Aida, E-mail: huan.y@asu.edu [National Autonomous University of Mexico, Institute of Astronomy (Mexico)

    2017-03-20

    Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Ly α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.

  1. wft4galaxy: a workflow testing tool for galaxy.

    Science.gov (United States)

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  2. The Progenitors of Local Ultra-massive Galaxies Across Cosmic Time

    DEFF Research Database (Denmark)

    Marchesini, Danilo; Muzzin, Adam; Stefanon, Mauro

    2014-01-01

    in age of $z=0$ UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since $z=3$. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent......-forming galaxies progressively increases, with the progenitors at $2z 1$, whereas the remaining was assembled via merging from $z\\sim 1$ to the present. Most of the quenching of the star-forming progenitors happened between $z=2.75$ and $z=1.25$, in good agreement with the typical formation redshift and scatter...

  3. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  4. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  5. Blue light enhances the antimicrobial activity of honey against Pseudomonas aeruginosa

    Science.gov (United States)

    Orlandi, Viviana Teresa; Bolognese, Fabrizio; Barbieri, Paola

    2018-02-01

    Pseudomonas aeruginosa may be isolated from skin wounds of burn patients, bedsore and diabetic ulcers. The healing of wounds is often impaired by the intrinsic antibiotic resistance, the tolerance to many antimicrobials and the ability to form biofilm of this opportunistic pathogen. Finding new topical treatments to combine with antibiotics is thus essential. Among natural products, the antimicrobial properties of honeys have been known for millennia. In this study honey and visible light have been combined to control the growth of P. aeruginosa PAO1. The irradiation by a broad spectrum light source of bacteria inoculated onto 2 % w/v fir and forest honeydew (HD) honeys caused a killing effect that the honeys alone or the light alone did not show. This antimicrobial activity was light energy-dose and honey-concentration dependent. Among the tested honeys, the fir and forest HD honeys were the most efficient ones. In particular, the irradiation by blue LED (λmax = 466 nm) yielded good rates of killing, that were significantly higher in comparison to irradiation alone and honey alone. Interestingly, a similar effect was obtained by plating bacteria on blue LED pre-irradiated HD honeys. The combined use of honey and blue light was also successful in inhibiting the biofilm formation of P. aeruginosa. The blue LED irradiation of PAO1 administered with 10 % w/v forest HD honey significantly enhanced the inhibition of biofilm formation in comparison to dark incubated honey.

  6. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  7. Estimation of spectral classifications for stars with interesting Stroemgren indices: population II field 'blue stragglers'

    International Nuclear Information System (INIS)

    Olsen, E.H.

    1979-01-01

    More than 17 years ago in Princeton at the Conference on Interstellar Matter, Stroemgren (1962) concluded the presentation of one of his papers by mentioning a program aimed at obtaining four-color photometry of all F8-G0 stars to apparent magnitude 8. The purpose was to perform a detailed analysis of the correlations between age, chemical composition, and kinematics, and thus gain new insight into the state of the interstellar matter at various times during the history of the Galaxy. The author considers one specific category of stars, 'blue stragglers'. (Auth.)

  8. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  9. Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6

    Science.gov (United States)

    Bradley, L. D.; Bouwens, R. J.; Ford, H. C.; Illingworth, G. D.; Jee, M. J.; Benítez, N.; Broadhurst, T. J.; Franx, M.; Frye, B. L.; Infante, L.; Motta, V.; Rosati, P.; White, R. L.; Zheng, W.

    2008-05-01

    Using Hubble Space Telescope (HST) and Spitzer IRAC imaging, we report the discovery of a very bright strongly lensed Lyman break galaxy (LBG) candidate at z ~ 7.6 in the field of the massive galaxy cluster Abell 1689 (z = 0.18). The galaxy candidate, which we refer to as A1689-zD1, shows a strong z850 - J110 break of at least 2.2 mag and is completely undetected (= 25). A1689-zD1 has an observed (lensed) magnitude of 24.7 AB (8 σ) in the NICMOS H160 band and is ~1.3 mag brighter than the brightest known z850-dropout galaxy. When corrected for the cluster magnification of ~9.3 at z ~ 7.6, the candidate has an intrinsic magnitude of H160 = 27.1 AB, or about an L* galaxy at z ~ 7.6. The source-plane deprojection shows that the star formation is occurring in compact knots of size lesssim300 pc. The best-fit stellar population synthesis models yield a median redshift of 7.6, stellar masses (1.6-3.9) × 109 M⊙, stellar ages 45-320 Myr, star formation rates lesssim7.6 M⊙ yr-1, and low reddening with AV 7.0 galaxy candidate found to date. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. Based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  10. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Tinker, Jeremy L., E-mail: rmredd@stanford.edu, E-mail: rwechsler@stanford.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2014-03-10

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  11. Cosmological constraints from galaxy clustering and the mass-to-number ratio of galaxy clusters: marginalizing over the physics of galaxy formation

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Lu, Yu; Tinker, Jeremy L.

    2014-01-01

    Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ω m and σ 8 from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.

  12. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35

    Science.gov (United States)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-03-01

    Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42

  13. A COMPREHENSIVE VIEW OF A STRONGLY LENSED PLANCK-ASSOCIATED SUBMILLIMETER GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Jullo, E. [Observatoire d' Astrophysique de Marseille-Provence, 38 rue Frederic Joliot-Curie, F-13388 Marseille (France); Bussmann, R. S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Perez-Fournon, I. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Djorgovski, S. G.; Scoville, N.; Yan, L.; Riechers, D. A.; Bradford, M. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Auld, R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Rd., Piscataway, NJ 08854 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Dannerbauer, H. [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1160 Wien (Austria); Dariush, A. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); De Zotti, G., E-mail: haif@uci.edu [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2012-07-10

    We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9-001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 {mu}m flux density ({approx}300 mJy). It is the only high-redshift Planck detection in the 130 deg{sup 2} H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 {mu}m and CO(1{yields}0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over {approx}1.6 kpc, the dust in a compact ({approx}1 kpc) region {approx}3 kpc north of the stars, and the cold molecular gas in an extended ({approx}7 kpc) disk {approx}5 kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by {approx}17, {approx}8, and {approx}7 times, respectively, by four lensing galaxies at z {approx} 1. Intrinsically, the lensed galaxy is a warm (T{sub dust} {approx} 40-65 K), hyper-luminous (L{sub IR} {approx} 1.7 Multiplication-Sign 10{sup 13} L{sub Sun }; star formation rate (SFR) {approx}2000 M{sub Sun} yr{sup -1}), gas-rich (M{sub gas}/M{sub baryon} {approx} 70%), young (M{sub stellar}/SFR {approx} 20 Myr), and short-lived (M{sub gas}/SFR {approx} 40 Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9-001132 offers a detailed view of a typical SMG through a powerful cosmic microscope.

  14. Measuring Extinction in Local Group Galaxies Using Background Galaxies

    Science.gov (United States)

    Wyder, T. K.; Hodge, P. W.

    1999-05-01

    Knowledge of the distribution and quantity of dust in galaxies is important for understanding their structure and evolution. The goal of our research is to measure the total extinction through Local Group galaxies using measured properties of background galaxies. Our method relies on the SExtractor software as an objective and automated method of detecting background galaxies. In an initial test, we have explored two WFPC2 fields in the SMC and two in M31 obtained from the HST archives. The two pointings in the SMC are fields around the open clusters L31 and B83 while the two M31 fields target the globular clusters G1 and G170. Except for the G1 observations of M31, the fields chosen are very crowded (even when observed with HST) and we chose them as a particularly stringent test of the method. We performed several experiments using a series of completeness tests that involved superimposing comparison fields, adjusted to the equivalent exposure time, from the HST Medium-Deep and Groth-Westphal surveys. These tests showed that for crowded fields, such as the two in the core of the SMC and the one in the bulge of M31, this automated method of detecting galaxies can be completely dominated by the effects of crowding. For these fields, only a small fraction of the added galaxies was recovered. However, in the outlying G1 field in M31, almost all of the added galaxies were recovered. The numbers of actual background galaxies in this field are consistent with zero extinction. As a follow-up experiment, we used image processing techniques to suppress stellar objects while enhancing objects with non-stellar, more gradual luminosity profiles. This method yielded significant numbers of background galaxies in even the most crowded fields, which we are now analyzing to determine the total extinction and reddening caused by the foreground galaxy.

  15. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  16. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second part focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments

  17. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  18. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during

  19. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  20. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    Science.gov (United States)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  1. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-01-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10 5 M ⊙ . The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M I (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H 0  = 77.9 ± 3.6 km s −1 Mpc −1 . We estimate the GC specific frequency of NGC 4921 to be S N  = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s

  2. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  3. Enhancing the view of a million galaxies

    Science.gov (United States)

    2004-06-01

    Composite image hi-res Size hi-res: 851 KB Credits: ESA/Univ. of Leicester/I. Stewart and M. Watson XMM-Newton X-ray spectral colour composite image XMM-Newton X-ray spectral colour composite image of the Subaru/XMM-Newton Deep Field. The view gives an X-ray pseudo-colour representation of all the sources, coded according to their X-ray energy. More energetic sources are shown in blue and less energetic ones in red. This mosaic image, composed of 7 partially overlapping pointings, maps the full extent of the SXDF and corresponds to an exposure time exceeding one hundred hours. These data form the largest contiguous area over which deep X-ray observations have been performed. Composite image hi-res Size hi-res: 6215 KB Credits: NAOJ/Subaru Telescope XMM-Newton/Subaru colour composite image A colour composite image obtained by combining data taken with the Subaru Telescope in blue, red and near-infrared light. The image, worth over two hundred hours of exposure time, covers an area of sky seven times larger than the full moon. The images in blue light show details several hundred million times fainter than what can be seen with the naked eye. SXDS field hi-res Size hi-res: 448 KB Credits: NAOJ/Subaru Telescope SXDS field A particular of the SXDS field. The teardrop-shaped galaxy in the upper right portion of the frame is likely to have suffered from a collision with another galaxy. SXDS field hi-res Size hi-res: 358 KB Credits: NAOJ/Subaru Telescope SXDS field A particular of the SXDS field. The prominent spiral galaxy near the centre may be ineracting with a less-conspicuous dwarf galaxy to its lower right. One of the fundamental goals of modern astronomy is understanding the history of the Universe, and in particular learning about the processes that shape the formation and evolution of galaxies. To observe these processes as they unfold, astronomers must survey galaxies near and far, spanning a large enough volume of the Universe, so that local variations in the

  4. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  5. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  6. Psychophysical Measurements of Luminance Contrast Sensitivity and Color Discrimination with Transparent and Blue-Light Filter Intraocular Lenses.

    Science.gov (United States)

    da Costa, Marcelo Fernandes; Júnior, Augusto Paranhos; Lottenberg, Claudio Luiz; Castro, Leonardo Cunha; Ventura, Dora Fix

    2017-12-01

    The purpose of this study was to measure luminance contrast sensitivity and color vision thresholdfs in normal subjects using a blue light filter lens and transparent intraocular lens material. Monocular luminance grating contrast sensitivity was measured with Psycho for Windows (version 2.36; Cambridge Research Systems) at 3.0, 6.0, 12.0, 20.0, and 30.0 cycles per degree of visual angle (cpd) in 15 normal subjects (eight female), with a mean age of 21.6 years (SD = 3.8 years). Chromatic discrimination was assessed with the Cambridge colour test (CCT) along the protan, deutan, and tritan color confusion axes. Both tests were performed in a darkened room under two situations: with a transparent lens and with blue light filter lens. Subjective impressions were taken by subjects regarding their visual experience under both conditions. No difference was found between the luminance contrast sensitivity measured with transparent and blue light filter. However, 13/15 (87%) of the subjects reported more comfortable vision with the blue filter. In the color vision test, tritan thresholds were significantly higher for the blue filter compared with the transparent filter (p = 0.003). For protan and deutan thresholds no differences were found. Blue-yellow color vision is impaired with the blue light filter, and no impairment occurs with the transparent filter. No significant differences in thresholds were found in the luminance contrast sensitivity comparing the blue light and transparent filters. The impact of short wavelength light filtering on intrinsically photosensitive retinal ganglion cells is also discussed.

  7. Intrinsic motivations drive learning of eye movements: an experiment with human adults.

    Science.gov (United States)

    Caligiore, Daniele; Mustile, Magda; Cipriani, Daniele; Redgrave, Peter; Triesch, Jochen; De Marsico, Maria; Baldassarre, Gianluca

    2015-01-01

    Intrinsic motivations drive the acquisition of knowledge and skills on the basis of novel or surprising stimuli or the pleasure to learn new skills. In so doing, they are different from extrinsic motivations that are mainly linked to drives that promote survival and reproduction. Intrinsic motivations have been implicitly exploited in several psychological experiments but, due to the lack of proper paradigms, they are rarely a direct subject of investigation. This article investigates how different intrinsic motivation mechanisms can support the learning of visual skills, such as "foveate a particular object in space", using a gaze contingency paradigm. In the experiment participants could freely foveate objects shown in a computer screen. Foveating each of two "button" pictures caused different effects: one caused the appearance of a simple image (blue rectangle) in unexpected positions, while the other evoked the appearance of an always-novel picture (objects or animals). The experiment studied how two possible intrinsic motivation mechanisms might guide learning to foveate one or the other button picture. One mechanism is based on the sudden, surprising appearance of a familiar image at unpredicted locations, and a second one is based on the content novelty of the images. The results show the comparative effectiveness of the mechanism based on image novelty, whereas they do not support the operation of the mechanism based on the surprising location of the image appearance. Interestingly, these results were also obtained with participants that, according to a post experiment questionnaire, had not understood the functions of the different buttons suggesting that novelty-based intrinsic motivation mechanisms might operate even at an unconscious level.

  8. Dust Attenuation and H(alpha) Star Formation Rates of Z Approx. 0.5 Galaxies

    Science.gov (United States)

    Ly, Chun; Malkan, Matthew A.; Kashikawa, Nobunari; Ota, Kazuaki; Shimasaku, Kazuhiro; Iye, Masanori; Currie, Thayne

    2012-01-01

    Using deep narrow-band and broad-band imaging, we identify 401 z approximately 0.40 and 249 z approximately 0.49 H-alpha line-emitting galaxies in the Subaru Deep Field. Compared to other H-alpha surveys at similar redshifts, our samples are unique since they probe lower H-alpha luminosities, are augmented with multi-wavelength (rest-frame 1000AA--1.5 microns) coverage, and a large fraction (20%) of our samples has already been spectroscopically confirmed. Our spectra allow us to measure the Balmer decrement for nearly 60 galaxies with H-beta detected above 5-sigma. The Balmer decrements indicate an average extinction of A(H-alpha)=0.7(uparrow){+1.4}_{-0.7} mag. We find that the Balmer decrement systematically increases with higher H-alpha luminosities and with larger stellar masses, in agreement with previous studies with sparser samples. We find that the SFRs estimated from modeling the spectral energy distribution (SED) is reliable---we derived an "intrinsic" H-alpha luminosity which is then reddened assuming the color excess from SED modeling. The SED-predicted H-alpha luminosity agrees with H-alpha narrow-band measurements over 3 dex (rms of 0.25 dex). We then use the SED SFRs to test different statistically-based dust corrections for H-alpha and find that adopting one magnitude of extinction is inappropriate: galaxies with lower luminosities are less reddened. We find that the luminosity-dependent dust correction of Hopkins et al. yields consistent results over 3 dex (rms of 0.3 dex). Our comparisons are only possible by assuming that stellar reddening is roughly half of nebular reddening. The strong correspondence argue that with SED modeling, we can derive reliable intrinsic SFRs even in the absence of H-alpha measurements at z approximately 0.5.

  9. Aspects of the interstellar medium in starburst galaxies

    International Nuclear Information System (INIS)

    Fanelli, M.N.

    1990-01-01

    Researchers are engaged in a multifaceted program to investigate the stellar content and star formation history of actively star-forming galaxies. A large body of stellar spectra have been examined to identify spectral features characteristic of specific stellar types. These spectral diagnostics are then calibrated in terms of temperature (spectral type), gravity (luminosity class) and metallicity. The spectral data is compiled into a stellar library whose members represent specific locations in the HR diagram. Through the use of population synthesis techniques, both optimizing and evolutionary approaches, the stellar luminosity function in composite populations can be determined. Researchers have concentrated on the ultraviolet wavelength region (lambda lambda 1200 to 3200). In the optical, virtually all stars will contribute to the integrated light. In the ultraviolet however, cool stars will produce negligible flux due to their steep ultraviolet-to-visual continua, greatly simplifying the investigation of the hot component in a composite population. The researchers' initial stellar library has been applied to several blue compact galaxies, (BCGs), a class of starburst galaxy which is UV luminous. BCGs possess a complex interstellar medium which affects the emergent stellar continuum in several ways. This presents a challenge to the stellar analysis but affords insight into the properties of the gas and dust from which the massive OB stars have formed. The optimizing synthesis method solves for the stellar luminosity function and extinction simultaneously. This therefore provides an independent measure of the extinction affecting the hot population component. Despite the rise of the reddening law towards the ultraviolet, BCGs are found to be brighter in the ultraviolet than expected

  10. Seeing the Unseen: MIR Spectroscopic Constraints on Quasar Big Blue Bumps

    Science.gov (United States)

    Gallagher, Sarah; Hines, Dean; Leighly, Karen; Ogle, Patrick; Richards, Gordon

    2008-03-01

    The IRS on Spitzer offers an exciting opportunity for detailed, mid-infrared spectroscopy of z~2 quasars for the first time. This epoch, sampling the peak of the quasar luminosity evolution, is particularly important for understanding the nature of quasar activity in the most massive galaxies. We aim to use this powerful tool to constrain the shape and power of the far-ultraviolet through soft-X-ray ionizing continuum of luminous quasars. Though these so-called `big blue bumps' dominate the power of quasar spectral energy distributions, they are largely unobservable as a result of hydrogen opacity in the Universe. However, we can determine the properties of the big blue bump by studying emission lines from ions in the coronal line region that emit in the mid-infrared and are created by those same energetic and elusive photons. We propose deep, high quality IRS observations of 5 luminous quasars with a range of HeII emission properties to investigate the mid-infrared spectral region in depth and constrain the shape of the ionizing continuum in each quasar. In addition, these high S/N spectra will provide templates for interpreting lower resolution, lower S/N IRS spectra.

  11. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    Science.gov (United States)

    2004-01-01

    the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger

  12. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  13. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Skielboe, Andreas; Wojtak, Radosław; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

    2012-01-01

    Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

  14. The intrinsic far-UV spectrum of the high-redshift quasar B1422+231

    Science.gov (United States)

    O'Dowd, M.; Bate, N. F.; Webster, R. L.; Labrie, K.; King, A. L.; Yong, S.-. Y.

    2018-02-01

    We present new spectroscopy of the z = 3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well as across the velocity structure of the Lyman-α line. We take advantage of this differential microlensing to algebraically decompose the quasar spectrum into the absorbed broad emission line and absorbed continuum components. We use the latter to derive the intrinsic Ly α forest absorption spectrum. The proximity effect is clearly detected, with a proximity zone edge of 8.6-17.3 Mpc from the quasar, implying (perhaps intermittent) activity over at least 28 Myr. The Ly α line profile exhibits a blue excess that is inconsistent with a symmetric fit to the unabsorbed red side. This has important implications for the use of this fitting technique in estimating the absorbed blue Ly α wings of Gunn-Peterson trough quasars.

  15. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  16. Nearby Galaxies: Templates for Galaxies Across Cosmic Time

    OpenAIRE

    Lockman, F. J.; Ott, J.

    2009-01-01

    Studies of nearby galaxies including the Milky Way have provided fundamental information on the evolution of structure in the Universe, the existence and nature of dark matter, the origin and evolution of galaxies, and the global features of star formation. Yet despite decades of work, many of the most basic aspects of galaxies and their environments remain a mystery. In this paper we describe some outstanding problems in this area and the ways in which large radio facilities will contribute ...

  17. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    Science.gov (United States)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment

  18. Gamma-ray bursts, QSOs and active galaxies.

    Science.gov (United States)

    Burbidge, Geoffrey

    2007-05-15

    The similarity of the absorption spectra of gamma-ray burst (GRB) sources or afterglows with the absorption spectra of quasars (QSOs) suggests that QSOs and GRB sources are very closely related. Since most people believe that the redshifts of QSOs are of cosmological origin, it is natural to assume that GRBs or their afterglows also have cosmological redshifts. For some years a few of us have argued that there is much optical evidence suggesting a very different model for QSOs, in which their redshifts have a non-cosmological origin, and are ejected from low-redshift active galaxies. In this paper I extend these ideas to GRBs. In 2003, Burbidge (Burbidge 2003 Astrophys. J. 183, 112-120) showed that the redshift periodicity in the spectra of QSOs appears in the redshift of GRBs. This in turn means that both the QSOs and the GRB sources are similar objects ejected from comparatively low-redshift active galaxies. It is now clear that many of the GRBs of low redshift do appear in, or very near, active galaxies.A new and powerful result supporting this hypothesis has been produced by Prochter et al. (Prochter et al. 2006 Astrophys. J. Lett. 648, L93-L96). They show that in a survey for strong MgII absorption systems along the sightlines to long-duration GRBs, nearly every sightline shows at least one absorber. If the absorbers are intervening clouds or galaxies, only a small fraction should show absorption of this kind. The number found by Prochter et al. is four times higher than that normally found for the MgII absorption spectra of QSOs. They believe that this result is inconsistent with the intervening hypothesis and would require a statistical fluctuation greater than 99.1% probability. This is what we expect if the absorption is intrinsic to the GRBs and the redshifts are not associated with their distances. In this case, the absorption must be associated with gas ejected from the QSO. This in turn implies that the GRBs actually originate in comparatively low

  19. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    International Nuclear Information System (INIS)

    Tal, Tomer; Van Dokkum, Pieter G.; Leja, Joel; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-01-01

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  20. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  1. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  2. The group environment of Seyfert galaxies. II. Spectrophotometry of galaxies in groups

    International Nuclear Information System (INIS)

    Fricke, K.J.; Kollatschny, W.

    1989-01-01

    Medium-resolution spectrophotometric data of 104 galaxies have been obtained. These galaxies are members of 22 loose groups of < 1 Mpc size. Thirteen of these groups contain Seyfert galaxies. In this paper we present calibrated emission-line data and absolute optical spectra of the individual galaxies as well as plates of each group

  3. THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

    International Nuclear Information System (INIS)

    Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei; Scarlata, Claudia; Capak, Peter; Carollo, C. M.; Oesch, Pascal; Ellis, Richard S.; Salvato, Mara; Scoville, Nick; Drory, Niv; Leauthaud, Alexie; Koekemoer, Anton M.; Murray, Norman; Ilbert, Olivier; Pozzetti, Lucia

    2010-01-01

    The increasing abundance of passive 'red-sequence' galaxies since z ∼ 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (∼ 10 M sun ) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M * ∼ 11 M sun increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z ∼ 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

  4. An Intrinsic Baldwin Effect in the H Beta Broad Emission Line in the Spectrum of NGC 5548

    Science.gov (United States)

    Gilbert, Karoline M.; Peterson, Bradley M.

    2003-01-01

    We investigate the possibility of an intrinsic Baldwin effect (i.e., nonlinear emission-line response to continuum variations) in the broad HP emission line of the active galaxy NGC 5548 using crosscorrelation techniques to remove light-travel time effects from the data. We find a nonlinear relationship between the HP emission line and continuum fluxes that is in good agreement with theoretical predictions. We suggest that similar analysis of multiple lines might provide a useful diagnostic of physical conditions in the broad-line region.

  5. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    Science.gov (United States)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  6. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    Science.gov (United States)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  7. The galaxy builders

    Science.gov (United States)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  8. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  9. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    Science.gov (United States)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  10. Secular evolution of galaxies and galaxy clusters in decaying dark matter cosmology

    International Nuclear Information System (INIS)

    Ferrer, Francesc; Nipoti, Carlo; Ettori, Stefano

    2009-01-01

    If the dark matter sector in the Universe is composed by metastable particles, galaxies and galaxy clusters are expected to undergo significant secular evolution from high to low redshift. We show that the decay of dark matter, with a lifetime compatible with cosmological constraints, can be at the origin of the observed evolution of the Tully-Fisher relation of disk galaxies and alleviate the problem of the size evolution of elliptical galaxies, while being consistent with the current observational constraints on the gas fraction of clusters of galaxies.

  11. The Arecibo Galaxy Environment Survey IX: the isolated galaxy sample

    Czech Academy of Sciences Publication Activity Database

    Minchin, R.F.; Auld, R.; Davies, J.I.; Karachentsev, I.D.; Keenan, O.; Momjian, E.; Rodriguez, R.; Taber, T.; Taylor, Rhys

    2016-01-01

    Roč. 455, č. 4 (2016), s. 3430-3435 ISSN 0035-8711 R&D Projects: GA MŠk LG14013; GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : individual galaxies NGC 1156 * individual galaxies NGC 5523 * individual galaxies UGC 2082 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  12. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE'S WIDE FIELD CAMERA 3

    International Nuclear Information System (INIS)

    Szomoru, Daniel; Franx, Marijn; Bouwens, Rychard J.; Van Dokkum, Pieter G.; Trenti, Michele; Illingworth, Garth D.; Labbe, Ivo; Oesch, Pascal A.; Carollo, C. Marcella

    2010-01-01

    We present very deep Wide Field Camera 3 (WFC3) photometry of a massive, compact galaxy located in the Hubble Ultra Deep Field. This quiescent galaxy has a spectroscopic redshift z = 1.91 and has been identified as an extremely compact galaxy by Daddi et al. We use new H F160W imaging data obtained with Hubble Space Telescope/WFC3 to measure the deconvolved surface brightness profile to H ∼ 28 mag arcsec -2 . We find that the surface brightness profile is well approximated by an n = 3.7 Sersic profile. Our deconvolved profile is constructed by a new technique which corrects the best-fit Sersic profile with the residual of the fit to the observed image. This allows for galaxy profiles which deviate from a Sersic profile. We determine the effective radius of this galaxy: r e = 0.42 ± 0.14 kpc in the observed H F160W band. We show that this result is robust to deviations from the Sersic model used in the fit. We test the sensitivity of our analysis to faint 'wings' in the profile using simulated galaxy images consisting of a bright compact component and a faint extended component. We find that due to the combination of the WFC3 imaging depth and our method's sensitivity to extended faint emission we can accurately trace the intrinsic surface brightness profile, and that we can therefore confidently rule out the existence of a faint extended envelope around the observed galaxy down to our surface brightness limit. These results confirm that the galaxy lies a factor ∼10 off from the local mass-size relation.

  13. Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Ibata, R.; Murdin, P.

    2000-11-01

    The Sagittarius DWARF GALAXY is the closest member of the Milky Way's entourage of satellite galaxies. Discovered by chance in 1994, its presence had previously been overlooked because it is largely hidden by the most crowded regions of our own Galaxy with which it is merging....

  14. A Revised Velocity for the Globular Cluster GC-98 in the Ultra Diffuse Galaxy NGC 1052-DF2

    Science.gov (United States)

    van Dokkum, Pieter; Cohen, Yotam; Danieli, Shany; Romanowsky, Aaron; Abraham, Roberto; Brodie, Jean; Conroy, Charlie; Kruijssen, J. M. Diederik; Lokhorst, Deborah; Merritt, Allison; Mowla, Lamiya; Zhang, Jielai

    2018-06-01

    We recently published velocity measurements of luminous globular clusters in the galaxy NGC1052-DF2, concluding that it lies far off the canonical stellar mass - halo mass relation. Here we present a revised velocity for one of the globular clusters, GC-98, and a revised velocity dispersion measurement for the galaxy. We find that the intrinsic dispersion $\\sigma=5.6^{+5.2}_{-3.8}$ km/s using Approximate Bayesian Computation, or $\\sigma=7.8^{+5.2}_{-2.2}$ km/s using the likelihood. The expected dispersion from the stars alone is ~7 km/s. Responding to a request from the Editors of ApJ Letters and RNAAS, we also briefly comment on the recent analysis of our measurements by Martin et al. (2018).

  15. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  16. THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Perez-Montero, E.; Vilchez, J. M. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Papaderos, P., E-mail: amorin@iaa.es [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-04-20

    We present deep broadband imaging and long-slit spectroscopy of three compact, low-mass starburst galaxies at redshift z {approx} 0.2-0.3, also referred to as Green Peas (GP). We measure physical properties of the ionized gas and derive abundances for several species with high precision. We find that the three GPs display relatively low extinction, low oxygen abundances, and remarkably high nitrogen-to-oxygen ratios. We also report on the detection of clear signatures of Wolf-Rayet (W-R) stars in these galaxies. We carry out a pilot spectral synthesis study using a combination of both population and evolutionary synthesis models. Their outputs are in qualitative agreement, strongly suggesting a formation history dominated by starbursts. In agreement with the presence of W-R stars, these models show that these GPs currently undergo a major starburst producing between {approx}4% and {approx}20% of their stellar mass. However, as models imply, they are old galaxies that formed most of their stellar mass several Gyr ago. The presence of old stars has been spectroscopically verified in one of the galaxies by the detection of Mg I {lambda}{lambda}5167, 5173 absorption lines. Additionally, we perform a surface photometry study based on Hubble Space Telescope data, which indicates that the three galaxies possess an exponential low surface brightness envelope. If due to stellar emission, the latter is structurally compatible with the evolved hosts of luminous blue compact dwarf (BCD)/H II galaxies, suggesting that GPs are identifiable with major episodes in the assembly history of local BCDs. These conclusions highlight the importance of these objects as laboratories for studying galaxy evolution at late cosmic epochs.

  17. THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES

    International Nuclear Information System (INIS)

    Amorín, R.; Pérez-Montero, E.; Vílchez, J. M.; Papaderos, P.

    2012-01-01

    We present deep broadband imaging and long-slit spectroscopy of three compact, low-mass starburst galaxies at redshift z ∼ 0.2-0.3, also referred to as Green Peas (GP). We measure physical properties of the ionized gas and derive abundances for several species with high precision. We find that the three GPs display relatively low extinction, low oxygen abundances, and remarkably high nitrogen-to-oxygen ratios. We also report on the detection of clear signatures of Wolf-Rayet (W-R) stars in these galaxies. We carry out a pilot spectral synthesis study using a combination of both population and evolutionary synthesis models. Their outputs are in qualitative agreement, strongly suggesting a formation history dominated by starbursts. In agreement with the presence of W-R stars, these models show that these GPs currently undergo a major starburst producing between ∼4% and ∼20% of their stellar mass. However, as models imply, they are old galaxies that formed most of their stellar mass several Gyr ago. The presence of old stars has been spectroscopically verified in one of the galaxies by the detection of Mg I λλ5167, 5173 absorption lines. Additionally, we perform a surface photometry study based on Hubble Space Telescope data, which indicates that the three galaxies possess an exponential low surface brightness envelope. If due to stellar emission, the latter is structurally compatible with the evolved hosts of luminous blue compact dwarf (BCD)/H II galaxies, suggesting that GPs are identifiable with major episodes in the assembly history of local BCDs. These conclusions highlight the importance of these objects as laboratories for studying galaxy evolution at late cosmic epochs.

  18. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  19. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  20. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    Science.gov (United States)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.