WorldWideScience

Sample records for blood perfusion measurements

  1. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... is a valid method for assessing macular perfusion. Results were consistent with previous observations of hyperoxic blood flow reduction using blue field entoptic and laser Doppler velocimetry. Retinal perfusion seemed to be regulated around individual set points according to blood glucose levels. Multimodal...

  2. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure.

    Science.gov (United States)

    Kise, Yuya; Kuniyoshi, Yukio; Inafuku, Hitoshi; Nagano, Takaaki; Hirayasu, Tsuneo; Yamashiro, Satoshi

    2015-01-01

    During thoracoabdominal surgery in which segmental arteries are sacrificed over a large area, blood supply routes from collateral networks have received attention as a means of avoiding spinal cord injury. The aim of this study was to investigate spinal cord blood supply through a collateral network by directly measuring spinal cord blood flow and spinal cord perfusion pressure experimentally. In beagle dogs (n = 8), the thoracoabdominal aorta and segmental arteries L1-L7 were exposed, and a temporary bypass was created for distal perfusion. Next, a laser blood flow meter was placed on the spinal dura mater in the L5 region to measure the spinal cord blood flow. The following were measured simultaneously when the direct blood supply from segmental arteries L2-L7 to the spinal cord was stopped: mean systemic blood pressure, spinal cord perfusion pressure (blood pressure within the aortic clamp site), and spinal cord blood flow supplied via the collateral network. These variables were then investigated for evidence of correlations. Positive correlations were observed between mean systemic blood pressure and spinal cord blood flow during interruption of segmental artery flow both with (r = 0.844, P flow with and without distal perfusion (r = 0.803, P network from outside the interrupted segmental arteries, and high systemic blood pressure (∼1.33-fold higher) was needed to obtain the preclamping spinal cord blood flow, whereas 1.68-fold higher systemic blood pressure was needed when distal perfusion was halted. Spinal cord blood flow is positively correlated with mean systemic blood pressure and spinal cord perfusion pressure under spinal cord ischemia caused by clamping a wide range of segmental arteries. In open and endovascular thoracic and thoracoabdominal surgery, elevating mean systemic blood pressure is a simple and effective means of increasing spinal cord blood flow, and measuring spinal cord perfusion pressure seems to be useful for monitoring

  3. PulseCam: high-resolution blood perfusion imaging using a camera and a pulse oximeter.

    Science.gov (United States)

    Kumar, Mayank; Suliburk, James; Veeraraghavan, Ashok; Sabharwal, Ashutosh

    2016-08-01

    Measuring blood perfusion is important in medical care as an indicator of injury and disease. However, currently available devices to measure blood perfusion like laser Doppler flowmetry are bulky, expensive, and cumbersome to use. An alternative low-cost and portable camera-based blood perfusion measurement system has recently been proposed, but such camera-only system produces noisy low-resolution blood perfusion maps. In this paper, we propose a new multi-sensor modality, named PulseCam, for measuring blood perfusion by combining a traditional pulse oximeter with a video camera in a unique way to provide low noise and high-resolution blood perfusion maps. Our proposed multi-sensor modality improves per pixel signal to noise ratio of measured perfusion map by up to 3 dB and improves the spatial resolution by 2 - 3 times compared to best known camera-only methods. Blood perfusion measured in the palm using our PulseCam setup during a post-occlusive reactive hyperemia (PORH) test replicates standard PORH response curve measured using laser Doppler flowmetry device but with much lower cost and a portable setup making it suitable for further development as a clinical device.

  4. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  5. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  6. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  7. Fundamental supply of skin blood flow in the Chinese Han population: Measurements by a full-field laser perfusion imager.

    Science.gov (United States)

    Fei, W; Xu, S; Ma, J; Zhai, W; Cheng, S; Chang, Y; Wang, X; Gao, J; Tang, H; Yang, S; Zhang, X

    2018-05-08

    Skin blood flow is believed to link with many diseases, and shows a significant heterogeneity. There are several papers on basal cutaneous microcirculation perfusion in different races, while the data in Chinese is vacant. The aim was to establish the database of absolute fundamental supply of skin blood flow in the Chinese Han population. With a full-field laser perfusion imager (FLPI), the skin blood flow can be quantified. Cutaneous perfusion values were determined in 17 selected skin areas in 406 healthy participants aged between 20 and 80 years (mean 35.05 ± 11.33). Essential parameters such as weight, height were also measured and values of BMI were calculated. The perfusion values were reported in Arbitrary Perfusion Units (APU). The highest cutaneous perfusion value fell on eyelid (931.20 ± 242.59 in male and 967.83 ± 225.49 in female), and pretibial had the lowest value (89.09 ± 30.28 in male and 85.08 ± 33.59 in female). The values were higher in men than women on the bank of fingertips, nose, forehead, cheek, neck and earlobe (P < .05). Perfusion values on stretch and flexion side of forearm had negative correlation with age (P = .01 and P = 4.88 × 10 -3 , respectively) in male. Abdomen was negatively correlated with BMI in both gender (P = .02, respectively). Skin blood flow values vary with skin regions. There is a tendency to measure higher perfusion values in men than in women. And the values are irrelevant with age or BMI. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.

    Science.gov (United States)

    Sandberg, M; Zhang, Q; Styf, J; Gerdle, B; Lindberg, L-G

    2005-04-01

    To evaluate a specially developed photoplethysmographic (PPG) technique, using green and near-infrared light sources, for simultaneous non-invasive monitoring of skin and muscle perfusion. Evaluation was based on assessments of changes in blood perfusion to various provocations, such as post-exercise hyperaemia and hyperaemia following the application of liniment. The deep penetrating feature of PPG was investigated by measurement of optical radiation inside the muscle. Simultaneous measurements using ultrasound Doppler and the new PPG application were performed to elucidate differences between the two methods. Specific problems related to the influence of skin temperature on blood flow were highlightened, as well. Following static and dynamic contractions an immediate increase in muscle perfusion was shown, without increase in skin perfusion. Liniment application to the skin induced a rapid increase in skin perfusion, but not in muscle. Both similarities and differences in blood flow measured by Ultrasound Doppler and PPG were demonstrated. The radiant power measured inside the muscle, by use of an optical fibre, showed that the near-infrared light penetrates down to the vascular depth inside the muscle. The results of this study indicate the potentiality of the method for non-invasive measurement of local muscle perfusion, although some considerations still have to be accounted for, such as influence of temperature on blood perfusion.

  9. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    Science.gov (United States)

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  10. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  11. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... on a pixel-by-pixel basis of cerebral perfusion, cerebral blood volume, and blood-brain barrier permeability.......Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...... imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model-free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 +/- 16/30 +/- 8/56 +/- 45 mL/100 g...

  12. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI

    OpenAIRE

    Pinkham, Amy; Loughead, James; Ruparel, Kosha; Wu, Wen-Chau; Overton, Eve; Gur, Raquel; Gur, Ruben

    2011-01-01

    Arterial spin labeling imaging (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily comes from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utilit...

  13. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  14. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  15. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  16. Method for the assessment of placental blood perfusion using /sup 99/Tc pertechnetate

    Energy Technology Data Exchange (ETDEWEB)

    Suonio, S; Olkkonen, H [Kuopio Central Hospital (Finland)

    1977-10-01

    A radioisotope method was developed for the measurement of placental blood flow using /sup 99/Tc pertechnetate as a tracer and a single detector as a measuring device. The results are given as placental perfusion rate (ml/min/ml) calculated from the tracer-appearance curve. The series consisted of 148 healthy pregnant women between the 28th and 42nd week and fifty pregnancies with a hypertensive disease. In healthy subjects the placental perfusion rate increased by about 32% in the period between 28th and 38th week, but there was a large variation. The perfusion rate showed a tendency to diminish at term. In a group of fifty hypertensive pregnancies a highly significant decrease in the perfusion rate was observed when compared with normal subjects. The conclusion drawn is that this method can be used for the quantitative measurement of placental blood supply.

  17. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  18. Blood temperature and perfusion to exercising and non-exercising human limbs.

    Science.gov (United States)

    González-Alonso, José; Calbet, José A L; Boushel, Robert; Helge, Jørn W; Søndergaard, Hans; Munch-Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P; Secher, Niels H

    2015-10-01

    What is the central question of this study? Temperature-sensitive mechanisms are thought to contribute to blood-flow regulation, but the relationship between exercising and non-exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non-exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature- and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human limbs is not established. Blood temperature (TB ), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher TB and limb V̇O2. Leg and arm vascular conductance during exercise compared with rest was related closely to TB (r(2) = 0.91; P exercise, LBF increased in association with elevations in TB and limb V̇O2, whereas ABF, arm TB and V̇O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V̇O2. In 12 trained males, increases in femoral TB and LBF during incremental leg exercise were mirrored by similar pulmonary artery TB and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, TB and aerobic metabolism in exercising and non

  19. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  20. Blood temperature and perfusion to exercising and non‐exercising human limbs

    Science.gov (United States)

    Calbet, José A. L.; Boushel, Robert; Helge, Jørn W.; Søndergaard, Hans; Munch‐Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P.; Secher, Niels H.

    2015-01-01

    New Findings What is the central question of this study? Temperature‐sensitive mechanisms are thought to contribute to blood‐flow regulation, but the relationship between exercising and non‐exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non‐exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature‐ and metabolism‐sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature‐sensitive mechanisms may contribute to blood‐flow regulation, but the influence of temperature on perfusion to exercising and non‐exercising human limbs is not established. Blood temperature (T B), blood flow and oxygen uptake (V˙O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher T B and limb V˙O2. Leg and arm vascular conductance during exercise compared with rest was related closely to T B (r 2 = 0.91; P exercise, LBF increased in association with elevations in T B and limb V˙O2, whereas ABF, arm T B and V˙O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V˙O2. In 12 trained males, increases in femoral T B and LBF during incremental leg exercise were mirrored by similar pulmonary artery T B and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, T B and aerobic metabolism

  1. Heat-washout measurements compared to distal blood pressure and perfusion in orthopaedic patients with foot ulcers

    DEFF Research Database (Denmark)

    Midttun, M; Azad, B B S; Broholm, R

    2015-01-01

    Distal blood pressure and local skin perfusion pressure were compared to measurement of blood flow rate (BFR) measured by the heat-washout method in orthopaedic patients with and without diabetes, all with a foot ulcer in one foot, compared to healthy controls. The correlation was good between heat......-washout and distal blood pressure in patients with diabetes with and without an ulcer (P = 0·024 and 0·059, respectively). The correlation was weak in patients without diabetes with and without an ulcer, most probably due to power problems (P = 0·118 and 0·116, respectively). The correlation in the healthy controls...... the surrounding tissue, and therefore, measurements are easier made in these subjects. BFR in the first toe increased significantly in all patients when the foot was moved from heart level to 50 cm below heart level (P = between 0·03 and 0·05) as previously seen in patients with claudication...

  2. Relationship between dynamic infrared thermal images and blood perfusion rate of the tongue in anaemia patients

    Science.gov (United States)

    Xie, Haiwei; Zhang, Yan

    2018-03-01

    The relationship between dynamic infrared (IR) thermal images and blood perfusion rate of the tongues of anaemia patients was investigated. Blood perfusion rates at multiple locations on the tongues of 62 anaemia patients and 70 control subjects were measured. For both groups of subjects, dynamic IR thermal images were also recorded within 16 s after the mouth opened. The results showed that the blood perfusion rates at different sites (apex, middle, left side and right side) on the tongues in anaemia patients (3.49, 3.71, 3.85 and 3.77 kg/s m-3) were significantly lower than those at the corresponding sites in control subjects (4.45, 4.66, 4.81 and 4.70 kg/s m-3). After the mouth opened, the tongue temperature decreased more rapidly in anaemia patients than in control subjects. To analyse the heat transfer mechanism, a transient heat transfer model of the tongue was developed. The tongue temperatures in anaemia patients and control subjects were calculated using this model and compared to the tongue temperatures measured by the IR thermal imager. The relationship between the tongue surface temperature and the tongue blood perfusion rate was analysed. The simulation results indicated that the low blood perfusion rate and the correlated changes in anaemia patients can cause faster temperature decreases of the tongue surface.

  3. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  4. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  5. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model.

    Science.gov (United States)

    Hakimé, Antoine; Peddi, Himaja; Hines-Peralta, Andrew U; Wilcox, Carol J; Kruskal, Jonathan; Lin, Shezhang; de Baere, Thierry; Raptopoulos, Vassilios D; Goldberg, S Nahum

    2007-06-01

    To prospectively compare single- and multisection computed tomographic (CT) perfusion for tumor blood flow determination in an animal model. All animal protocols and experiments were approved by the institutional animal care and use committee before the study was initiated. R3230 mammary adenocarcinoma was implanted in 11 rats. Tumors (18-20 mm) were scanned with dynamic 16-section CT at baseline and after administration of arsenic trioxide, which is known to cause acute reduction in blood flow. The concentration of arsenic was titrated (0-6 mg of arsenic per kilogram of body weight) to achieve a defined blood flow reduction (0%-75%) from baseline levels at 60 minutes, as determined with correlative laser Doppler flowmetry. The mean blood flow was calculated for each of four 5-mm sections that covered the entire tumor, as well as for the entire tumor after multiple sections were processed. Measurements obtained with both methods were correlated with laser Doppler flowmetry measurements. Interobserver agreement was determined for two blinded radiologists, who calculated the percentage of blood flow reduction for the "most representative" single sections at baseline and after arsenic administration. These results were compared with the interobserver variability of the same radiologists obtained by summing blood flow changes for the entire tumor volume. Overall correlations for acute blood flow reduction were demonstrated between laser Doppler flowmetry and the two CT perfusion approaches (single-section CT, r=0.85 and r(2)=0.73; multisection CT, r=0.93 and r(2)=0.87; pooled data, P=.01). CT perfusion disclosed marked heterogeneity of blood flow, with variations of 36% +/- 13 between adjacent 5-mm sections. Given these marked differences, interobserver agreement was much lower for single-section CT (standard deviation, 0.22) than for multisection CT (standard deviation, 0.10; P=.01). Multisection CT perfusion techniques may provide an accurate and more reproducible

  6. Evaluating blood perfusion of the corpus luteum in beef cows during fescue toxicosis.

    Science.gov (United States)

    Cline, G F; Muth-Spurlock, A M; Voelz, B E; Lemley, C O; Larson, J E

    2016-01-01

    The aim of this study was to determine if fescue toxicosis altered blood perfusion in the corpus luteum (CL) and peripheral concentrations of progesterone in cattle. The estrous cycles of 36 nonpregnant Angus or Charolais cows were synchronized in 2 replicates using the CO-Synch+CIDR protocol. Seven days after initiation of the protocol, cows were assigned (d 0) to 1 of 2 dietary treatments: 2.5 kg of 1) Kentucky-31 endophyte-infected (KY31; = 14) or 2) MaxQ novel endophyte (MaxQ; = 12) tall fescue seed. On d 7, ovaries were examined using ultrasonography, and only cows that had 1 CL present remained on the study ( = 26). Images of blood perfusion of CL, blood samples, rectal temperatures, and blood pressure of tails were collected on d 10, 13, 15, and 18. Images of CL blood perfusion were analyzed using ImageJ software for pixel density, and scored visually (0 to 9 with 0 = no perfusion, 9 = complete perfusion) by 2 independent technicians. The MIXED procedure of SAS was used with day as a repeated measure. Least squares means and SEM are reported. Cows receiving KY31 had greater rectal temperatures ( 0.003; 38.76 ± 0.08°C) than those receiving MaxQ (38.44 ± 0.08°C), providing evidence that the cows treated with KY31 were influenced by fescue toxicosis. Pulse pressure and mean arterial pressure were decreased ( cows receiving KY31 (55.26 ± 2.81 and 80.06 ± 2.72 mmHg, respectively) than MaxQ (66.58 ± 3.03 and 91.38 ± 2.93 mmHg, respectively). Concentrations of progesterone were similar ( = 0.54) between cows receiving KY31 (6.04 ± 0.53 ng/mL) or MaxQ (6.36 ± 0.63 ng/mL). Pixel densities ( = 0.14) and visual perfusion scores were similar ( = 0.11) between cows receiving KY31 (1477.20 ± 655.62 pixels and 2.23 ± 0.34, respectively) or MaxQ (2934.70 ± 718.20 pixels and 3.00 ± 0.36, respectively). Mean CL volume was similar ( 0.95) between treatments. In conclusion, blood perfusion of CL or peripheral concentrations of progesterone were not altered at the

  7. Blood Perfusion in Human Eyelid Skin Flaps Examined by Laser Speckle Contrast Imaging-Importance of Flap Length and the Use of Diathermy.

    Science.gov (United States)

    Nguyen, Cu Dinh; Hult, Jenny; Sheikh, Rafi; Tenland, Kajsa; Dahlstrand, Ulf; Lindstedt, Sandra; Malmsjö, Malin

    2017-10-11

    It is well known that blood perfusion is important for the survival of skin flaps. As no study has been conducted to investigate how the blood perfusion in human eyelid skin flaps is affected by the flap length and diathermy, the present study was carried out to investigate these in patients. Fifteen upper eyelids were dissected as part of a blepharoplastic procedure, releasing a 30-mm long piece of skin, while allowing the 5 mm wide distal part of the skin to remain attached, to mimic a skin flap (hereafter called a "skin flap"). Blood perfusion was measured before and after repeated diathermy, using laser speckle contrast imaging. Blood perfusion decreased from the base to the tip of the flap: 5 mm from the base, the perfusion was 69%, at 10 mm it was 40%, at 15 mm it was 20%, and at 20 mm it was only 13% of baseline values. Diathermy further decreased blood perfusion (measured 15 mm from the base) to 13% after applying diathermy for the first time, to 6% after the second and to 4% after the third applications of diathermy. Blood perfusion falls rapidly with distance from the base of skin flaps on the human eyelid, and diathermy reduces blood perfusion even further. Clinically, it may be advised that flaps with a width of 5 mm be no longer than 15 mm (i.e., a width:length ratio of 1:3), and that the use of diathermy should be carefully considered.

  8. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    Science.gov (United States)

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  9. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  10. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  11. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased

  12. Impaired healing of cervical oesophagogastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry.

    Science.gov (United States)

    Pierie, J P; De Graaf, P W; Poen, H; Van der Tweel, I; Obertop, H

    1994-11-01

    To assess the value of relative blood perfusion of the gastric tube in prediction of impaired healing of cervical oesophagogastrostomies. Prospective study. University hospital, The Netherlands. Thirty patients undergoing transhiatal oesophagectomy and partial gastrectomy for cancer of the oesophagus or oesophagogastric junction, with gastric tube reconstruction and cervical oesophagogastrostomy. Operative measurement of gastric blood perfusion at four sites by laser Doppler flowmetry and perfusion of the same sites after construction of the gastric tube expressed as a percentage of preconstruction values. The relative perfusion at the most proximal site of the gastric tube was significantly lower than at the more distal sites (p = 0.001). Nine of 18 patients (50%) in whom the perfusion of the proximal gastric tube was less than 70% of preconstruction values developed an anastomotic stricture, compared with only 1 of 12 patients (8%) with a relative perfusion of 70% or more (p = 0.024). A reduction in perfusion of the gastric tube did not predict leakage. Impaired anastomotic healing is unlikely if relative perfusion is 70% or more of preconstruction values. Perfusion of less than 70% partly predicts the occurrence of anastomotic stricture, but leakage cannot be predicted. Factors other than blood perfusion may have a role in the process of anastomotic healing.

  13. Prediction of residual lung function after lung surgery, and examination of blood perfusion in the pre- and postoperative lung using three-dimensional SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Shimatani, Shinji [Toho Univ., Tokyo (Japan). School of Medicine

    2001-01-01

    In order to predict postoperative pulmonary function after lung surgery, preoperative {sup 99m}Tc-macroaggregated albumin (MAA) lung perfusion scans with single-photon emission computed tomography (SPECT) were performed. Spirometry was also performed before and 4-6 months after surgery in 40 patients. In addition, changes in blood perfusion in the pre- and postoperative lung were examined by postoperative lung perfusion scans in 18 of the 40 patients. We measured the three-dimensional (3-D) imaging volume of the operative and contralateral lungs using the volumes rendering method at blood perfusion thresholds of 20, 50 and 75%, utilizing {sup 99m}Tc-MAA lung perfusion, and predicted pulmonary function by means of the measured volumes. We examined the correlation between predicted and the measured values of postoperative pulmonary function, forced vital capacity (FVC) and forced expiratory volume in one second (FEV{sub 1.0}). The correlation between FEV{sub 1.0} predicted by SPECT (threshold 50%) and measured postoperative lung function resembled that between lung function predicted by the standard planar method and measured FEV{sub 1.0} in the lobectomy group. We then examined the ratios of both pre- and postoperative blood perfusion volumes obtained using 3-D imaging at lung perfusion threshold ranges of 10% each (PV20-29, PV30-39) to pre- and postoperative total perfusion (PV20-100). In the lobectomy group, the postoperative PV20-29/PV20-100 value was significantly higher for the operative side lung than the preoperative PV20-29/PV20-100 value, and the postoperative PV50-59, 60-69, 70-79, 80-89 and 90-100/PV20-100 values were significantly lower than the respective preoperative values. However, in the contralateral lung, the respective pre- and postoperative PV/PV20-100 values were almost identical. These findings suggest that the rate of low blood perfusion increased while the rate of middle to high perfusion decreased in the lobectomy group in the operative

  14. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  15. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    Science.gov (United States)

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P cryotherapy. PMID:26632263

  16. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    International Nuclear Information System (INIS)

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-01-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow

  17. Compact Laser Doppler Flowmeter (LDF Fundus Camera for the Assessment of Retinal Blood Perfusion in Small Animals.

    Directory of Open Access Journals (Sweden)

    Marielle Mentek

    Full Text Available Noninvasive techniques for ocular blood perfusion assessment are of crucial importance for exploring microvascular alterations related to systemic and ocular diseases. However, few techniques adapted to rodents are available and most are invasive or not specifically focused on the optic nerve head (ONH, choroid or retinal circulation. Here we present the results obtained with a new rodent-adapted compact fundus camera based on laser Doppler flowmetry (LDF.A confocal miniature flowmeter was fixed to a specially designed 3D rotating mechanical arm and adjusted on a rodent stereotaxic table in order to accurately point the laser beam at the retinal region of interest. The linearity of the LDF measurements was assessed using a rotating Teflon wheel and a flow of microspheres in a glass capillary. In vivo reproducibility was assessed in Wistar rats with repeated measurements (inter-session and inter-day of retinal arteries and ONH blood velocity in six and ten rats, respectively. These parameters were also recorded during an acute intraocular pressure increase to 150 mmHg and after heart arrest (n = 5 rats.The perfusion measurements showed perfect linearity between LDF velocity and Teflon wheel or microsphere speed. Intraclass correlation coefficients for retinal arteries and ONH velocity (0.82 and 0.86, respectively indicated strong inter-session repeatability and stability. Inter-day reproducibility was good (0.79 and 0.7, respectively. Upon ocular blood flow cessation, the retinal artery velocity signal substantially decreased, whereas the ONH signal did not significantly vary, suggesting that it could mostly be attributed to tissue light scattering.We have demonstrated that, while not adapted for ONH blood perfusion assessment, this device allows pertinent, stable and repeatable measurements of retinal blood perfusion in rats.

  18. Reproducibility of Dynamic Computed Tomography Brain Perfusion Measurements in Patients with Significant Carotid Artery Stenosis

    International Nuclear Information System (INIS)

    Serafin, Z.; Kotarski, M.; Karolkiewicz, M.; Mindykowski, R.; Lasek, W.; Molski, S.; Gajdzinska, M.; Nowak-Nowacka, A.

    2009-01-01

    Background: Perfusion computed tomography (PCT) determination is a minimally invasive and widely available technique for brain blood flow assessment, but its application may be restricted by large variation of results. Purpose: To determine the intraobserver, interobserver, and inter examination variability of brain PCT absolute measurements in patients with significant carotid artery stenosis (CAS), and to evaluate the effect of the use of relative perfusion values on PCT reproducibility. Material and Methods: PCT imaging was completed in 61 patients before endarterectomy, and in 38 of these within 4 weeks after treatment. Cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), and peak enhancement intensity (PEI) were calculated with the maximum slope method. Inter examination variability was evaluated based on perfusion of hemisphere contralateral to the treated CAS, from repeated examinations. Interobserver and intraobserver variability were established for the untreated side, based on pretreatment examination. Results: Interobserver and intraobserver variability were highest for CBF measurement (28.8% and 32.5%, respectively), and inter examination variability was the highest for CBV (24.1%). Intraobserver and interobserver variability were higher for absolute perfusion values compared with their respective ratios for CBF and TTP. The only statistically significant difference between perfusion values measured by two observers was for CBF (mean 78.3 vs. 67.5 ml/100 g/min). The inter examination variability of TTP (12.1%) was significantly lower than the variability of other absolute perfusion measures, and the inter examination variability of ratios was significantly lower than absolute values for all the parameters. Conclusion: In longitudinal studies of patients with chronic cerebral ischemia, PCT ratios and either TTP or CBV are more suitable measures than absolute CBF values, because of their considerably lower inter- and intraobserver

  19. Reproducibility of Dynamic Computed Tomography Brain Perfusion Measurements in Patients with Significant Carotid Artery Stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, Z.; Kotarski, M.; Karolkiewicz, M.; Mindykowski, R.; Lasek, W.; Molski, S.; Gajdzinska, M.; Nowak-Nowacka, A. (Dept. of Radiology and Diagnostic Imaging, and Dept. of General and Vascular Surgery, Nicolaus Copernicus Univ., Collegium Medicum, Bydgoszcz (Poland))

    2009-02-15

    Background: Perfusion computed tomography (PCT) determination is a minimally invasive and widely available technique for brain blood flow assessment, but its application may be restricted by large variation of results. Purpose: To determine the intraobserver, interobserver, and inter examination variability of brain PCT absolute measurements in patients with significant carotid artery stenosis (CAS), and to evaluate the effect of the use of relative perfusion values on PCT reproducibility. Material and Methods: PCT imaging was completed in 61 patients before endarterectomy, and in 38 of these within 4 weeks after treatment. Cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), and peak enhancement intensity (PEI) were calculated with the maximum slope method. Inter examination variability was evaluated based on perfusion of hemisphere contralateral to the treated CAS, from repeated examinations. Interobserver and intraobserver variability were established for the untreated side, based on pretreatment examination. Results: Interobserver and intraobserver variability were highest for CBF measurement (28.8% and 32.5%, respectively), and inter examination variability was the highest for CBV (24.1%). Intraobserver and interobserver variability were higher for absolute perfusion values compared with their respective ratios for CBF and TTP. The only statistically significant difference between perfusion values measured by two observers was for CBF (mean 78.3 vs. 67.5 ml/100 g/min). The inter examination variability of TTP (12.1%) was significantly lower than the variability of other absolute perfusion measures, and the inter examination variability of ratios was significantly lower than absolute values for all the parameters. Conclusion: In longitudinal studies of patients with chronic cerebral ischemia, PCT ratios and either TTP or CBV are more suitable measures than absolute CBF values, because of their considerably lower inter- and intraobserver

  20. Blood temperature and perfusion to exercising and non-exercising human limbs

    DEFF Research Database (Denmark)

    González-Alonso, José; Calbet, José Al; Boushel, Robert

    2015-01-01

    Temperature-sensitive mechanisms may contribute to blood flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human limbs is not established. Blood temperature (TB ), blood flow and oxygen uptake (VO2 ) in the legs and arms were measured in 16 healthy...... humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was 4-fold higher than arm blood flow (ABF) in association with higher TB and limb VO2 . Leg and arm vascular conductance during exercise compared to rest...... was related closely to TB (R(2) = 0.91; P exercise, LBF increased in association with elevations in TB and limb VO2 whereas ABF, arm TB and VO2 remained largely unchanged. During...

  1. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruikang K [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97237 (United States)

    2007-12-07

    Optical micro-angiography (OMAG) is a recently developed method of imaging localized blood perfusion at capillary level resolution within microcirculatory beds. This paper reports that the OMAG is capable of directional blood perfusion mapping in vivo. This is achieved simply by translating the mirror located in the reference arm back and forth while 3D imaging is performed. The mirror which moves toward the incident beam gives the blood perfusion that flows away from the beam direction and vice versa. The approach is experimentally demonstrated by imaging of a flow phantom and then cerebro-vascular perfusion of a live mouse with cranium intact.

  2. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    Energy Technology Data Exchange (ETDEWEB)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D. [Dicle Univ., Diyarbakir (Turkey). Medical School

    2001-12-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ({sup 99m}Tc MAA) via penil vein. After injection of {sup 99m}Tc MAA, 3 minutes fixed images were detected by a {gamma} camera in posterior position at 15 minutes and 5 hours. {sup 99m}Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  3. Lung perfusion in hemorrhagic shock of rats. The effects of resuscitation with whole blood, saline or hes 6%

    International Nuclear Information System (INIS)

    Turhanoglu, S.; Kaya, S.; Kararmaz, A.; Turhanoglu, A.D.

    2001-01-01

    This study was undertaken to determine the effects of various resuscitation regimens on lung perfusion following resuscitation from hemorrhagic shock. Fourty male Sprague-Dawley rats (250-300 g) were used. The rats were divided randomly into four groups (n=10 for each) and were sedated with intramuscular ketamine (100 mg/kg). We measured blood pressure, rectal temperature and lung perfusion using radioscintigraphy with a technetium colloid indicator. The systolic blood pressure was decreased 75% by removing blood via v. jugularis in the first three groups and group 4 was accepted as the control group, and blood volume was not diminished. Then the first three groups were resuscitated with autologous blood containing 125 units heparine/ml in group 1, saline in group 2, and hydroxyethyl starch (HES) 6% in group 3. After the correction of hypovolemia, all animals were injected 100 Bg (0.1 cc) technetium 99m macroaggregated albumin ( 99m Tc MAA) via penil vein. After injection of 99m Tc MAA, 3 minutes fixed images were detected by a γ camera in posterior position at 15 minutes and 5 hours. 99m Tc MMA ''wash out'' rate in lung was determined quantitatively at 5 hours. Compared to a control group, lung perfusion was decreased significantly in groups resuscitated with saline, and HES 6% while perfusion was restored with autologous blood. We conclude that heparinized autologous blood saved lung capillary circulation in hemorrhagic shock in rats. (author)

  4. Mastication induces long-term increases in blood perfusion of the trigeminal principal nucleus.

    Science.gov (United States)

    Viggiano, A; Manara, R; Conforti, R; Paccone, A; Secondulfo, C; Lorusso, L; Sbordone, L; Di Salle, F; Monda, M; Tedeschi, G; Esposito, F

    2015-12-17

    Understanding mechanisms for vessel tone regulation within the trigeminal nuclei is of great interest because some headache syndromes are due to dysregulation of such mechanisms. Previous experiments on animal models suggest that mastication may alter neuron metabolism and blood supply in these nuclei. To investigate this hypothesis in humans, arterial spin-labeling magnetic resonance imaging (MRI) was used to measure blood perfusion within the principal trigeminal nucleus (Vp) and in the dorsolateral-midbrain (DM, including the mesencephalic trigeminal nucleus) in healthy volunteers, before and immediately after a mastication exercise consisting of chewing a gum on one side of the mouth for 1 h at 1 bite/s. The side preference for masticating was evaluated with a chewing test and the volume of the masseter muscle was measured on T1-weighted MRI scans. The results demonstrated that the mastication exercise caused a perfusion increase within the Vp, but not in the DM. This change was correlated to the preference score for the side where the exercise took place. Moreover, the basal Vp perfusion was correlated to the masseter volume. These results indicate that the local vascular tone of the trigeminal nuclei can be constitutively altered by the chewing practice and by strong or sustained chewing. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Bisdas, Sotirios [JWG University Hospital, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank [Hannover Medical School, Department of Neuroradiology, Hannover (Germany); Berding, Georg [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Weissenborn, Karin; Ahl, Bjoern [Hannover Medical School, Department of Neurology, Hannover (Germany)

    2006-10-15

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [{sup 15}O]H{sub 2}O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  6. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    International Nuclear Information System (INIS)

    Bisdas, Sotirios; Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank; Berding, Georg; Weissenborn, Karin; Ahl, Bjoern

    2006-01-01

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [ 15 O]H 2 O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  7. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  8. The investigation of in-vivo measurement of individual renal blood perfusion, effective renal plasma flow and quantitation of renogram and 15 min bladder collection percentage

    International Nuclear Information System (INIS)

    Huang Kangchu

    1991-01-01

    25 normals and 43 renal diseases were examined by the RBF-I multifunctioning renography. The result showed that the determination of ERPF has no difference between blood sampling and noin-blood sampling method, and actually the lattrer can replace the former one. Above method can be also used for the measurement of the individual renal blood perfusion, the quantitation of renogram and the 15 min bladder coolection percentage at the same time. Thereby it provides more complete diagnostic information for the renal vascular diseases, renal pancren chymations and other urologic diseases

  9. Xeno- and auto-perfusion of rabbit kidney. Machine perfusion with blood at 37 degrees C

    DEFF Research Database (Denmark)

    Jørgensen, K A; Kemp, E; Barfort, P

    1985-01-01

    damage, exudation, and IgG deposits along the basement membrane of the glomerular capillaries were the discriminative features of the xenoperfusion. In these experiments, we were unable to demonstrate any major role of platelets in the process leading to decreased blood flow.......Five rabbit kidneys were perfused with human blood and another five with their own blood in a re-circulating oxygenated system at 37 degrees C. The flow decreased to 2 ml/min. within 30 min. in all xenoperfusions, while none of the autoperfused had decreased to this level by 60 min. Endothelial...

  10. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  11. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  12. In vivo tomographic study of cerebral blood perfusion with SPECT in hemiparkinsonian monkeys

    International Nuclear Information System (INIS)

    Chen Shengdi; Xu Delong

    1994-01-01

    The authors present data on the utility of functional brain imaging with 99m Tc-ECD and SPECT in the study of MPTP induced hemiparkinsonism in monkeys. Injection of MPTP into the right common carotid artery of 10 rhesus monkeys produced hemiparkinsonism in the contralateral limbs which responded to antiparkinsonian medication. The unilateral neurotoxicity of the MPTP treated side was confirmed biochemically by marked reduction of DA contents in the nigrostriatum and histologically by selective neuronal loss in the substantia nigra. These monkeys with hemiparkinsonism were studied with SPECT using 99m Tc-ECD as perfusion marker. The results of brain scanning showed that the cerebral blood perfusion of MPTP treated side was significantly depleted 20∼90 days after MPTP intoxication, and returned to normal 8 months after perfusion. The experiment indicates that abnormal cerebral blood perfusion is involved in the course of parkinsonian pathophysiology

  13. Analysis of blood flow in a third ventricular ependymoma and an olfactory bulb meningioma by usisng perfusion computed tomography

    International Nuclear Information System (INIS)

    Kishimoto, M.; Yamada, K.; Seok, J.S.; Shimizu, J.; Kobayashi, Y.; Akiba, Y.; Morishita, Y.; Iwasa, A.; Iwasaki, T.; Miyake, Y.

    2008-01-01

    Brain perfusion computed tomography (CT) scanning was performed in a mongrel dog and a golden retriever that were diagnosed with third ventricular tumor and olfactory bulb tumor, respectively, by contrast-enhanced CT. The tumors were pathologically diagnosed as ependymoma and meningioma, respectively. Perfusion CT results revealed that the ependymoma in this study had a lower blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Further, the meningioma in this study had a higher blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Perfusion CT can potentially be used for the grading of brain tumors and narrowing differential diagnosis, provided the perfusion CT data of animals are accumulated

  14. Global cerebral blood flow changes measured by brain perfusion SPECT immediately after whole brain irradiation

    International Nuclear Information System (INIS)

    Ohtawa, Nobuyuki; Machida, Kikuo; Honda, Norinari; Hosono, Makoto; Takahashi, Takeo

    2003-01-01

    Whole brain irradiation (WBI) is still a major treatment option for patients with metastatic brain tumor despite recent advances in chemotherapy and newer techniques of radiation therapy. Cerebral blood flow (CBF) of changes induced by whole brain radiation is not fully investigated, and the aim of the study was to measure CBF changes non-invasively with brain perfusion SPECT to correlate with treatment effect or prognosis. Total of 106 patients underwent WBI during April 1998 to March 2002. Both brain MRI and brain perfusion SPECT could be performed before (less than 1 week before or less than 10 Gy of WBI) and immediately after (between 1 week before and 2 weeks after the completion of WBI) the therapy in 17 of these patients. They, 10 men and 7 women, all had metastatic brain tumor with age range of 45 to 87 (mean of 61.4) years. Tc-99m brain perfusion agent (HMPAO in 4, ECD in 13) was rapidly administered in a 740-MBq dose to measure global and regional CBF according to Matsuda's method, which based on both Patlak plot and Lassens' linearity correction. Brain MRI was used to measure therapeutic response according to World Health Organization (WHO) classification as complete remission (CR), partial response (PR), no change (NC), and progressive disease (PD). Survival period was measured from the completion of WBI. Mean global CBF was 40.6 and 41.5 ml/100 g/min before and immediately after the WBI, respectively. Four patients increased (greater than 10%) their global mean CBF, 10 unchanged (less than 10% increase or decrease), and 3 decreased after the WBI. The WBI achieved CR in none, PR in 8, NC in 6, and PD in 3 on brain MRI. Change in global mean CBF (mean±SD) was significantly larger in PR (4.3±2.0 ml/100 g/min, p=0.002) and in NC (-0.1±4.5) than in PD (-3.9±6.4, P=0.002, P=0.016, respectively). Survival was not significantly (p>0.05) different among the patients with CR (20 weeks), NC (48 weeks), and PD (21 weeks). Change in global CBF and survival was

  15. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  16. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    Science.gov (United States)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  17. Scaling of cerebral blood perfusion in primates and marsupials.

    Science.gov (United States)

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  18. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K. [Heidelberg Univ., Mannheim (Germany). Dept. of Medicine V

    2017-05-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  19. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    International Nuclear Information System (INIS)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G.; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K.

    2017-01-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  20. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Martin J. Schmidt

    2017-08-01

    Full Text Available The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF was measured using free-hand regions of interest (ROI in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029 but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.

  1. Influence of repetitive finger puncturing on skin perfusion and capillary blood analysis in patients with diabetes mellitus

    NARCIS (Netherlands)

    de Graaff, J. C.; Hemmes, G. J.; Bruin, T.; Ubbink, D. T.; Michels, R. P.; Jacobs, M. J.; Sanders, G. T.

    1999-01-01

    Frequent puncturing of fingers to check blood glucose in patients with type 1 diabetes might alter skin perfusion and, hence, influence the representativeness of the blood sample. We investigated the influence of repetitive puncturing on skin microcirculatory perfusion using laser Doppler fluxmetry

  2. Assessment of local changes of cerebral perfusion and blood concentration by ultrasound harmonic B-mode contrast measurement in piglet.

    NARCIS (Netherlands)

    Wijk, M.C. van; Klaessens, J.H.G.M.; Hopman, J.C.W.; Liem, K.D.; Thijssen, J.M.

    2003-01-01

    This study tested the hypothesis that changes in the blood concentration, and possibly in the perfusion, of different areas in the brain can be assessed by the use of ultrasound contrast agent (CA) and (linear) echo densitometry. The experiments were performed with piglets (n=3) under general

  3. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  4. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    International Nuclear Information System (INIS)

    Sedlacik, Jan; Fiehler, Jens; Reitz, Matthias; Schmidt, Nils O.; Bolar, Divya S.; Adalsteinsson, Elfar

    2015-01-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s and -1] = 20.7/20.4/20.1, R2*[s and -1] = 31.6/29.6/25.9, R2'[s and 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min and -1.100g and -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good

  5. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  6. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  7. Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle.

    Directory of Open Access Journals (Sweden)

    Stefan Hindel

    Full Text Available The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles

  8. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    Science.gov (United States)

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  10. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest

  11. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  12. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.; Adler, G.; Venci, R.; Lanphier, E.H.; DeLuca, P.M. Jr.

    1984-01-01

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41 Ar from the bone mineral matrix following fast neutron activation of 44 Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  13. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  14. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  15. Molecular versus particulate deposition markers for blood flow measurement in the musculo-skeletal system. 131Iodo-DesMethyl-Imipramine

    International Nuclear Information System (INIS)

    Tromborg, H.B.

    1998-01-01

    The aims of the experiments were to develop and validate a porcine isolated blood perfused myocutaneous flap and tibia model with preserved venous outflow. The stability of the models was tested and washout of microspheres and IDMI was measured. IDMI and microsphere based tissue blood flow measurements were compared after central intracardiac injection into the intact animal. Three experimental series were necessary to develop and validate the models. The organs were perfused with arterial blood by a pulsatile pump and submerged into a tissue bath. All outflow from the models were collected. One experiment was necessary to validate the rectus abdominis myocutaneous flap. In three experiments an isolated tibia with preserved venous outflow was developed and validated. Normal flow rate/perfusion pressure relations were reproduced after periods of supra-normal and sub-normal perfusion pressure in the two models. A response to endothelially mediated vasodilation with bradykinin was demonstrated after nine hours of artificial perfusion in the tibia model. IDMI did not influence the local hemodynamics during infusion, whereas microspheres elicited a transitory increase in the perfusion pressure after local injection. IDMI and microsphere based blood flow measurements and recirculation were compared in the in-situ musculo-skeletal tissue corresponding to the two models after central injection of the markers. Recirculation of IDMI was greater (8(1)%) than that of microspheres (2(0)%) after 18 minutes. Microspheres tended to measure higher blood flow values than IDMI at high flow rates and vice versa at low flow values. The 131 Iodo-DesMethyl-Imipramine (IDMI) method is not generally applicable as a deposition marker for blood flow measurement in the musculo-skeletal system. (EHS)

  16. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  17. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  18. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    Science.gov (United States)

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  19. Wet cupping therapy improves local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis.

    Science.gov (United States)

    Meng, Xiang-Wen; Wang, Ying; Piao, Sheng-Ai; Lv, Wen-Tao; Zhu, Cheng-Hui; Mu, Ming-Yuan; Li, Dan-Dan; Liu, Hua-Peng; Guo, Yi

    2018-01-15

    To observe wet cupping therapy (WCT) on local blood perfusion and analgesic effects in patients with nerve-root type cervical spondylosis (NT-CS). Fifty-seven NT-CS patients were randomly divided into WCT group and Jiaji acupoint-acupuncture (JA) group according a random number table. WCT group (30 cases) was treated with WCT for 10 min, and JA group (27 cases) was treated with acupuncture for 10 min. The treatment effificacies were evaluated with a Visual Analogue Scale (VAS). Blood perfusion at Dazhui (GV 14) and Jianjing (GB 21) acupoints (affected side) was observed with a laser speckle flflowmetry, and its variations before and after treatment in both groups were compared as well. In both groups, the VAS scores signifificantly decreased after the intervention (P<0.01), while the blood perfusion at the two acupoints signifificantly increased after intervention (P<0.05); however, the increasement magnitude caused by WCT was obvious compared with JA (P<0.05). WCT could improve analgesic effects in patients with NT-CS, which might be related to increasing local blood perfusion of acupunct points.

  20. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction

    NARCIS (Netherlands)

    Vankan, W.J.; Huyghe, J.M.R.J.; Slaaf, D.W.; Donkelaar, van C.C.; Drost, M.R.; Janssen, J.D.; Huson, A.

    1997-01-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a

  1. Discrepancy between microsphere and diffusible tracer estimates of perfusion to ischemic myocardium

    International Nuclear Information System (INIS)

    Yoshida, S.; Akizuki, S.; Gowski, D.; Downey, J.M.

    1985-01-01

    This study critically tests the ability of microspheres to accurately measure perfusion to ischemic myocardium. The left anterior descending coronary artery was cannulated and perfused with arterial blood. The perfusion line was clamped, and a sidearm between the clamp and the cannula was opened to the atmosphere, allowing blood to flow retrograde from the distal segment of the artery. Measurement of regional blood flow during retrograde flow diversion with 15-micron microspheres revealed essentially zero flow to the perfused segment (0.005 ml X min-1 X g-1). Measurements under the same conditions by either 86 Rb uptake or 133 Xe washout revealed that an appreciable perfusion of the tissue persisted during retrograde flow diversion (0.043 and 0.11 ml X min-1 X g-1, respectively, for the 2 methods). Thus, the authors have identified a condition during which microspheres indicate zero flow to the tissue but diffusible tracers can both be washed in and washed out at a brisk rate. They conclude that with simple occlusion there is a hidden component of perfusion to an ischemic zone that cannot be measured by microspheres, causing them to underestimate flow by about 25% in that condition

  2. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  3. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  4. Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®)

    Science.gov (United States)

    Kim, David Y.; Silverman, Ronald H.; Chan, R.V. Paul; Khanifar, Aziz A.; Rondeau, Mark; Lloyd, Harriet; Schlegel, Peter; Coleman, D. Jackson

    2011-01-01

    Objective To demonstrate anatomic and physiologic changes in the human choroid following systemic sildenafil citrate (ViagraR) using enhanced depth imaging spectral domain-optical coherence tomography (EDI-OCT) and swept-scan high frequency digital ultrasound. Methods Seven healthy male subjects (mean age 32.7 years) were evaluated at baseline and two hours after ingesting 50 mg of sildenafil. Swept-scan high frequency digital ultrasound and EDI-OCT were utilized to measure choroidal perfusion and thickness, respectively. Results were read by masked observers. The Wilcoxon signed-rank test and t-test were used to analyze differences in choroidal flow and thickness at baseline and two hours after ingestion of sildenafil. Results Two hours following sildenafil, increased choroidal perfusion was observed in 11 of 12 eyes measured by swept-scan high frequency digital ultrasound. The mean increase was 3.46 (±2.00) times baseline with a range of 0.47 to 7.80 times baseline (p=0.004). Increased choroidal thickness was observed in 12 of 12 eyes measured with EDI-OCT. The average choroidal thickness increased by 11.6% temporal to the fovea, 9.3% nasal to the fovea, and 10.7% underneath the fovea (p<0.001 for all values). Conclusions Choroidal perfusion and thickness both increase in response to systemic sildenafil. These changes could secondarily affect retinal function, explain previously reported clinical symptoms, and potentially be a useful adjunct for treatment of ocular diseases that would benefit from increased choroidal blood flow. PMID:22974308

  5. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  6. Measurement of limb blood flow using technetium-labelled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-05-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with /sup 99/Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4 +- 3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1 +- 2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain.

  7. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    International Nuclear Information System (INIS)

    Luedemann, L; Sreenivasa, G; Michel, R; Rosner, C; Plotkin, M; Felix, R; Wust, P; Amthauer, H

    2006-01-01

    Assessment of perfusion with 15 O-labelled water (H 2 15 O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF

  8. Ocular Blood Flow Measurements in Healthy White Subjects Using Laser Speckle Flowgraphy.

    Directory of Open Access Journals (Sweden)

    Nikolaus Luft

    Full Text Available To assess the feasibility and reliability of Laser Speckle Flowgraphy (LSFG to measure ocular perfusion in a sample of healthy white subjects and to elucidate the age-dependence of the parameters obtained.This cross-sectional study included 80 eyes of 80 healthy, non-smoking white subjects of Western European descent between 19 and 79 years of age. A commercial LSFG instrument was applied to measure ocular blood flow at the optic nerve head (ONH three successive times before and after pharmacological pupil dilation. The mean blur rate (MBR, a measure of relative blood flow velocity, was obtained for different regions of the ONH. Eight parameters of ocular perfusion derived from the pulse-waveform analysis of MBR including blowout time (BOT and falling rate (FR were also recorded.Artifact-free LSFG images meeting the quality criteria for automated image analysis were obtainable in 93.8% without pupil dilation and in 98.8% with pharmacological pupil dilation. Measurements of MBR showed excellent repeatability with intraclass correlation coefficients ≥ 0.937 and were barely affected by pupil dilation. The majority of pulse-waveform derived variables exhibited equally high repeatability. MBR-related blood flow indices exhibited significant age dependence (p<0.001. FR (r = 0.747, p<0.001 and BOT (r = -0.714, p<0.001 most strongly correlated with age.LSFG represents a reliable method for the quantitative assessment of ocular blood flow in white subjects. Our data affirms that the LSFG-derived variables FR and BOT may be useful biomarkers for age-related changes in ocular perfusion.

  9. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model.

    Science.gov (United States)

    Hosgood, Sarah A; Moore, Tom; Kleverlaan, Theresa; Adams, Tom; Nicholson, Michael L

    2017-10-25

    Ex-vivo normothermic perfusion strategies are a promising new instrument in organ transplantation. The perfusion conditions are designed to be protective however the artificial environment can induce a local inflammatory response. The aim of this study was to determine the effect of incorporating a Cytosorb adsorber into an isolated kidney perfusion system. Porcine kidneys were subjected to 22 h of cold ischaemia then reperfused for 6 h on an ex vivo reperfusion circuit. Pairs of kidneys were randomised to either control (n = 5) or reperfusion with a Cytosorb adsorber (n = 5) integrated into the circuit. Tissue, blood and urine samples were taken for the measurement of inflammation and renal function. Baseline levels of cytokines (IL-6, TNFα, IL-8, IL-10, IL-1β, IL-1α) were similar between groups. Levels of IL-6 and IL-8 in the perfusate significantly increased during reperfusion in the control group but not in the Cytosorb group (P = 0.023, 0.049). Levels of the other cytokines were numerically lower in the Cytosorb group; however, this did not reach statistical significance. The mean renal blood flow (RBF) was significantly higher in the Cytosorb group (162 ± 53 vs. 120 ± 35 mL/min/100 g; P = 0.022). Perfusate levels of prostaglandin E2 were significantly lower in the Cytosorb group (642 ± 762 vs. 3258 ± 980 pg/mL; P = 0.0001). Levels of prostacyclin were significantly lower in the Cytosorb group at 1, 3 and 6 h of reperfusion (P = 0.008, 0.003, 0.0002). Levels of thromboxane were also significantly lower in the Cytosorb group throughout reperfusion (P = 0.005). Haemoadsorption had no effect on creatinine clearance (P = 0.109). Haemoadsorption can reduce the inflammatory response and improve renal blood flow during perfusion. Nonetheless, in this model haemoadsorption had no influence on renal function and this may relate to the broad-spectrum action of the Cytosorb adsorber that also removes potentially important anti

  10. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura.

    Science.gov (United States)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E; Younis, Samaira; Wolfram, Frauke; Cramer, Stig P; Larsson, Henrik B W; Ashina, Messoud

    2017-06-01

    See Moskowitz (doi:10.1093/brain/awx099) for a scientific commentary on this article.The migraine aura is characterized by transient focal cortical disturbances causing dramatic neurological symptoms that are usually followed by migraine headache. It is currently not understood how the aura symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas of the anterior, middle and posterior circulation during spontaneous attacks of migraine with aura. Patients reported to our institution to undergo magnetic resonance imaging during the headache phase after presenting with typical visual aura. Nineteen patients were scanned during attacks and on an attack-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability in any of the investigated regions. There was no correlation between blood-brain barrier permeability, brain perfusion, and time from symptom onset to examination or pain intensity. Our findings demonstrate hyperperfusion in brainstem during the headache phase of migraine with aura, while the blood-brain barrier remains intact during attacks of migraine with aura. These data thus contradict the preclinical hypothesis of cortical spreading depression-induced blood-brain barrier

  11. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  12. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  13. Feasibility of ASL spinal bone marrow perfusion imaging with optimized inversion time.

    Science.gov (United States)

    Xing, Dong; Zha, Yunfei; Yan, Liyong; Wang, Kejun; Gong, Wei; Lin, Hui

    2015-11-01

    To assess the correlation between flow-sensitive alternating inversion recovery (FAIR) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the measurement of spinal bone marrow (SBM) perfusion; in addition, to assess for an optimized inversion time (TI) as well as the reproducibility of SBM FAIR perfusion. The optimized TI of a FAIR SBM perfusion experiment was carried out on 14 volunteers; two adjacent vertebral bodies were selected from each volunteer to measure the change of signal intensity (ΔM) and the signal-to-noise ratio (SNR) of FAIR perfusion MRI with five different TIs. Then, reproducibility of FAIR data from 10 volunteers was assessed by the reposition SBM FAIR experiments. Finally, FAIR and DCE-MRI were performed on 27 subjects. The correlation between the blood flow on FAIR (BFASL ) and perfusion-related parameters on DCE-MRI was evaluated. The maximum value of ΔM and SNR were 36.39 ± 12.53 and 2.38 ± 0.97, respectively; both were obtained when TI was near 1200 msec. There were no significant difference between the two successive measurements of SBM BFASL perfusion (P = 0.879), and the within-subject coefficients of variation (wCV) of the measurements was 3.28%. The BFASL showed a close correlation with K(trans) (P FAIR perfusion scan protocol has good reproducibility, and as blood flow measurement on FAIR is reliable and closely related with the parameters on DCE-MRI, FAIR is feasible for measuring SBM blood flow. © 2015 Wiley Periodicals, Inc.

  14. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  15. Computed Tomography Perfusion of the liver: Assessment of Pure Portal Blood Flow Studied with CT Perfusion During Superior Mesenteric Arterial Portography

    International Nuclear Information System (INIS)

    Kojima, H.; Tanigawa, N.; Komemushi, A.; Kariya, S.; Sawada, S.

    2004-01-01

    Purpose: To quantitatively assess the portal component of hepatic blood flow using computed tomography (CT) perfusion studies during superior mesenteric arterial portography. Material and Methods: Thirty-four patients with hepatocellular carcinoma and liver cirrhosis (LC) and 13 patients with liver metastasis without chronic liver disease were enrolled in this study. Ten milliliters of a non-ionic contrast medium (150 mgI) was injected at a rate of 5 ml/s via a catheter placed in the superior mesenteric artery. Single-slice cine CT images at the level of the main trunk or the right/left main trunk of the portal vein were acquired over 40 s. The deconvolution method was then used on these CT images to measure blood flow (BF), blood volume (BV), and mean transit time (MTT) in (a) liver parenchyma in patients with HCC and liver cirrhosis; (b) liver parenchyma in patients with liver metastasis without cirrhosis; (c) directly in the HCC; and (d) directly in one of the metastases. Results: In 34 LC patients (a), BF, BV, and MTT in the liver parenchyma were 44.7±24.5 ml/min/100 g, 3.9±2.4 ml/100 g, and 10.9±5.5 s, respectively. In 13 patients without cirrhosis (b), BF, BV, and MTT in the liver parenchyma were 89.6±52.0 ml/min/100 g, 6.3 ±3.2 ml/100 g, and 8.7±3.6 sec, respectively. A significant difference in BF and BV was seen in patients with liver cirrhosis compared to those without cirrhosis. BF, BV, and MTT measured directly in HCC (c) were 6.5±4.5 ml/min/100 g, 0.4±0.4 ml/100 g, and 3.0±3.1 sec respectively, and BF, BV, and MTT in liver metastases (d) were 19.3 ± 21.7 ml/min/100 g, 0.6±0.8 ml/100 g, and 1.8±1.6 s, respectively. Conclusion: CT perfusion studies during superior mesenteric arterial portography allow quantitative assessment of pure portal blood flow in the liver

  16. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  17. Factors affecting the lung perfused blood volume in patients with intrapulmonary clots after anti-coagulation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Munemasa, E-mail: radokada@yamaguchi-u.ac.jp [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Masuda, Yu [4th Grade of 6-year Medicine Doctor Program, Department of Medicine, Yamaguchi University Faculty of Medicine and Health Sciences 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Nakashima, Yoshiteru [Department of Radiology, Yamaguchi Grand Medical Center, Oosaki 77, Hofu, Yamaguchi 747-8511 (Japan); Nomura, Takafumi; Nakao, Sei [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Suga, Kazuyoshi [Department of Radiology, St Hills Hospital, Imamurakita 3-7-18, Ube, Yamaguchi 755-0155 (Japan); Kido, Shoji [Computer-aided Diagnosis and Biomedical Imaging Research Biomedical Engineering, Applied Medical Engineering Science Graduate School of Medicine, Yamaguchi University, Tokiwadai 2-16-1, Ube, Yamaguchi 755-8611 (Japan); Matsunaga, Naofumi [Department of Radiology, Yamaguchi University Graduate School of Medicine 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan)

    2015-08-15

    Highlights: • Dual-energy CT can provide morphological and functional lung images in the same examination. • The subsequent dual-energy CT demonstrates the increased whole lung perfused blood volume (V{sub 120}) despite the residual intrapulmonary clots after treatment in one examination. • The increased whole lung perfusion (V{sub 120}) and a decreased low perfusion volume (V{sub 5}) result in the improvement in the low perfusion rate (%V{sub 5}) in the patients with acute pulmonary embolism after treatment. - Abstract: Objectives: Factors affecting the improvement in the lung perfused blood volume (LPBV) were evaluated based on the presence of intrapulmonary clots (IPCs) after anti-coagulation therapy using 64-slice dual-energy CT. Materials and methods: 96 patients exhibiting venous thromboembolism underwent initial and repeated LPBV examinations between December 2008 and July 2014. Fifteen patients were excluded due to pulmonary comorbidities, and a total of 81 patients were included in this study. Acute pulmonary embolism (PE) was diagnosed in 46 of the patients (56.7%). LPBV images were three-dimensionally reconstructed with two threshold ranges: 1–120 HU (V{sub 120}) and 1–5 HU (V{sub 5}), and the relative value of V{sub 5} per V{sub 120} expressed as %V{sub 5}. These values were subsequently compared with indicators of the severity of PE, such as the D-dimer level, heart rate and CT measurements. This study was approved by the local ethics committee. Results: In patients with IPCs, the D-dimer, V{sub 5} and %V{sub 5}values were significantly larger (p ≤ 0.01) in the initial LPBV, although these differences disappeared in subsequent LPBV after treatment. The right ventricular (RV) diameter, RV/left ventricular (RV/LV) diameter ratio and %V{sub 5} values were also significantly reduced, whereas the V{sub 5} value did not significantly decrease (p = 0.07), but V{sub 120} value significantly increased (p < 0.001) after treatment. However, in

  18. The measurement of limb blood flow using technetium-labelled red blood cells

    International Nuclear Information System (INIS)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-01-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with 99 Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4+-3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1+-2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain. (author)

  19. 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent

    International Nuclear Information System (INIS)

    Fink, Christian; Ley, Sebastian; Puderbach, Michael; Plathow, Christian; Kauczor, Hans-Ulrich; Bock, Michael

    2004-01-01

    The purpose of this study was to assess the feasibility of contrast-enhanced 3D perfusion MRI and MR angiography (MRA) of pulmonary embolism (PE) in pigs using a single injection of the blood pool contrast Gadomer. PE was induced in five domestic pigs by injection of autologous blood thrombi. Contrast-enhanced first-pass 3D perfusion MRI (TE/TR/FA: 1.0 ms/2.2 ms/40 ; voxel size: 1.3 x 2.5 x 4.0 mm 3 ; TA: 1.8 s per data set) and high-resolution 3D MRA (TE/TR/FA: 1.4 ms/3.4 ms/40 ; voxel size: 0.8 x 1.0 x 1.6 mm 3 ) was performed during and after a single injection of 0.1 mmol/kg body weight of Gadomer. Image data were compared to pre-embolism Gd-DTPA-enhanced MRI and post-embolism thin-section multislice CT (n=2). SNR measurements were performed in the pulmonary arteries and lung. One animal died after induction of PE. In all other animals, perfusion MRI and MRA could be acquired after a single injection of Gadomer. At perfusion MRI, PE could be detected by typical wedge-shaped perfusion defects. While the visualization of central PE at MRA correlated well with the CT, peripheral PE were only visualized by CT. Gadomer achieved a higher peak SNR of the lungs compared to Gd-DTPA (21±8 vs. 13±3). Contrast-enhanced 3D perfusion MRI and MRA of PE can be combined using a single injection of the blood pool contrast agent Gadomer. (orig.)

  20. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  1. Scintigraphic study of blood perfusion of the pulmonary artery in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Certain, D.A.; Brolio, R.; Salomon, G.C.; Carvalho, N.; Barbosa, Z.L.M.

    1972-01-01

    Blood perfusion in the pulmonary artery is studied by pulmonary scintigraphy with macroaggregated albumin 131 I, in 74 cases of pulmonary tuberculosis. Results shown by scintigraphy are compared to those observed in roentgenography and also correlated with the extension and degree of the lesions, and with the presence of associated tuberculosis, considered capable of changing the scintigraphic picture. The reduction of blood flow in the pulmonary artery are observed in cases of infiltrative, fibrotic of caseous lesions, as well as in cases of minor lesions [pt

  2. Scintigraphic study of blood perfusion of the pulmonary artery in pulmonary tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Certain, D A; Brolio, R; Salomon, G C [Sao Paulo Univ. (Brazil). Faculdade de Saude Publica; Carvalho, N [Sao Paulo Univ. (Brazil). Centro de Medicina Nuclear; Barbosa, Z L.M. [Associacao dos Sanatorios Populares de Campos do Jordao, Brazil

    1972-10-01

    Blood perfusion in the pulmonary artery is studied by pulmonary scintigraphy with macroaggregated albumin /sup 131/I, in 74 cases of pulmonary tuberculosis. Results shown by scintigraphy are compared to those observed in roentgenography and also correlated with the extension and degree of the lesions, and with the presence of associated tuberculosis, considered capable of changing the scintigraphic picture. The reduction of blood flow in the pulmonary artery are observed in cases of infiltrative, fibrotic of caseous lesions, as well as in cases of minor lesions.

  3. Repeatability of Bolus Kinetics Ultrasound Perfusion Imaging for the Quantification of Cerebral Blood Flow

    NARCIS (Netherlands)

    Vinke, Elisabeth J.; Eyding, Jens; de Korte, Chris L.; Slump, Cornelis H.; van der Hoeven, Johannes G.; Hoedemaekers, Cornelia W.E.

    2017-01-01

    Ultrasound perfusion imaging (UPI) can be used for the quantification of cerebral perfusion. In a neuro-intensive care setting, repeated measurements are required to evaluate changes in cerebral perfusion and monitor therapy. The aim of this study was to determine the repeatability of UPI in

  4. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  5. Characteristics of breast cancer blood supply before and after chemotherapy with low-dose CT perfusion

    International Nuclear Information System (INIS)

    Zhou Juan; Lu Hong; Sheng Fugeng; Xing Xudong; Li Gongjie; Liu Baosheng

    2009-01-01

    Objective: To analyze the characteristics of breast cancer blood supply before and after chemotherapy with low-dose CT perfusion. Methods: Fifteen patients with breast cancer underwent CT breast perfusion examination, which was performed before and after chemotherapy within 1 week on Siemens Sensation 4 scanner with 120 kV and 50 mAs, 50 ml of nonionic contrast agent (320 mg I/ml) was injected at a flow rate of 4 ml/s with a power injector, Scan started after 8 seconds delay and data acquisition duration was 50 seconds. The blood flow (BF), blood volume (BV) and mean transfer time (MTT) of lesion and contralateral normal breast gland were calculated using Basama perfusion 3 software package before and after chemotherapy. At the same time, the tumor size before and after chemotherapy were measured and correlated with the BF values. The t test and non-parametric test were used for the statistics. Results: (1) The mean BF, BV and MTT of breast cancer were (33.20±4.17) ml·min -1 ·100 ml -1 , (8.31±2.43) ml· 100 ml -1 and (15.31±4.31) s respectively before chemotherapy, and (13.65±6.04) ml·min -1 · 100 ml -1 (5.04±2.33) ml·100 ml -1 and (25.97±9.07) s respectively after chemotherapy and there were statistically significant (P=0.000). The mean BF, BV and MTT of normal breast were (4.31±2.23) ml -1 , min -1 ·100 ml -1 , (1.38±0.75) ml·100 ml -1 and ( 19.25±3.94) s respectively before chemotherapy, and (4.03±2.35) ml·min -1 ·100 ml -1 , (1.44±0.84) ml·100 ml -1 , (22.56±7.71 ) s respectively after chemotherapy and there were not statistically significant (P>0.05). (2)The BF of breast cancer was higher than the normal breast before chemotherapy (P<0.01). (3)There was a positive correlation between the BF values and tumor size before and after chemotherapy (r=0.902, P=0.000). Conclusion: The BF value has a positive correlation with tumor size after chemotherapy, CT perfusion is more sensitive for the evaluation of chemotherapy response than morphologic

  6. Measurement of extracellular volume and transit time heterogeneity using contrast-enhanced myocardial perfusion MRI in patients after acute myocardial infarction.

    Science.gov (United States)

    Kunze, Karl P; Rischpler, Christoph; Hayes, Carmel; Ibrahim, Tareq; Laugwitz, Karl-Ludwig; Haase, Axel; Schwaiger, Markus; Nekolla, Stephan G

    2017-06-01

    To assess the ability of dynamic contrast-enhanced myocardial perfusion MRI to measure extracellular volume (ECV) and to investigate the possibility of estimating capillary transit time heterogeneity (CTH) in patients after myocardial infarction and successful revascularization. Twenty-four perfusion data sets were acquired on a 3 Tesla positron emission tomography (PET)/MRI scanner. Three perfusion models of different complexity were implemented in a hierarchical fashion with an Akaike information criterion being used to determine the number of fit parameters supported by the data. Results were compared sector-wise to ECV from an equilibrium T 1 mapping method (modified look-locker inversion recovery (MOLLI)). ECV derived from the perfusion analysis correlated well with equilibrium measurements (R² = 0.76). Estimation of CTH was supported in 16% of sectors (mostly remote). Inclusion of a nonzero CTH parameter usually led to lower estimates of first-pass extraction and slightly higher estimates of blood volume and flow. Estimation of the capillary permeability-surface area product was feasible in 81% of sectors. Transit time heterogeneity has a measurable effect on the kinetic analysis of myocardial perfusion MRI data, and Gd-DTPA extravasation in the myocardium is usually not flow-limited in infarct-related pathology. Measurement of myocardial ECV using perfusion imaging could provide a scan-time efficient alternative to methods based on T 1 mapping. Magn Reson Med 77:2320-2330, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    Science.gov (United States)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  8. [Comparison of the effects of the intervention with electric thermal bian stone and air suction cup on blood perfusion at meridian points].

    Science.gov (United States)

    Zhao, Pengna; Wang, Yanping; Gu, Feifei; Li, Chaozheng; Wei, Yulong; Wang, Guangjun; Zhang, Weibo

    2018-02-12

    To observe the impacts of the intervention with electric thermal bian stone and air suction cup on blood perfusion (BP) at meridian points and explore the approach of accurate measurement and regulation of meridian qi and blood balance in "precise acupuncture". The laser Doppler line scanner (LDLS) was used to measure BP at bilateral yua n-primary points at the pericardium meridian, the triple energizer meridian, the gallbladder meridian and the liver meridian (small cycle of jueyin to shaoyang meridians) at 31 healthy receptors. The bias ratio of blood perfusion (BPBR) deviated to the reference value was calculated. The electric thermal bian stone and air suction cup were used in the intervention at the he -sea points of the affected meridians in which BPBR was relatively higher at the yuan -primary points. The electric thermal bian stone therapy was used when BPBR was less than -30% and the air suction cupping therapy was used when BPBR was higher than 30%. BP was measured twice before intervention and it was measured separately at the moment after intervention and in 20 min after intervention. The means of BP before and after intervention and the change ratio of blood perfusion (BPCR) before intervention, at the moment after intervention and 20 min after intervention were calculated. 1. After the intervention of electric thermal bian stone, BP mean was increased from (103.51±41.21) PU to (121.97±56.22) PU ( P 0.05), but the change ratio was highly remained. 2. After intervention with air suction cup, BP mean was reduced from (194.83±81.14) PU to (173.88±88.26) PU. Before intervention, at the moment after intervention and 20 min after intervention, separately, BPCR were (7.62±30.49)%, (-12.12±18.20)% and (-14.35±21.25)%. BPCR at the moment after intervention and in 20 min after intervention were significantly different from that before intervention (both P cup is opposite.

  9. Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.

    Science.gov (United States)

    Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W

    2002-01-01

    Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.

  10. Temporal and spectral properties of esophageal mucosal blood perfusion: a comparison between normal subjects and nutcracker esophagus patients.

    Science.gov (United States)

    Zifan, A; Jiang, Y; Mittal, R K

    2017-02-01

    The mechanism of esophageal pain in patients with nutcracker esophagus (NE) and other esophageal motor disorders is not known. Our recent study shows that baseline esophageal mucosal perfusion, measured by laser Doppler perfusion monitoring, is lower in NE patients compared to controls. The goal of our current study was to perform a more detailed analysis of esophageal mucosal blood perfusion (EMBP) waveform of NE patients and controls to determine the optimal EMBP biomarkers that combined with suitable statistical learning models produce robust discrimination between the two groups. Laser Doppler recordings of 10 normal subjects (mean age 43 ± 15 years, 8 males) and 10 patients (mean age 47 ± 5.5 years., 8 males) with NE were analyzed. Time and frequency domain features were extracted from the first twenty-minute recordings of the EMBP waveforms, statistically ranked according to four independent evaluation criterions, and analyzed using two statistical learning models, namely, logistic regression (LR) and support vector machines (SVM). The top three ranked predictors between the two groups were the 0.5 and 0.75 perfusion quantile values followed by the surface of the EMBP power spectrum in the frequency domain. ROC curve ranking produced a cross-validated AUC (area under the curve) of 0.93 for SVM and 0.90 for LR. We show that as a group NE patients have lower perfusion values compared to controls, however, there is an overlap between the two groups, suggesting that not all NE patients suffer from low mucosal perfusion levels. © 2016 John Wiley & Sons Ltd.

  11. Comparison of Acupuncture Effect on Blood Perfusion between Needling Nonacupoint on Meridian and Needling Nonacupoint off Meridian

    Directory of Open Access Journals (Sweden)

    Wei-Bo Zhang

    2013-01-01

    Full Text Available To verify the ancient theory of rather missing the acupoint than missing the meridian, acupuncture at nonacupoint on meridian and acupuncture at nonacupoint off meridian were performed, respectively. The blood perfusion (BP on the calf around bladder meridian area was measured with a laser Doppler perfusion imager before, during, and after acupuncture. The whole scanning field was divided into seven subareas, and mean BP on each area was calculated. The ratio of mean BP between a subarea and a reference subarea was gotten, and then the change rate was calculated as ratio change rate (RCR. The results showed that RCR on bladder meridian area and around Chengshan (BL57 during or after acupuncture at nonacupoint on meridian was significantly higher than that at nonacupoint off meridian, which supports the ancient theory. Such differences may be attributable to some factors that can facilitate the signals transmission and produce a better acupuncture effect, such as richer nerve terminals, blood vessels, and mast cells which can produce stronger signals on the acupoints and the low hydraulic resistance channel along meridians which plays a role of signal transmitting channel to get a better effect of acupuncture.

  12. Effect of intravenous contrast agent volume on colorectal cancer vascular parameters as measured by perfusion computed tomography

    International Nuclear Information System (INIS)

    Goh, V.; Bartram, C.; Halligan, S.

    2009-01-01

    Aim: To determine the effect of two different contrast agent volumes on quantitative and semi-quantitative vascular parameters as measured by perfusion computed tomography (CT) in colorectal cancer. Materials and methods: Following ethical approval and informed consent, eight prospectively recruited patients with proven colorectal adenocarcinoma underwent two separate perfusion CT studies on the same day after (a) 100 ml and (b) 50 ml of a 340 mg/ml iodinated contrast medium, respectively. Quantitative (blood volume, blood flow, permeability surface area product) and semi-quantitative (peak enhancement, time to peak enhancement) tumour vascular parameters were determined using commercial software based on distributed parameter analysis and compared using t-testing. Results: Tumour blood volume, blood flow, and permeability surface area product were not substantially different following the injection of 100 ml and 50 ml contrast medium: 6.12 versus 6.23 ml/100 g tissue; 73.4 versus 71.3 ml/min/100 g tissue; 15.6 versus 15.3 ml/min/100 g tissue for 100 and 50 ml, respectively; p > 0.05. Tumour peak enhancement and time to peak were significantly greater following the injection of 100 ml versus 50 ml contrast medium: 41.2 versus 28.5 HU; 16.1 versus 11.8 s for 100 ml and 50 ml, respectively; p = 0.002; p = 0.0003. Conclusion: Quantitative parameters do not appear to change substantially with a higher contrast agent volume suggesting a combined diagnostic staging-perfusion CT study following a single injection is feasible for colorectal cancer

  13. Three-dimensional whole-brain perfused blood volume imaging with multimodal CT for evaluation of acute ischaemic stroke

    International Nuclear Information System (INIS)

    Lu, J.; Zhang, M.; Cao, Y.; Ma, Q.; Chen, J.; Ji, X.; Li, K.

    2011-01-01

    Aim: To determine the diagnostic value of integrating three-dimensional perfused blood volume (3D PBV) with multimodal computed tomography (CT) [non-enhanced CT (NECT), CT perfusion (CTP), and CT angiography (CTA)] in acute ischaemic stroke. Materials and methods: NECT, CTP, and CTA were performed in 25 acute ischaemic stroke patients. The ischaemia detection rate of 3D PBV was compared with the results of baseline NECT and CTP. The correlation of ischaemic lesion volume between 3D PBV, CTP images, and follow-up NECT were analysed. Results: NECT demonstrated ischaemic signs in 12 of 25 patients with proven infarction. CTP maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP) all demonstrated perfusion deficits in 21 of 25 patients. However, 3D PBV demonstrated perfusion deficits in all of the 25 patients. Among the 25 patients, a strong correlation was found between PBV and the follow-up NECT infarct (r = 0.858). The correlation between CTP and the follow-up NECT infarct as following: CBF (r = 0.718), CBV (r = 0.785), and TTP (r = 0.569). In 14 thrombolytic patients, strong correlation was found between the ischaemic volume on 3D PBV and follow-up NECT (r = 0.798). Conclusion: In acute stroke patients, the combination of 3D PBV and multimodal CT (NECT, CTP, and CTA) can improve the detection rate of ischaemia and enable assessment of the full extent of ischaemia, which correlates well with follow-up NECT.

  14. Elevation of the correlation between cerebral blood volume and permeability surface from CT perfusion images with glioma grade

    International Nuclear Information System (INIS)

    Ding Bei; Ling Huawei; Zhang Huan; Song Qi; Dong Haipeng; Chen Kemin

    2007-01-01

    Objective: To evaluate the correlation between cerebral blood volume and permeability surface by using multislice CT perfusion imaging with glioma grade. Methods: Ninteen patients with gliomas underwent conventional MR and multislice CT perfusion imaging preoperatively. These patients were divided into low grade and high grade groups which were correspond to WHO II grade gliomas and WHO III or IV grade gliomas respectively. CT data were transferred to on-line working station and processed to obtain time-signal curves, color perfusion maps and calculated perfusion parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTF) and permeability surfaces (PS) in tumoral parenchyma. Kruskal-Wallis test and correlation of CBV and PS was assessed by using SPSS 11.0 software. Results: The median of CBV and PS in low-grade and high-grade glioma were 2.7, 6.5 ml/100 g; 0.389, 12.810 ml·100 g -1 ·min -1 respectively, corresponding t value were 12.907 13.500 with P<0.05. Pearson correlations between CBV and PS were as follows: in low-grade group, r=-0.058, in high-grade group, r=0.648. Conclusion: Both CBV and PS have obvious correlation with glioma grade. The correlation between CBV and PS in low-grade glioma was weaker, probably because of the focal high vascularity in oligodendroglioma. (authors)

  15. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  16. DNA double-strand breaks in blood lymphocytes induced by two-day 99mTc-MIBI myocardial perfusion scintigraphy.

    Science.gov (United States)

    Rief, Matthias; Hartmann, Lisa; Geisel, Dominik; Richter, Felicitas; Brenner, Winfried; Dewey, Marc

    2018-07-01

    To investigate DNA double-strand breaks (DSBs) in blood lymphocytes induced by two-day 99m Tc-MIBI myocardial perfusion scintigraphy (MPS) using y-H2AX immunofluorescence microscopy and to correlate the results with 99m Tc activity in blood samples. Eleven patients who underwent two-day MPS were included. DSB blood sampling was performed before and 5min, 1h and 24h after the first and second radiotracer injections. 99m Tc activity was measured in each blood sample. For immunofluorescence microscopy, distinct foci representing DSBs were quantified in lymphocytes after staining for the phosphorylated histone variant y-H2AX. The 99m Tc-MIBI activity measured on days one and two was similar (254±25 and 258±27 MBq; p=0.594). Compared with baseline DSB foci (0.09±0.05/cell), a significant increase was found at 5min (0.19±0.04/cell) and 1h (0.18±0.04/cell) after the first injection and at 5min and 1h after the second injection (0.21±0.03 and 0.19±0.04/cell, respectively; p=0.003 for both). At 24h after the first and second injections, the number of DSB foci had returned to baseline (0.06±0.02 and 0.12±0.05/cell, respectively). 99m Tc activity levels in peripheral blood samples correlated well with DSB counts (r=0.451). DSB counts reflect 99m Tc-MIBI activity after injection for two-day MPS, and might allow individual monitoring of biological effects of cardiac nuclear imaging. • Myocardial perfusion scintigraphy using 99m Tc induces time-dependent double-strand breaks (DSBs) • γ-H2AX immunofluorescence microscopy shows DSB as an early response to radiotracer injection • Activity measurements of 99m Tc correlate well with detected DSB • DSB foci induced by 99m Tc return to baseline 24h after radiotracer injection.

  17. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold

    NARCIS (Netherlands)

    de Graaff, Jurgen C.; Ubbink, Dirk Th; Lagarde, Sjoerd M.; Jacobs, Michael J. H. M.

    2002-01-01

    Capillary blood pressure is an essential parameter in the study of the (patho-)physiology of microvascular perfusion. Currently, capillary pressure measurements in humans are performed using a servo-nulling micropressure system containing an oil-water interface, which suffers some drawbacks. In

  18. Abolished ventilation and perfusion of lung caused by blood clot in the left main bronchus

    DEFF Research Database (Denmark)

    Afzelius, P; Bergmann, A; Henriksen, J H

    2015-01-01

    /Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially......It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V...

  19. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect.

    Science.gov (United States)

    Adamson, R H; Clark, J F; Radeva, M; Kheirolomoom, A; Ferrara, K W; Curry, F E

    2014-04-01

    Removal of plasma proteins from perfusates increases vascular permeability. The common interpretation of the action of albumin is that it forms part of the permeability barrier by electrostatic binding to the endothelial glycocalyx. We tested the alternate hypothesis that removal of perfusate albumin in rat venular microvessels decreased the availability of sphingosine-1-phosphate (S1P), which is normally carried in plasma bound to albumin and lipoproteins and is required to maintain stable baseline endothelial barriers (Am J Physiol Heart Circ Physiol 303: H825-H834, 2012). Red blood cells (RBCs) are a primary source of S1P in the normal circulation. We compared apparent albumin permeability coefficients [solute permeability (Ps)] measured using perfusates containing albumin (10 mg/ml, control) and conditioned by 20-min exposure to rat RBCs with Ps when test perfusates were in RBC-conditioned protein-free Ringer solution. The control perfusate S1P concentration (439 ± 46 nM) was near the normal plasma value at 37 °C and established a stable baseline Ps (0.9 ± 0.4 × 10(-6) cm/s). Ringer solution perfusate contained 52 ± 8 nM S1P and increased Ps more than 10-fold (16.1 ± 3.9 × 10(-6) cm/s). Consistent with albumin-dependent transport of S1P from RBCs, S1P concentrations in RBC-conditioned solutions decreased as albumin concentration, hematocrit, and temperature decreased. Protein-free Ringer solution perfusates that used liposomes instead of RBCs as flow markers failed to maintain normal permeability, reproducing the "albumin effect" in these mammalian microvessels. We conclude that the albumin effect depends on the action of albumin to facilitate the release and transport of S1P from RBCs that normally provide a significant amount of S1P to the endothelium.

  20. Regional myocardial perfusion of cardioplegic solutions

    International Nuclear Information System (INIS)

    Eugene, J.; Lyons, K.P.; Ott, R.A.; Gelezunas, V.L.; Chang, C.W.; Kowall, M.G.; Haiduc, N.J.

    1987-01-01

    We compared the regional myocardial perfusion of blood cardioplegic solution (BCP) and crystalloid cardioplegic solution (CCP) in 14 mongrel dogs. Cardiopulmonary bypass was established at 28 degrees C, and a hydraulic occluder was placed around the proximal left anterior descending (LAD) coronary artery. In group 1 (N = 7) collateral coronary arteries were ligated; in group 2 (N = 7) collateral coronary arteries were left in situ. After the aorta was clamped, BCP and CCP were alternately perfused at 200 ml/min. The occluder was inflated to produce moderate, severe, and critical LAD stenosis, and regional perfusion was measured by xenon-133 washout with the Silicon Avalanche Radiation Detector. BCP infusion produced a consistently higher aortic pressure, but CCP flow was better than BCP flow under all conditions, particularly without coronary collaterals. Regional myocardial perfusion of CCP is superior to BCP

  1. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel...

  2. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    Science.gov (United States)

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  3. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  4. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  5. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  6. CT perfusion scanning of the brain in stroke and beyond

    International Nuclear Information System (INIS)

    Riedel, Christian

    2011-01-01

    CT perfusion scanning (CTP) allows for quantitative analysis of cerebral blood flow (CBF) and cerebral blood volume (CBV). Until recently, it was only possible to study brain perfusion parameters in a small stack of CT-slices close to the skull base. With the introduction of multidetector CT scanners with 64 and more detector rows it has become possible to assess perfusion of the entire brain. An optimal choice of scanning parameters like the new 'shuttle'-technique combined with a well adapted regimen for contrast administration is required to guarantee reliable perfusion measurements while still keeping the X-ray dose absorbed by the patient at a minimum. With these techniques, CTP is not only an important modality in the work-up of patients suffering from acute ischemic stroke but can also be valuable in other emergency situations such as in prolonged epileptic seizures or to monitor patients with subacute subarachnoid hemorrhage. (orig.)

  7. Analysis of decrease in lung perfusion blood volume with occlusive and non-occlusive pulmonary embolisms

    International Nuclear Information System (INIS)

    Ikeda, Yohei; Yoshimura, Norihiko; Hori, Yoshiro; Horii, Yosuke; Ishikawa, Hiroyuki; Yamazaki, Motohiko; Noto, Yoshiyuki; Aoyama, Hidefumi

    2014-01-01

    Highlights: • The proportion of preserved PE lesions in the non-occlusive group was 76.7% (33/43). • HUs of the iodine map were significantly higher in the non-occlusive group than in the occlusive group. • There was no significant difference in HUs between the non-occlusive and corresponding normal group. - Abstract: Purpose: The aim of this study was to determine if lung perfusion blood volume (lung PBV) with non-occlusive pulmonary embolism (PE) differs quantitatively and visually from that with occlusive PE and to investigate if lung PBV with non-occlusive PE remains the same as that without PE. Materials and methods: Totally, 108 patients suspected of having acute PE underwent pulmonary dual-energy computed tomography angiography (DECTA) between April 2011 and January 2012. Presence of PE on DECTA was evaluated by one radiologist. Two radiologists visually evaluated the PE distribution (segmental or subsegmental) and its nature (occlusive or non-occlusive) on DECTA and classified perfusion in lung PBV as “decreased,” “slightly decreased,” and “preserved”. Two radiologists used a lung PBV application to set a region of interest (ROI) in the center of the lesion and measured HU values of an iodine map. In the same slice as the ROI of the lesion and close to the lesion, another ROI was set in the normal perfusion area without PE, and HUs were measured. The proportion of lesions was compared between the occlusive and non-occlusive groups. HUs were compared among the occlusive, non-occlusive, and corresponding normal groups. Results: Twenty-five patients had 80 segmental or subsegmental lesions. There were 37 and 43 lesions in the occlusive and non-occlusive groups, respectively. The proportion of decreased lesions was 73.0% (27/37) in the occlusive group, while that of preserved lesions in the non-occlusive group was 76.7% (33/43). There was a significant difference in the proportion of lesions (P < 0.001) between the two groups. HUs of the

  8. Dynamic subcortical blood flow during male sexual activity with ecological validity : A perfusion NRI study

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Farrell, Michael J.; Boessen, Ruud; Denton, Derek A.; Gavrilescu, Maria; Kortekaas, Rudie; Renken, Remco J.; Hoogduin, Johannes M.; Egan, Gary F.

    This study used arterial spin labeling (ASL) fMRI to measure brain perfusion in a group of healthy men under conditions that closely resembled customary sexual behavior. Serial perfusion measures for 30 min during two self-limited periods of partnered penis stimulation, and during post-stimulatory

  9. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    International Nuclear Information System (INIS)

    Talakic, Emina; Schoellnast, Helmut; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz

    2017-01-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  10. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    Energy Technology Data Exchange (ETDEWEB)

    Talakic, Emina; Schoellnast, Helmut [Medical University of Graz, Division of General Radiology, Department of Radiology, Graz (Austria); Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut [Medical University of Graz, Department of Surgery, Division of Transplantation Surgery, Graz (Austria); Stauber, Rudolf [Medical University of Graz, Department of Internal Medicine, Division of Gastoenterology and Hepatology, Graz (Austria); Quehenberger, Franz [Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz (Austria)

    2017-10-15

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  11. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  12. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  13. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    International Nuclear Information System (INIS)

    Green, Mark A.; Mathias, Carla J.; Willis, Lynn R.; Handa, Rajash K.; Lacy, Jeffrey L.; Miller, Michael A.; Hutchins, Gary D.

    2007-01-01

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-μm microspheres was confirmed in four immature farm pigs using co-injected 46 Sc- and 57 Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [ 64 Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [ 64 Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [ 64 Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [ 64 Cu]Cu-ETS. Results: The co-injected 11- and 15-μm microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [ 64 Cu]Cu-ETS and regional renal perfusion measured using microspheres. [ 64 Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37 o C, the [ 64 Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min -1 g -1 ) with [ 60,61,62,64 Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol extraction of blood samples appears suitable as an approach

  14. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Detre, John A. E-mail: detre@mail.med.upenn.edu; Alsop, David C

    1999-05-01

    Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times

  15. Investigation of Hepatic Blood Perfusion by Laser Speckle Imaging and Changes of Hepatic Vasoactive Substances in Mice after Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Xiao-jing Song

    2014-01-01

    Full Text Available The study was conducted to observe the effect of electroacupuncture (EA on hepatic blood perfusion (HBP and vascular regulation. We investigated 60 male anesthetized mice under the following 3 conditions: without EA stimulation (control group; EA stimulation at Zusanli (ST36 group; EA stimulation at nonacupoint (NA group during 30 min. The HBP was measured using the laser speckle perfusion imaging (LSPI. The level of nitric oxide (NO, endothelin-1 (ET-1, and noradrenaline (NE in liver tissue was detected by biochemical methods. Results were as follows. At each time point, HBP increase in ST36 group was higher than that in the NA group in anesthetized mice. HBP gradually decreased during 30 min in control group. The level of NO in ST36 group was higher than that in NA group. The level of both ET-1 and NE was the highest in control group, followed by NA group and ST36 group. It is concluded that EA at ST36 could increase HBP possibly by increasing the blood flow velocity (BFV, changing vascular activity, increasing the level of NO, and inhibiting the level of ET-1 in liver tissue.

  16. Studies on glucose metabolism and blood perfusion in childhood partial seizure by positron emission CT

    International Nuclear Information System (INIS)

    Michihiro, Narumi

    1986-01-01

    To investigate the glucose metabolism and blood perfusion of the interictal epileptic focus, 15 positron emission tomography (PET) measurements were performed in 14 children with partial seizures (2 with simple partial seizures, 2 with complex partial seizures, and 10 with partial seizures evolving to secondary generalized seizures), comprising 7 males and 7 females aged 1 to 12 years old at the onset of the epileptic seizures. The intervals between the seizure onset and PET examinations were 1 month to 7 years (mean 3 1/4 years). Radiopharmaceuticals such as 11 C-glucose, 11 CO 2 and 11 CO were used as indicators of local cerebral glucose metabolism, blood perfusion and blood flow, respectively. Apart from 2 cases, none of the patients showed abnormal x-ray computed tomographic scans (X-CT). The abnormal X-CT findings included cortical atrophy of the cerebrum apart from the epiletic focus in one case and cavum vergae in the other. Hypometabolism and hypoperfusion at the epileptic focus were observed in 10 patients undergoing single examinations who had suffered from epileptic seizures for more than 1 year. Out of 4 patients who had suffered from epileptic seizures for 1 year or less, one revealed a zone of hypometabolism and hypoperfusion in the epileptic focus and expanded region larger than that of the epileptic focus on the electroencephalogram. Two other patients revealed a zone of hypometabolism and hypoperfusion in an area contralateral to the epileptic focus. In the remaining one patient, PET examinations were performed twice. The initial PET pictures one year after seizure onset revealed a zone of hypermetabolism and hyperperfusion in the cerebellum ipsilateral to the epileptic focus, and the second PET at 6 months after the initial examination revealed hypometabolism and hypoperfusion in the focus, similarly to the 10 cases mentioned above. (J.P.N.)

  17. Brain perfusion spect imaging with sup 99m Tc-HM-PAO in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wenzhong, Song; Xiangtong, Lin [Shanghai Medical Univ. (China). Huashan Hospital

    1991-02-01

    Forty patients with Parkinson's disease were studied using {sup 99m}Tc-HM-PAO brain perfusion SPECT. 62.5% (25 cases) showed abnormal blood perfusion. Among them 55% showed local decreased blood perfusion of cerebral cortex, 22% showed asymmetric decreased blood perfusion in basal gaglia, 10% showed decreased uptake of tracer in cerebellum. The pathophysiologic basis of the abnormality of brain blood perfusion were briefly discussed.

  18. Effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, J.B. (Miami Univ., Coral Gables, FL (USA)); Evans, D.H. (Mt. Desert Island Biological Laboratory, Salsbury Cove, ME, USA)

    1981-06-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of /sup 22/Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro /sup 36/Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion.

  19. Semi-quantitative myocardial perfusion measured by computed tomography in patients with refractory angina

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Kühl, Jørgen Tobias; Kjaer, Andreas

    2017-01-01

    INTRODUCTION: Computed tomography (CT) is a novel method for assessment of myocardial perfusion and has not yet been compared to rubidium-82 positron emission tomography (PET). We aimed to compare CT measured semi-quantitative myocardial perfusion with absolute quantified myocardial perfusion usi...

  20. Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT

    International Nuclear Information System (INIS)

    Struffert, Tobias; Kloska, Stephan; Engelhorn, Tobias; Doerfler, Arnd; Deuerling-Zheng, Yu; Boese, Jan; Zellerhoff, Michael; Schwab, Stefan

    2011-01-01

    We tested the hypothesis that Flat Detector computed tomography (FD-CT) with intravenous contrast medium would allow the calculation of whole brain cerebral blood volume (CBV) mapping (FD-CBV) and would correlate with multislice Perfusion CT (PCT). Twenty five patients were investigated with FD-CBV and PCT. Correlation of the CBV maps of both techniques was carried out with measurements from six anatomical regions from both sides of the brain. Mean values of each region and the correlation coefficient were calculated. Bland-Altman analysis was performed to compare the two different imaging techniques. The image and data quality of both PCT and FD-CBV were suitable for evaluation in all patients. The mean CBV values of FD-CBV and PCT showed only minimal differences with overlapping standard deviation. The correlation coefficient was 0.79 (p < 0.01). Bland-Altman analysis showed a mean difference of -0.077 ± 0.48 ml/100 g between FD-CBV and PCT CBV measurements, indicating that FD-CBV values were only slightly lower than those of PCT. CBV mapping with intravenous contrast medium using Flat Detector CT compared favourably with multislice PCT. The ability to assess cerebral perfusion within the angiographic suite may improve the management of ischaemic stroke and evaluation of the efficacy of dedicated therapies. (orig.)

  1. Effects of Electroacupuncture Stimulation at “Zusanli” Acupoint on Hepatic NO Release and Blood Perfusion in Mice

    Directory of Open Access Journals (Sweden)

    Shu-you Wang

    2015-01-01

    Full Text Available The study is to observe the influence of electroacupuncture (EA stimulation at “Zusanli” (ST36 on the release of nitric oxide (NO and blood perfusion (BP in the liver and further explore whether the hepatic blood perfusion (HBP changes were regulated by EA ST36 induced NO in nitric oxide synthase inhibited mice. The HBP change of the mice was detected by laser speckle perfusion imaging (LSPI before and after being given interventions, and the NO in liver tissue was detected by nitric acid reductase in each group. The NO levels and HBP in the L-NAME group were significantly lower than those in the control group (P<0.01. The NO level and HBP increase in EA group were significantly higher than those in control group (P<0.05. The NO level in the L-NAME EA group was slightly higher than that in the L-NAME group. The HBP increase in the L-NAME EA group was not statistically significant. These results showed that EA could accelerate the synthesis of NO and thereby increase HBP via vasodilation in liver tissue.

  2. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  3. The effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    International Nuclear Information System (INIS)

    Claiborne, J.B.; Evans, D.H.

    1981-01-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of 22 Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro 36 Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion. (Auth.)

  4. Carotid artery disease and low cerebral perfusion pressure

    DEFF Research Database (Denmark)

    Schroeder, T; Utzon, N P; Aabech, J

    1990-01-01

    Direct internal carotid artery blood pressure measurements in patients undergoing carotid endarterectomy identified 49 patients, among 239 consecutive cases (21%), who had a reduction in perfusion pressure of 20% or more. The clinical history, objective findings and angiographic data were compared...

  5. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  6. Quantitative aspects of myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Vogel, R.A.

    1980-01-01

    Myocardial perfusion measurements have traditionally been performed in a quantitative fashion using application of the Sapirstein, Fick, Kety-Schmidt, or compartmental analysis principles. Although global myocardial blood flow measurements have not proven clinically useful, regional determinations have substantially advanced our understanding of and ability to detect myocardial ischemia. With the introduction of thallium-201, such studies have become widely available, although these have generally undergone qualitative evaluation. Using computer-digitized data, several methods for the quantification of myocardial perfusion images have been introduced. These include orthogonal and polar coordinate systems and anatomically oriented region of interest segmentation. Statistical ranges of normal and time-activity analyses have been applied to these data, resulting in objective and reproducible means of data evaluation

  7. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    Science.gov (United States)

    Talakić, Emina; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz; Schoellnast, Helmut

    2017-10-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p portal hypertension. • SAF and SCL are statistically significantly correlated with HVPG • SCL showed stronger correlation with HVPG than SAF • 125 ml/min/100 ml SCL-cut-off yielded 94 % sensitivity, 100 % specificity for severe PH • HAF, PVF and HPI showed no statistically significant correlation with HVPG.

  8. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model

    DEFF Research Database (Denmark)

    Jødal, Lars; Nielsen, Ole L; Afzelius, Pia

    2017-01-01

    and not quantitative. Quantitative assessment of perfusion could aid in the selection of therapy. A non-invasive, quantitative way to study perfusion is dynamic [15O]water positron emission tomography (PET). We aim to demonstrate that the method can be used for measuring perfusion in OM lesions and hypothesize...... that perfusion will be less elevated in OM lesions than in soft tissue (ST) infection. The study comprised 11 juvenile pigs with haematogenous osteomyelitis induced by injection of Staphylococcus aureus into the right femoral artery 1 week before scanning (in one pig, 2 weeks). The pigs were dynamically PET...

  9. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Piotr [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Owren Nygaard, Gro [Oslo University Hospital, Department of Neurology, Oslo (Norway); Bjoernerud, Atle [Intervention Center, Oslo University Hospital, Oslo (Norway); University of Oslo, Department of Physics, Oslo (Norway); Gulowsen Celius, Elisabeth [Oslo University Hospital, Department of Neurology, Oslo (Norway); University of Oslo, Institute of Health and Society, Faculty of Medicine, Oslo (Norway); Flinstad Harbo, Hanne [University of Oslo, Institute of Clinical Medicine, Faculty of Medicine, Oslo (Norway); Oslo University Hospital, Department of Neurology, Oslo (Norway); Kristiansen Beyer, Mona [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Oslo (Norway); Oslo and Akershus University College of Applied Sciences, Department of Life Sciences and Health, Oslo (Norway)

    2017-07-15

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  10. Magnetic resonance imaging perfusion is associated with disease severity and activity in multiple sclerosis

    International Nuclear Information System (INIS)

    Sowa, Piotr; Owren Nygaard, Gro; Bjoernerud, Atle; Gulowsen Celius, Elisabeth; Flinstad Harbo, Hanne; Kristiansen Beyer, Mona

    2017-01-01

    The utility of perfusion-weighted imaging in multiple sclerosis (MS) is not well investigated. The purpose of this study was to compare baseline normalized perfusion measures in subgroups of newly diagnosed MS patients. We wanted to test the hypothesis that this method can differentiate between groups defined according to disease severity and disease activity at 1 year follow-up. Baseline magnetic resonance imaging (MRI) including a dynamic susceptibility contrast perfusion sequence was performed on a 1.5-T scanner in 66 patients newly diagnosed with relapsing-remitting MS. From the baseline MRI, cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps were generated. Normalized (n) perfusion values were calculated by dividing each perfusion parameter obtained in white matter lesions by the same parameter obtained in normal-appearing white matter. Neurological examination was performed at baseline and at follow-up approximately 1 year later to establish the multiple sclerosis severity score (MSSS) and evidence of disease activity (EDA). Baseline normalized mean transit time (nMTT) was lower in patients with MSSS >3.79 (p = 0.016), in patients with EDA (p = 0.041), and in patients with both MSSS >3.79 and EDA (p = 0.032) at 1-year follow-up. Baseline normalized cerebral blood flow and normalized cerebral blood volume did not differ between these groups. Lower baseline nMTT was associated with higher disease severity and with presence of disease activity 1 year later in newly diagnosed MS patients. Further longitudinal studies are needed to confirm whether baseline-normalized perfusion measures can differentiate between disease severity and disease activity subgroups over time. (orig.)

  11. Effect of intranasally administered insulin on cerebral blood flow and perfusion

    DEFF Research Database (Denmark)

    Akintola, Abimbola A.; van Opstal, Anna M.; Westendorp, Rudi G.

    2017-01-01

    Insulin, a vasoactive modulator regulating peripheral and cerebral blood flow, has been consistently linked to aging and longevity. In this proof of principle study, using a randomized, double-blinded, placebo-controlled crossover design, we explored the effects of intranasally administered insulin...... labelling. Total flow through the major cerebropetal arteries was unchanged in both young and old. In the older participants, intranasal insulin compared to placebo increased perfusion through the occipital gray matter (65.2±11.0 mL/100g/min vs 61.2±10.1 mL/100g/min, P=0.001), and in the thalamus (68...

  12. Determining tumor blood flow parameters from dynamic image measurements

    Science.gov (United States)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  13. Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mark A. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: magreen@purdue.edu; Mathias, Carla J. [Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Willis, Lynn R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Handa, Rajash K. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX 77054 (United States); Miller, Michael A. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Hutchins, Gary D. [Department of Radiology and the Indiana Center of Excellence in Biomedical Imaging, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2007-04-15

    The copper(II) complex of ethylglyoxal bis(thiosemicarbazone) (Cu-ETS) was evaluated as a positron emission tomography (PET) radiopharmaceutical for assessment of regional renal perfusion. Methods: The concordance of renal flow estimates obtained with 11- and 15-{mu}m microspheres was confirmed in four immature farm pigs using co-injected {sup 46}Sc- and {sup 57}Co-microspheres administered into the left ventricle. With the use of both immature farm pigs (n=3) and mature Goettingen minipigs (n=6), regional renal radiocopper uptake following intravenous [{sup 64}Cu]Cu-ETS administration was compared to microsphere measurements of renal perfusion. The distribution and kinetics of [{sup 64}Cu]Cu-ETS were further studied by PET imaging of the kidneys. The rate of [{sup 64}Cu]Cu-ETS decomposition by blood was evaluated in vitro, employing octanol extraction to recover intact [{sup 64}Cu]Cu-ETS. Results: The co-injected 11- and 15-{mu}m microspheres provided similar estimates of renal flow. A linear relationship was observed between the renal uptake of intravenous [{sup 64}Cu]Cu-ETS and regional renal perfusion measured using microspheres. [{sup 64}Cu]Cu-ETS provided high-quality PET kidney images demonstrating the expected count gradient from high-flow outer cortex to low-flow medulla. When incubated with pig blood in vitro at 37{sup o}C, the [{sup 64}Cu]Cu-ETS radiopharmaceutical was observed to decompose with a half-time of 2.8 min. Conclusion: Cu-ETS appears suitable for use as a PET radiopharmaceutical for evaluation of regional renal perfusion, affording renal uptake of radiocopper that varies linearly with microsphere perfusion measurements. Quantification of renal perfusion (in ml min{sup -1} g{sup -1}) with [{sup 60,61,62,64}Cu]Cu-ETS will require correcting the arterial input function for the fraction of blood radiocopper remaining present as the intact Cu-ETS radiopharmaceutical, since the Cu-ETS chelate has limited chemical stability in blood. Rapid octanol

  14. CT hepatic perfusion measurement: Comparison of three analytic methods

    International Nuclear Information System (INIS)

    Kanda, Tomonori; Yoshikawa, Takeshi; Ohno, Yoshiharu; Kanata, Naoki; Koyama, Hisanobu; Takenaka, Daisuke; Sugimura, Kazuro

    2012-01-01

    Objectives: To compare the efficacy of three analytic methods, maximum slope (MS), dual-input single-compartment model (CM) and deconvolution (DC), for CT measurements of hepatic perfusion and assess the effects of extra-hepatic systemic factors. Materials and methods: Eighty-eight patients who were suspected of having metastatic liver tumors underwent hepatic CT perfusion. The scans were performed at the hepatic hilum 7–77 s after administration of contrast material. Hepatic arterial and portal perfusions (HAP and HPP, ml/min/100 ml) and arterial perfusion fraction (APF, %) were calculated with the three methods, followed by correlation assessment. Partial correlation analysis was used to assess the effects on hepatic perfusion values by various factors such as age, sex, risk of cardiovascular diseases, arrival time of contrast material at abdominal aorta, transit time from abdominal aorta to hepatic parenchyma, and liver dysfunction. Results: Mean HAP of MS was significantly higher than DC. HPP of CM was significantly higher than MS and CM, and HPP of MS was significantly higher than DC. There was no significant difference in APF. HAP and APF showed significant and moderate correlations among the methods. HPP showed significant and moderate correlations between CM and DC, and poor correlation between MS and CM or DC. All methods showed weak correlations between HAP or APF and age or sex. Finally, MS showed weak correlations between HAP or HPP and arrival time or cardiovascular risks. Conclusions: Hepatic perfusion values arrived at with the three methods are not interchangeable. CM and DC are less susceptible to extra-hepatic systemic factors

  15. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Science.gov (United States)

    Rafiq, Aasma; Khanday, M A

    2016-12-01

    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Regional blood perfusion in childhood partial seizure using N-isopropyl-p-[I-123]iodoamphetamine and single photon emission CT

    International Nuclear Information System (INIS)

    Michihiro, Narumi; Kurosawa, Yumiko; Hibio, Shuichi; Ishihara, Hiroaki; Ariizumi, Motomizu

    1989-01-01

    Single photon emission CT (SPECT) with N-isopropyl-p-[I-123]iodoamphetamine was performed in 20 pediatric patients with partial seizure to examine regional blood perfusion. In detecting location of abnormality, SPECT and EEG were concordant in 13 patients (65%) and discordant in 4 patients (20%). In 7 patients undergoing SPECT one to 4 years after seizure onset, decreased blood perfusion corresponded to focal abnormality on EEG. In other 9 patiets in whom SPECT was performed within one year, however, location of abnormality on SPECT did not necessarily concur with that on EEG. These findings suggest that brain lesions are not focal but extensive at the early stage of partial seizure and that they are becoming focal with the mature of the central nervous system. (Namekawa, K)

  17. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  18. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of perfusion detect on the measurement of left ventricular mass, ventricular volume and post-stress left ventricular ejection fraction in gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Ahn, Byeong Cheol; Bae, Sun Keun; Lee, Sang Woo; Jeong, Sin Young; Lee, Jae Tae; Lee, Kyu Bo

    2002-01-01

    The presence of perfusion defect may influence the left ventricular mass (LVM) measurement by quantitative gated myocardial perfusion SPECT (QGS), and ischemic myocardium, usually showing perfusion defect may produce post-stress LV dysfunction. This study was aimed to evaluated the effects of extent and reversibility of perfusion defect on the automatic measurement of LVM by QGS and to investigate the effect of reversibility of perfusion defect on post-stress LV dysfunction. Forty-six patients (male/female=34:12, mean age=64 years) with perfusion defect on myocardial perfusion SPECT underwent rest and post-stress QGS. Forty patients (87%) showed reversible defect. End-diastolic volume (EDV), end-systolic volume (ESV), LV ejection fraction (EF), and LV myocardial volume were obtained from QGS by autoquant program, and LVM was calculated by multiplying the LV myocardial volume by the specific gravity of myocardium. LVMs measured at rest and post-stress QGS showed good correlation, and higher correlation was founded in the subjects with fixed perfusion defect and with small defect (smaller than 20%). There were no significant differences in EDVs, ESVs and EFs between obtained by rest and post-stress QGS in patients with fixed myocardial defect. Whereas, EF obtained by post-stress QGS was lower than that by rest QGS in patients with reversible defect and 10 (25%) of them showed decreases in EF more than 5% in post-stress QGS, as compared to that of rest QGS. Excellent correlations of EDVs, ESVs, EFs between rest and post-stress QGS were noted. Patients with fixed defect had higher correlation between defect can affect LVM measurement by QGS and patients with reversible defect shows post-stress LV dysfunction more frequently than patients with fixed perfusion defect

  20. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  1. The effect of patent ductus arteriosus on pre-ductal and post-ductal perfusion index in preterm neonates.

    Science.gov (United States)

    Nitzan, Itamar; Hammerman, Cathy; Fink, Daniel; Nitzan, Meir; Koppel, Robert; Bromiker, Ruben

    2018-06-26

    The ductus arteriosus is a blood vessel that connects the pulmonary artery to the descending aorta during fetal life and generally undergoes spontaneous closure shortly after birth. In premature neonates it often fails to close (patent ductus arteriosus - PDA), which can result in diversion of a significant part of the left-ventricular cardiac output to the pulmonary circulation. This left-to-right shunt may result in significant increase of pulmonary blood flow and decrease of systemic perfusion (hemodynamically significant PDA - hsPDA), which may lead to severe neonatal morbidity. The study objective was to find the relationship between hsPDA and perfusion index (PI), a photoplethysmographic parameter, related to systemic perfusion. Approach. PI measures the relative systolic increase in tissue light absorption due to the systolic increase in the tissue blood volume. PI has been found to be directly related to tissue perfusion, and is therefore expected to be affected by hsPDA. Main results. PI was found to be higher in preterm neonates with hsPDA after first week of life, in comparison to those with closed DA, despite the lower systemic perfusion, probably due to reverse flow during diastole. Significance. In our study, perfusion index increased despite the lower systemic perfusion, indicating that in neonates with hsPDA, perfusion index is not necessarily a measure of perfusion. Nevertheless, PI can be used as a screening tool for suspicious PDA, in order to select a relatively small group of neonates for a more definitive examination by echocardiography, which is not suitable for universal screening. . © 2018 Institute of Physics and Engineering in Medicine.

  2. Studies on blood supply of liver metastasis with DSA, CT and portal vein perfusion CT during superior mesenteric arterial portography

    International Nuclear Information System (INIS)

    Li Zhigang; Shi Gaofeng; Huang Jingxiang; Li Shunzong; Liang Guoqing; Wang Hongguang; Han Pengyin; Wang Qi; Gu Tieshu

    2008-01-01

    Objective: To probe the blood supply of liver metastasis by celiac artery, proper hepatic artery DSA, portal vein perfusion CT during superior mesenteric arterial portography (PCTAP). Methods: One hundred patients with liver metastases were examined prospectively by plain CT scan, multiphase enhanced CT scan, celiac arteriography and proper hepatic arteriography. Of them, 56 patients were examined by PCTAP. All primary lesions were confirmed by operation and (or) pathology examination. In order to investigate the blood supply of metastasis lesions, the software of Photoshop was used to obtain the time-attenuation curves (TDC) of tumor center, tumor edge, portal vein and normal liver parenchyma adjacent to the tumor to calculate liver perfusion for DSA image analysis, while a deconvolution model from CT perfusion software was designed for the dual blood supply. Results: DSA findings: TDC of proper hepatic arteriography showed: the mean peak concentration (K value) in tumor centers was (67 ± 12)%, and it was (76 ± 15)% for peritumor tissue, (51 ± 10)% in normal liver parenchyma. TDC of celiac arteriogaphy showed that the contrast concentration of tumor centers and tumor edge increased fast in early stage, then maintained a slight upward plateau, in the meanwhile, the contrast concentration of normal liver parenchyma kept increasing slowly. PCTAP findings: tumors exhibited no enhancement during 30 s continued scans. Conclusion: The blood supply of liver metastasis mainly comes from hepatic artery, but barely from portal vein. (authors)

  3. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Hengl, St.

    1996-09-01

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  4. MRI for the assessment of organ perfusion in patients with chronic kidney disease.

    Science.gov (United States)

    Odudu, Aghogho; Francis, Susan T; McIntyre, Christopher W

    2012-11-01

    Recent data have highlighted the importance of quantitative measures of organ perfusion and functional reserve. Magnetic resonance imaging allows the assessment of markers of perfusion without the use of contrast media. Techniques such as arterial spin labelling (ASL) and blood oxygen level-dependent (BOLD) imaging have been available for some time, but advances in the technology and concerns over the safety of contrast media in renal disease have spurred renewed interest and development. ASL measures perfusion, whereas BOLD imaging provides a marker of blood oxygenation, arising from the compound effect of a number of measures including perfusion, blood volume and oxygen consumption; thus, the techniques are complementary rather than analogous. They were initially confined to brain imaging as inherently low signal, susceptibility effects and motion limited their use in thoracic and abdominal organs. Advances in technology have led to robust sequences that can quantify clinically relevant changes and correlate well with reference standards. Novel approaches are likely to accelerate translation into clinical practice. The noninvasive and repeatable nature of ASL and BOLD imaging makes it likely that they will be increasingly used in clinical research. Using a developmental framework, we suggest that the application of these techniques to thoracic and abdominal organs requires validation before they are suitable for generalized clinical use. The demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media.

  5. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    International Nuclear Information System (INIS)

    Choi, Ju Youl; Sun, Joo Sung; Kim, Sun Yong; Kim, Ji Hyung; Suh, Jung Ho; Cho, Kyung Gi; Kim, Jang Sung

    2000-01-01

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  6. Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

    Directory of Open Access Journals (Sweden)

    Jean J. Chen

    2008-01-01

    Full Text Available An important aspect of functional magnetic resonance imaging (fMRI is the study of brain hemodynamics, and MR arterial spin labeling (ASL perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF measured using a flow-sensitive alternating inversion recovery (FAIR ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity. Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05.

  7. Estimation of bone perfusion as a function of intramedullary pressure in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.M.; Adler, G.G.; Venci, R.; Lanphier, E.H.; De Luca, P.M.

    1985-01-01

    It has been reported previously that following decompression (i.e. diving ascents) the intramedullary pressure (IMP) in bone can rise dramatically and possibly by the mechanism which can induce dysbaric osteonecrosis or the ''silent bends''. If the blood supply for the bone transverses the marrow compartment, than an increase in IMP could cause a temporary decrease in perfusion or hemostasis and hence ischemia leading to bone necrosis. To test this hypothesis, the authors measured the perfusion of bone in sheep as a function of IMP. The bone perfusion was estimated by measuring the perfusion-limited clearance of Ar-41 (Eγ=1293 keV, T/sub 1/2/=1.83 h) from the bone mineral matrix of sheep's tibia. The argon gas was formed in vivo by the fast neutron activation of Ca-44 to Ar-41 following the Ca-44(n,α) reaction. Clearance of Ar-41 was measured by time gated gamma-ray spectroscopy. These results indicate that an elevation of intramedullary pressure can decrease perfusion in bone and may cause bone necrosis

  8. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  9. Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.

    Science.gov (United States)

    O'Connor, Paul M; Anderson, Warwick P; Kett, Michelle M; Evans, Roger G

    2007-01-01

    Recently, a combined probe has been developed capable of simultaneous measurement of local tissue pO2 (fluorescence oximetry) and microvascular perfusion (laser Doppler flux) within the same local region. The aim of the current study was to test the utility of these combined probes to measure pO2 and perfusion in the kidney. Studies were performed in anesthetized, artificially ventilated rabbits (n=7). Baseline measurements of renal medullary perfusion and pO2 obtained using combined probes (537 +/- 110 units & 28.7 +/- 6.l mmHg, respectively) were indistinguishable from those obtained using independent probes (435 +/- 102 units & 26.9 +/- 6.4 mmHg). Baseline measurements of renal cortical pO2 were also similar between combined (9.7 +/- 1.6 mmHg) and independent probes (9.5 +/- 2.3 mmHg). Baseline levels of cortical perfusion however, were significantly greater when measured using independent probes (1130 +/- 114 units) compared to combined probes (622 +/- 59 units; P pO2 resulting from graded stimulation of the renal nerves were not significantly different when measured using combined probes to those obtained using independent probes. We conclude that combined probes are equally suitable to independent probes for tissue pO2 and microvascular perfusion measurement in the kidney. Our results raise some concerns regarding the accuracy of these OxyLite fluorescence probes for pO2 measurement in the kidney, particularly within the renal cortex.

  10. Measurement of single-kidney glomerular filtration function from magnetic resonance perfusion renography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Meiying; Cheng, Yingsheng [Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhao, Binghui, E-mail: binghuizhao@163.com [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China)

    2015-08-15

    Highlights: • MRPR monitors the transit of contrast material through nephron. • MRPR could reveal renal physiological characteristics in quality and quantity. • This review outlines the basics and future challenges of DCE MRPR. - Abstract: Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney, and is considered to be the reference standard in the evaluation of renal function. There are many ways to test the GFR clinically, such as serum creatinine concentration, blood urea nitrogen and SPECT renography, however, they’re all not a good standard to evaluate the early damage of renal function. In recent years, the improvement of MRI hardware and software makes it possible to reveal physiological characteristics such as renal blood flow or GFR by dynamic contrast enhancement magnetic resonance perfusion renography (DEC MRPR). MRPR is a method used to monitor the transit of contrast material, typically a gadolinium chelate, through the renal cortex, the medulla, and the collecting system. This review outlines the basics of DCE MRPR included acquisition of dynamic MR perfusion imaging, calculation of the contrast concentration from signal intensity and compartment models, and some challenges of MRPR method faced in prospective clinical application.

  11. Regional cerebral perfusion in cardiovascular reflex syncope

    International Nuclear Information System (INIS)

    Toeyry, J.P.; Kuikka, J.T.; Laensimies, E.A.

    1997-01-01

    Little is known about the regional cerebral perfusion in subjects with presyncope or syncope, and the impact that autonomic nervous dysfunction has on it. Seven subjects with cardiovascular vasodepressor reflex syncope were studied. A baseline test was performed with the patients standing in the 70 upright position, while the passive head-up tilt table test with and without isoprenaline infusion was employed for provocation. Regional cerebral perfusion was assessed by means of single-photon emission tomography with technetium-99m labelled V-oxo-1,2-N,N 1 -ethylenedylbis-l-cysteine diethylester (baseline, and during blood pressure decline in the provocation test) and the autonomic nervous function by means of spectral analysis of heart rate variability (baseline, and before blood pressure decline in the provocation test). Every subject showed an abrupt decline in blood pressure in the provocation test (five with presyncope and two with syncope). The systolic and diastolic blood pressures decreased significantly (P<0.001) between the baseline and the provocation study time points (radiopharmaceutical injection and lowest systolic blood pressure). Mean cerebral perfusion as average count densities decreased upon provocation as compared with baseline (190±63 vs 307±90 counts/voxel, respectively, P=0.013). Hypoperfusion was most pronounced in the frontal lobe. These results suggest that cerebral perfusion decreases markedly during presyncope or syncope with systemic blood pressure decline in subjects with cardiovascular vasodepressor syncope. Furthermore, the autonomic nervous function remains unchanged before the systemic blood pressure decline. (orig.). With 3 figs., 2 tabs

  12. Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Onishi, Katsuya; Kurita, Tairo

    2010-01-01

    Quantitative analysis of myocardial perfusion MRI can provide noninvasive assessments of myocardial perfusion reserve (MPR), which is associated with endothelial function. Endothelial function is influenced by various factors, including hypertension, diabetes, dyslipidemia, renal dysfunction and anemia. The purpose of this study was to evaluate which risk factor is the strongest effector of MPR in subjects without regional myocardial ischemia. We studied 110 patients (66 years ±10, male 68%, hypertension 76%, diabetes mellitus (DM) 40% and dyslipidemia 65%) without regional myocardial ischemia. Adenosine triphosphate (ATP) stress and rest first-pass perfusion magnetic resonance (MR) images were acquired with a 1.5-T MR system, and MPR was calculated as the ratio of stress to rest myocardial blood flow (MBF). Average rest MBF in 110 patients was 1.07±0.62 ml min -1 g -1 , whereas stress MBF was 3.15±1.93 ml min -1 g -1 and the MPR was 3.33±1.82. Rest MBF correlated significantly with hematocrit, whereas stress MBF showed a strong correlation with estimated glomerular filtration rate (e-GFR). MPR was associated with hypertension, age, e-GFR, hematocrit and left ventricular mass index (LVMI). In multiple regression analysis, hypertension (P=0.003, β=-0.274) showed the strongest correlation with MPR among other risk factors, such as diabetes (P=ns), dyslipidemia (P=ns), e-GFR (P=ns), LVMI (P=0.007, β=-0.248) and hematocrit (P=ns) after adjusting age and gender. Hypertension is the most important effector of MPR in subjects without myocardial ischemia. (author)

  13. Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Hiroshi; Onishi, Katsuya; Kurita, Tairo [Mie Univ., Graduate School of Medicine, Tsu, Mie (Japan)

    2010-11-15

    Quantitative analysis of myocardial perfusion MRI can provide noninvasive assessments of myocardial perfusion reserve (MPR), which is associated with endothelial function. Endothelial function is influenced by various factors, including hypertension, diabetes, dyslipidemia, renal dysfunction and anemia. The purpose of this study was to evaluate which risk factor is the strongest effector of MPR in subjects without regional myocardial ischemia. We studied 110 patients (66 years {+-}10, male 68%, hypertension 76%, diabetes mellitus (DM) 40% and dyslipidemia 65%) without regional myocardial ischemia. Adenosine triphosphate (ATP) stress and rest first-pass perfusion magnetic resonance (MR) images were acquired with a 1.5-T MR system, and MPR was calculated as the ratio of stress to rest myocardial blood flow (MBF). Average rest MBF in 110 patients was 1.07{+-}0.62 ml min{sup -1} g{sup -1}, whereas stress MBF was 3.15{+-}1.93 ml min{sup -1} g{sup -1} and the MPR was 3.33{+-}1.82. Rest MBF correlated significantly with hematocrit, whereas stress MBF showed a strong correlation with estimated glomerular filtration rate (e-GFR). MPR was associated with hypertension, age, e-GFR, hematocrit and left ventricular mass index (LVMI). In multiple regression analysis, hypertension (P=0.003, {beta}=-0.274) showed the strongest correlation with MPR among other risk factors, such as diabetes (P=ns), dyslipidemia (P=ns), e-GFR (P=ns), LVMI (P=0.007, {beta}=-0.248) and hematocrit (P=ns) after adjusting age and gender. Hypertension is the most important effector of MPR in subjects without myocardial ischemia. (author)

  14. Sildenafil improves blood perfusion in steroid-induced avascular necrosis of femoral head in rabbits via a protein kinase G-dependent mechanism.

    Science.gov (United States)

    Song, Qichun; Ni, Jianlong; Jiang, Hongyuan; Shi, Zhibin

    2017-10-01

    The aim of the study were to evaluate the effect of sildenafil against avascular necrosis of femoral head (ANFH) in a rabbit model, and to study the role of protein kinase G (PKG) pathway and vascular endothelial growth factor (VEGF) in ANFH. Three weeks after inducing ANFH with methylprednisolone injection, 45 female adult New Zealand white rabbits were divided into three groups and treated as follows: group SI received daily intraperitoneal sildenafil with a dose of 10 mg/kg per day; group SD received daily sildenafil identically to group SI plus auricular vein injection DT3 (a specific PKG inhibitor); group NS received only normal saline. The blood perfusion function in the femoral head was measured by perfusion MRI and ink artery infusion. Bilateral femora heads were examined histopathologically for the presence of osteonecrosis; VEGF of tissue was examined by Western blot analysis; cGMP level and PKG activity were also measured. The incidence of ANFH in SI group was significantly lower than that observed in NS and SD groups (p < 0.05). VEGF in SI group was increased compared to NS group. cGMP level and PKG activity were also significantly different between NS and SI group (p < 0.05). However, these effects of sildenafil in SD group were all markedly inhibited by the administration of DT3 compared to SI group. Sildenafil appear to increase the perfusion of femoral head by up-regulating VEGF through PKG pathway. The increased perfusion of femoral head could prevent ANFH. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  15. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill

    1996-01-01

    In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery...... turbo-FLASH (fast low-angle shot) sequence and Gd-DTPA has been presented. Here, an extension of the model is presented taking into account fast and slow water exchange between the compartments, enabling the calculation of the unidirectional influx constant (Ki) for Gd-DTPA, the distribution volume...... of Gd-DTPA (lambda), the vascular blood volume (Vb), and the time delay through the coronary arteries (delta T). The model was evaluated by computer simulation and used on experimental results from seven healthy subjects. The results in the healthy volunteers for a region of interest placed...

  16. Differential and directional effects of perfusion on electrical and thermal conductivities in liver.

    Science.gov (United States)

    Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L

    2009-01-01

    Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.

  17. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

    Directory of Open Access Journals (Sweden)

    Cynthia K. Thompson

    2017-01-01

    Full Text Available Stroke-induced alterations in cerebral blood flow (perfusion may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere, no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0–6 mm, with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.

  18. A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal cortical tissue perfusion in healthy volunteers.

    Science.gov (United States)

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2014-05-01

    We compared the effects of intravenous administration of 6% hydroxyethyl starch (maize-derived) in 0.9% saline (Voluven; Fresenius Kabi, Runcorn, United Kingdom) and a "balanced" preparation of 6% hydroxyethyl starch (potato-derived) [Plasma Volume Redibag (PVR); Baxter Healthcare, Thetford, United Kingdom] on renal blood flow velocity and renal cortical tissue perfusion in humans using magnetic resonance imaging. Hyperchloremia resulting from 0.9% saline infusion may adversely affect renal hemodynamics when compared with balanced crystalloids. This phenomenon has not been studied with colloids. Twelve healthy adult male subjects received 1-L intravenous infusions of Voluven or PVR over 30 minutes in a randomized, double-blind manner, with crossover studies 7 to 10 days later. Magnetic resonance imaging proceeded for 60 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled, and weight was recorded at 0, 30, 60, 120, 180, and 240 minutes. Mean peak serum chloride concentrations were 108 and 106 mmol/L, respectively, after Voluven and PVR infusion (P = 0.032). Changes in blood volume (P = 0.867), strong ion difference (P = 0.219), and mean renal artery flow velocity (P = 0.319) were similar. However, there was a significant increase in mean renal cortical tissue perfusion after PVR when compared with Voluven (P = 0.033). There was no difference in urinary neutrophil gelatinase-associated liopcalin to creatinine ratios after the infusion (P = 0.164). There was no difference in the blood volume-expanding properties of the 2 preparations of 6% hydroxyethyl starch. The balanced starch produced an increase in renal cortical tissue perfusion, a phenomenon not seen with starch in 0.9% saline.

  19. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    Energy Technology Data Exchange (ETDEWEB)

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-11-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year.

  20. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    International Nuclear Information System (INIS)

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-01-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year

  1. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  2. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1) identificat......Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... global MFR and major adverse cardiovascular events (MACE), and together with new diagnostic possibilities from measuring the longitudinal myocardial perfusion gradient, cardiac (82)Rb PET faces a promising clinical future. This article reviews current evidence on quantitative (82)Rb PET's ability...

  3. Characterizing potential heart agents with an isolated perfused heart system

    International Nuclear Information System (INIS)

    Pendleton, D.B.; Sands, H.; Gallagher, B.M.; Camin, L.L.

    1984-01-01

    The authors have used an isolated perfused heart system for characterizing potential myocardial perfusion radiopharamaceuticals. Rabbit or guinea pig (GP) hearts are removed and perfused through the aorta with a blood-free buffer. Heart rate and ventricular pressure are monitored as indices of viability. Tc-99m-MAA is 96-100% retained in these hearts, and Tc-99m human serum albumin shows less than 5% extraction. Tl-201 is 30-40% extracted. It is known that in-vivo, Tc-99m(dmpe)/sub 2/Cl/sub 2//sup +/ is taken up by rabbit heart but not by GP or human heart. Analogous results are obtained with the isolated perfused heart model, where the complex is extracted well by the isolated rabbit heart (24%) but not by the GP heart (<5%). Values are unchanged if human, rabbit or GP blood is mixed and co-injected with the complex. Tc-99m)dmpe)/sub 3//sup +/ is also taken up by rabbit but not by GP hearts in-vivo. However, isolated perfused hearts of both species extract this complex well (45-52%). Heart uptake is diminished to <7% if the complex is pre-equilibrated with human blood. GP blood produces a moderate inhibition (in GP hearts only) and rabbit blood has no effect. This suggests that a human or GP blood factor may have a significant effect on heart uptake of this complex. Tc-99m(CN-t-butyl)/sub 6//sup +/ is taken up well by both rabbit and GP hearts in-vivo, and is extracted 100% by both isolated perfused hearts. Heart retention remains high (73-75%) in the presence of human blood

  4. Rapid measurement of blood leakage during regional chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, C. (Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. fuer Nuklearmedizin); Omlor, G.; Gross, G.; Feifel, G. (Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. fuer Allgemeine Chirurgie); Berberich, R. (Staedtische Klinik Wuppertal (Germany). Abt. fuer Nuklearmedizin)

    1993-03-01

    A method using technetium-99m in vivo red blood cell (RBC) labelling is reported that provides results within 3 min. Blood samples drawn from the systemic and the extracorporeal circulation were measured for [sup 99m]Tc activity using a mobile well counter, and the leakage values calculated. The mean result was 7.6%[+-]6.5%/15 min (n=209). The corresponding flow rate was 100.2[+-]85.7 ml/15 min. The values for isolation perfusion of the upper and the lower extremities are compared. The leakage results using [sup 99m]Tc RBC labelling were correlated with other blood pool markers. Iodine-125 human serum albumin and indium-113 m transferrin were administered in subgroups of 4 and 19 patients simultaneously. Using linear regression, the coefficient of correlation was 0.72 for [sup 99m]Tc/[sup 113m]In and 0.58 for [sup 99m]Tc/[sup 125]I. Comparison with the alternatives suggests that the method can be considered one of the most practicable and reliable methods available. (orig.).

  5. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Mendrik, Adrienne M; Van Ginneken, Bram; Viergever, Max A [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Vonken, Evert-jan; De Jong, Hugo W; Riordan, Alan; Van Seeters, Tom; Smit, Ewoud J; Prokop, Mathias, E-mail: a.m.mendrik@gmail.com [Radiology Department, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2011-07-07

    Cerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of x-ray radiation that can be used per sequential scan is limited, which results in a high level of noise. To detect areas of abnormal perfusion, perfusion parameters are derived from the CTP data, such as the cerebral blood flow (CBF). Algorithms to determine perfusion parameters, especially singular value decomposition, are very sensitive to noise. Therefore, noise reduction is an important preprocessing step for CTP analysis. In this paper, we propose a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in 4D CTP scans, while preserving the time-intensity profiles (fourth dimension) that are essential for determining the perfusion parameters. The proposed TIPS bilateral filter is compared to standard Gaussian filtering, and 4D and 3D (applied separately to each sequential scan) bilateral filtering on both phantom and patient data. Results on the phantom data show that the TIPS bilateral filter is best able to approach the ground truth (noise-free phantom), compared to the other filtering methods (lowest root mean square error). An observer study is performed using CBF maps derived from fifteen CTP scans of acute stroke patients filtered with standard Gaussian, 3D, 4D and TIPS bilateral filtering. These CBF maps were blindly presented to two observers that indicated which map they preferred for (1) gray/white matter differentiation, (2) detectability of infarcted area and (3) overall image quality. Based on these results, the TIPS bilateral filter ranked best and its CBF maps were scored to have the best overall image quality in 100% of the cases by both observers. Furthermore, quantitative CBF and cerebral blood volume values in both the phantom and the

  6. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  7. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  8. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  9. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  11. Hyperventilation, cerebral perfusion, and syncope

    DEFF Research Database (Denmark)

    Immink, R V; Pott, F C; Secher, N H

    2014-01-01

    dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2...... the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced...... cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established....

  12. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software

    Energy Technology Data Exchange (ETDEWEB)

    Ebersberger, Ullrich [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Marcus, Roy P.; Nikolaou, Konstantin; Bamberg, Fabian [University of Munich, Institute of Clinical Radiology, Munich (Germany); Schoepf, U.J.; Gray, J.C.; McQuiston, Andrew D. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Lo, Gladys G. [Hong Kong Sanatorium and Hospital, Department of Diagnostic and Interventional Radiology, Hong Kong (China); Wang, Yining [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Department of Radiology, Beijing (China); Blanke, Philipp [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Geyer, Lucas L. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University of Munich, Institute of Clinical Radiology, Munich (Germany); Cho, Young Jun [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Konyang University College of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Scheuering, Michael; Canstein, Christian [Siemens Healthcare, CT Division, Forchheim (Germany); Hoffmann, Ellen [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany)

    2014-01-15

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. (orig.)

  13. Visceral Perfusion Scintigraphy with {sup 131}I-Labelled Albumin Macroaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, H.; Yamada, H.; Kitani, K.; Nagatani, M.; Takeda, T.; Migita, T.; Iio, M; Kameda, H. [University of Tokyo, Tokyo (Japan)

    1969-05-15

    The blood supply through the hepatic artery, superior mesenteric artery and portal vein to the visceral organs was studied in 60 cases of various hepatic disorders by scintigraphy after the selective introduction of {sup 131}I MAA by means of visceral arterial catheterization or percutaneous splenic puncture. A comparison of the radioactivities of the liver and the spleen after celiac arterial infusion (celiac perfusion scanning) indicated how much blood in the celiac artery was distributed to the two major arterial branches - the hepatic and splenic. Dominant perfusion was found through the hepatic branch in liver cirrhosis, whereas significantly dominant splenic blood perfusion was found in idiopathic non-cirrhotic portal hypertension. This remarkable contrast of the mode of celiac perfusion in two disorders indicated the etiological difference of these diseases. In malignant neoplasm of the liver, the dominant or exclusive celiac arterial perfusion was found in the tumour region. In these cases, liver scanning by the splenic injection of MAA (portal perfusion scanning) delineated the tumour region as a negative defect similar to the conventional {sup 198}Au colloid scanning. Consequently, from these two perfusion scintigrams the 'key and key-hole' pattern was demonstrated. It was concluded that a neoplastic lesion, primary or metastatic, has the predominant blood supply through the hepatic artery rather than through the portal vein. Celiac perfusion scanning of liver cystosis revealed multiple negative defects. This information was useful for differentiating a malignant tumour, which is usually impossible by conventional liver scanning. Celiac perfusion scanning was also useful for the diagnosis of arterial venous communication. In one case of liver .cancer with cirrhosis and another case with stomach varices, the arterial-v.enous communication was indicated by the appearance of the lung contour in the celiac perfusion scan. In both cases, the combined presence

  14. CT and MR perfusion can discriminate severe cerebral hypoperfusion from perfusion absence: evaluation of different commercial software packages by using digital phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Uwano, Ikuko; Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Christensen, Soren [University of Melbourne, Royal Melbourne Hospital, Departments of Neurology and Radiology, Victoria (Australia); Oestergaard, Leif [Aarhus University Hospital, Department of Neuroradiology, Center for Functionally Integrative Neuroscience, DK, Aarhus C (Denmark); Ogasawara, Kuniaki; Ogawa, Akira [Iwate Medical University, Department of Neurosurgery, Morioka (Japan)

    2012-05-15

    Computed tomography perfusion (CTP) and magnetic resonance perfusion (MRP) are expected to be usable for ancillary tests of brain death by detection of complete absence of cerebral perfusion; however, the detection limit of hypoperfusion has not been determined. Hence, we examined whether commercial software can visualize very low cerebral blood flow (CBF) and cerebral blood volume (CBV) by creating and using digital phantoms. Digital phantoms simulating 0-4% of normal CBF (60 mL/100 g/min) and CBV (4 mL/100 g/min) were analyzed by ten software packages of CT and MRI manufacturers. Region-of-interest measurements were performed to determine whether there was a significant difference between areas of 0% and areas of 1-4% of normal flow. The CTP software detected hypoperfusion down to 2-3% in CBF and 2% in CBV, while the MRP software detected that of 1-3% in CBF and 1-4% in CBV, although the lower limits varied among software packages. CTP and MRP can detect the difference between profound hypoperfusion of <5% from that of 0% in digital phantoms, suggesting their potential efficacy for assessing brain death. (orig.)

  15. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.

    Science.gov (United States)

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2012-07-01

    We compared the effects of intravenous infusions of 0.9% saline ([Cl] 154 mmol/L) and Plasma-Lyte 148 ([Cl] 98 mmol/L, Baxter Healthcare) on renal blood flow velocity and perfusion in humans using magnetic resonance imaging (MRI). Animal experiments suggest that hyperchloremia resulting from 0.9% saline infusion may affect renal hemodynamics adversely, a phenomenon not studied in humans. Twelve healthy adult male subjects received 2-L intravenous infusions over 1 hour of 0.9% saline or Plasma-Lyte 148 in a randomized, double-blind manner. Crossover studies were performed 7 to 10 days apart. MRI scanning proceeded for 90 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled and weight recorded hourly for 4 hours. Sustained hyperchloremia was seen with saline but not with Plasma-Lyte 148 (P Blood volume changes were identical (P = 0.867), but there was greater expansion of the extravascular fluid volume after saline (P = 0.029). There was a significant reduction in mean renal artery flow velocity (P = 0.045) and renal cortical tissue perfusion (P = 0.008) from baseline after saline, but not after Plasma-Lyte 148. There was no difference in concentrations of urinary neutrophil gelatinase-associated lipocalin after the 2 infusions (P = 0.917). This is the first human study to demonstrate that intravenous infusion of 0.9% saline results in reductions in renal blood flow velocity and renal cortical tissue perfusion. This has implications for intravenous fluid therapy in perioperative and critically ill patients. NCT01087853.

  16. Automatic Detection of Myocardial Boundaries in MR Cardio Perfusion Images

    NARCIS (Netherlands)

    Spreeuwers, Luuk; Breeuwer, Marcel

    2001-01-01

    Cardiovascular diseases often result in reduced blood perfusion of the myocardium (MC). Recent advances in MR allow fast recordingof contrast enhanced myocardial perfusion scans. For perfusion analysis the myocardial boundaries must be traced. Currently this is done manually. In this paper a method

  17. Possibilities of differentiation of solitary focal liver lesions by computed tomography perfusion

    Directory of Open Access Journals (Sweden)

    Irmina Sefić Pašić

    2015-08-01

    Full Text Available Aim To evaluate possibilities of computed tomography (CT perfusion in differentiation of solitary focal liver lesions based on their characteristic vascularization through perfusion parameters analysis. Methods Prospective study was conducted on 50 patients in the period 2009-2012. Patients were divided in two groups: benign and malignant lesions. The following CT perfusion parameters were analyzed: blood flow (BF, blood volume (BV, mean transit time (MTT, capillary permeability surface area product (PS, hepatic arterial fraction (HAF, and impulse residual function (IRF. During the study another perfusion parameter was analyzed: hepatic perfusion index (HPI. All patients were examined on Multidetector 64-slice CT machine (GE with application of perfusion protocol for liver with i.v. administration of contrast agent. Results In both groups an increase of vascularization and arterial blood flow was noticed, but there was no significant statistical difference between any of 6 analyzed parameters. Hepatic perfusion index values were increased in all lesions in comparison with normal liver parenchyma. Conclusion Computed tomography perfusion in our study did not allow differentiation of benign and malignant liver lesions based on analysis of functional perfusion parameters. Hepatic perfusion index should be investigated in further studies as a parameter for detection of possible presence of micro-metastases in visually homogeneous liver in cases with no lesions found during standard CT protocol

  18. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    Science.gov (United States)

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  19. Computed Tomography Perfusion Imaging for the Diagnosis of Hepatic Alveolar Echinococcosis

    Science.gov (United States)

    Sade, Recep; Kantarci, Mecit; Genc, Berhan; Ogul, Hayri; Gundogdu, Betul; Yilmaz, Omer

    2018-01-01

    Objective: Alveolar echinococcosis (AE) is a rare life-threatening parasitic infection. Computed tomography perfusion (CTP) imaging has the potential to provide both quantitative and qualitative information about the tissue perfusion characteristics. The purpose of this study was the examination of the characteristic features and feasibility of CTP in AE liver lesions. Material and Methods: CTP scanning was performed in 25 patients who had a total of 35 lesions identified as AE of the liver. Blood flow (BF), blood volume (BV), portal venous perfusion (PVP), arterial liver perfusion (ALP), and hepatic perfusion indexes (HPI) were computed for background liver parenchyma and each AE lesion. Results: Significant differences were detected between perfusion values of the AE lesions and background liver tissue. The BV, BF, ALP, and PVP values for all components of the AE liver lesions were significantly lower than the normal liver parenchyma (p<0.01). Conclusions: We suggest that perfusion imaging can be used in AE of the liver. Thus, the quantitative knowledge of perfusion parameters are obtained via CT perfusion imaging. PMID:29531482

  20. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies

    DEFF Research Database (Denmark)

    Clement, Patricia; Mutsaerts, Henk-Jan; Václavů, Lena

    2018-01-01

    was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain...

  1. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    International Nuclear Information System (INIS)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-01-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO 2 did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow

  2. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multi-parametric functional-NMR approach

    International Nuclear Information System (INIS)

    Baligand, C.; Wary, C.; Menard, J.C.; Giacomini, E.; Carlier, P.G.; Baligand, C.; Wary, C.; Menard, J.C.; Hogrel, J.Y.; Carlier, P.G.; Hogrel, J.Y.

    2011-01-01

    A totally noninvasive set-up was developed for comprehensive NMR evaluation of mouse skeletal muscle function in vivo. Dynamic pulsed arterial spin labeling-NMRI perfusion and blood oxygenation level-dependent (BOLD) signal measurements were interleaved with 31 P NMRS to measure both vascular response and oxidative capacities during stimulated exercise and subsequent recovery. Force output was recorded with a dedicated ergometer. Twelve exercise bouts were performed. The perfusion, BOLD signal, pH and force-time integral were obtained from mouse legs for each exercise. All reached a steady state after the second exercise, justifying the pointwise summation of the last 10 exercises to compensate for the limited 31 P signal. In this way, a high temporal resolution of 2.5 s was achieved to provide a time constant for phosphocreatine (PCr) recovery (tPCr). The higher signal-to-noise ratio improved the precision of τ(PCr) measurement [coefficient of variation (CV)1/416.5% vs CV1/449.2% for a single exercise at a resolution of 30 s]. Inter-animal summation confirmed that τ(PCr) was stable at steady state, but shorter (89.3W8.6 s) than after the first exercise (148 s, p≤0.05). This novel experimental approach provides an assessment of muscle vascular response simultaneously to energetic function in vivo. Its pertinence was illustrated by observing the establishment of a metabolic steady state. This comprehensive tool offers new perspectives for the study of muscle pathology in mice models. (authors)

  3. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.

  4. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    International Nuclear Information System (INIS)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S

    2015-01-01

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r 2 = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques

  5. Establishment of a hepatic cirrhosis and portal hypertension model by hepatic arterial perfusion with 80% alcohol.

    Science.gov (United States)

    Wang, Lei; He, Fu-Liang; Liu, Fu-Quan; Yue, Zhen-Dong; Zhao, Hong-Wei

    2015-08-28

    To determine the feasibility and safety of establishing a porcine hepatic cirrhosis and portal hypertension model by hepatic arterial perfusion with 80% alcohol. Twenty-one healthy Guizhou miniature pigs were randomly divided into three experimental groups and three control groups. The pigs in the three experimental groups were subjected to hepatic arterial perfusion with 7, 12 and 17 mL of 80% alcohol, respectively, while those in the three control groups underwent hepatic arterial perfusion with 7, 12 and 17 mL of saline, respectively. Hepatic arteriography and direct portal phlebography were performed on all animals before and after perfusion, and the portal venous pressure and diameter were measured before perfusion, immediately after perfusion, and at 2, 4 and 6 wk after perfusion. The following procedures were performed at different time points: routine blood sampling, blood biochemistry, blood coagulation and blood ammonia tests before surgery, and at 2, 4 and 6 wk after surgery; hepatic biopsy before surgery, within 6 h after surgery, and at 1, 2, 3, 4 and 5 wk after surgery; abdominal enhanced computed tomography examination before surgery and at 6 wk after surgery; autopsy and multi-point sampling of various liver lobes for histological examination at 6 wk after surgery. In experimental group 1, different degrees of hepatic fibrosis were observed, and one pig developed hepatic cirrhosis. In experimental group 2, there were cases of hepatic cirrhosis, different degrees of increased portal venous pressure, and intrahepatic portal venous bypass, but neither extrahepatic portal-systemic bypass circulation nor death occurred. In experimental group 3, two animals died and three animals developed hepatic cirrhosis, and different degrees of increased portal venous pressure and intrahepatic portal venous bypass were also observed, but there was no extrahepatic portal-systemic bypass circulation. It is feasible to establish an animal model of hepatic cirrhosis and

  6. A study of whole brain perfusion CT and CT angiography in hyperacute and acute cerebral infarction

    International Nuclear Information System (INIS)

    Zhang Yonghai; Bai Junhu; Zhang Ming; Yang Guocai; Tang Guibo; Fang Jun; Shi Wei; Li Xinghua; Liu Suping; Lu Qing; Tang Jun

    2005-01-01

    Objective: To evaluate the diagnostic value of whole-brain perfusion blood volume-weighted CT imaging (PWCT) and simultaneous CT angiography (CTA) on early stage of cerebral ischemic infarction. Methods: Non-contrast CT (NCCT), CT perfusion-weighted imaging (PWCT) and delayed CT (DCT) were conducted on 20 cases of early ischemic infarction of whose onset time ranged from 2 to 24 hours. All cases were reexamined with CT or MRI one week to one month later. CT values and perfusion blood volume (PBV) of central and peripheral low perfusion areas as well as those of collateral side were measured. CTA was reconstructed with PWCT as source images to evaluate occlusion or stenosis of blood vessel, and DCT was used to detect the collateral circulation. Results: Of the 20 cases, NCCT, PWCT and CTA were negative in 10 cases in which 6 were confirmed as Transient Ischemic Attack (TIA) on reexamined CT and clinical features, and the other 4 were confirmed as lacunar infarction. For the remaining 10 cases, a comparison was made with ANOVA between low perfusion area (central, peripheral inside and outside) and collateral side. The difference was significant (P<0.01). However, no significant difference was revealed in the central, peripheral inside and outside areas. PBV values were significant in low perfusion area and collateral side (P<0.05). The area of the final infarction was larger than that of the low perfusion area, and the percentage of enlargement exhibited medium negative correlation to the time of ischemia. CTA indicated that 2 cases suffered from left middle cerebral artery occlusion, meanwhile anterior and middle branches of MCA in the other 3 cases were not identified. The sensitivity of NCCT, PWCT and CTA were 28.5%, 71.4% and 35.7% respectively. DCT indicated that 5 cases had asymmetrical blood vessels. Conclusion: The whole-brain perfusion-weighted CT imaging and simultaneous CT angiography (CTA) is p roved to be a simple, timesaving and effective method for the

  7. Relationship between HgbA1c and myocardial blood flow reserve in patients with type 2 diabetes mellitus: noninvasive assessment using real-time myocardial perfusion echocardiography.

    Science.gov (United States)

    Huang, Runqing; Abdelmoneim, Sahar S; Nhola, Lara F; Mulvagh, Sharon L

    2014-01-01

    To study the relationship between glycosylated hemoglobin (HgbA1c) and myocardial perfusion in type 2 diabetes mellitus (T2DM) patients, we prospectively enrolled 24 patients with known or suspected coronary artery disease (CAD) who underwent adenosine stress by real-time myocardial perfusion echocardiography (RTMPE). HgbA1c was measured at time of RTMPE. Microbubble velocity (β min(-1)), myocardial blood flow (MBF, mL/min/g), and myocardial blood flow reserve (MBFR) were quantified. Quantitative MCE analysis was feasible in all patients (272/384 segments, 71%). Those with HgbA1c > 7.1% had significantly lower βreserve and MBFR than those with HgbA1c ≤ 7.1% (P relationship was not significant (r = -0.117, P = 0.129). Using a MBFR cutoff value > 2 as normal, HgbA1c > 7.1% significantly increased the risk for abnormal MBFR, (adjusted odds ratio: 1.92, 95% CI: 1.12-3.35, P = 0.02). Optimal glycemic control is associated with preservation of MBFR as determined by RTMPE, in T2DM patients at risk for CAD.

  8. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  9. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  10. Relationships among ventilation-perfusion distribution, multiple inert gas methodology and metabolic blood-gas tensions.

    Science.gov (United States)

    Lee, A S; Patterson, R W; Kaufman, R D

    1987-12-01

    The retention equations upon which the Multiple Inert Gas Method is based are derived from basic principles using elementary algebra. It is shown that widely disparate distributions produce indistinguishable sets of retentions. The limits of resolution of perfused compartments in the VA/Q distribution obtainable by the use of the multiple inert gas method are explored mathematically, and determined to be at most shunt and two alveolar compartments ("tripartite" distribution). Every continuous distribution studied produced retentions indistinguishable from those of its unique "matching" tripartite distribution. When a distribution is minimally specified, it is unique. Any additional specification (increased resolution--more compartments) of the distribution results in the existence of an infinitude of possible distributions characterized by indistinguishable sets of retention values. No further increase in resolution results from the use of more tracers. When sets of retention values were extracted from published multiple inert gas method continuous distributions, and compared with the published "measured" retention sets, substantial differences were found. This illustrates the potential errors incurred in the practical, in vivo application of the multiple inert gas method. In preliminary studies, the tripartite distribution could be determined with at least comparable accuracy by blood-gas (oxygen, carbon dioxide) measurements.

  11. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

    NARCIS (Netherlands)

    de Mul, FFM; Morales, F; Smit, AJ; Graaff, R

    To facilitate the quantitative analysis of post-occlusive reactive fiyper emia (POR11), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (tau(1)

  12. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  13. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  14. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  15. Correlation of CT perfusion and CT volumetry in patients with Alzheimers disease

    International Nuclear Information System (INIS)

    Czarnecka, A.; Zimny, A.; Sasiadek, M.

    2010-01-01

    Background: Both brain atrophy and decrease of perfusion are observed in dementive diseases. The aim of the study was to correlate the results of brain perfusion CT (pCT) and CT volumetry in patients with Alzheimers disease (AD). Material/Methods: Forty-eight patients with AD (mean age of 71.3 years) underwent brain pCT and CT volumetry. The pCT was performed at the level of basal ganglia after the injection of contrast medium (50 ml, 4 ml/sec.) with serial scanning (delay 7 sec, 50 scans, 1 scan/sec). Volumetric measurements were carried out on the basis of source images, with the use of a dedicated CT software combined with manual outlining of the regions of interest in extracerebral and intraventricular CSF spaces. Perfusion parameters of the cerebral blood flow (CBF) and cerebral blood volume (CBV) from the grey matter of frontal and temporal as well as basal ganglia were compared statistically with the volumetric measurements of frontal and temporal cortical atrophy as well as subcortical atrophy. Results: A statistically significant positive correlation was found between the values of CBF and CBV in the basal ganglia and the volumes of the lateral and third ventricles. The comparison of CBF and CBV results with the volumetric measurements in the areas of the frontal and temporal lobes showed mostly negative correlations, but none of them was of statistical significance. Conclusions: In patients with AD, the degree of cortical atrophy is not correlated with the decrease of perfusion in the grey matter and subcortical atrophy is not correlated with the decrease of perfusion in the basal ganglia region. It suggests that functional and structural changes in AD are not related to each other. (authors)

  16. Perfusion MRI in CNS disease: current concepts

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Le-Huu, M.; Stieltjes, B.; Tengg, H. von; Weber, M.-A.

    2004-01-01

    Today there are several indications for cerebral perfusion MRI. The major indications routinely used in increasing numbers of imaging centers include cerebrovascular disease, tumor imaging and recently psychiatric disorders. Perfusion MRI is based on the injection of a gadolinium chelate and the rapid acquisition of images as the bolus of contrast agent passes through the blood vessels in the brain. The contrast agent causes a signal change; this signal change over time can be analysed to measure cerebral hemodynamics. The quality of brain perfusion studies is very dependent on the contrast agent used: a robust and strong signal decrease with a compact bolus is needed. MultiHance (gadobenate dimeglumine, Gd-BOPTA) is the first of a new class of paramagnetic MR contrast agents with a weak affinity for serum proteins. Due to the interaction of Gd-BOPTA with serum albumin, MultiHance presents with significantly higher T1- and T2-relaxivities enabling a sharper bolus profile. This article reviews the indications of perfusion MRI and the performance of MultiHance in MR perfusion of different diseases. Previous studies using perfusion MRI for a variety of purposes required the use of double dose of contrast agent to achieve a sufficiently large signal drop to enable the acquisition of a clear input function and the calculation of perfusion rCBV and rCBF maps of adequate quality. Recent studies with Multi-Hance suggest that only a single dose of this agent is needed to cause a signal drop of about 30% which is sufficient to allow the calculation of high quality rCBV and rCBF maps. (orig.)

  17. Skin perfusion pressure measured with a photo sensor in an air-filled plastic balloon: validity and reproducibility on the lower leg in normal subjects and patients suspected of obliterative arterial disease

    International Nuclear Information System (INIS)

    Nielsen, Steen Levin; Nielsen, Anne Lerberg; Vind, Susanne Haase; Thomassen, Anders

    2011-01-01

    An inflatable small plastic bag including a photo sensor was constructed for measurement of skin perfusion pressure avoiding the rim of the photo sensor over bony and tendineous surfaces of the tibia below the knee, at the ankle, and on the dorsal forefoot. Compression was obtained using a conical blood pressure cuff with continuous decrease from suprasystolic arm pressure. The validity of skin perfusion pressure with the new device was compared to that of isotope washout below the knee in normal subjects and in patients with an ischemic forefoot with acceptable agreement. The method had a high reproducibility within and between days in normal subjects. Compared to systolic arterial pressure measured using a strain gauge with a cuff on the ankle in normal subjects and patients with intermittent claudication the new device showed blood pressure in the skin closer to the diastolic pressure. The new pressure device thus had acceptable validity and reproducibility for estimation of the skin perfusion pressure and can be used on bony and tendineous sites on the lower limb in regions where critical wound healing is frequent, e.g. ankle and forefoot

  18. Evaluating optimal superficial limb perfusion at different angles using non-invasive micro-lightguide spectrophotometry.

    Science.gov (United States)

    Darmanin, Geraldine; Jaggard, Matthew; Hettiaratchy, Shehan; Nanchahal, Jagdeep; Jain, Abhilash

    2013-06-01

    It is common practice to elevate the limbs postoperatively to reduce oedema and hence optimise perfusion and facilitate rehabilitation. However, elevation may be counterproductive as it reduces the mean perfusion pressure. There are no clear data on the optimal position of the limbs even in normal subjects. The optimal position of limbs was investigated in 25 healthy subjects using a non-invasive micro-lightguide spectrophotometry system "O2C", which indirectly measures skin and superficial tissue perfusion through blood flow, oxygen saturation and relative haemoglobin concentration. We found a reduction in skin and superficial tissue blood flow of 17% (p=0.0001) on arm elevation (180° shoulder flexion) as compared to heart level and an increase in skin and superficial tissue blood flow of 25% (p=0.02) on forearm elevation of 45°. Lower limb skin and superficial tissue blood flow decreased by 15% (p=0.004) on elevation to 47 cm and by 70% on dependency (p=0.0001) compared to heart level. However, on elevation of the lower limb there was also a 28% reduction in superficial venous pooling (p=0.0001) compared to heart level. In the normal limb, the position for optimal superficial perfusion of the upper limb is with the arm placed at heart level and forearm at 45°. In the lower limb the optimal position for superficial perfusion would be at heart level. However, some degree of elevation may be useful if there is an element of venous congestion. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  20. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  1. Development of an Extracorporeal Perfusion Device for Small Animal Free Flaps.

    Directory of Open Access Journals (Sweden)

    Andreas M Fichter

    Full Text Available Extracorporeal perfusion (ECP might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps.After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7.ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27% was even lower than after in vivo perfusion (49%, although not statistically significant (P = 0,083. After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%. Angiographic and histological findings confirmed these observations.Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.

  2. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  3. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    Directory of Open Access Journals (Sweden)

    Bergh A

    2006-03-01

    Full Text Available Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2 in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334% and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264% and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature.

  4. Muscle blood volume assessment during exercise with Power Doppler Ultrasound

    NARCIS (Netherlands)

    Heres, H.M.; Tchang, B.C.Y.; Schoots, T.; Rutten, M.C.M.; van de Vosse, F.N.; Lopata, R.G.P.

    2016-01-01

    Assessment of perfusion adaptation in muscle during exercise can provide diagnostic information on cardiac and endothelial diseases. Power Doppler Ultrasound (PDUS) is known for its feasibility in the non-invasive measurement of moving blood volume (MBV), a perfusion related parameter. In this

  5. Hemodynamic study on liver cirrhosis: clinical application of CT perfusion imaging

    International Nuclear Information System (INIS)

    Jiang Li; Yang Jianyong; Xie Hongbo; Yang Xufeng; Yan Chaogui; Li Ziping; Zeng Fang

    2004-01-01

    Objective: To estimate hepatic perfusion parameters with helical CT, and to study the relationship between hepatic perfusion parameters and the severity of liver cirrhosis. Methods: Dynamic single-section computed tomography (CT) of the liver was performed in 40 participants, including 27 patients with liver cirrhosis and 13 patients without liver disease (control subjects). CT scans were obtained at a single level to include the liver, spleen, aorta, and portal vein. On each CT scan, the attenuation of these organs was measured in regions of interest to provide time-density curves. The arterial, portal venous, and total perfusion of the liver and the hepatic perfusion index were assessed. Results: In the control group, hepatic arterial perfusion, portal venous perfusion, and total hepatic perfusion were (0.2823 ± 0.0969) ml·min -1 ·ml -1 , (1.1788 ± 0.4004) ml·min -1 ·ml -1 , and (1.4563 ± 0.4439) ml·min -1 ·ml -1 , respectively. Hepatic perfusion index was (19.73 ±5.81)%. These hepatic perfusion parameters correlated significantly with the severity of liver cirrhosis. Hepatic arterial perfusion decreased in Child A and B cirrhotic patients [ (0.1685 ± 0.1068) ml·min -1 ·ml -1 and (0.1921 ± 0.0986) ml·min -1 ·ml -1 , respectively]. Comparing to Child A and B cirrhotic patients, hepatic arterial perfusion in Child C cirrhotic patients [(0.3072 · 0.1145) ml·min -1 ·ml -1 ] raised significantly. Portal venous perfusion decreased significantly in Child B and C cirrhotic patients [(0.6331±0.2070) ml·min -1 ·ml -1 and (0.5702 ± 0.3562) ml·min -1 ·ml -1 , respectively]. Total hepatic blood flow reduced markedly in Child B and C cirrhotic patients [(0.8252 ± 0.2952) ml·min -1 ·ml -1 and (0.8774 ± 0.4118) ml·min -1 ·ml -1 , respectively]. Hepatic perfusion index increased in Child C cirrhotic patients (37.48 ± 16.65)%. Conclusion: Dynamic single-section CT showed potential in quantifying hepatic perfusion parameters, and hepatic perfusion

  6. Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.

    Science.gov (United States)

    Henderson, A C; Sá, R C; Barash, I A; Holverda, S; Buxton, R B; Hopkins, S R; Prisk, G K

    2012-03-15

    Rapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (pchanges in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Quantitative Renal Cortical Perfusion in Human Subjects with Magnetic Resonance Imaging Using Iron-Oxide Nanoparticles: Influence of T1 Shortening

    Energy Technology Data Exchange (ETDEWEB)

    Morell, A.; Ahlstrom, H.; Schoenberg, S.O.; Abildgaard, A.; Bock, M.; Bjoernerud, A. (Dept. of Diagnostic Radiology, Uppsala Univ. Hospital, Uppsala (Sweden))

    2008-10-15

    Background: Using conventional contrast agents, the technique of quantitative perfusion by observing the transport of a bolus with magnetic resonance imaging (MRI) is limited to the brain due to extravascular leakage. Purpose: To perform quantitative perfusion measurements in humans with an intravascular contrast agent, and to estimate the influence of the T1 relaxivity of the contrast agent on the first-pass response. Material and Methods: Renal cortical perfusion was measured quantitatively in six patients with unilateral renal artery stenosis using a rapid gradient double-echo sequence in combination with an intravenous bolus injection of NC100150 Injection, an intravascular contrast agent based on iron-oxide nanoparticles. The influence of T1 relaxivity was measured by comparing perfusion results based on single- and double-echo data. Results: The mean values of cortical blood flow, cortical blood volume, and mean transit time in the normal kidneys were measured to 339+-60 ml/min/100 g, 41+-8 ml/100 g, and 7.3+-1.0 s, respectively, based on double-echo data. The corresponding results based on single-echo data, which are not compensated for the T1 relaxivity, were 254+-47 ml/min/100 g, 27+-3 ml/100 g, and 6+-1.2 s, respectively. Conclusion: The use of a double-echo sequence enabled elimination of confounding T1 effects and consequent systematic underestimation of the perfusion.

  8. Skin perfusion pressure measured with a photo sensor in an air-filled plastic balloon: validity and reproducibility on the lower leg in normal subjects and patients suspected of obliterative arterial disease

    DEFF Research Database (Denmark)

    Nielsen, Steen Levin; Nielsen, Anne Lerberg; Vind, Susanne Haase

    2011-01-01

    An inflatable small plastic bag including a photo sensor was constructed for measurement of skin perfusion pressure avoiding the rim of the photo sensor over bony and tendineous surfaces of the tibia below the knee, at the ankle, and on the dorsal forefoot. Compression was obtained using a conical...... blood pressure cuff with continuous decrease from suprasystolic arm pressure. The validity of skin perfusion pressure with the new device was compared to that of isotope washout below the knee in normal subjects and in patients with an ischemic forefoot with acceptable agreement. The method had a high...... reproducibility within and between days in normal subjects. Compared to systolic arterial pressure measured using a strain gauge with a cuff on the ankle in normal subjects and patients with intermittent claudication the new device showed blood pressure in the skin closer to the diastolic pressure. The new...

  9. Assessment of brain perfusion with MRI: methodology and application to acute stroke

    International Nuclear Information System (INIS)

    Grandin, C.B.

    2003-01-01

    We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis. (orig.)

  10. 3H-dextran method for measurements of the blood volume in the rat choroid

    International Nuclear Information System (INIS)

    Matsusaka, Toshihiko; Morimoto, Kazuhiro; Kikkawa, Yoshizo.

    1980-01-01

    A new method was developed using 3 H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the 3 H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10 -4 ml per mg wet weight and 5.070 x 10 -4 ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed. (author)

  11. Can the green laser doppler measure skin-nutritive perfusion in patients with peripheral vascular disease?

    NARCIS (Netherlands)

    Ubbink, D. T.; Tulevski, I. I.; Jacobs, M. J.

    2000-01-01

    The recently developed green laser (GL; wavelength 543 nm) is thought to measure perfusion derived from a more superficial skin layer than does the standard near-infrared laser (RL; wavelength 780 nm). These lasers were used to investigate the disturbances in the different layers of skin perfusion

  12. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  13. Comparison of Optic Nerve Head Blood Flow Autoregulation among Quadrants Induced by Decreased Ocular Perfusion Pressure during Vitrectomy

    Directory of Open Access Journals (Sweden)

    Ryuya Hashimoto

    2017-01-01

    Full Text Available Purpose. The present study aimed to examine changes in optic nerve head (ONH blood flow autoregulation in 4 quadrants (superior, nasal, inferior, and temporal with decreased ocular perfusion pressure (OPP during vitrectomy in order to determine whether there is a significant difference of autoregulatory capacity in response to OPP decrease at each ONH quadrant. Methods. This study included 24 eyes with an epiretinal membrane or macular hole that underwent vitrectomy at Toho University Sakura Medical Center. Following vitrectomy, the tissue mean blur rate (MBR, which reflects ONH blood flow, was measured. Mean tissue MBRs in the four quadrants were generated automatically in the software analysis report. Measurements were conducted before and 5 and 10 min after intraocular pressure (IOP elevation of approximately 15 mmHg in the subjects without systemic disorders. Results. The baseline tissue MBR of the temporal quadrant was significantly lower than that of the other 3 quadrants (all P<0.05. However, the time courses of tissue MBR in response to OPP decrease were not significantly different among the four quadrants during vitrectomy (P=0.23. Conclusions. There is no significant difference in the autoregulatory capacity of the four ONH quadrants in patients without systemic disorders during vitrectomy.

  14. Rhythmical Phenomena in Dermal Perfusion - Proved Assesment Strategies and new Discoveries

    Directory of Open Access Journals (Sweden)

    Markus Huelsbusch

    2005-01-01

    Full Text Available The phenomena of rhythm fluctuation of arterial blood pressure were discovered already in the first continuous recordings in the 18th century. However the formation of such rhythms hasn’t been explained until now. This work presents two concepts which could aid in bringing new insights into the understanding of these rhythms. One development is a multisensor system capable to acquire multiple PPG channels, ECG and additionally breathing signals to correlate local and central driven oscillations. The second new development is Photoplethysmography Imaging which allows contactless measurements of cutaneous perfusion with spatial resolution. Together with the necessary mathematical analysis tools like the Wavelet Transform a sound basis for assessment and evaluation of rhythm fluctuations in human hemodynamics is provided. Using the presented framework new, previously unreported phenomena of distributed blood volume movements in dermal perfusion could be observed.

  15. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  16. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  17. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  18. Achieving low anastomotic leak rates utilizing clinical perfusion assessment.

    Science.gov (United States)

    Kream, Jacob; Ludwig, Kirk A; Ridolfi, Timothy J; Peterson, Carrie Y

    2016-10-01

    Anastomotic leak after colorectal resection increases morbidity, mortality, and in the setting of cancer, increases recurrences rates and reduces survival odds. Recent reports suggest that fluorescence evaluation of perfusion after colorectal anastomosis creation is associated with low anastomotic leak rates (1.4%). The purpose of this work was to evaluate whether a similar low anastomotic leak rate after left-sided colorectal resections could be achieved using standard assessment of blood flow to the bowel ends. We performed a retrospective chart review at an academic tertiary referral center, evaluating 317 consecutive patients who underwent a pelvic anastomosis after sigmoid colectomy, left colectomy, or low anterior resection. All operations were performed by a single surgeon from March 2008 to January 2015 with only standard clinical measures used to assess perfusion to the bowel ends. The primary outcome measure was the anastomotic leak rate as diagnosed by clinical symptoms, exam, or routine imaging. The average patient age was 59.7 years with an average body mass index of 28.8 kg/m(2). Rectal cancer (128, 40.4%) was the most common indication for operation while hypertension (134, 42.3%) was the most common comorbidity. In total, 177 operations were laparoscopic (55.8%), 13 were reoperative resections (4.1%), and 108 were protected with a loop ileostomy (34.1%). Preoperative chemotherapy was administered to 25 patients (7.9%) while preoperative chemo/radiation was administered to 64 patients (20.2%). The anastomotic leak rate was 1.6% (5/317). Our data suggests that standard, careful evaluation of adequate blood flow via inspection and confirmation of pulsatile blood flow to the bowel ends and meticulous construction of the colorectal or coloanal anastomoses can result in very low leak rates, similar to the rate reported when intraoperative imaging is used to assess perfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Experimental flow and perfusion measurement in an animal model with magnetic resonance tomography

    International Nuclear Information System (INIS)

    Schoenberg, S.O.; Bock, M.; Just, A.

    2001-01-01

    Aim. Validation of non-invasive methods for morphologic and functional imaging of the kidney under physiologic and pathophysiologic conditions. Material and Methods. In chronically instrumented animals (foxhounds) comparative measurements of renal flow and perfusion were performed. Magnetic resonance imaging techniques were compared to data obtained from implanted flow probes and total kidney weight post mortem. In the MR system, different degrees of renal artery stenosis could be induced by means of an implanted inflatable cuff. The degree of stenosis was verified with high-resolution 3D contrast-enhanced MR angiography (3D-CE-MRA) using an intravascular contrast agent. Results. The MR-data agreed well with the invasively obtained results. Artifacts resulting from the implanted flow probes and other devices could be kept to a minimum due to appropriate selection of the probe materials and measurement strategies. Stenoses could be reproduced reliably and quantified from the induced morphologic and functional changes. Conclusion. Morphologic and functional MR techniques are well suited for non-invasive in vivo assessment of renal blood flow physiology. (orig.) [de

  20. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    International Nuclear Information System (INIS)

    Murase, Kenya; Nanjo, Takafumi; Ii, Satoshi; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-01-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation x 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current

  1. Measurement of regional cerebral blood flow using one-point venous blood sampling and causality model. Evaluation by comparing with conventional continuous arterial blood sampling method

    International Nuclear Information System (INIS)

    Mimura, Hiroaki; Sone, Teruki; Takahashi, Yoshitake

    2008-01-01

    Optimal setting of the input function is essential for the measurement of regional cerebral blood flow (rCBF) based on the microsphere model using N-isopropyl-4-[ 123 I]iodoamphetamine ( 123 I-IMP), and usually the arterial 123 I-IMP concentration (integral value) in the initial 5 min is used for this purpose. We have developed a new convenient method in which 123 I-IMP concentration in arterial blood sample is estimated from that in venous blood sample. Brain perfusion single photon emission computed tomography (SPECT) with 123 I-IMP was performed in 110 cases of central nervous system disorders. The causality was analyzed between the various parameters of SPECT data and the ratio of octanol-extracted arterial radioactivity concentration during the first 5 min (Caoct) to octanol-extracted venous radioactivity concentration at 27 min after intravenous injection of 123 I-IMP (Cvoct). A high correlation was observed between the measured and estimated values of Caoct/Cvoct (r=0.856) when the following five parameters were included in the regression formula: radioactivity concentration in venous blood sampled at 27 min (Cv), Cvoct, Cvoct/Cv, and total brain radioactivity counts that were measured by a four-head gamma camera 5 min and 28 min after 123 I-IMP injection. Furthermore, the rCBF values obtained using the input parameters estimated by this method were also highly correlated with the rCBF values measured using the continuous arterial blood sampling method (r=0.912). These results suggest that this method would serve as the new, convenient and less invasive method of rCBF measurement in clinical setting. (author)

  2. Pulmonary artery perfusion versus no perfusion during cardiopulmonary bypass for open heart surgery in adults

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Grønlykke, Lars; Risom, Emilie C

    2018-01-01

    BACKGROUND: Available evidence has been inconclusive on whether pulmonary artery perfusion during cardiopulmonary bypass (CPB) is associated with decreased or increased mortality, pulmonary events, and serious adverse events (SAEs) after open heart surgery. To our knowledge, no previous systematic...... handsearched retrieved study reports and scanned citations of included studies and relevant reviews to ensure that no relevant trials were missed. We searched for ongoing trials and unpublished trials in the World Health Organization International Clinical Trials Registry Platform (ICTRP) and at clinicaltrials......). We used GRADE principles to assess the quality of evidence. MAIN RESULTS: We included in this review four RCTs (210 participants) reporting relevant outcomes. Investigators randomly assigned participants to pulmonary artery perfusion with blood versus no perfusion during CPB. Only one trial included...

  3. Regional cerebral perfusion measurements: a comparative study of xenon-enhanced CT and C15O2 build-up using dynamic PET

    International Nuclear Information System (INIS)

    St Lawrence, K.S.; Bews, J.; Dunscombe, P.B.

    1992-01-01

    Regional cerebral perfusion can be determined by monitoring the uptake of a diffusable tracer concurrently in cerebral tissue and arterial blood. Two techniques based on this methodology are xenon-enhanced computed tomography (Xe CT) and C 15 O 2 build-up using dynamic positron emission tomography (C 15 O 2 PET). Serial images are used by both Xe CT and C 15 O 2 PET to characterize the uptake of the tracer in cerebral tissue. The noise present in these images will reduce the precision of the perfusion measurements obtained by either technique. Using Monte Carlo type computer simulations, the precision of the two techniques as a function of image noise has been examined. On the basis of their results, they conclude that the precision of the Xe CT technique is comparable to the precision of C 15 O 2 PET when realistic clinical protocols are employed for both. (author)

  4. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  5. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  6. Role of cerebral blood volume changes in brain specific-gravity measurements

    International Nuclear Information System (INIS)

    Picozzi, P.; Todd, N.V.; Crockard, A.H.

    1985-01-01

    Cerebral blood volume (CBV) was calculated in gerbils from specific-gravity (SG) changes between normal and saline-perfused brains. Furthermore, changes in CBV were investigated during ischemia using carbon-14-labeled dextran (MW 70,000) as an intravascular marker. Both data were used to evaluate the possible error due to a change in CBV on the measurement of ischemic brain edema by the SG method. The methodological error found was 0.0004 for a 100% CBV change. This error is insignificant, being less than the standard deviation in the SG measured for the gerbil cortex. Thus, CBV changes are not responsible for the SG variations observed during the first phase of ischemia. These variations are better explained as an increase of brain water content during ischemia

  7. Myocardial blood flow during induced aortic hypertension in dogs

    International Nuclear Information System (INIS)

    Thai, B.N.; Levesque, M.J.; Nerem, R.M.

    1986-01-01

    Myocardial blood flow was measured in anesthetized dogs during control conditions and under conditions where the aortic pressure was increased due to aortic constriction or during infusion. Blood flow was measured using the radioactive microsphere technique. Radioactive microspheres (15 m Ce-141, Sr-85, and Sc-46) were injected under control, aortic constriction and arterenol infusion in four dogs and under control conditions in two others. All microsphere injections were performed under stabilized conditions. It was found that coronary blood flow rose by 80% during aortic constriction and by 158% during arterenol infusion (P < 0.05). This increase in blood flow was not uniform throughout the heart, and higher increases were observed in the middle and apex regions of the left ventricle. Furthermore, under hypertension the increase in blood flow in LAD (left anterior descending) perfused territories was slightly higher than that in CFX (left circumflex) perfused territories

  8. Evaluation of cerebral perfusion imaging with N-isopropyl-p-[123I]iodoamphetamine (IMP) in the cases of antiphospholipid syndrome

    International Nuclear Information System (INIS)

    Kato, Toru; Nanbu, Ichiro; Tohyama, Junko; Ohba, Satoru

    1995-01-01

    Five cases of antiphospholipid syndrome with mild headache, but without any neurological deficits and abnormal findings by CT and MRI, were examined by cerebral blood perfusion SPECT using N-isopropyl-p-[ 123 I] iodoamphetamine (IMP). Although three cases were performed quantification of cerebral blood flow with a microsphere method simultaneously, their values were within normal limits. Two of them showed focal low perfusion areas. One case had relatively low perfusion areas in the bilateral occipital lobes and the right temporal lobe, which improved after treatment. One of two had low perfusion in the bilateral occipital lobes. Other three cases only showed ununiformity of radioisotope uptake on the cerebral blood perfusion SPECT. Low perfusion areas in antiphospholipid syndrome might be caused by microarterial thrombosis, microvenous thrombosis or spasms, although they could be reversible. As early irreversible progress of cerebral blood flow, cerebral blood flow SPECT should be performed in cases of antiphospholipid syndrome with neurological complainments. (author)

  9. Comparison between the summed difference score and myocardial blood flow measured by 13N-ammonia.

    Science.gov (United States)

    Giubbini, Raffaele; Peli, Alessia; Milan, Elisa; Sciagrà, Roberto; Camoni, Luca; Albano, Domenico; Bertoli, Mattia; Bonacina, Mattia; Motta, Federica; Statuto, Massimo; Rodella, Carlo Alberto; De Agostini, Antonio; Calabretta, Raffaella; Bertagna, Francesco

    2017-02-03

    Both the myocardial perfusion pattern and myocardial blood flow (MBF) are used to assess patients with suspected coronary artery disease (CAD). The aim of this study was to compare the perfusion pattern (using the summed difference score [SDS]) to MBF in a consecutive group of patients undergoing PET/CT with 13 N-ammonia ( 13 NH 3 ). 47 consecutive patients, aged 65 ± 12 years (42 men) with known or suspected CAD, underwent vasodilator stress/rest PET/CT with 13 NH 3 for clinical indications. The SDS was determined by a commercially available software based on a 17-segment model. MBF was measured at rest and during hyperemia by dynamic acquisition and single-compartment model analysis. From the rest and stress MBF, the absolute difference (stress-rest) in myocardial blood flow defined as difference in myocardial blood flow (DMBF) was derived. There were no significant differences between patients with no ischemia (SDS ≤ 1) and those with ischemia (SDS > 1) in CFR (2.84 ± 0.73 vs 2.63 ± 0.89, P = NS) and DMBF (1.34 ± 0.45 vs 1.24 ± 0.53 mL·minute -1 ·g -1 , P = NS). There were however significant regional differences (141 different vascular territories in 47 patients) between these two groups (CFR: 2.84 ± 0.95 vs 2.16 ± 0.57, P measurements (stress-rest) and it correlates better with regional DMBF, which is another measurement that reflects the difference between stress and rest. The correlation is better on regional than global basis.

  10. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  11. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Fang-Ying, E-mail: fychiou@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Kao, Yi-Hsuan, E-mail: yhkao@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Teng, Michael Mu Huo, E-mail: mhteng@gmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chung, Hsiao-Wen, E-mail: chung@cc.ee.ntu.edu.tw [Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Feng-Chi, E-mail: fcchang374@gmail.com [School of Medicine, National Yang-Ming University, Taipei City, Taiwan (China); Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan (China); Cho, I-Chieh, E-mail: jessie8030@yahoo.com.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China); Chen, Wen-Chun, E-mail: sky7408695@hotmail.com [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan (China)

    2012-12-15

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  12. Validation and absolute quantification of MR perfusion compared with CT perfusion in patients with unilateral cerebral arterial stenosis

    International Nuclear Information System (INIS)

    Chiu, Fang-Ying; Kao, Yi-Hsuan; Teng, Michael Mu Huo; Chung, Hsiao-Wen; Chang, Feng-Chi; Cho, I-Chieh; Chen, Wen-Chun

    2012-01-01

    Objective: The aim of the study was to assess absolute quantification of dynamic susceptibility contrast-enhanced magnetic resonance perfusion (MRP) comparing with computed tomography perfusion (CTP) in patients with unilateral stenosis. Materials and methods: We retrospectively post-processed MRP in 20 patients with unilateral occlusion or stenosis of >79% at the internal carotid artery or the middle cerebral artery (MCA). Absolute quantification of MRP was performed after applying the following techniques: cerebrospinal fluid removal, vessel removal, and automatic segmentation of brain to calculate the scaling factors to convert relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values to absolute values. For comparison between MRP and CTP, we manually deposited regions of interest in bilateral MCA territories at the level containing the body of the lateral ventricle. Results: The correlation between MRP and CTP was best for mean transit time (MTT) (r = 0.83), followed by cerebral blood flow (CBF) (r = 0.52) and cerebral blood volume (CBV) (r = 0.43). There was no significant difference between CTP and MRP for CBV, CBF, and MTT on the lesion side, the contralateral side, the lesion-contralateral differences, or the lesion-to-contralateral ratios (P > 0.05). The mean differences between MRP and CTP were as follows: CBV −0.57 mL/100 g, CBF 2.50 mL/100 g/min, and MTT −0.90 s. Conclusion: Absolute quantification of MRP is possible. Using the proposed method, measured values of MRP and CTP had acceptable linear correlation and quantitative agreement.

  13. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    Science.gov (United States)

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  14. /sup 3/H-dextran method for measurements of the blood volume in the rat choroid

    Energy Technology Data Exchange (ETDEWEB)

    Matsusaka, T [Osaka Prefectural Center for Adult Diseases (Japan); Morimoto, K; Kikkawa, Y

    1980-01-01

    A new method was developed using /sup 3/H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the /sup 3/H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10/sup -4/ ml per mg wet weight and 5.070 x 10/sup -4/ ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed.

  15. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  16. The asymmetric facial skin perfusion distribution of Bell's palsy discovered by laser speckle imaging technology.

    Science.gov (United States)

    Cui, Han; Chen, Yi; Zhong, Weizheng; Yu, Haibo; Li, Zhifeng; He, Yuhai; Yu, Wenlong; Jin, Lei

    2016-01-01

    Bell's palsy is a kind of peripheral neural disease that cause abrupt onset of unilateral facial weakness. In the pathologic study, it was evidenced that ischemia of facial nerve at the affected side of face existed in Bell's palsy patients. Since the direction of facial nerve blood flow is primarily proximal to distal, facial skin microcirculation would also be affected after the onset of Bell's palsy. Therefore, monitoring the full area of facial skin microcirculation would help to identify the condition of Bell's palsy patients. In this study, a non-invasive, real time and full field imaging technology - laser speckle imaging (LSI) technology was applied for measuring facial skin blood perfusion distribution of Bell's palsy patients. 85 participants with different stage of Bell's palsy were included. Results showed that Bell's palsy patients' facial skin perfusion of affected side was lower than that of the normal side at the region of eyelid, and that the asymmetric distribution of the facial skin perfusion between two sides of eyelid is positively related to the stage of the disease (P Bell's palsy patients, and we discovered that the facial skin blood perfusion could reflect the stage of Bell's palsy, which suggested that microcirculation should be investigated in patients with this neurological deficit. It was also suggested LSI as potential diagnostic tool for Bell's palsy.

  17. Differences in blood pressure by measurement technique in neurocritically ill patients: A technological assessment.

    Science.gov (United States)

    Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S

    2018-01-01

    Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cerebral blood flow measured by positron emission tomography during normothermic cardiopulmonary bypass: An experimental porcine study

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Kjaergaard, Benedict; Alstrup, Aage Kristian Olsen

    2018-01-01

    emission tomography (PET) using 15O-labelled water with no pharmacological interventions to maintain the MAP. Methods: Eight pigs (69-71 kg) were connected to normothermic CPB. After 60 minutes (min) with a CPB pump flow of 60 mL/kg/min, the pigs were changed to either 35 mL/kg/min or 47.5 mL/kg/min for 60......Background: Mean arterial blood pressure (MAP) and/or pump flow during normothermic cardiopulmonary bypass (CPB) are the most important factors of cerebral perfusion. The aim of this study was to explore the influence of CPB blood flow on cerebral blood flow (CBF) measured by dynamic positron...... min and, thereafter, all the pigs returned to 60 mL/kg/min for another 60 min. The MAP was measured continuously and the CBF was measured by positron emission tomography (PET) during spontaneous circulation and at each CPB pump flow after 30 min of steady state. Results: Two pigs were excluded due...

  19. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke

    International Nuclear Information System (INIS)

    Klotz, Ernst; Koenig, Matthias

    1999-01-01

    Objective: Perfusion CT has been successfully used as a functional imaging technique for the differential diagnosis of patients with hyperacute stroke. We investigated to what extent this technique can also be used for the quantitative assessment of cerebral ischemia. Methods and material: We studied linearity, spatial resolution and noise behaviour of cerebral blood flow (CBF) determination with computer simulations and phantom measurements. Statistical ROI based analysis of CBF images of a subset of 38 patients from a controlled clinical stroke study with currently more than 75 patients was done to check the power of relative cerebral blood flow (rCBF) values to predict definite infarction and ischemic penumbra. Classification was performed using follow-up CT and MR data. Results: Absolute CBF values were systematically underestimated, the degree depended on the cardiac output of the patients. Phantom measurements and simulations indicated very good linearity allowing reliable calculation of rCBF values. Infarct and penumbra areas in 19 patients receiving standard heparin therapy had mean rCBF values of 0.19 and 0.62, respectively. The corresponding values for 19 patients receiving local intraarterial fibrinolysis were 0.18 and 0.57. The difference between infarct and penumbra values was highly significant (P<0.0001) in both groups. No penumbra area was found with an rCBF value of less than 0.20. While in the heparin group only 25% of all areas with an rCBF between 0.20 and 0.35 survived, in the fibrinolytic group 61% of these areas could be saved (P<0.05). Conclusion: Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. Relative values of cerebral blood flow discriminate very well between areas of reversible and irreversible ischemia; an rCBF value of 0.20 appears to be a definite lower

  20. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  1. Clinical evaluation of non-invasive perfusion-weighted MRI

    International Nuclear Information System (INIS)

    Takasu, Miyuki

    2000-01-01

    A spin labeling method to measure cerebral blood flow without a contrast medium was developed and applied clinically to obtain a non-invasive perfusion-weighted image. The purpose of this study is to compare the non-invasive perfusion-weighted image using FAIR with the well-established PWI using a bolus injection of Gd-DTPA. Of 41 lesions which revealed decreased perfusion, 13 were shown to be low signal intensity areas on FAIR. Therefore, detection rate of FAIR for hypoperfusion was 32%. Of 8 lesions which revealed increased perfusion, 7 demonstrated high intensity on FAIR. Therefore, detection rate of FAIR for hyperperfusion was 88%. Seven lesions were found to have a mean pixel value of zero on PWI. Of these lesions, 5 lesions could be detected as high signal intensity area on FAIR. The rCBV- and rCBF index ratios of hypoperfused lesions detected on FAIR were significantly lower than those of lesions which were not detected on FAIR (p=0.007, p=0.01). As concerns the lesions detected of FAIR, there were positive correlation between rCBV- or rCBF index ratio and FAIR signal ratio (rCBV ratio: ρ=0.873, p=0.0002, rCBF index ratio: ρ=0.858, p=0.0003). FAIR is valuable clinical tool to detect perfusion abnormality semi-quantitatively without contrast medium, although it showed relatively low detection rate for hypoperfused lesions. (author)

  2. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  3. Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model.

    Science.gov (United States)

    Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B

    2011-02-01

    The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P values in the expected physiologic range (microsphere perfusion values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.

  4. Application of myocardial perfusion quantitative imaging for the evaluation of therapeutic effect in canine with myocardial infarction

    International Nuclear Information System (INIS)

    Liang Hong; Chen Ju; Liu Sheng; Zeng Shiquan

    2000-01-01

    Myocardial blood perfusion (MBP) ECT and quantitative analysis were performed in 10 canines with experimental acute myocardial infarct (AMI). The accuracy of main myocardial quantitative index, including defect volume (DV) and defect fraction (DF), was estimated and correlated with histochemical staining (HS) of infarcted area. Other 21/AMI canines were divided into Nd:YAG laser trans-myocardial revascularization treated group LTMR and control group. All canines were performed MBP ECT after experimental AMI. Results found that the infarcted volume (IV) measured by HS has well correlated (r 0.88) with DV estimated by myocardial quantitative analysis. But the DF values calculated by both methods was not significantly different (t = 1.28 P > 0.05). In LTMR group 27.5% +- 3.9%, the DF is smaller than control group 32.1% +- 4.6% (t = 2.49 P 99m Tc-MIBI myocardial perfusion SPECT and quantitative study can accurately predict the myocardial blood flow and magnitude of injured myocardium. Nd:YAG LTMR could improve myocardial blood perfusion of ischemic myocardium and decrease effectively the infarct areas

  5. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets

    DEFF Research Database (Denmark)

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Rasmussen, Rune

    2018-01-01

    of dexmedetomidine. Cerebral perfusion measured by laser speckle contrast imaging was related to cerebral oxygenation as measured by an intracerebral Licox probe (partial pressure of oxygen) and transcranial near infrared spectroscopy technology (NIRS) (cerebral oxygen saturation). Results During propofol......–remifentanil anaesthesia, increases in blood pressure by norepinephrine and phenylephrine did not change cerebral perfusion significantly, but cerebral partial pressure of oxygen (Licox) increased following vasopressors in both groups and increases following norepinephrine were significant (NBP: P = 0.04, LBP: P = 0......–remifentanil–dexmedetomidine anaesthesia was not followed by significant changes in cerebral perfusion. Licox measures increased significantly following both vasopressors in both groups, whereas the decreases in NIRS measures were only significant in the NBP group. Conclusions Cerebral partial pressure of oxygen measured by Licox...

  6. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    Science.gov (United States)

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  7. Evaluation of cerebral perfusion imaging with N-isopropyl-p-[{sup 123}I]iodoamphetamine (IMP) in the cases of antiphospholipid syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Toru; Nanbu, Ichiro; Tohyama, Junko; Ohba, Satoru [Nagoya City Univ. (Japan). Faculty of Medicine

    1995-01-01

    Five cases of antiphospholipid syndrome with mild headache, but without any neurological deficits and abnormal findings by CT and MRI, were examined by cerebral blood perfusion SPECT using N-isopropyl-p-[{sup 123}I] iodoamphetamine (IMP). Although three cases were performed quantification of cerebral blood flow with a microsphere method simultaneously, their values were within normal limits. Two of them showed focal low perfusion areas. One case had relatively low perfusion areas in the bilateral occipital lobes and the right temporal lobe, which improved after treatment. One of two had low perfusion in the bilateral occipital lobes. Other three cases only showed ununiformity of radioisotope uptake on the cerebral blood perfusion SPECT. Low perfusion areas in antiphospholipid syndrome might be caused by microarterial thrombosis, microvenous thrombosis or spasms, although they could be reversible. As early irreversible progress of cerebral blood flow, cerebral blood flow SPECT should be performed in cases of antiphospholipid syndrome with neurological complainments. (author).

  8. A Review of Liver Perfusion Method in Toxicology Studies

    Directory of Open Access Journals (Sweden)

    M karami

    2014-06-01

    Full Text Available Introduction: The isolated perfused rat liver is an accepted method in toxicology studies. The isolated perfused rat liver (IPRL is a useful experimental system for evaluating hepatic function without the influence of other organ systems, undefined plasma constituents, and neural-hormonal effects. Methods: The untreated male rats (180-220gr body weight were anesthetised with ether and then surgery with proper method. The abdomen was opened through a midline and one transversal incision and the bile duct was cannulated. Heparin sodium solution (0.5 ml; 500 U/ml in 0.9% NaCl was injected via the abdominal vena cava to prevent blood clotting. The liver inferior venacava was cannulated with PE-10 tubing and secured. The portal vein was immediately cannulated with an 23gr catheter which was secured and then liver was perfused in situ by Krebs- Henseleit buffer (pH 7.4; saturated with 95% O2 and 5% CO2; 37°C at a flow rate of 20 ml/min for 3hr. Temperature, perfusion pressure, flow rate and perfusion fluid pH were closely monitored during the perfusion. Results: Transferase enzymes (ALT, AST alterations can be widely used as a measure of biochemical alterations in order to assess liver damage due to use of drugs such as isoniazid (INH and animal and plant toxins. Accumulated material in gallbladder are valuable samples to assess the level of Glutathione (GSH. Sections of perfused liver tissue can also be effectively analyzed for pathological aspects such as necrosis, fibrosis, cellularity. Conclusion: The isolated perfused rat liver (IPRL is a useful and Sutible experimental system for evaluating hepatic function. In this system, the effects of adjacent organs, on the liver is minimized

  9. Correlation between nuclear perfusion parameters and duplex US indices in the diagnosis of renal allograft rejection

    International Nuclear Information System (INIS)

    Kim, E.E.; Maklad, N.F.; Pjura, G.A.; Lowry, P.A.

    1986-01-01

    Fifty nuclear perfusion and duplex US studies in 30 patients who had received renal allografts were prospectively analyzed to evaluate their respective measures of blood flow as indicators of rejection. The nuclear study (Tc-99m DTPA) generated three parameters, and a real-time, pulsed Doppler sector scanner generated resistance and pulsatility indices. In nine cases with a greater than 70% resistance index and 1.4 pulsatility index on US, the US findings correlated well with changes in nuclear perfusion parameters, indication rejection. The authors conclude that the combination of decreasing nuclear perfusion parameters and positive US indices may obviate the need for biopsy in the diagnosis of allograft rejection

  10. Comparison of current practices of cardiopulmonary perfusion technology in Iran with American Society of Extracorporeal Technology's standards.

    Science.gov (United States)

    Faravan, Amir; Mohammadi, Nooredin; Alizadeh Ghavidel, Alireza; Toutounchi, Mohammad Zia; Ghanbari, Ameneh; Mazloomi, Mehran

    2016-01-01

    Standards have a significant role in showing the minimum level of optimal optimum and the expected performance. Since the perfusion technology staffs play an the leading role in providing the quality services to the patients undergoing open heart surgery with cardiopulmonary bypass machine, this study aimed to assess the standards on how Iranian perfusion technology staffs evaluate and manage the patients during the cardiopulmonary bypass process and compare their practice with the recommended standards by American Society of Extracorporeal Technology. In this descriptive study, data was collected from 48 Iranian public hospitals and educational health centers through a researcher-created questionnaire. The data collection questionnaire assessed the standards which are recommended by American Society of Extracorporeal Technology. Findings showed that appropriate measurements were carried out by the perfusion technology staffs to prevent the hemodilution and avoid the blood transfusion and unnecessary blood products, determine the initial dose of heparin based on one of the proposed methods, monitor the anticoagulants based on ACT measurement, and determine the additional doses of heparin during the cardiopulmonary bypass based on ACT or protamine titration. It was done only in 4.2% of hospitals and health centers. Current practices of cardiopulmonary perfusion technology in Iran are inappropriate based on the standards of American Society of Cardiovascular Perfusion. This represents the necessity of authorities' attention to the validation programs and development of the caring standards on one hand and continuous assessment of using these standards on the other hand.

  11. [Value of intravoxel incoherent motion diffusion-weighted imaging in differential diagnosis of benign and malignant hepatic lesions and blood perfusion evaluation].

    Science.gov (United States)

    Ying, M L; Xiao, W W; Xu, S L; Shu, J E; Pan, J F; Fu, J F; Lu, J H; Pan, Y H; Jiang, Y

    2016-11-20

    Objective: To investigate the value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in the differential diagnosis and blood perfusion evaluation of benign and malignant hepatic lesions. Methods: A retrospective analysis was performed for 86 patients (96 lesions) with pathologically or clinically confirmed hepatic lesions or hepatic lesions diagnosed based on follow-up results, among whom 48 had malignant lesions (53 lesions) and 38 had benign lesions (43 lesions). The patients underwent conventional magnetic resonance (MR) plain scan, contrast-enhanced scan, and diffusion-weighted imaging (DWI) with different b values (b = 0, 50, 100, 150, 200, 400, 600, 800, 1 000, and 1 200 s/mm 2 ) to determine the parameters of the double exponential model for intravoxel incoherent motion (IVIM): fast diffusion coefficient Dfast, slow diffusion coefficient Dslow, and percentage of fast-diffusion constituent F value. The patients were divided into groups according to the blood supply to lesions on conventional MR plain scan and contrast-enhanced scan, and there were 47 lesions in abundant blood supply group and 49 in poor blood supply group. The data for analysis were Dfast, Dslow, and F values of benign/malignant lesion groups and abundant/poor blood supply groups. The independent samples t-test was used for statistical analysis; the independent samples non-parametric test Mann-Whitney U test was used for the comparison of F value; the receiver operating characteristic (ROC) curve was used to evaluate the value of above parameters in the differentiation of benign and malignant lesions and blood supply evaluation. Results: Compared with the malignant lesion group, the benign lesion group had significantly higher Dslow, and F values ( P benign and malignant hepatic lesions, and F value can show blood perfusion in benign and malignant hepatic lesions without the need for contrast-enhanced scan, which provides a reference for the qualitative diagnosis of liver

  12. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience

    International Nuclear Information System (INIS)

    Federau, C.; Becce, F.; Maeder, P.; Meuli, R.; Sumer, S.; Wintermark, M.; O'Brien, K.

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions 2 . Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 . 10 -6 ) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 . 10 -4 vs. 7.5 ± 0.86 . 10 -4 mm 2 /s, p = 1.3 . 10 -20 ). IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response. (orig.)

  13. Arterial spin-labeling perfusion imaging of childhood meningitis: a case series.

    Science.gov (United States)

    Wong, Alex Mun-Ching; Yeh, Chih-Hua; Liu, Ho-Ling; Lin, Kuang-Lin; Wang, Huei-Shyong; Toh, Cheng-Hong

    2016-03-01

    Conventional magnetic resonance imaging (MRI), which is mainly used to detect complications, is ineffective in determining the neurological status of patients with meningitis. Hemodynamic change in the brain may be more indicative of the neurological status but few imaging studies have verified this. Arterial spin-labeling (ASL) perfusion, a noninvasive MR method requiring no contrast agent injection, can be used to measure cerebral blood flow (CBF). We describe three pediatric patients with meningitis, who all showed regions of increased CBF on perfusion imaging. One patient, presenting with headache and conscious disturbance, had CBF changes in the frontal, temporal, and occipital regions. The other two patients, presenting with hallucinations, memory deficits, and seizures, had CBF changes in the frontal and temporal regions. ASL perfusion imaging may be helpful in assessing patients with meningitis, demonstrating CBF changes more strongly correlating with the neurological status, and detecting active brain abnormalities.

  14. Initial intramuscular perfusion pressure predicts early skeletal muscle function following isolated tibial fractures

    Directory of Open Access Journals (Sweden)

    Haas Norbert P

    2008-04-01

    Full Text Available Abstract Background The severity of associated soft tissue trauma in complex injuries of the extremities guides fracture treatment and decisively determines patient's prognosis. Trauma-induced microvascular dysfunction and increased tissue pressure is known to trigger secondary soft tissue damage and seems to adversely affect skeletal muscle function. Methods 20 patients with isolated tibial fractures were included. Blood pressure and compartment pressure (anterior and deep posterior compartment were measured continuously up to 24 hours. Corresponding perfusion pressure was calculated. After 4 and 12 weeks isokinetic muscle peak torque and mean power of the ankle joint in dorsal and plantar flexion were measured using a Biodex dynamometer. Results A significant inverse correlation between the anterior perfusion pressure at 24 hours and deficit in dorsiflexion at 4 weeks was found for both, the peak torque (R = -0.83; p Conclusion The functional relationship between the decrease in intramuscular perfusion pressures and muscle performance in the early rehabilitation period indicate a causative and prognostic role of early posttraumatic microcirculatory derangements and skeletal muscle function. Therapeutic concepts aimed at effective muscle recovery, early rehabilitation, and decreased secondary tissue damage, should consider the maintenance of an adequate intramuscular perfusion pressure.

  15. In vivo MR perfusion imaging of renal artery stenosis

    International Nuclear Information System (INIS)

    Powers, T.; Lorenz, C.H.; Bain, R.; Holburn, G.; Price, R.R.

    1989-01-01

    Various techniques have been developed for noninvasive evaluation of renal blood flow. More important in the assessment of potential renal ischemia may be actual perfusion of the nephron mass. MR pulse sequences have been devised that allow perfusion imaging (PI) in a dog model of renal artery stenosis. Unilateral renal artery stenosis was created in mongrel dogs and quantitation of renal blood flow was obtained with radioactive microspheres. Perfusion imaging was performed on a 1.5-T system to obtain the apparent diffusion coefficient. During initial studies, it was found that the usual gradient factor used in brain PI was too high for renal studies; a factor of < 50 was found to be optimal. Additionally, respiratory gating with acquisition at end expiration was necessary to prevent renal motion. Recent studies have shown that PI reflects the asymmetry of flow in this model

  16. Automatic determination of brain perfusion index for measurement of cerebral blood flow using spectral analysis and {sup 99m}Tc-HMPAO

    Energy Technology Data Exchange (ETDEWEB)

    Takasawa, Masashi [Division of Strokology, Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, 565-0871 (Japan); Department of Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Murase, Kenya; Kawamata, Minoru [Department of Allied Health Sciences, Osaka University Graduate School of Medicine, Osaka (Japan); Oku, Naohiko; Imaizumi, Masao; Osaki, Yasuhiro; Paul, Asit K. [Department of Nuclear Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Yoshikawa, Takuya; Kitagawa, Kazuo; Matsumoto, Masayasu; Hori, Masatsugu [Division of Strokology, Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita City, Osaka, 565-0871 (Japan)

    2002-11-01

    Cerebral blood flow (CBF) can be non-invasively quantified using the brain perfusion index (BPI), determined from radionuclide angiographic data generated by technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO). We previously reported the use of a spectral analysis (SA) method using {sup 99m}Tc-HMPAO to calculate the BPI. In this report, we demonstrate an automatic method for determining the optimal BPI value and compare the optimal BPI values with the absolute CBF values measured using H{sub 2}{sup 15}O positron emission tomography (PET). Bilateral cerebral hemispheres of 11 patients with various brain diseases were examined using {sup 99m}Tc-HMPAO. In the automatic SA procedure, the radioactivity curve for the aortic arch (C{sub a}) was shifted by 0-10 s. The radioactivity curve for the brain (C{sub b}) was estimated using the shifted C{sub a}, and the error value between the actually measured and the estimated C{sub b} (Err) was calculated. When the Err was at a minimum, the BPI value was defined as optimal BPI. The difference in BPI from the optimal BPI was calculated as vertical stroke BPI - optimal BPI vertical stroke / optimal BPI x 100 (%). In all participants, an H{sub 2}{sup 15}O PET examination was also performed, and the BPI values were compared with the absolute CBF values measured using H{sub 2}{sup 15}O PET (mCBF{sup PET}). The difference between BPI and the optimal BPI increased significantly from 4.87%{+-}1.69% to 18.38%{+-}3.93% (mean{+-}SD) when the Err value increased. The optimal BPI value (y) was well correlated with the mCBF{sup PET} value (x) (y=0.21x-0.0075, r=0.800). Our results suggest that this automatic SA method provides an accurate estimate of BPI that can be used for the quantification of CBF using {sup 99m}Tc-HMPAO SA. (orig.)

  17. Quantitative assessment of angiographic perfusion reduction using color-coded digital subtraction angiography during transarterial chemoembolization.

    Science.gov (United States)

    Wang, Ji; Cheng, Jie-Jun; Huang, Kai-Yi; Zhuang, Zhi-Guo; Zhang, Xue-Bin; Chi, Jia-Chang; Hua, Xiao-Lan; Xu, Jian-Rong

    2016-03-01

    The aim of this study was to develop a quantitative measurement of perfusion reduction using color-coded digital subtraction angiography (ccDSA) to monitor intra-procedural arterial stasis during TACE. A total number of 35 patients with hepatocellular carcinoma who had undergone TACE were enrolled into the study. Pre- and post-two-dimensional digital subtraction angiography scans were conducted with same protocol and post-processed with ccDSA prototype software. Time-contrast-intensity (CI[t]) curve was obtained by region-of-interest (ROI) measurement on the generated ccDSA image. Quantitative 2D perfusion parameters time to peak, area under the curve (AUC), maximum upslope, and contrast intensity peak (CI-Peak) derived from the ROI-based CI[t] curve for pre- and post-TACE were evaluated to assess the reduction of antegrade blood flow and tumor blush. Relationships between 2D perfusion parameters, subjective angiographic chemoembolization endpoint (SACE) scale, and clinical outcomes were analyzed. Area normalized AUC and CI-Peak revealed significant reduction after the TACE (P SACE level III and a reduction ranging from 60% to 70% was equivalent to SACE level IV. For intermediate reduction (SACE level III), better tumor response was found after TACE rather than a higher reduction (SACE level IV). ccDSA application provides an objective approach to quantify the perfusion reduction and subjectively evaluate the arterial stasis of antegrade blood flow and tumor blush caused by TACE.

  18. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, Adriaan; Lubbers, Marisa M.; Dedic, Admir; Chelu, Raluca G.; Geuns, Robert-Jan M. van; Nieman, Koen [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, Rotterdam (Netherlands); Kurata, Akira; Kono, Atsushi; Dijkshoorn, Marcel L. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Rossi, Alexia [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Barts Health NHS Trust, NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Department of Cardiology, London (United Kingdom)

    2017-06-15

    To investigate the additional value of transmural perfusion ratio (TPR) in dynamic CT myocardial perfusion imaging for detection of haemodynamically significant coronary artery disease compared with fractional flow reserve (FFR). Subjects with suspected or known coronary artery disease were prospectively included and underwent a CT-MPI examination. From the CT-MPI time-point data absolute myocardial blood flow (MBF) values were temporally resolved using a hybrid deconvolution model. An absolute MBF value was measured in the suspected perfusion defect. TPR was defined as the ratio between the subendocardial and subepicardial MBF. TPR and MBF results were compared with invasive FFR using a threshold of 0.80. Forty-three patients and 94 territories were analysed. The area under the receiver operator curve was larger for MBF (0.78) compared with TPR (0.65, P = 0.026). No significant differences were found in diagnostic classification between MBF and TPR with a territory-based accuracy of 77 % (67-86 %) for MBF compared with 70 % (60-81 %) for TPR. Combined MBF and TPR classification did not improve the diagnostic classification. Dynamic CT-MPI-based transmural perfusion ratio predicts haemodynamically significant coronary artery disease. However, diagnostic performance of dynamic CT-MPI-derived TPR is inferior to quantified MBF and has limited incremental value. (orig.)

  19. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  20. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neon......Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...

  1. Quantitative cerebral H215O perfusion PET without arterial blood sampling, a method based on washout rate

    International Nuclear Information System (INIS)

    Treyer, Valerie; Jobin, Mathieu; Burger, Cyrill; Buck, Alfred; Teneggi, Vincenzo

    2003-01-01

    The quantitative determination of regional cerebral blood flow (rCBF) is important in certain clinical and research applications. The disadvantage of most quantitative methods using H 2 15 O positron emission tomography (PET) is the need for arterial blood sampling. In this study a new non-invasive method for rCBF quantification was evaluated. The method is based on the washout rate of H 2 15 O following intravenous injection. All results were obtained with Alpert's method, which yields maps of the washin parameter K 1 (rCBF K1 ) and the washout parameter k 2 (rCBF k2 ). Maps of rCBF K1 were computed with measured arterial input curves. Maps of rCBF k2* were calculated with a standard input curve which was the mean of eight individual input curves. The mean of grey matter rCBF k2* (CBF k2* ) was then compared with the mean of rCBF K1 (CBF K1 ) in ten healthy volunteer smokers who underwent two PET sessions on day 1 and day 3. Each session consisted of three serial H 2 15 O scans. Reproducibility was analysed using the rCBF difference scan 3-scan 2 in each session. The perfusion reserve (PR = rCBF acetazolamide -rCBF baseline ) following acetazolamide challenge was calculated with rCBF k2* (PR k2* ) and rCBF K1 (PR K1 ) in ten patients with cerebrovascular disease. The difference CBF k2* -CBF K1 was 5.90±8.12 ml/min/100 ml (mean±SD, n=55). The SD of the scan 3-scan 1 difference was 6.1% for rCBF k2* and rCBF K1 , demonstrating a high reproducibility. Perfusion reserve values determined with rCBF K1 and rCBF k2* were in high agreement (difference PR k2* -PR K1 =-6.5±10.4%, PR expressed in percentage increase from baseline). In conclusion, a new non-invasive method for the quantitative determination of rCBF is presented. The method is in good agreement with Alpert's original method and the reproducibility is high. It does not require arterial blood sampling, yields quantitative voxel-by-voxel maps of rCBF, and is computationally efficient and easy to implement

  2. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  3. MR perfusion/diffusion-weighted imaging of acute ischemia in an animal model with PET correlation

    International Nuclear Information System (INIS)

    Pickens, D.R.; Dawson, R.C.; Votaw, J.R.; Lorenz, C.H.; Holburn, G.E.; Price, R.R.

    1990-01-01

    This paper evaluates acute cerebral ischemia in an animal model with MR perfusion/diffusion-sensitive pulse sequences and to compare the results with PET regional cerebral blood flow (rCBF) measurements. An embolizing agent was injected into the proximal middle cerebral artery (MCA) of a dog, and this was followed by DSA. Next, the animal was imaged in a 1.5-T MR system with perfusion/diffusion-sensitive spin-echo pulse sequence. Then, PET imaging was performed with H 2 O 15 at corresponding levels of the brain

  4. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.

    Science.gov (United States)

    Lüdemann, Lutz; Nafz, Benno; Elsner, Franz; Grosse-Siestrup, Christian; Meissler, Michael; Kaufels, Nicola; Rehbein, Hagen; Persson, Pontus B; Michaely, Henrik J; Lengsfeld, Philipp; Voth, Matthias; Gutberlet, Matthias

    2009-03-01

    To evaluate for the first time in an animal model the possibility of absolute regional quantification of renal medullary and cortical perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a blood pool contrast agent. A total of 18 adult female pigs (age, 16-22 weeks; body weight, 45-65 kg; no dietary restrictions) were investigated by DCE-MRI. Absolute renal blood flow (RBF) measured by an ultrasound transit time flow probe around the renal vein was used as the standard of reference. An inflatable stainless cuff placed around the renal artery near its origin from the abdominal aorta was used to reduce RBF to 60%, 40%, and 20% of the baseline flow. The last measurement was performed with the cuff fully reopened. Absolute RBF values during these 4 perfusion states were compared with the results of DCE-MRI performed on a 1.5-T scanner with an 8-channel phased-array surface coil. All scans were acquired in breath-hold technique in the coronal plane using a field of view of 460 mm.Each dynamic scan commenced with a set of five 3D T1-weighted gradient echo sequences with different flip angles (alpha = 2 degrees, 5 degrees, 10 degrees, 20 degrees, 30 degrees): TE, 0.88 milliseconds; TR, 2.65 milliseconds; slice thickness, 8.8 mm for 4 slices; acquisition matrix, 128 x 128; and acquisitions, 4. These data served to calculate 3D intrinsic longitudinal relaxation rate maps (R10) and magnetization (M0). Immediately after these images, the dynamic 3D T1-weighted gradient echo images were acquired with the same parameters and a constant alpha = 30 degrees, half Fourier, 1 acquisition, 64 frames, a time interval of 1.65 seconds between each frame, and a total duration of 105.6. Three milliliters of an albumin-binding blood pool contrast agent (0.25 mmol/mL gadofosveset trisodium, Vasovist, Bayer Schering Pharma AG, Berlin, Germany) was injected at a rate of 3 mL/s. Perfusion was calculated using the arterial input function from the aorta, which was

  5. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma?

    Science.gov (United States)

    Mulé, Sébastien; Pigneur, Frédéric; Quelever, Ronan; Tenenhaus, Arthur; Baranes, Laurence; Richard, Philippe; Tacher, Vania; Herin, Edouard; Pasquier, Hugo; Ronot, Maxime; Rahmouni, Alain; Vilgrain, Valérie; Luciani, Alain

    2018-05-01

    To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) statistic (F)=28.52, padvanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.

  6. Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesions

    International Nuclear Information System (INIS)

    Kamble, Ravindra B; Jayakumar, Peruvumba N; Shivashankar, Ravishankar

    2015-01-01

    Differentiating intracranial mass lesions on CT scan is challenging. The purpose of our study was to determine the perfusion parameters in various intracranial space-occupying lesions (ICSOL), differentiate benign and malignant lesions, and differentiate between grades of gliomas. We performed CT perfusion (CTP) in 64 patients, with age ranging from 17 to 68 years, having space-occupying lesions in brain and calculated relative cerebral blood flow (rCBF) and relative cerebral blood volume (rCBV). We found significantly lower perfusion in low-grade gliomas as compared to high-grade tumors, lymphoma, and metastases. Similarly in infective lesions, TWT and abscesses showed significantly lower perfusion compared to TOT. In ring enhancing lesions, capsule of TWT showed significantly lower perfusion as compared to abscesses, TOT, and metastases. Thus, in conclusion, infective lesions can be differentiated from tumors like lymphomas, high-grade gliomas, or metastases based on perfusion parameters. The cut off value of rCBV 1.64 can be used to differentiate between low grade and high grade gliomas. However, depending only on perfusion parameters, differentiation between the tumors like lymphomas, high-grade gliomas, and metastases may not be possible

  7. Role of dynamic CT perfusion study in evaluating various intracranial space-occupying lesions

    Directory of Open Access Journals (Sweden)

    Ravindra B Kamble

    2015-01-01

    Full Text Available Aims: Differentiating intracranial mass lesions on CT scan is challenging. The purpose of our study was to determine the perfusion parameters in various intracranial space-occupying lesions (ICSOL, differentiate benign and malignant lesions, and differentiate between grades of gliomas. Materials and Methods: We performed CT perfusion (CTP in 64 patients, with age ranging from 17 to 68 years, having space-occupying lesions in brain and calculated relative cerebral blood flow (rCBF and relative cerebral blood volume (rCBV. Results: We found significantly lower perfusion in low-grade gliomas as compared to high-grade tumors, lymphoma, and metastases. Similarly in infective lesions, TWT and abscesses showed significantly lower perfusion compared to TOT. In ring enhancing lesions, capsule of TWT showed significantly lower perfusion as compared to abscesses, TOT, and metastases. Conclusion: Thus, in conclusion, infective lesions can be differentiated from tumors like lymphomas, high-grade gliomas, or metastases based on perfusion parameters. The cut off value of rCBV 1.64 can be used to differentiate between low grade and high grade gliomas. However, depending only on perfusion parameters, differentiation between the tumors like lymphomas, high-grade gliomas, and metastases may not be possible.

  8. Assessment of cerebral perfusion with dynamic susceptibility contrast

    International Nuclear Information System (INIS)

    Takahashi, Kiyohiko; Naito, Isao; Nozokido, Takeshi; Sato, Takaaki; Takatama, Shin; Kimura, Tokunori

    2004-01-01

    Accurate measurements of arterial input function (AIF) are indispensable for the quantification of perfusion parameters such as mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF). Quantification trials of cerebral perfusion using the disconsolation method with dynamic susceptibility contrast MRI (DSC-MRI) have been reported on. Accurately measuring AIF with DSC-MRI is difficult due to non-linearity and the limited dynamic range between ΔR 2 * and the concentration of contrast media. In this study, we assessed simple methods while using various parameters calculated by the tissue time intensity curve without measuring AIF. The parameters used were appearance time of contrast media (AT), 1'st moment (MT1), the full width at half maximum (FWHM), and up slope at maximum gradient (US). Difference of the appearance time (delta AT) and the CBFratio between the regions in question and the contralateral regions obtained by MT1, FWHM and US were assessed in 38 stroke patients. The CBF calculated by the linear scaling method using the signal of the ASL (ASL, CBF) was used as the standard for a correlation study. The delta AT in patients with middle cerebral artery occlusions supplied by retrograde flow indicated a significantly greater value as compared to patients with other lesions with antegrade flow. US CBF indicated the best correlation among the three CBFs obtained by MT1, FWHM and US. Both the ASL CBFratio and the US CBFratio correlated with delta AT, with the ASL CBFratio being predominant. The CBVratio-CBFratio map showed that the CBVratio tended to decrease when the CBFratio decreased. The map is useful in clinical analysis of cerebral perfusion due to its simplicity and ability to alleviate AIF dependent errors. The validity of the proposed method still needs to be examined by comparing it to the deconvolution method with DSC-MRI, since DSC-MRI can correct the effect of AIF. It might also be compared to Xenon CT, which is less

  9. Correlations between skin blood perfusion values and nailfold capillaroscopy scores in systemic sclerosis patients.

    Science.gov (United States)

    Ruaro, B; Sulli, A; Pizzorni, C; Paolino, S; Smith, V; Cutolo, M

    2016-05-01

    To correlate blood perfusion (BP) values assessed by laser speckle contrast analysis (LASCA) in selected skin areas of hands and face with nailfold capillary damage scores in systemic sclerosis (SSc) patients. Seventy SSc patients (mean SSc duration 6 ± 5 years) and 70 volunteer healthy subjects were enrolled after informed consent. LASCA was performed at different areas of the face (forehead, tip of nose, zygomas and perioral region) and at dorsal and volar regions of hands. Microvascular damage was assessed and scored by nailfold videocapillaroscopy (NVC) and the microangiopathy evolution score (MES) was calculated. SSc patients showed a significantly lower BP than healthy subjects at fingertips, periungual areas and palm of hands (pnailfold capillaroscopy scores of microangiopathy. Copyright © 2016. Published by Elsevier Inc.

  10. Correlating Computed Tomography Perfusion Changes in the Pharyngeal Constrictor Muscles During Head-and-Neck Radiotherapy to Dysphagia Outcome

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Minh Tam, E-mail: mitruong@bu.edu [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Department of Radiology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Lee, Richard [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Saito, Naoko [Department of Radiology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Qureshi, Muhammad M. [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Ozonoff, Al [Department of Biostatistics, Boston University School of Public Health, Boston, MA (United States); Romesser, Paul B. [Department of Radiation Oncology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States); Wang, Jimmy; Sakai, Osamu [Department of Radiology, Boston Medical Center and Boston University School of Medicine, Boston, MA (United States)

    2012-02-01

    Purpose: To measure changes in perfusion of the pharyngeal constrictor muscles (PCM) using CT perfusion (CTP) imaging during a course of definitive radiotherapy (RT) in head-and-neck cancer (HNC) patients and correlate with dysphagia outcome after RT. Methods and Materials: Fifteen HNC patients underwent CTP imaging of the PCM at baseline and Weeks 2, 4, and 6 during RT and 6 weeks after RT. Blood flow and blood volume were measured in the PCM, and percentage change from baseline scan was determined. A single physician-based assessment of dysphagia was performed every 3 months after RT using the Common Terminology Criteria for Adverse Events, version 3.0 grading system. Results: With a median follow-up of 28 months (range, 6-44 months), Grade 3 dysphagia was present in 7 of 15 patients, and 8 patients experienced Grade 0-2 dysphagia. The CTP parameters at Week 2 of RT demonstrated an increase in mean PCM blood flow of 161.9% vs. 12.3% (p = 0.007) and an increase in mean PCM blood volume of 96.6% vs. 8.7% (p = 0.039) in patients with 6-month post-RT Grade 3 dysphagia and Grade 0-2 dysphagia, respectively. On multivariate analysis, when adjusting for smoking history, tumor volume, and baseline dysphagia status, an increase in blood flow in the second week of RT was significant for 3- and 6-month Grade 3 dysphagia (p < 0.05). Conclusions: Perfusion changes in the PCM during Week 2 of RT in the PCM may predict the severity of dysphagia after HNC RT.

  11. Correlating Computed Tomography Perfusion Changes in the Pharyngeal Constrictor Muscles During Head-and-Neck Radiotherapy to Dysphagia Outcome

    International Nuclear Information System (INIS)

    Truong, Minh Tam; Lee, Richard; Saito, Naoko; Qureshi, Muhammad M.; Ozonoff, Al; Romesser, Paul B.; Wang, Jimmy; Sakai, Osamu

    2012-01-01

    Purpose: To measure changes in perfusion of the pharyngeal constrictor muscles (PCM) using CT perfusion (CTP) imaging during a course of definitive radiotherapy (RT) in head-and-neck cancer (HNC) patients and correlate with dysphagia outcome after RT. Methods and Materials: Fifteen HNC patients underwent CTP imaging of the PCM at baseline and Weeks 2, 4, and 6 during RT and 6 weeks after RT. Blood flow and blood volume were measured in the PCM, and percentage change from baseline scan was determined. A single physician-based assessment of dysphagia was performed every 3 months after RT using the Common Terminology Criteria for Adverse Events, version 3.0 grading system. Results: With a median follow-up of 28 months (range, 6–44 months), Grade 3 dysphagia was present in 7 of 15 patients, and 8 patients experienced Grade 0–2 dysphagia. The CTP parameters at Week 2 of RT demonstrated an increase in mean PCM blood flow of 161.9% vs. 12.3% (p = 0.007) and an increase in mean PCM blood volume of 96.6% vs. 8.7% (p = 0.039) in patients with 6-month post-RT Grade 3 dysphagia and Grade 0–2 dysphagia, respectively. On multivariate analysis, when adjusting for smoking history, tumor volume, and baseline dysphagia status, an increase in blood flow in the second week of RT was significant for 3- and 6-month Grade 3 dysphagia (p < 0.05). Conclusions: Perfusion changes in the PCM during Week 2 of RT in the PCM may predict the severity of dysphagia after HNC RT.

  12. Electroencephalography reveals lower regional blood perfusion and atrophy of the temporoparietal network associated with memory deficits and hippocampal volume reduction in mild cognitive impairment due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Moretti DV

    2015-02-01

    Full Text Available Davide Vito MorettiNational Institute for the research and cure of Alzheimer’s disease, S. John of God, Fatebenefratelli, Brescia, Italy Background: An increased electroencephalographic (EEG upper/lower alpha power ratio has been associated with less regional blood perfusion, atrophy of the temporoparietal region of the brain, and reduction of hippocampal volume in subjects affected by mild cognitive impairment due to Alzheimer’s disease as compared with subjects who do not develop the disease. Moreover, EEG theta frequency activity is quite different in these groups. This study investigated the correlation between biomarkers and memory performance.Methods: EEG α3/α2 power ratio and cortical thickness were computed in 74 adult subjects with prodromal Alzheimer’s disease. Twenty of these subjects also underwent assessment of blood perfusion by single-photon emission computed tomography (SPECT. Pearson’s r was used to assess the correlation between cortical thinning, brain perfusion, and memory impairment.Results: In the higher α3/α2 frequency power ratio group, greater cortical atrophy and lower regional perfusion in the temporoparietal cortex was correlated with an increase in EEG theta frequency. Memory impairment was more pronounced in the magnetic resonance imaging group and SPECT groups.Conclusion: A high EEG upper/low alpha power ratio was associated with cortical thinning and less perfusion in the temporoparietal area. Moreover, atrophy and less regional perfusion were significantly correlated with memory impairment in subjects with prodromal Alzheimer’s disease. The EEG upper/lower alpha frequency power ratio could be useful for identifying individuals at risk for progression to Alzheimer’s dementia and may be of value in the clinical context.Keywords: electroencephalography, perfusion, atrophy, temporoparietal network, memory deficits, hippocampal volume, mild cognitive impairment, Alzheimer’s disease

  13. Influence of antihypertensive therapy on cerebral perfusion in patients with metabolic syndrome: relationship with cognitive function and 24-h arterial blood pressure monitoring.

    Science.gov (United States)

    Efimova, Nataliya Y; Chernov, Vladimir I; Efimova, Irina Y; Lishmanov, Yuri B

    2015-08-01

    To investigate the regional cerebral blood flow, cognitive function, and parameters of 24-h arterial blood pressure monitoring in patients with metabolic syndrome before and after combination antihypertensive therapy. The study involved 54 patients with metabolic syndrome (MetS) investigated by brain single-photon emission computed tomography, 24-h blood pressure monitoring (ABPM), and comprehensive neuropsychological testing before and after 24 weeks of combination antihypertensive therapy. Patients with metabolic syndrome had significantly poorer regional cerebral blood flow compared with control group: by 7% (P = 0.003) in right anterior parietal cortex, by 6% (P = 0.028) in left anterior parietal cortex, by 8% (P = 0.007) in right superior frontal lobe, and by 10% (P = 0.00002) and 7% (P = 0.006) in right and left temporal brain regions, correspondingly. The results of neuropsychological testing showed 11% decrease in mentation (P = 0.002), and 19% (P = 0.011) and 20% (P = 0.009) decrease in immediate verbal and visual memory in patients with MetS as compared with control group. Relationships between the indices of ABPM, cerebral perfusion, and cognitive function were found. Data showed an improvement of regional cerebral blood flow, ABPM parameters, and indicators of cognitive functions after 6 months of antihypertensive therapy in patients with MetS. The study showed the presence of diffuse disturbances in cerebral perfusion is associated with cognitive disorders in patients with metabolic syndrome. Combination antihypertensive treatment exerts beneficial effects on the 24-h blood pressure profile, increases cerebral blood flow, and improves cognitive function in patients with MetS. © 2015 John Wiley & Sons Ltd.

  14. Regional perfusion and oxygenation of tumors upon methylxanthine derivative administration

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1998-01-01

    Purpose: The use of methylxanthine derivatives has been postulated as a means of increasing tumor perfusion and thus ameliorating tumor hypoxia. The aim of this study was to quantify and compare the effects of three methylxanthine derivatives: pentoxifylline (PX), torbafylline (TB), and HWA 138 (HW) on tumor perfusion and oxygenation. Methods and Materials: Anesthetized Sprague Dawley rats with DS-sarcomas implanted subcutaneously onto the hind foot dorsum were used in this study. Mean arterial blood pressure (MABP) was measured throughout experiments. Regional red blood cell (RBC) flux was monitored using a multichannel laser Doppler device and tumor oxygenation on a more global level was assessed polarographically using an O 2 -sensitive catheter electrode. The methylxanthine derivatives were administered as a single dose intraperitoneally (for PX 50 mg/kg; for TB and HW 75 mg/kg). Results: Following drug administration, initial decreases in MABP down to 75% of baseline values were observed for all three substances. PX, HW, and TB caused initial transient reductions in mean RBC flux followed by gradual increases to values of 137 ± 27 %, 139 ± 14 %, and 122 ± 14 % respectively at t = 60 min. Following a small initial decrease upon drug administration, O 2 partial pressure (pO 2 ) rose to 160 ± 31 %, 153 ± 34 %, and 121 ± 11 % for PX, HW, and TB, respectively at t = 60 min. At the end of the observation period (t = 90 min), increases in RBC flux and pO 2 were still evident. When individual tumors were considered, a variety of patterns (including opposing effects) for changes in RBC flux were seen, not necessarily reflected in the mean values. Thus, while the methylxanthine derivatives caused an increased average tumor perfusion, there is evidence suggesting that a redistribution of tumor blood flow occurs which may amplify preexisting heterogeneity. Conclusions: Substantial improvements in tumor oxygenation and perfusion were observed after administration of

  15. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  16. The preliminary study of CT cerebral perfusion imaging in transient ischemic attacks

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Du Xiangying

    2002-01-01

    Objective: To probe the application of CT cerebral perfusion imaging on transient ischemic attacks (TIA). Methods: Conventional CT and CT cerebral perfusion imaging were performed on 5 normal adults and 20 patients with clinically diagnosed TIA. After regular CT examination, dynamic scans of 40 seconds were performed on selected slice (usually on the basal ganglia slice), while 40 ml non-ionic contrast material were bolus injected through antecubital vein with. These dynamic images were processed with the 'Perfusion CT' software package on a PC based workstation. Cerebral blood flow (CBF) and time to peak (TP) enhancement were measured within specific regions of the brain on CT perfusion images. Quantitative analysis was performed for these images. Results: A gradient of perfusion between gray matter and white matter was showed on cT perfusion images in normal adults and TIA patients. CBF and TP for normal cortical and white matter were 378.2 ml·min -1 ·L -1 , 7.8 s and 112.5 ml·min -1 ·L -1 , 9.9 s, respectively. In 20 cases with TIA, persisting abnormal perfusion changes corresponding to clinical symptoms were found in 15 cases with prolonged TP. Other 5 cases showed normal results. TP of affected side (11.8 +- 4.4) s compared with that of the contralateral side (9.1 +- 3.1) s was significantly prolonged (t = 5.277, P -1 · -1 ] and contralateral side [(229.1 +- 41.4) ml·min -1 ·L -1 ]. Conclusion: Perfusion CT provides valuable hemodynamic information and shows the extent of perfusion disturbances for patients with TIA

  17. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  18. Myocardial perfusion as an indicator of graft patency after coronary artery bypass surgery

    International Nuclear Information System (INIS)

    Kolibash, A.J.; Call, T.D.; Bush, C.A.; Tetalman, M.R.; Lewis, R.P.

    1980-01-01

    Stress and resting myocardial perfusion were assessed in 38 patients who received 96 grafts. Stress perfusion was evaluated with thallium-201 and resting myocardial blood flow distribution with radiolabeled particles. When both stress and rest perfusion were normal, graft patency was 82% (51 of 62 grafts). Graft patency was also high (81%, 13 of 16) in areas where stress perfusion abnormalities resolved or become less apparent at rest. However, when stress perfusion defects remained unchanged at rest, the graf was likely to be occuluded (73%, 11 of 15). Maintenance of normal rest perfusion or improvement of rest perfusion postoperatively was also associated with a high graft patency rate (80%, 35 of 44), whereas the development of new rest perfusion defects postoperatively implied graft occlusion

  19. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  20. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  1. Image quality in CT perfusion imaging of the brain. The role of iodine concentration

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias; Bueltmann, Eva; Bode-Schnurbus, Lucas; Koenen, Dirk; Mielke, Eckhart; Heuser, Lothar [Knappschaftskrankenhaus Langendreer, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Ruhr-University Bochum, Bochum (Germany)

    2007-01-15

    The purpose of this study was to evaluate the impact of various iodine contrast concentrations on image quality in computed tomography (CT) perfusion studies. Twenty-one patients with suspicion of cerebral ischemia underwent perfusion CT using two different iodine contrast concentrations: 11 patients received iomeprol 300 (iodine concentration: 300 mg/ml) while ten received the same volume of iomeprol 400 (iodine concentration: 400 mg/ml). Scan parameters were kept constant for both groups. Maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP) were calculated from two adjacent slices. Quantitative comparisons were based on measurements of the maximum enhancement [Hounsfield units (HU)] and signal-to-noise index (SNI) on CBF, CBV, and TTP images. Determinations of grey-to-white-matter delineation for each iodine concentration were performed by two blinded readers. Only data from the non-ischemic hemispheres were considered. Both maximum enhancement and SNI values were higher after iomeprol 400, resulting in significantly better image quality in areas of low perfusion. No noteworthy differences were found for normal values of CBF, CBV, and TTP. Qualitative assessment of grey/white matter contrast on CBF and CBV maps revealed better performance for iomeprol 400. For brain perfusion studies, highly concentrated contrast media such as iomeprol 400 is superior to iomeprol 300. (orig.)

  2. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    International Nuclear Information System (INIS)

    Mathews, Marlon S.; Binder, Devin K.; Smith, Wade S.; Wintermark, Max; Dillon, William P.

    2008-01-01

    Postictal (''Todd's'') paralysis, or ''epileptic hemiplegia,'' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  3. Hepatic perfusion disorders: a pictorial review of CT and MR imaging

    International Nuclear Information System (INIS)

    Yim, Nam Yeol; Jeong, Yong Yeon; Shin, Sang Soo; Song, Sang Gook; Lim, Hyo Soon; Heo, Suk Hee; Chang, Nam Kyu; Yoon, Woong; Kang, Heoung Keun; Lan, Shen Yu

    2005-01-01

    The liver has a unique dual blood supply through the portal vein and the hepatic artery. There are several communications between these two vessels under various conditions such as in hepatic tumors, trauma and liver cirrhosis, vascular compromise, among others. When vascular compromise occurs, this dual blood supply system can cause changes in the volume of blood flow in individual vessels or even in the direction of blood flow. With rapid image acquisition and increased resolution available in multislice CT and MR imaging, hepatic perfusion disorders are now more frequently encountered than in the past. Familiarity with imaging findings of these perfusion disorders will be helpful in characterizing focal hepatic lesions and will also help to avoid false positive diagnoses

  4. Hepatic perfusion disorders: a pictorial review of CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Nam Yeol; Jeong, Yong Yeon; Shin, Sang Soo; Song, Sang Gook; Lim, Hyo Soon; Heo, Suk Hee; Chang, Nam Kyu; Yoon, Woong; Kang, Heoung Keun [Chonnam National University, Gwangju (Korea, Republic of); Lan, Shen Yu [Yan Bian Cancer Hospital, Peijing (China)

    2005-09-15

    The liver has a unique dual blood supply through the portal vein and the hepatic artery. There are several communications between these two vessels under various conditions such as in hepatic tumors, trauma and liver cirrhosis, vascular compromise, among others. When vascular compromise occurs, this dual blood supply system can cause changes in the volume of blood flow in individual vessels or even in the direction of blood flow. With rapid image acquisition and increased resolution available in multislice CT and MR imaging, hepatic perfusion disorders are now more frequently encountered than in the past. Familiarity with imaging findings of these perfusion disorders will be helpful in characterizing focal hepatic lesions and will also help to avoid false positive diagnoses.

  5. Hyperperfusion on Perfusion Computed Tomography Following Revascularization for Acute Stroke

    International Nuclear Information System (INIS)

    Nguyen, T.B.; Lum, C.; Eastwood, J.D.; Stys, P.K.; Hogan, M.; Goyal, M.

    2005-01-01

    Purpose: To describe the findings of hyperperfusion on perfusion computed tomography (CT) in four patients following revascularization for acute stroke. Material and Methods: In 2002-2003, among a series of 6 patients presenting with an acute stroke and treated with intra-arterial thrombolysis, we observed the presence of hyperperfusion in 3 patients on the follow-up CT perfusion. We included an additional patient who was treated with intravenous thrombolysis and who had hyperperfusion on the follow-up CT perfusion. We retrospectively analyzed their CT perfusion maps. Cerebral blood volume (CBV) and cerebral blood flow (CBF) maps were compared between the affected territory and the normal contralateral hemisphere. Results: In the four patients, the mean CBV and CBF were 3.6±2.0 ml/100 g and 39±25 ml/100 g/min in the affected territory compared to the normal side (mean CBV 2.7±2.1 ml/100 g, mean CBF = 27±23 ml/100 g/min). There was no intracranial hemorrhage in the hyperperfused territories. At follow-up CT, some hyperperfused brain areas progressed to infarction, while others retained normal white to gray matter differentiation. Conclusion: CT perfusion can demonstrate hyperperfusion, which can be seen in an ischemic brain territory following recanalization

  6. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  7. A relative study of hepatic perfusion and portal vein pressure in rats with liver cirrhosis

    International Nuclear Information System (INIS)

    Li Jiaping; Yang Jianyong; Chen Wei; Huang Yonghui

    2006-01-01

    Objective: To evaluate spiral CT perfusion in assessing portal vein pressure in rats with different stages of liver cirrhosis. Methods Seventeen rats with early stage of liver cirrhosis, 18 with intermediate stage, 12 with advanced stage, and 13 healthy rats as a control group were selected and recieved hepatic perfusion on a single-row spiral CT scanner. The parameters of hepatic perfusion were calculated using the deconvolution method. The portal vein pressure was measured by multi-physiographer. Results: (1) In study group, the PVP (portal venous perfusion) and THBP (total hepatic blood perfusion) were negatively correlated with FPP, while positively correlated with the HPI (hepatic perfusion index) and MTT (mean transit time). The FPP had a close relation with PVP. The equation, Y 20.671-3.195X, could be conducted with linear regression analysis. (2) According to the linear regression equation mentioned above, the FPP in 47 rats were 16.090±2.150 cmH 2 0, which was highly correlated with the observed valuel6.108±3.662 cmH 2 O (r=0.823 P<0.01). Conclusion: CT perfusion is a new non-invasive and efficient modality for assessment of the portal pressure in liver cirrhosis in various stages. (authors)

  8. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  9. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-02-15

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9{+-}6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4{+-}9.2 y/o) as normal controls who had no past illness history were performed {sup 99m}Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal

  10. Acute cerebral stroke imaging and brain perfusion with the use of high-concentration contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A. [Wesley Research Inst., The Wesley Hospital, Brisbane (Australia); Brighton and Sussex Medical School, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2003-12-01

    Acute cerebral stroke remains a major cause of death among adults and the emergence of new therapies has created a need for early and rapid imaging at a time when conventional CT is either normal or demonstrates subtle abnormalities that are easy to misinterpret. Perfusion CT uses the temporal changes in cerebral and blood attenuation during a rapid series of images acquired without table movement following an intravenous bolus of contrast medium to generate images of mean transit time (MTT) cerebral blood volume (CBV) and perfusion. Reduced perfusion with preserved CBV is indicative of reversible ischaemia, whereas a matched reduction in perfusion and CBV implies infarction. The CT perfusion imaging can positively identify patients with non-haemorrhagic stroke in the presence of a normal conventional CT, provide an indication as to prognosis and potentially select those patients for whom thrombolysis is appropriate. Perfusion CT offers a powerful adjunct to MDCT based imaging of cerebrovascular disease, but further clinical validation is required. (orig.)

  11. Measurement of pulmonary vascular resistance of Fontan candidates with pulmonary arterial distortion by means of pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Park, In-Sam; Mizukami, Ayumi; Tomimatsu, Hirofumi; Kondou, Chisato; Nakanishi, Toshio; Nakazawa, Makoto; Momma, Kazuo

    1998-01-01

    We measured the distribution of blood flow to the right (R) and left lung (L) by means of pulmonary perfusion imaging and calculated pulmonary vascular resistance (Rp) in 13 patients, whose right and left pulmonary artery pressures were different by 2 to 9 mmHg due to pulmonary arterial distortion (5 interruption, 8 stenosis). The right lung/left lung blood flow ratio was determined and from the ratio and the total pulmonary blood flow, which was determined using the Fick's principle, the absolute values of right and left pulmonary blood flow were calculated. Using the right and left pulmonary blood flow and the right and left pulmonary arterial pressures, right and left pulmonary vascular resistance were calculated, separately. Vascular resistance of the whole lung (Rp) was then calculated using the following equation. 1/(Rp of total lung)=1/(Rp of right lung)+1/(Rp of left lung). Rp calculated from this equation was 1.8+/-0.8 U·m 2 and all values were less than 3 U·m 2 (range 0.3-2.8). Rp estimated from the conventional method using the total pulmonary blood flow and pulmonary arterial pressures, without using the right/left blood flow ratio, ranging from 0.4 to 3.8 U·m 2 and 5 of 13 patients showed Rp>3 U·m 2 . All patients underwent Fontan operation successfully. These data indicated that this method is useful to estimate Rp and to determine the indication of Fontan operation in patients with pulmonary arterial distortions. (author)

  12. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    Science.gov (United States)

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The utility of first-pass perfusion CT in hyperacute ischemic stroke: early experience

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Lee, Myeong Sub; Kim, Myung Soon; Hong, In Soo; Lee, Young Han; Lee, Ji Yong; Whang, Kum

    2003-01-01

    To evaluate the findings of first-pass perfusion CT in hyperacute stroke patients and to determine the relationship between a perfusion map and final infarct outcome. Thirty-five patients admitted with ischemic stroke within six hours of the onset of symptoms underwent conventional cerebral CT immediately followed by first-pass perfusion CT. Nineteen underwent follow-up CT or MRI, and three types of dynamic perfusion map-cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) - were evaluated by two radiologists. In these 19 patients, initial perfusion maps correlated with final infarct size, determined during follow-up studies. In all 35 patients, major large vessel perfusion abnormalities [middle cerebral artery - MCA MCA and anterior cerebral artery - ACA (n=2); posterior cerebral artery - PCA (n=8)] were detected. On first-pass perfusion maps depicting CBF and MTT, all lesions were detected, and CBF and delayed MTT values were recorded. CBV maps showed variable findings. In all 19 patients who were followed up, the final infarct size of perfusion abnormalities was less than that depicted on CBF and MTT maps, and similar to or much greater than that seen on CBV maps. First-pass perfusion CT scanning is a practical, rapid and advanced imaging technique. In hyperacute stroke patients, it provides important and reliable hemodynamic information as to which brain tissue is salvageable by thrombolytic therapy, and predicts outcome of such treatment

  14. Subendocardial versus transmural ischaemia in myocardial perfusion SPECT--a Monte Carlo study

    DEFF Research Database (Denmark)

    Bartosik, Jolanta; El-Ali, Henrik Hussein; Nilsson, Ulf

    2006-01-01

    Myocardial perfusion imaging with single-photon emission computed tomography (SPECT) is useful for the evaluation of patients with known or suspected coronary artery disease. Parameters of interest are the reduction in the blood perfusion (severity) and the lesion volume (extent). The aim of this...

  15. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [CEA Saclay, DSV, I2BM, F-91191 Gif Sur Yvette (France)

    2008-07-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  16. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    International Nuclear Information System (INIS)

    Le Bihan, D.

    2008-01-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  17. Transplacental transfer of nitrosodimethylamine in perfused human placenta.

    OpenAIRE

    Annola, K.; Heikkinen, A.T.; Partanen, H.; Woodhouse, H.; Segerback, D.; Vahakangas, K.

    2009-01-01

    Nitrosodimethylamine (NDMA) is a carcinogenic compound present in tobacco smoke and food such as cured meat, smoked fish and beer. The O(6)-methylguanine formed in human cord blood in mothers highly exposed to such products implicates NDMA exposure of the fetus. Dual recirculating human placental perfusion was used to get direct evidence of the transplacental transfer of NDMA and DNA adduct formation in perfused human placenta. Eleven placentas from normal full-term pregnancies were collected...

  18. Experimental study of CT perfusion in hepatitis, hepatic fibrosis and early stage of cirrhosis

    International Nuclear Information System (INIS)

    Guan Sheng; Zhao Weidong; Zhou Kangrong; Peng Weijun; Mao Jian; Tang Feng; Wang Yong; Cao Guang; Sun Fei

    2005-01-01

    Objective: To investigate the value of CT perfusion in the early diagnosis of hepatic diffuse disease. Methods: Fourteen male Wistar rats of control group and 14 of test group at stages of hepatitis, hepatic fibrosis, hepatic cirrhosis which were induced with diethylnitrosamine (DEN), were studied with CT perfusion respectively. CT perfusion data of different stages were compared and pathologic analysis were performed. Results: Density-time curves of CT perfusion were satisfactory and all perfusion data could be obtained. During the period of hepatitis developing into early stage of hepatic cirrhosis, hepatic artery flow (HAF) trended to increase in test group, mean transmit time (MTT) prolonged obviously, blood flow (BF) and volume (BV) declined. While in control group, HAF declined slightly, MTT, BV and BF increased. Statistic analysis showed the differences of HAF and MTT at different stages between control and test groups were significant (P<0.05 ); the differences of BV and BF between hepatitis and hepatic cirrhosis, hepatic fibrosis and early stage of hepatic cirrhosis in test group were significant (P<0.05), but no significant difference between hepatitis and hepatic fibrosis. The corresponding pathologic changes at stage of hepatitis was swelling of hepatic cells; sinusoids cap illarization and deposition of collagen in the extravascular Disse's spaces were the main changes relating to hepatic blood perfusion at stage of fibrosis and early stage of cirrhosis. Conclusion: The method of CT scan can reflect some changes of hepatic blood perfusion in rats with hepatitis, hepatic fibrosis and early stage of cirrhosis. The data of CT perfusion, especially the changes should be valuable for clinical early diagnosis, treatment and follow-up. (authors)

  19. Assessment of right liver graft perfusion effectiveness between one and two-catheter infusion methods.

    Science.gov (United States)

    Jung, Bo-Hyun; Hwang, Shin; Ha, Tae-Yong; Song, Gi-Won; Jung, Dong-Hwan; Kim, Ki-Hun; Ahn, Chul-Soo; Moon, Deok-Bog; Park, Gil-Chun; Kang, Sung-Hwa; Yoon, Young-In; Lee, Sung-Gyu

    2014-05-01

    Conventional graft perfusion method using one small-caliber catheter takes a relatively long time for right liver graft perfusion, thus some modification is needed. In this study, we intended to assess the effectiveness of right liver graft perfusion methods through comparison of different infusion catheters. The study consisted of two parts including one bench experiment to obtain data of hydraulic infusion and one clinical trial of 40 cases on graft perfusion with one- versus two-catheter infusion methods. These two graft infusion methods were compared in terms of the perfusion time and washing-out efficiency. At bench experiment, the infusion flow rate and infusion pressure were 3.3 ml/sec and 1.9 cmH20 in one blood transfusion catheter group, and 11.7 ml/sec and 3.1 cmH20 in single transurethral resection of prostate irrigation catheter group, and 6.6 ml/sec and 2.0 cmH20 in two blood transfusion catheters group, respectively. In clinical trial with 40 right liver grafts, two-catheter group had a shorter graft portal perfusion time for the first 2 L of histidine-tryptophan-ketoglutarate (HTK) solution than the conventional one-catheter group (375±25 seconds vs. 662±34 seconds; p=0.001) and a lower rate of incomplete blood washing-out after the initial 2 L portal perfusion (40% vs. 85%; p=0.03). The two-catheter infusion method appears to be more effective than the conventional one-catheter infusion method for right liver graft perfusion at the back table. Large size of right liver grafts seems to be its good indication.

  20. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  1. Elimination of extracranial blood flow during dynamic cerebral perfusion studies using diffusible and non-diffusible radioisotope

    International Nuclear Information System (INIS)

    Ahonen, A.; Koivula, A.; Kallanranta, T.; Kuikka, J.

    1981-01-01

    The extracranial blood flow seriously complicates the interpretation of dynamic cerebral studies. To eliminate this, we used a blood pressure cuff placed around the head in 50 patients with no evidence of cerebrovascular disease. The pressure in the headband was increased to 30 mmHg above the patient's systolic pressure, and the first 60 sec static scintigram was taken exactly 3 min after the injection of sup(99m)Tc-pertechnetate. A second 60 sec static scintigram was taken without pressure in the headband at 6 min after injection. After correction for diffusion of tracer into extravascular compartments we could still show 13% reduction in counting rates over the hemispheric regions and 30% over the convexity regions during application of the pressure headband. With the Xenon method, the application of the headband appears to have insignificant influence on the results of cerebral perfusion. We thus recommend that a headband should be used for dynamic sup(99m)Tc-isotope cerebral circulation studies. (author)

  2. Measurement of regional cerebral blood flow with the Xenon-133 inhalation procedure in patients with cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, A.

    1985-10-01

    Measurement of regional cerebral blood flow with inhalation of Xenon-133 and recording of regional clearance curves by stationary external detectors permits repeated estimation of bilateral cortical blood flow in resting position and after different activating procedures. Measurements can be performed on an outpatient basis, measurements in critical ill patients are possible as well. Compared to Xenon-133 single photon emission computerized tomography smaller doses can be used. Compared to Iodine-123 amphetamie SPECT actual flow calculation without arterial puncture is possible. Drawbacks of the technique are the two-dimensional imaging, unsufficient indication of the look through phenomenon and non-perfused tissue with zero-flow. However, measurement of rCBF with this technique are helpful in individual diagnosis of the following diseases: transient ischemic attacks with prolonged ischemia, communicating hydrocephalus with normal intracranial pressure, follow up studies in hemodilution, evaluation of patients with polyarterial vascular disease in respect to neurosurgical or vasculosurgical intervention, subarachnoid hemorrhage and head trauma. (orig.).

  3. Multiple-indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions

    International Nuclear Information System (INIS)

    St-Pierre, M.V.; Schwab, A.J.; Goresky, C.A.; Lee, W.F.; Pang, K.S.

    1989-01-01

    The technique of normal and retrograde rat liver perfusion has been widely used to probe zonal differences in drug-metabolizing activities. The validity of this approach mandates the same tissue spaces being accessed by substrates during both normal and retrograde perfusions. Using the multiple-indicator dilution technique, we presently examine the extent to which retrograde perfusion alters the spaces accessible to noneliminated references. A bolus dose of 51Cr-labeled red blood cells, 125I-albumin, 14C-sucrose and 3H2O was injected into the portal (normal) or hepatic (retrograde) vein of rat livers perfused at 10 ml per min per liver. The outflow perfusate was serially collected over 220 sec to characterize the transit times and the distribution spaces of the labels. During retrograde perfusion, red blood cells, albumin and sucrose profiles peaked later and lower than during normal perfusion, whereas the water curves were similar. The transit times of red blood cells, albumin and sucrose were longer (p less than 0.005), whereas those for water did not change. Consequently, retrograde flow resulted in significantly larger sinusoidal blood volumes (45%), albumin Disse space (42%) and sucrose Disse space (25%) than during normal flow, whereas the distribution spaces for total and intracellular water remained unaltered. The distension of the vascular tree was confirmed by electron microscopy, by which occasional isolated foci of widened intercellular recesses and spaces of Disse were observed. Cellular ultrastructure was otherwise unchanged, and there was no difference found between normal and retrograde perfusion for bile flow rates, AST release, perfusion pressure, oxygen consumption and metabolic removal of ethanol, a substrate with flow-limited distribution, which equilibrates rapidly with cell water (hepatic extraction ratios were virtually identical: normal vs. retrograde, 0.50 vs. 0.48 at 6 to 7.4 mM input concentration)

  4. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  5. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS)

    DEFF Research Database (Denmark)

    Pauls, Mathilde M H; Clarke, Natasha; Trippier, Sarah

    2017-01-01

    vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. METHODS/DESIGN: Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double......-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. SAMPLE SIZE: 54 participants are required to detect a 15% increase in cerebral blood...

  6. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Tenan, Mirna

    2002-01-01

    Little is known about the effects of antiangiogenic therapy on perfusion of human tumors and the mechanisms by which tumors can adapt to these treatments and recur. Here, we examined the effects of serial passaging of LN-229 human glioma xenografts overexpressing thrombospondin (TSP)-1 on tumor...... vascularity was estimated by noninvasive near infrared spectroscopy measuring blood volume at 800 +/- 10 nm and by histological vessel scores in CD31-immunostained cryosections. The tumor perfusion was assessed by noninvasive laser Doppler flowmetry. Overexpression of TSP-1 significantly inhibited tumor....... Elucidation of the mechanisms that allow this to happen has important consequences for the understanding of tumor recurrence after antiangiogenic therapy....

  7. Improvements in the Quantitative Assessment of Cerebral Blood Volume and Flow with the Removal of Vessel Voxels from MR Perfusion Images

    Directory of Open Access Journals (Sweden)

    Michael Mu Huo Teng

    2013-01-01

    Full Text Available Objective. To improve the quantitative assessment of cerebral blood volume (CBV and flow (CBF in the brain voxels from MR perfusion images. Materials and Methods. Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature. Using the scaling factors, the relative values were converted to the absolute CBV and CBF. Voxels with either CBV > 8 mL/100 g or CBF > 100 mL/100 g/min were characterized as vessel voxels and were excluded from the quantitative measurements. Results. The segmented brain parenchyma with normal perfusion was consistent with the angiographic findings for each patient. We confirmed the necessity of dual thresholds including CBF and CBV for proper removal of vessel voxels. The scaling factors were 0.208 ± 0.041 for CBV, and 0.168 ± 0.037, 0.172 ± 0.037 for CBF calculated using standard and circulant singular value decomposition techniques, respectively. Conclusion. The automatic scaling and vessel removal techniques provide an alternative method for obtaining improved quantitative assessment of CBV and CBF in patients with thromboembolic cerebral arterial disease.

  8. Gray matter perfusion correlates with disease severity in ALS.

    Science.gov (United States)

    Rule, Randall R; Schuff, Norbert; Miller, Robert G; Weiner, Michael W

    2010-03-09

    The goal of this study is to determine if regional brain perfusion, as measured by arterial spin labeling (ASL) MRI, is correlated with clinical measures of amyotrophic lateral sclerosis (ALS) disease severity. The presence of such a relationship would indicate a possible role for ASL perfusion as a marker of disease severity and upper motor neuron involvement in ALS. Disease severity was assessed in 16 subjects with ALS (age 54 +/- 11) using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) and the pulmonary function measure, forced vital capacity (FVC). Upper motor neuron involvement was assessed by testing rapid tapping of the fingers and feet. Magnetic resonance perfusion images were coregistered with structural T1-weighted MRI, corrected for partial volume effects using the structural images and normalized to a study-specific atlas. Correlations between perfusion and ALS disease severity were analyzed, using statistical parametric mapping, and including age as a factor. Analyses were adjusted for multiple clusters. ALS severity, as measured by the ALSFRS and FVC, was correlated with gray matter perfusion. This correlation was predominantly observed in the hemisphere contralateral to the more affected limbs. ALSFRS scores correlated with perfusion in the contralateral frontal and parietal lobe (p frontal lobe (p frontal lobe (p Upper motor neuron involvement, as measured by rapid finger tapping, correlated bilaterally with perfusion in the middle cingulate gyrus (p < 0.001). Amyotrophic lateral sclerosis (ALS) severity is correlated with brain perfusion as measured by arterial spin labeling (ASL) perfusion. This correlation appears to be independent of brain atrophy. ASL perfusion may be a useful tool for monitoring disease progression and assessing treatment effects in ALS.

  9. Brain perfusion imaging with iodinated amines

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Traditional nuclear medicine brain study using 99m Tc pertechnetate, glucoheptonate or diethlenetriaminepentacetic acid (DTPA) and planar imaging has experienced a significant decline in the past 10 years. This is mainly due to the introduction of X-ray CT and more recently the nuclear magnetic resonance (NMR) imaging, by which detailed morphology of the brain, including the detection of breakdown of the blood-brain barrier, can be obtained. The nuclear medicine brain imaging is only prescribed as a complementary test when X-ray CT is negative or equivocal and clinical suspicion remains. The attention of nuclear medicine brain imaging has been shifted from the detection of the breakdown of the blood-brain barrier to the study of brain function-perfusion, metabolism, and receptor binding, etc. The functional brain imaging provides diagnostic information usually unattainable by other radiological techniques. In this article, the iodinated amines as brain perfusion imaging agents are reviewed. Potential clinical application of these agents is discussed

  10. CT perfusion study of neck lymph nodes

    International Nuclear Information System (INIS)

    Zhong Jin; Liu Jun; Hua Rui; Qiao Hui; Gong Yi

    2011-01-01

    Objective: To study the CT perfusion features of various lymph nodes in the neck. Methods: Dynamic perfusion CT scanning was performed in 83 neck lymph nodes proved by pathology, including tuberculosis lymph nodes, lymphoma and metastatic lymph nodes. The shapes, blood flow modes, and perfusion parameters of these lymph nodes were compared among 3 groups. Statistical analysis of L/T and CT perfusion parameters was performed by one-way ANOVA and LSD test. Results: The values of MTT of tuberculosis lymph nodes, lymphoma and metastatic lymph nodes were (28.13±5.08), (31.08±5.82), and (11.24±5.31) s, respectively. The MTT of metastatic lymph nodes was statistically lower than that of tuberculosis lymph nodes and lymphoma (P -1 · 100 g -1 , respectively. The values of BV were (24.68±2.84), (25.30±3.16), and (25.15± 8.81) ml·100 g -1 respectively. The values of TTP were (40.90±8.85), (40.67±6.45), and (40.98±6.62) s, respectively. There were no significant differences in L/T, BF, BV and TTP among tuberculosis lymph nodes, lymphoma and metastatic lymph nodes (P>0.05). Conclusion: CT perfusion, especially combination functional imaging with perfusion images may be helpful in judging the nature of neck lymph nodes. (authors)

  11. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    OpenAIRE

    Uhlig, S.; Nüsing, R.; von Bethmann, A.; Featherstone, R. L.; Klein, T.; Brasch, F.; Müller, K. M.; Ullrich, V.; Wendel, A.

    1996-01-01

    BACKGROUND: Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. MATERIALS AND METHODS: Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. RESULTS: LPS induced the release of T...

  12. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Liangruksa, Monrudee [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Ganguly, Ranjan [Department of Power Engineering, Jadavpur University, Kolkata 700098 (India); Puri, Ishwar K., E-mail: ikpuri@vt.ed [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2011-03-15

    Magnetic fluid hyperthermia (MFH) is a cancer treatment that can selectively elevate the tumor temperature without significantly damaging the surrounding healthy tissue. Optimal MFH design requires a fundamental parametric investigation of the heating of soft materials by magnetic fluids. We model the problem of a spherical tumor and its surrounding healthy tissue that are heated by exciting a homogeneous dispersion of magnetic nanoparticles infused only into the tumor with an external AC magnetic field. The key dimensionless parameters influencing thermotherapy are the Peclet, Fourier, and Joule numbers. Analytical solutions for transient and steady hyperthermia provide correlations between these parameters and the portions of tumor and healthy tissue that are subjected to a threshold temperature beyond which they are damaged. Increasing the ratio of the Fourier and Joule numbers also increases the tumor temperature, but doing so can damage the healthy tissue. Higher magnetic heating is required for larger Peclet numbers due to the larger convection heat loss that occurs through blood perfusion. A comparison of the model predictions with previous experimental data for MFH applied to rabbit tumors shows good agreement. The optimal MFH conditions are identified based on two indices, the fraction I{sub T} of the tumor volume in which the local temperature is above a threshold temperature and the ratio I{sub N} of the damaged normal tissue volume to the tumor tissue volume that also lies above it. The spatial variation in the nanoparticle concentration is also considered. A Gaussian distribution provides efficacy while minimizing the possibility of generating a tumor hot spot. Varying the thermal properties of tumor and normal tissue alters I{sub T}and I{sub N} but the nature of the temperature distribution remains unchanged. - Research highlights: > Analytical model of magnetic fluid hyperthermia of tumor tissue perfused with magnetic nanoparticles that is surrounded

  13. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion

    International Nuclear Information System (INIS)

    Liangruksa, Monrudee; Ganguly, Ranjan; Puri, Ishwar K.

    2011-01-01

    Magnetic fluid hyperthermia (MFH) is a cancer treatment that can selectively elevate the tumor temperature without significantly damaging the surrounding healthy tissue. Optimal MFH design requires a fundamental parametric investigation of the heating of soft materials by magnetic fluids. We model the problem of a spherical tumor and its surrounding healthy tissue that are heated by exciting a homogeneous dispersion of magnetic nanoparticles infused only into the tumor with an external AC magnetic field. The key dimensionless parameters influencing thermotherapy are the Peclet, Fourier, and Joule numbers. Analytical solutions for transient and steady hyperthermia provide correlations between these parameters and the portions of tumor and healthy tissue that are subjected to a threshold temperature beyond which they are damaged. Increasing the ratio of the Fourier and Joule numbers also increases the tumor temperature, but doing so can damage the healthy tissue. Higher magnetic heating is required for larger Peclet numbers due to the larger convection heat loss that occurs through blood perfusion. A comparison of the model predictions with previous experimental data for MFH applied to rabbit tumors shows good agreement. The optimal MFH conditions are identified based on two indices, the fraction I T of the tumor volume in which the local temperature is above a threshold temperature and the ratio I N of the damaged normal tissue volume to the tumor tissue volume that also lies above it. The spatial variation in the nanoparticle concentration is also considered. A Gaussian distribution provides efficacy while minimizing the possibility of generating a tumor hot spot. Varying the thermal properties of tumor and normal tissue alters I T and I N but the nature of the temperature distribution remains unchanged. - Research Highlights: →Analytical model of magnetic fluid hyperthermia of tumor tissue perfused with magnetic nanoparticles that is surrounded by healthy tissue

  14. Commercial software upgrades may significantly alter Perfusion CT parameter values in colorectal cancer

    International Nuclear Information System (INIS)

    Goh, Vicky; Shastry, Manu; Endozo, Raymondo; Groves, Ashley M.; Engledow, Alec; Peck, Jacqui; Reston, Jonathan; Wellsted, David M.; Rodriguez-Justo, Manuel; Taylor, Stuart A.; Halligan, Steve

    2011-01-01

    To determine how commercial software platform upgrades impact on derived parameters for colorectal cancer. Following ethical approval, 30 patients with suspected colorectal cancer underwent Perfusion CT using integrated 64 detector PET/CT before surgery. Analysis was performed using software based on modified distributed parameter analysis (Perfusion software version 4; Perfusion 4.0), then repeated using the previous version (Perfusion software version 3; Perfusion 3.0). Tumour blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) were determined for identical regions-of-interest. Slice-by-slice and 'whole tumour' variance was assessed by Bland-Altman analysis. Mean BF, BV and PS was 20.4%, 59.5%, and 106% higher, and MTT 14.3% shorter for Perfusion 4.0 than Perfusion 3.0. The mean difference (95% limits of agreement) were +13.5 (-44.9 to 72.0), +2.61 (-0.06 to 5.28), -1.23 (-6.83 to 4.36), and +14.2 (-4.43 to 32.8) for BF, BV, MTT and PS respectively. Within subject coefficient of variation was 36.6%, 38.0%, 27.4% and 60.6% for BF, BV, MTT and PS respectively indicating moderate to poor agreement. Software version upgrades of the same software platform may result in significantly different parameter values, requiring adjustments for cross-version comparison. (orig.)

  15. Effects of isoproterenol on distribution of perfusion in embolized dog lungs

    International Nuclear Information System (INIS)

    Shepard, J.W. Jr.; Hauer, D.; Sgroi, V.; Moser, K.M.

    1979-01-01

    In 19 mechanically ventilated, anesthetized dogs, autologous venous thrombi were formed in the inferior vena cava and subsequently released. Serial perfusion lung scintigrams revealed the postembolic distribution of pulmonary blood flow before, during, and after the infusion of isoproterenol at 2.2 μg/min. Isoproterenol failed to restore perfusion to embolically occluded regions. When reperfusion occurred it was attributable to clot resolution. Gas exchange and hemodynamic measurements obtained in seven thromboembolized animals showed no scan evidence of reperfusion during the isoproterenol infusion. After embolization, cardiac output increased from 1.7 to 2.6 liter/min (p 2 from 38.0 to 45.3 mm Hg (p 2 to 50.7 mm Hg, along with a decrease in pulmonary vascular resistance from the postembolic mean of 448 to 246 dynes.sec.cm -5 (p < 0.05). Perfusion defects following acute pulmonary thromboembolization are not altered by the infusion of the potent pulmonary vasodilator, isoproterenol. Infusion of this drug following thromboembolization may have potential therapeutic benefit by reducing pulmonary vascular resistance, increasing cardiac output, and elevating the mixed-venous oxygen tension

  16. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fainardi, Enrico; Borrelli, Massimo; Saletti, Andrea; Ceruti, Stefano; Tamarozzi, Riccardo; Schivalocchi, Roberta; Cavallo, Michele; Azzini, Cristiano; Chieregato, Arturo

    2008-01-01

    We sought to quantify perfusion changes associated to acute spontaneous intracerebral hemorrhage (SICH) by means of computed tomography perfusion (CTP) imaging. We studied 89 patients with supratentorial SICH at admission CT by using CTP scanning obtained within 24 h after symptom onset. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV) and mean transit time (rMTT) levels were measured in four different regions of interest manually outlined on CT scan: (1) hemorrhagic core; (2) perihematomal low-density area; (3) 1 cm rim of normal-appearing brain tissue surrounding the perilesional area; and (4) a mirrored area, including the clot and the perihematomal region, located in the non-lesioned contralateral hemisphere. rCBF, rCBV, and rMTT mean levels showed a centrifugal distribution with a gradual increase from the core to the periphery (p 20 ml) hematomas (p<0.01 and p <0.02, respectively). Multi-parametric CTP mapping of acute SICH indicates that perfusion values show a progressive improvement from the core to the periphery. In the first 24 h, perihemorrhagic region was hypoperfused with CTP values which were not suggestive of ischemic penumbra destined to survive but more likely indicative of edema formation. These findings also argue for a potential influence of early amounts of bleeding on perihematomal hemodynamic abnormalities. (orig.)

  17. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  18. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    International Nuclear Information System (INIS)

    Sohn, Myung Hee

    2005-01-01

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera

  19. Study of uranium transfer across the blood-brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Lemercier, V.; Millot, X.; Ansoborlo, E.; Menetrier, F.; Fluery-Herard, A.; Rousselle, Ch.; Scherrmann, J.M

    2003-07-01

    Uranium is a heavy metal which, following accidental exposure, may potentially be deposited in human tissues and target organs, the kidneys and bones. A few published studies have described the distribution of this element after chronic exposure and one of them has demonstrated an accumulation in the brain. In the present study, using inductively coupled plasma mass spectrometry (ICP-MS) for the quantification of uranium, uranium transfer across the blood-brain barrier (BBB) has been assessed using the in situ brain perfusion technique in the rat. For this purpose, a physiological buffered bicarbonate saline at pH 7.4 containing natural uranium at a given concentration was perfused. After checking the integrity of the BBB during the perfusion, the background measurement of uranium in control rats without uranium in the perfusate was determined. The quantity of uranium in the exposed rat hemisphere, which appeared to be significantly higher than that in the control rats, was measured. Finally, the possible transfer of the perfused uranium not only in the vascular space but also in the brain parenchyma is discussed. (author)

  20. CT perfusion imaging in the management of posterior reversible encephalopathy

    International Nuclear Information System (INIS)

    Casey, S.O.; McKinney, A.; Teksam, M.; Liu, H.; Truwit, C.L.

    2004-01-01

    A 13-year-old girl with a renal transplant presented with hypertension and seizures. CT and MRI demonstrated typical bilateral parietal, occipital and posterior frontal cortical and subcortical edema, thought to represent posterior reversible encephalopathy syndrome. The cause was presumed to be hypertension. Antihypertensive therapy was started, lowering of the blood pressure in the range of 110-120 mmHg systolic. However, stable xenon (Xe) CT perfusion imaging revealed ischemia within the left parietal occipital region. The antihypertensive was adjusted which increased both the systolic and diastolic blood pressure by 31 mm Hg. The patient was re-imaged with Xe CT and was found to have resolution of the ischemic changes within the left parietal occipital region. In this report, we present a case in which stable Xe CT was used to monitor the degree of cerebral perfusion and guide titration of antihypertensive therapy. Such brain perfusion monitoring may have helped to prevent infarction of our patient. (orig.)

  1. Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application

    International Nuclear Information System (INIS)

    Henry, R.E.; Malone, J.M.; Daly, M.J.; Hughes, J.H.; Moore, W.S.

    1982-01-01

    Quantitation of skin perfusion provides objective criteria to determine the optimal amputation level in ischemic limb disease, to assess the maturation of pedicle flaps in reconstructive surgery, and to select appropriate treatment for chronic skin ulcers. A technique for measurement of skin perfusion using intradermal (ID) Xe-133 and a gamma camera/minicomputer system was previously reported. An update of this procedure is now reported, the normal range for the lower extremity in men, observations on the effects of ambient temperature, and an experience using the procedure to determine amputation level

  2. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Fisher, James P; Young, Colin N

    2010-01-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral......(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1...... abolished by glycopyrrolate (P important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen....

  3. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Directory of Open Access Journals (Sweden)

    Gonzalez-Brito Manuel

    2008-02-01

    Full Text Available Abstract Background Assessment of cerebral blood flow (CBF by SPECT could be important in the management of patients with severe traumatic brain injury (TBI because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia, or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI on cerebral blood flow (CBF by SPECT cerebral blood perfusion (CBP imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM. Results A significant area of hypoperfusion (P Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  4. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Sidaros, Karam; Gesmar, Henrik

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom....

  5. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, I.K.; Sidaros, Karam; Gesmar, H

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom...

  6. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.

    Science.gov (United States)

    Miranda, Maria J; Olofsson, Kern; Sidaros, Karam

    2006-09-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.

  7. Assessment of consistency of the whole tumor and single section perfusion imaging with 256-slice spiral CT: a preliminary study

    International Nuclear Information System (INIS)

    Sun Hongliang; Xu Yanyan; Hu Yingying; Tian Yuanjiang; Wang Wu

    2014-01-01

    Objective: To determine the consistency between quantitative CT perfusion measurements of colorectal cancer obtained from single section with maximal tumor dimension and from average of whole tumor, and compare intra- and inter-observer consistency of the two analysis methods. Methods: Twenty-two patients with histologically proven colorectal cancer were examined prospectively with 256-slice CT and the whole tumor perfusion images were obtained. Perfusion parameters were obtained from region of interest (ROI) inserted in single section showing maximal tumor dimension, then from ROI inserted in all tumor-containing sections by two radiologists. Consistency between values of blood flow (BF), blood volume (BV) and time to peak (TTP) calculated by two methods was assessed. Intra-observer consistency was evaluated by comparing repeated measurements done by the same radiologist using both methods after 3 months. Perfusion measurements were done by another radiologist independently to assess inter-observer consistency of both methods. The results from different methods were compared using paired t test and Bland-Altman plot. Results: Twenty-two patients were examined successfully. The perfusion parameters BF, BV and TTP obtained by whole tumor perfusion and single-section analysis were (35.59 ± 14.59) ml · min -1 · 100 g -1 , (17.55 ±4.21) ml · 100 g -1 , (21.30 ±7.57) s and (34.64 ± 13.29)ml · min -1 · 100 g -1 , (17.61 ±6.39)ml · 100 g -1 , (19.82 ±9.01) s, respectively. No significant differences were observed between the means of the perfusion parameters (BF, BV, TTP) calculated by the two methods (t=0.218, -0.033, -0.668, P>0.05, respectively). The intra-observer 95% limits of consistency of perfusion parameters were BF -5.3% to 10.0%, BV -13.8% to 10.8%, TTP -15.0% to 12.6% with whole tumor analysis, respectively; BF -14.3% to 16.5%, BV -24.2% to 22.2%, TTP -19.0% to 16.1% with single section analysis, respectively. The inter-observer 95% limits of

  8. Quantitative assessment of local perfusion change in acute intracerebral hemorrhage areas with and without "dynamic spot sign" using CT perfusion imaging.

    Science.gov (United States)

    Fu, Fan; Sui, Binbin; Liu, Liping; Su, Yaping; Sun, Shengjun; Li, Yingying

    2018-01-01

    Background Positive "dynamic spot sign" has been proven to be a potential risk factor for acute intracerebral hemorrhage (ICH) expansion, but local perfusion change has not been quantitatively investigated. Purpose To quantitatively evaluate perfusion changes at the ICH area using computed tomography perfusion (CTP) imaging. Material and Methods Fifty-three patients with spontaneous ICH were recruited. Unenhanced computed tomography (NCCT), CTP within 6 h, and follow-up NCCT were performed for 21 patients in the "spot sign"-positive group and 32 patients in the control group. Cerebral perfusion change was quantitatively measured on regional cerebral blood flow/regional cerebral blood volume (rCBF/rCBV) maps. Regions of interest (ROIs) were set at the "spot-sign" region and the whole hematoma area for "spot-sign"-positive cases, and at one of the highest values of three interested areas and the whole hematoma area for the control group. Hematoma expansion was determined by follow-up NCCT. Results For the "spot-sign"-positive group, the average rCBF (rCBV) values at the "spot-sign" region and the whole hematoma area were 21.34 ± 15.24 mL/min/100 g (21.64 ± 21.48 mL/100g) and 5.78 ± 6.32 mL/min/100 g (6.07 ± 5.45 mL/100g); for the control group, the average rCBF (rCBV) values at the interested area and whole hematoma area were 2.50 ± 1.83 mL/min/100 g (3.13 ± 1.96 mL/100g) and 3.02 ± 1.80 mL/min/100 g (3.40 ± 1.44 mL/100g), respectively. Average rCBF and rCBV values of the "spot-sign" region were significantly different from other regions ( P spot-sign"-positive and control groups were 25.24 ± 19.38 mL and -0.41 ± 1.34 mL, respectively. Conclusion The higher perfusion change at ICH on CTP images may reflect the contrast extravasation and be associated with the hematoma expansion.

  9. Multi-slice spiral CT perfusion imaging of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Shao Yanhui; Qian Nong; Xue Yuejun; Dao Yinhong

    2008-01-01

    Objective: To evaluate the diagnostic value of multi-slice spiral CT (MSCT) perfusion imaging in chronic obstructive pulmonary disease (COPD). Methods: Twenty COPD patients and 20 volunteers underwent 8-row detector spiral CT (MSCT) perfusion imaging using cine scan mode with 5 mm slice thickness, 0.5 s rotation time and a total scan time of 45 s with 5 s intervals. 60 ml contrast agent (300 nag I/ml) were administered at a rate of 4 ml/s from the forearm superficial vein. The imaging data were transferred to a workstation. A time-density curve and pseudo-color map were generated automatically with GE CT perfusion 3 software, the blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface (PS) were measured. Results: Time-density curve was flatter and the peak of the curve was obviously lower in COPD patients than the volunteers. The BF, BV, PS in COPD patients was (24.77±11.49) ml·min -1 ·100 g -1 , (2.48±1.02) ml/100 g and (2.75±1.13) ml· min -1 ·100 g -1 respectively. In volunteers was (290.14±107.59) ml·min -1 ·100 g -1 , (16.51 ± 5.98) ml/100 g, (8.80±3.03) ml·min -1 ·100 g -1 respectively. The MTT in COPD patients and volunteers was (10.58±4.85) s and (4.50±1.71)s respectively. The BF, BV and PS in COPD patients was lower than the volunteers, the MTY was higher (P<0.01). Conclusion: MSCT perfusion imaging is helpful for the diagnosis of COPD. (authors)

  10. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    International Nuclear Information System (INIS)

    McCommis, Kyle S.; Goldstein, Thomas A.; Pilgram, Thomas; Abendschein, Dana R.; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2010-01-01

    To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99m Tc-labeled red blood cells were injected to obtain respective gold standards. Microsphere-measured MBF and 99m Tc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. (orig.)

  11. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    Science.gov (United States)

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Misselwitz, Bernd; Pilgram, Thomas; Gropler, Robert J.

    2010-01-01

    Objective To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. Methods A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99mTc-labeled red blood cells were injected to obtain respective gold standards. Results Microsphere-measured MBF and 99mTc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. Conclusions MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. PMID:20182731

  12. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  13. Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification

    International Nuclear Information System (INIS)

    Vallee, Jean-Paul; Ivancevic, Marko; Lazeyras, Francois; Didier, Dominique; Kasuboski, Larry; Chatelain, Pascal; Righetti, Alberto

    2003-01-01

    This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g -1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)

  14. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    Science.gov (United States)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  15. Direct myocardial perfusion imaging in valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Soto, R.C.; Durante, M.L.; Villacorta, E.V.; Torres, J.F.; Monzon, O.P.

    1981-02-01

    Twenty two patients with rheumatic valvular heart disease - 21 having a history of heart failure - were studied using direct coronary injection of /sup 99m/Tc labelled MAA particles during the course of hemodynamic and arteriographic studies. Myocardial perfusion deficit patterns have been shown to be consistent or indicative of either patchy, regional or gross ischemia. In patients with history of documented heart failure 90% (18 cases) had ischemic perfusion deficit in the involved ventricle. We conclude that diminished myocardial blood flow is an important mechanism contributing to the development of heart failure.

  16. Direct myocardial perfusion imaging in valvular heart disease

    International Nuclear Information System (INIS)

    Soto, R.C.; Durante, M.L.; Villacorta, E.V.; Torres, J.F.; Monzon, O.P.

    1981-01-01

    Twenty two patients with rheumatic valvular heart disease - 21 having a history of heart failure - were studied using direct coronary injection of sup(99m)Tc labelled MAA particles during the course of hemodynamic and arteriographic studies. Myocardial perfusion deficit patterns have been shown to be consistent or indicative of either patchy, regional or gross ischemia. In patients with history of documented heart failure 90% (18 cases) had ischemic perfusion deficit in the involved ventricle. We conclude that diminished myocardial blood flow is an important mechanism contributing to the development of heart failure. (orig.) [de

  17. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  18. Feasibility of perfusion CT technique integrated into conventional {sup 18}FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, Davide; Capraro, Cristina; Sironi, Sandro [University of Milano-Bicocca, School of Medicine, Milan (Italy); University of Milano-Bicocca, Department of Diagnostic Radiology, H.S. Gerardo Monza, Via Pergolesi 11, Monza, Milan (Italy); Guerra, Luca [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); De Ponti, Elena [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Medical Physics, Monza (Italy); Messa, Cristina [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); Tecnomed Foundation, University of Milano-Bicocca, Institute for Bioimaging and Molecular Physiology, National Research Council, Milan (Italy)

    2013-02-15

    To assess the additional functional vascular information and the relationship between perfusion measurements and glucose metabolism (SUVmax) obtained by including a perfusion CT study in a whole-body contrast-enhanced PET/CT protocol in primary lung cancer lesions. Enrolled in this prospective study were 34 consecutive patients with a biopsy-proven diagnosis of lung cancer who were referred for contrast-enhanced PET/CT staging. This prospective study was approved by our institutional review board, and informed consent was obtained from all patients. Perfusion CT was performed with the following parameters: 80 kV, 200 mAs, 30 scans during intravenous injection of 50 ml contrast agent, flow rate 5 ml/s. Another bolus of contrast medium (3.5 ml/s, 80 ml, 60-s delay) was administered to ensure a full diagnostic contrast-enhanced CT scan for clinical staging. The perfusion CT data were used to calculate a range of tumour vascularity parameters (blood flow, blood volume and mean transit time), and tumour FDG uptake (SUVmax) was used as a metabolic indicator. Quantitative and functional parameters were compared and in relation to location, histology and tumour size. The nonparametric Kruskal-Wallis rank sum test was used for statistical analysis. A cut-off value of 3 cm was used according to the TNM classification to discriminate between T1 and T2 tumours (i.e. T1b vs. T2a). There were significant perfusion differences (lower blood volumes and higher mean transit time) between tumours with diameter >30 mm and tumours with diameter <30 mm (p < 0.05; blood volume 5.6 vs. 7.1 ml/100 g, mean transit time 8.6 vs. 3.9 s, respectively). Also there was a trend for blood flow to be lower in larger lesions (p < 0.053; blood flow 153.1 vs. 98.3 ml/100 g tissue/min). Significant inverse correlations (linear regression) were found between blood volume and SUVmax in tumours with diameter >30 mm in diameter. Perfusion CT combined with PET/CT is feasible technique that may provide

  19. Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus.

    Science.gov (United States)

    Monnet, Eric; Pelsue, Davyd; MacPhail, Catriona

    2006-02-01

    To validate laser doppler flowmetry (LDF) for measurement of blood flow in the stomach wall of dogs with gastric dilatation-volvulus (GDV). Six purpose-bred dogs and 24 dogs with naturally occurring GDV. Experimental and clinical. Capillary blood flow in the body of the stomach and pyloric antrum was measured with LDF (tissue perfusion unit (TPU) before and after induction of portal hypertension (PH) and after PH plus gastric ischemia (GI; PH + GI) and compared with flow measured by colored microsphere technique. Capillary flow was measured by LDF in the stomach wall of dogs with GDV. PH and PH+GI induced a significant reduction in blood flow in the body of the stomach (P = .019). A significant positive correlation was present between percent changes in capillary blood flow measured by LDF and colored microspheres after induction of PH + GI in the body of the stomach (r = 0.94, P = .014) and in the pyloric antrum (r = 0.95, P = .049). Capillary blood flow measured in the body of the stomach of 6 dogs that required partial gastrectomy (5.00+/-3.30 TPU) was significantly lower than in dogs that did not (28.00+/-14.40 TPU, P = .013). LDF can detect variations in blood flow in the stomach wall of dogs. LDF may have application for evaluation of stomach wall viability during surgery in dogs with GDV.

  20. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China); Roediger, Lars A.; Oudkerk, Matthijs [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shen, Tianzhen [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Miao, Jingtao [Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China)

    2008-06-15

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16{+-}4.08 (mean{+-}SD) and 5.89{+-}3.86, respectively, in the parenchyma, and 1.05{+-}0.96 and 3.82{+-}1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16{+-}0.24 and 1.30{+-}0.32, respectively, in the parenchyma, and 0.91{+-}0.25 and 1.24{+-}0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  1. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage

    DEFF Research Database (Denmark)

    Schlader, Zachary J; Seifert, Thomas; Wilson, Thad E

    2013-01-01

    Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during...... infusion while hyperthermic. Primary dependent variables were mean middle cerebral artery blood velocity (MCAvmean), serving as an index of cerebral perfusion; mean arterial pressure (MAP); and cardiac output (thermodilution). During baseline, hyperthermia reduced MCAvmean (P = 0.001) by 12 ± 9% relative...

  2. Preoperative subtyping of meningiomas by perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [University Medical Center Groningen, University of Groningen (Netherlands); Shanghai Jiaotong University affiliated First People' s Hospital, Department of Radiology, Shanghai (China); Department of Radiology, University of Groningen (Netherlands); Roediger, Lars A.; Oudkerk, Matthijs [University Medical Center Groningen, University of Groningen (Netherlands); Department of Radiology, University of Groningen (Netherlands); Shen, Tianzhen [Fudan University Huashan Hospital, Department of Radiology, Shanghai (China); Miao, Jingtao [Shanghai Jiaotong University affiliated First People' s Hospital, Department of Radiology, Shanghai (China)

    2008-10-15

    This paper aims to evaluate the value of perfusion magnetic resonance (MR) imaging in the preoperative subtyping of meningiomas by analyzing the relative cerebral blood volume (rCBV) of three benign subtypes and anaplastic meningiomas separately. Thirty-seven meningiomas with peritumoral edema (15 meningothelial, ten fibrous, four angiomatous, and eight anaplastic) underwent perfusion MR imaging by using a gradient echo echo-planar sequence. The maximal rCBV (compared with contralateral normal white matter) in both tumoral parenchyma and peritumoral edema of each tumor was measured. The mean rCBVs of each two histological subtypes were compared using one-way analysis of variance and least significant difference tests. A p value less than 0.05 indicated a statistically significant difference. The mean rCBV of meningothelial, fibrous, angiomatous, and anaplastic meningiomas in tumoral parenchyma were 6.93{+-}3.75, 5.61{+-}4.03, 11.86{+-}1.93, and 5.89{+-}3.85, respectively, and in the peritumoral edema 0.87{+-}0.62, 1.38{+-}1.44, 0.87{+-}0.30, and 3.28{+-}1.39, respectively. The mean rCBV in tumoral parenchyma of angiomatous meningiomas and in the peritumoral edema of anaplastic meningiomas were statistically different (p<0.05) from the other types of meningiomas. Perfusion MR imaging can provide useful functional information on meningiomas and help in the preoperative diagnosis of some subtypes of meningiomas. (orig.)

  3. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  4. Quantitative perfusion modeling in cardiac in-vivo nuclear magnetic resonance (NMR) imaging

    International Nuclear Information System (INIS)

    Carme, Sabin Charles

    2004-01-01

    A parametrical analysis of contrast agent distribution is proposed to interpret first pass MR images and to quantify the myocardial perfusion. We are concerned with the correction of spatial intensity variations in images. Furthermore, we are interested in the application of a robust NMR signal processing technique and deconvolution techniques adapted to low signal-to-noise ratio. Data sets were provided, close to clinical conditions, using in-vivo experiments applying several pharmacological stresses on ischemic pigs presenting a stenosis of the left circumflex coronary artery. The agreement and accuracy measurements between observers are respectively 57.1% and 53.1% for visual analysis, and 81.2% and 81.1% for parametric map analysis. A linear relationship between perfusion parameters and radioactive microspheres is established for low blood flows [fr

  5. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging.

    Science.gov (United States)

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2016-02-01

    The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P donors, and they indicate a potentially beneficial effect of losartan in recipients.

  6. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    Science.gov (United States)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  7. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    Science.gov (United States)

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  8. Effect of altered arterial perfusion pressure on vascular conductance and muscle blood flow dynamic response during exercise in humans.

    Science.gov (United States)

    Villar, Rodrigo; Hughson, Richard L

    2013-03-01

    Changes in vascular conductance (VC) are required to counter changes in muscle perfusion pressure (MPP) to maintain muscle blood flow (MBF) during exercise. We investigated the recruitment of VC as a function of peak VC measured in three body positions at two different work rates to test the hypothesis that adaptations in VC compensated changes in MPP at low-power output (LPO), but not at high-power output (HPO). Eleven healthy volunteers exercised at LPO and HPO (repeated plantar flexion contractions at 20-30% maximal voluntary contraction, respectively) in horizontal (HOR), 35° head-down tilt (HDT), and 45° head-up tilt (HUT). Muscle blood flow velocity and popliteal diameter were measured by ultrasound to determine MBF, and VC was estimated by dividing MBF flow by MPP. Peak VC was unaffected by body position. The rates of increase in MBF and VC were significantly faster in HUT and slower in HDT than HOR, and rates were faster in LPO than HPO. During LPO exercise, the increase in, and steady-state values of, MBF were less for HUT and HDT than HOR; the increase in VC was less in HUT than HOR and HDT. During HPO exercise, MBF in the HDT was reduced compared with HOR and HUT, even though VC reached 92% VC peak, which was greater than HOR, which was, in turn, greater than HUT. Reduced MBF during HPO HDT exercise had the functional consequence of a significant increase in muscle electromyographic index, revealing the effects of MPP on O2 delivery during exercise.

  9. The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vitro blood-perfused bovine liver model

    Science.gov (United States)

    Lanctot, Anthony C; McCarter, Martin D; Roberts, Katherine M; Glueck, Deborah H; Dodd, Gerald D

    2017-01-01

    Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model. Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis. Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (Rβ2 = 0.21). Ablation zone volume decreased by 0.23 cm3 (95% confidence interval: −0.38, −0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05). Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use. PMID:27925468

  10. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  11. Dynamic infrared thermography (DIRT) for assessment of skin blood perfusion in cranioplasty: a proof of concept for qualitative comparison with the standard indocyanine green video angiography (ICGA).

    Science.gov (United States)

    Rathmann, P; Chalopin, C; Halama, D; Giri, P; Meixensberger, J; Lindner, D

    2018-03-01

    Complications in wound healing after neurosurgical operations occur often due to scarred dehiscence with skin blood perfusion disturbance. The standard imaging method for intraoperative skin perfusion assessment is the invasive indocyanine green video angiography (ICGA). The noninvasive dynamic infrared thermography (DIRT) is a promising alternative modality that was evaluated by comparison with ICGA. The study was carried out in two parts: (1) investigation of technical conditions for intraoperative use of DIRT for its comparison with ICGA, and (2) visual and quantitative comparison of both modalities in a proof of concept on nine patients. Time-temperature curves in DIRT and time-intensity curves in ICGA for defined regions of interest were analyzed. New perfusion parameters were defined in DIRT and compared with the usual perfusion parameters in ICGA. The visual observation of the image data in DIRT and ICGA showed that operation material, anatomical structures and skin perfusion are represented similarly in both modalities. Although the analysis of the curves and perfusion parameter values showed differences between patients, no complications were observed clinically. These differences were represented in DIRT and ICGA equivalently. DIRT has shown a great potential for intraoperative use, with several advantages over ICGA. The technique is passive, contactless and noninvasive. The practicability of the intraoperative recording of the same operation field section with ICGA and DIRT has been demonstrated. The promising results of this proof of concept provide a basis for a trial with a larger number of patients.

  12. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  13. Thyroid perfusion imaging as a diagnostic tool in Graves' disease. Arterial spin labeling magnetic resonance imaging vs. colour-coded Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, K. [University Hospital of Duesseldorf (Germany). Dept. of Metabolic Diseases; Leibniz Center for Diabetes Research, Duesseldorf (Germany). Inst. for Clinical Diabetology; University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Schraml, C.; Schwenzer, N.F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology; Rietig, R.; Balletshofer, B. [University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Martirosian, P.; Haering, H.U.; Schick, F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; Claussen, C.D. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology

    2012-12-15

    Purpose: Though increased thyroid perfusion assessed by colour-coded Doppler ultrasound (CDUS) is characteristic of Graves' disease (GD), sometimes perfusion assessment by CDUS is not possible. In these cases, arterial spin labelling (ASL), a novel magnetic resonance imaging (MRI) technique allowing non-invasive thyroid perfusion quantification, may have additional diagnostic value. We aimed to evaluate the potential of ASL-MRI for assessment of increased blood perfusion in patients with GD compared to CDUS. Materials and Methods: Thyroid perfusion was measured by CDUS (volume flow rate calculated from pulsed wave Doppler signals and vessel diameter) and ASL-MRI at 1.5 T in 7 patients with GD and 10 healthy controls. Results: In patients with GD, average perfusion in both thyroid lobes was markedly increased compared to controls. Both techniques applied for volume related perfusion as well as absolute volume flow in thyroid feeding vessels provided similar results (all p = 0.0008). Using a cut-off value of 22 ml/min for the volume flow rate assessed by CDUS in the four feeding vessels allowed discrimination between patients with GD and controls in all cases. After adjusting thyroid perfusion for the differences in organ volume, both CDUS and ASL revealed also complete discrimination between health and disease. Conclusion: Thyroid perfusion measurement by ASL-MRI reliably discriminate GD from normal thyroid glands. In patients in whom thyroid arteries cannot be depicted by CDUS for technical or anatomical reasons, ASL-MRI may have additional diagnostic value. (orig.)

  14. Perfusion CT assessment of the colon and rectum: Feasibility of quantification of bowel wall perfusion and vascularization

    International Nuclear Information System (INIS)

    Khan, Sairah; Goh, Vicky; Tam, Emily; Wellsted, David; Halligan, Steve

    2012-01-01

    The aim was to determine the feasibility of vascular quantification of the bowel wall for different anatomical segments of the colorectum. Following institutional ethical approval and informed consent, 39 patients with colorectal cancer underwent perfusion CT. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS) were assessed for different segments of the colorectum: ascending, transverse, descending colon, sigmoid, or rectum, that were distant from the tumor, and which were proven normal on contemporary colonoscopy, and subsequent imaging and clinical follow up. Mean (SD) for BF, BV, MTT and PS for the different anatomical colorectal segments were obtained and compared using a pooled t-test. Significance was at 5%. Assessment was not possible in 9 of 39 (23%) patients as the bowel wall was ≤5 mm precluding quantitative analysis. Forty-four segments were evaluated in the remaining 30 patients. Mean BF was higher in the proximal than distal colon: 24.0 versus 17.8 mL/min/100 g tissue; p = 0.009; BV, MTT and PS were not significantly different; BV: 3.46 versus 3.15 mL/100 g tissue, p = 0.45; MTT: 15.1 versus 18.3 s; p = 0.10; PS: 6.84 versus 8.97 mL/min/100 tissue, p = 0.13, respectively. In conclusion, assessment of bowel wall perfusion may fail in 23% of patients. The colorectum demonstrates segmental differences in perfusion.

  15. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  16. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  17. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers.

    Science.gov (United States)

    Alford, Sara K; van Beek, Edwin J R; McLennan, Geoffrey; Hoffman, Eric A

    2010-04-20

    Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.

  18. Large-Animal Biventricular Working Heart Perfusion System with Low Priming Volume-Comparison between in vivo and ex vivo Cardiac Function.

    Science.gov (United States)

    Abicht, Jan-Michael; Mayr, Tanja Axinja Jelena; Jauch, Judith; Guethoff, Sonja; Buchholz, Stefan; Reichart, Bruno; Bauer, Andreas

    2018-01-01

    Existing large-animal, ex vivo, cardiac perfusion models are restricted in their ability to establish an ischemia/reperfusion condition as seen in cardiac surgery or transplantation. Other working heart systems only challenge one ventricle or require a substantially larger priming volume. We describe a novel biventricular cardiac perfusion system with reduced priming volume. Juvenile pig hearts were cardiopleged, explanted, and reperfused ex vivo after 150 minutes of cold ischemia. Autologous whole blood was used as perfusate (minimal priming volume 350 mL). After 15 minutes of Langendorff perfusion (LM), the system was switched into a biventricular working mode (WM) and studied for 3 hours. During reperfusion, complete unloading of both ventricles and constant-pressure coronary perfusion was achieved. During working mode perfusion, the preload and afterload pressure of both ventricles was controlled within the targeted physiologic range. Functional parameters such as left ventricular work index were reduced in ex vivo working mode (in vivo: 787 ± 186 vs. 1 h WM 498 ± 66 mm Hg·mL/g·min; p  hours while functional and blood parameters are easily accessible. Moreover, because of the minimal priming volume, the novel ex vivo cardiac perfusion circuit allows for autologous perfusion, using the limited amount of blood available from the organ donating animal. Georg Thieme Verlag KG Stuttgart · New York.

  19. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    Science.gov (United States)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  20. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Marlon S.; Binder, Devin K. [University of California, Department of Neurological Surgery, Irvine, CA (United States); Smith, Wade S. [University of California, Department of Neurology, San Francisco, CA (United States); Wintermark, Max; Dillon, William P. [University of California, Department of Radiology, San Francisco, CA (United States)

    2008-05-15

    Postictal ('Todd's') paralysis, or 'epileptic hemiplegia,' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  1. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  2. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  3. Radionuclide method for blood volume determination in kidneys

    International Nuclear Information System (INIS)

    Trindev, P.; Nikolov, D.; Shejretova, E.; Garcheva-Tsacheva, M.

    1989-01-01

    The method is applied in nephrology for diagnosing changes in blood circulation of the kidneys. The blood volume of each kidney is determined separately by perfusion angioscintigraphy (PAS) with improved accuracy. The method consists in intravenous injection of 300-450 MBq 99m Tc for in-vivo labelling of the erythrocytes. About 30 images are registered every 2 sec, and through zones of interest perfusion histograms of kidneys are derived. Ten minutes later kidneys images (one full-face and two profiles) are registered. Correction coefficients for kidneys depth are derived and the activities registered according to full-face images and amplitudes of perfusion histograms are corrected. The activity of 1 ml blood is determined from blood sample of the patient. The blood volume of each kidney is expressed as a ratio of the activity corrected for background and depth and the activity of 1 ml blood of the sample. 1 claim

  4. The distal blood pressure predicts healing of amputations on the feet

    DEFF Research Database (Denmark)

    Holstein, P

    1984-01-01

    The healing of digital and transmetatarsal forefoot amputations was compared with the systolic digital and ankle blood pressure, both measured with a strain-gauge, and with the skin perfusion pressure on the forefoot measured with the isotope washout technique. In 85 out of 134 legs (63 per cent......) the amputation healed. The frequency of healing correlated statistically significantly with all three measures of distal blood pressures, the closest correlation being with the systolic digital blood pressure (SDBP). As measured in 110 cases the healing rates were: SDBP less than 20 mm Hg: four out of 23; SDBP...

  5. A comparative study of perfusion CT and 99mTc-Hmpao spect measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion

    Directory of Open Access Journals (Sweden)

    Eicker S

    2011-11-01

    Full Text Available Abstract Background and purpose Patients with internal carotid artery (ICA occlusion can demonstrate impaired cerebral vascular reserve (CVR. The detection of CVR using single photon emission CT (SPECT is nowadays widely accepted as a predictor in the diagnostic pathway in patients considered for cerebral revascularization. Recently perfusion CT (PCT gained widely acceptance in stroke imaging The present study was aimed at comparing the results of perfusion CT (PCT and 99mTc-HMPAO SPECT with acetazolamide challenge in patients with ICA occlusion. Methods 13 patients were included in the prospective evaluation. Both PCT and 99mTc-HMPAO SPECT were performed before and after the administration of acetazolamide. In detail, regional cerebral blood flow (rCBF, regional cerebral blood volume (rCBV, adapted time to peak (Tmax and mean transit times (MTT were compared with SPECT data. Results 99mTc-HMPAO SPECT demonstrated an impairment of CVR in six patients. A preserved CVR was present in seven patients. All patients with impaired CVR proven by SPECT had a delayed MTT (mean +2.98 s and a delayed Tmax (mean + 5.9 s, (both p Conclusion The prospective study demonstrated a highly significant correlation of perfusion parameters as' detected by 99mTc-HMPAO SPECT and the Tmax as detected by PCT in patients with ICA occlusion. Therefore this easy-to-perform technique seems to be an adequate method for the evaluation of cerebral perfusion in patients with ICA occlusion.

  6. The value of the renal resistive index in the measurement of renal perfusion before and after extracorporal shock wave lithotripsy in correlation to the scintigraphy, to the magnetic resonance perfusion imaging and to big-endothelin values

    International Nuclear Information System (INIS)

    Palwein-Prettner, L.

    1999-07-01

    Purpose: the goal of this study was to evaluate effects of extracorporeal shock wave lithotripsy (ESWL) on the renal perfusion using the resistive index (RI), perfusion scintigraphy, magnetic resonance (MR) perfusion imaging and plasma big-endothelin (big-ET-1) values. Method/materials: In 21 patients divided in 3 age-groups the RI was measured before and 1,3,6 and 24 hours after ESWL. Big-ET-1, a potent vasoconstrictor peptid was correlated with the RI values. The RI and Big-ET-1 results was compared to the results of the MR perfusion imaging and the scintigraphy, the gold-standard method. Results: The RI of the treated kidneys increased significantly from 0,64±0,05 to 0,72±0,08 after the ESWL (p<0,001) and in the untreated kidneys from 0,63±0,05 to 0,68±0,09 (p=0,003). The hightest age group shows the most significant increase. The Big-ET-values also increased only in this age group significantly from 0,78±0,24 fmol/l to 1,58±0,52 fmol/l. In the scintigraphy the decrease of the renal plasma flow (RPF) in this age group was most significant. The MR perfusion Imaging shows in all age groups significant decrease (p<0,001). Conclusion: we conclude that the ESWL causes considerable renal parenchymal damage only in the elderly patients. The following changes in renal perfusion were measured very sensitively with the RI which had a good correlation to the results of the perfusion scintigraphy and the MR perfusion imaging. Further studies with larger series have to evaluate these results. (author)

  7. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal...... exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent....

  8. Combined T1-based perfusion MRI and MR angiography in kidney: First experience in normals and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, Martine [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: martine.dujardin@gmail.com; Luypaert, Rob [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: rluypaer@vub.ac.be; Vandenbroucke, F. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: frederik.vandenbroucke@uzbrussel.be; Van der Niepen, Patricia [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: hemovnnp@az.vub.ac.be; Sourbron, Steven [Institute of Clinical Radiology, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377 Munchen (Germany)], E-mail: Steven.Sourbron@med.uni-muenchen.de; Verbeelen, Dierik [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: dierik.verbeelen@uzbrussel.be; Stadnik, T. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: tadeusz.stadnik@uzbrussel.be; Mey, Johan de [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: johan.demey@uzbrussel.be

    2009-03-15

    Objectives: To investigate the feasibility of implementing quantitative T1-perfusion in the routine MRA-protocol and to obtain a first experience in normals and pathology. Materials and methods: For perfusion imaging, IR-prepared FLASH (one 4 mm slice at mid-renal level, TR 4.4 ms, TE 2.2 ms, TI 180 ms, FA 50 deg., matrix 128 x 256, bandwidth per pixel 300, 400 dynamics, temporal resolution 0.3 s, total measurement time 2 min) was applied during the injection of 10 ml of standard 0.5 mmol/ml Gadolinium-DTPA solution at 2 ml/s, followed by 3DCE-MRA with bolus tracking (TR 5.4, TE 1.4, FA 40 deg., matrix 192 x 512, NSA 1, slice thickness 1.5 mm), using a second dose of 0.1 mmol Gadolinium-DTPA per kg body weight with a maximum of 20 ml. The T1-weighted signals (perfusion data) were converted to tissue tracer concentrations and deconvolved with an inflow corrected AIF; blood flow, distribution volume, mean transit time and blood flow heterogeneity were derived. Results: MRA quality was uncompromised by the first bolus administered for perfusion purposes. In the normals, average cortical RBF, RVD and MTT were 1.2 ml/min/ml (S.D. 0.3 ml/min/ml), 0.4 ml/ml (S.D. 0.1 ml/ml) and 21 s (S.D. 4 s). These RBF values are lower than those found in the literature, probably due to residual AIF inflow effects. The sensitivity of the technique was sufficient to demonstrate altered perfusion in the examples of pathology. Conclusion: Combined quantitative T1-perfusion and MRA have a potential for noninvasive renovascular screening and may provide an anatomical and physiological evaluation of renal status.

  9. Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan

    Science.gov (United States)

    Aquino, Domenico; Cuppini, Lucia; Anghileri, Elena; Finocchiaro, Gaetano; Bruzzone, Maria Grazia; Eoli, Marica

    2014-01-01

    Background Perfusion weighted imaging (PWI) can be used to measure key aspects of tumor vascularity in vivo and recent studies suggest that perfusion imaging may be useful in the early assessment of response to angiogenesis inhibitors. Aim of this work is to compare Parametric Response Maps (PRMs) with the Region Of Interest (ROI) approach in the analysis of tumor changes induced by bevacizumab and irinotecan in recurrent glioblastomas (rGBM), and to evaluate if changes in tumor blood volume measured by perfusion MRI may predict clinical outcome. Methods 42 rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. Relative cerebral blood volume (rCBV) variation after 8 weeks of treatment was calculated through semi-automatic ROI placement in the same anatomic region as in baseline. Alternatively, rCBV variations with respect to baseline were calculated into the evolving tumor region using a voxel-by-voxel difference. PRMs were created showing where rCBV significantly increased, decreased or remained unchanged. Results An increased blood volume in PRM (PRMCBV+) higher than 18% (first quartile) after 8 weeks of treatment was associated with increased progression free survival (PFS; 24 versus 13 weeks, p = 0.045) and overall survival (OS; 38 versus 25 weeks, p = 0.016). After 8 weeks of treatment ROI analysis showed that mean rCBV remained elevated in non responsive patients (4.8±0.9 versus 5.1±1.2, p = 0.38), whereas decreased in responsive patients (4.2±1.3 versus 3.8±1.6 p = 0.04), and re-increased progressively when patients approached tumor progression. Conclusions Our data suggest that PRMs can provide an early marker of response to antiangiogenic treatment and warrant further confirmation in a larger cohort of GBM patients. PMID:24675671

  10. Visualization of hypertrophied papillary muscle mimicking left ventricular mass on gated blood pool and T1-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Bunko, H.; Nakajima, K.; Tonami, N.; Asanoi, H.; Hisada, K.

    1981-01-01

    A sixty-year old man with acute myocardial infarction was incidentally found to have a hypertrophied anterolateral papillary muscle (ALPPM) of the left ventricle on gated blood pool (GBP) and T1-201 myocardial perfusion images. Hypertrophy of the ALPPM was visualized as a movable defect in the lateral basal area on GBP imaging throughout the cardiac cycle and on the TI-201 study as a radionuclide accumulating structure, consistent with the defect in the GBP. A combination of these findings may suggest the presence of a hypertrophied papillary muscle of the left ventricle

  11. Cerebral perfusion studies using Au-195: Investigations into their clinical usefulness and comparisons with the xenon-133 inhalation method

    International Nuclear Information System (INIS)

    Draws, J.

    1989-01-01

    Au-195m cerebral perfusion studies in the diagnosis of blood supply disorders of the brain have only recently leaped into currency. Au-195m is not capable of diffusing. This particular property permits first-pass times of vascular transfer to be determined for cerebral tissues that correlate with the degree of cerebral circulation. In the study described here, attempts were made to shed more light on the clinical usefulness of the method. For this purpose, the record sheets of two cohorts of patients were analysed on a retrospective basis. 1. In 23 patients, where the cerebrovascular disorders were strictly confined to the cerebral hemispheres, the blood supply of the brain was examined on the basis of both Au-195m cerebral perfusion studies and the xenon-133 inhalation method. In the evaluation of the findings based on the Au-195m study the investigator was blinded to the neurological manifestations of the disease and the results from other studies. In 82% of the patients the perfusion mapping using Au-195m was consistent with the clinical symptoms. 2. In a second group of patients, the probable results of the Au-195m perfusion study were forecasted on the basis of the medical history, clinical symptoms and preliminary diagnosis and subsequently compared to those actually obtained. Expected and actual results were found to be in agreement for 88% of cases. The results provided evidence of the suitability of Au-195m cerebral perfusion studies to examine the blood suply of the brain. In view of the fact that the examinations and measurements are relatively uncomplicated, this newly developed method is most likely to be used on a broader basis in the future. (orig./MG) [de

  12. Follow-up of pulmonary perfusion recovery after embolism

    International Nuclear Information System (INIS)

    Palla, A.; Donnamaria, V.; Petruzzelli, S.; Giuntini, C.

    1986-01-01

    Blood flow recovery in a group of 69 patients with pulmonary embolism was followed by serial lung scans over a six month period. Each patient underwent perfusion lung scan at diagnosis then 7, 30 and 180 days later; i.v. heparin was systematically administered for one week after diagnosis, followed by oral warfarin for six months. Blood flow impairment was evaluated by assessing the total number of unperfused lung segments (ULS), as calculated on both lateral views at each scan. The number of ULS was significantly reduced at each interval (P<0.001), ranging from 8.4±3.3 at diagnosis to 3.6±2.7 six months later; most of the recovery (79%) occurred within the first month. No patient had complete restoration of pulmonary blood flow during the whole follow-up period. No difference was found between the number of ULS in right lung versus that in left lung at each interval. Recovery of blood flow was heavily affected by coexisting cardiac or pulmonary disease. In fact, those patients with underlying cardiopulmonary disease (49.2% of the total) showed significantly smaller perfusion improvement after six months (P<0.001). Eight patients (6 with and 2 without cardiopulmonary disease) had clinical and scintigraphic evidence of recurrent embolism during the follow-up period

  13. A pitfall in the measurement of arterial blood pressure in the ischaemic limb during elevation

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf

    1987-01-01

    In order to evaluate if elevation of the ischaemic limb above heart level is an alternative to the conventionally applied method with external counterpressure for estimation of skin perfusion pressure, femoral and popliteal artery pressures were measured directly in eight patients with occlusion...... of the superficial femoral artery. The measurements were done in the horizontal position and during elevation of the calf above heart level. During elevation relative blood flow, measured by arterio-venous oxygen saturation differences, decreased compared with the horizontal position. In contrast the popliteal...... arterial pressure decreased only by 20% of the value expected from the degree of elevation of the calf above the level of the heart. Thus, it could be calculated that calf vascular resistance increased two- to three-fold on average during elevation. Four patients were reexamined with the venous pressure...

  14. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  15. Comparison of first-pass and second-bolus dynamic susceptibility perfusion MRI in brain tumors

    International Nuclear Information System (INIS)

    Spampinato, M.V.; Besenski, Nada; Rumboldt, Zoran; Wooten, Caroline; Dorlon, Margaret

    2006-01-01

    Our goal was to evaluate whether the T1 shortening effect caused by contrast leakage into brain tumors, a well-known confounding effect in the quantification of relative cerebral blood volume (rCBV) measurements, may be corrected by the administration of a predose of gadolinium-DTPA. As part of their presurgical imaging protocol, 25 patients with primary brain tumors underwent two consecutive dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MR studies. Intratumoral rCBV measurements and normalized rCBV values obtained during the first-pass and second-bolus studies were compared (Wilcoxon signed-ranks test). The frequency of relatively increased rCBV ratios on the second-bolus study was compared between enhancing and non-enhancing neoplasms (Fisher's exact test). Postprocessing perfusion studies were evaluated for image quality on a scale of 0-3 (Wilcoxon signed-ranks test). Four studies were excluded due to unacceptable image quality. Mean normalized rCBVs were 9.04 (SD 4.64) for the first-pass and 7.99 (SD 3.84) for the second-bolus study. There was no statistically significant difference between the two perfusion studies in either intratumoral rCBV (P=0.237) or rCBV ratio (P=0.181). Five enhancing and four non-enhancing tumors showed a relative increase in rCBV ratio on the second-bolus study, without a significant difference between the groups. Image quality was not significantly different between perfusion studies. Our results did not demonstrate a significant difference between first-pass and second-bolus rCBV measurements in DSC perfusion MR imaging. The administration of a predose of gadolinium-DTPA does not appear to be an efficient way of compensating for the underestimation of intratumoral rCBV values due to the T1 shortening effect. (orig.)

  16. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction.

    Science.gov (United States)

    van Donkelaar, C C; Huyghe, J M; Vankan, W J; Drost, M R

    2001-05-01

    The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.

  17. Optimization of perfusion studies using Atropine

    International Nuclear Information System (INIS)

    Alvarado, A.N.; Valle, V.M.; Montoya, M.J.; Eskenazi, E.S.; Montiel, M.L.; Cueto, C.C.

    2002-01-01

    The studies of myocardial perfusion require an adequate stress; exercise or pharmacological. Every day, more pharmacological studies are performed, specially in some group of patients (women, AMI, etc). There some drugs that are used for this purpose, as adenosine and dobutamine. However, their cost and the lack of availability and infrastructure in our country do not allow there routinely use. We performed dipyridamol as a pharmacological stress, however in some patients there is a doubt regarding if the pharmacological effect was adequate. Atropine is a drug that is frequently used for different purpose and it is well know its tachycardic response. We present and alternative technique, using dipyridamol-atropine as a protocol of stress perfusion study. Our goal was to correlate the standard dipyridamol -thallium perfusion study and the dipyridamol -atropine-perfusion in patients with chronic coronary disease. We evaluated 6 patients (5 males) with stable angina and chronic coronary disease. A standard dipyridamol-thallium study was performed in all of them. Dipyridamole was administered intravenously at a rate of 0.14 mg/kg/min over 6 min for a total of 0.84 mg/kg body weight. Blood pressure, heart rate, EKG and symptoms were monitored before, during and after the pharmacological infusion. Two minutes after the infusion was completed, the radiotracer was injected intravenously. In the next 6 months, without any modification of the clinical situation (symptoms and therapy) a new dipyridamol study was performed, using 1 mg of atropine after the administration of dipyridamol. There were no differences in the collateral effects and we observed and average increase of 30% in the heart rate in relation with the study using dipyridamol alone. The addition of atropine to the standard dipyridamol perfusion study is safe, cheaper and improved the detection of perfusion defects in patients with coronary artery disease

  18. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  19. Measurement of regional cerebral blood flow with single photon emission computed tomography in patients with aphasia

    International Nuclear Information System (INIS)

    Reischies, F.M.; Muellmann, A.; Hedde, J.P.; Freie Univ. Berlin; Christe, W.

    1984-01-01

    5 cases are demonstrated of patients with aphasia whose brain perfusion as measured regionally by SPECT using 133 Xe was correlated to the lesions seen in the CT study. Perfusion reductions exceeded the CT visible lesions, such as, that in cortical lesions perfusion in the region of basal ganglia is diminished and vice versa. The findings are discussed in relation to recent work on brain perfusion and metabolism. (orig.) [de

  20. Effect of forced-air heaters on perfusion and temperature distribution during and after open-heart surgery

    NARCIS (Netherlands)

    Severens, Natascha M. W.; van Marken Lichtenbelt, Wouter D.; van Leeuwen, Gerard M. J.; Frijns, Arjan J. H.; van Steenhoven, Anton A.; de Mol, Bas A. J. M.; van Wezel, Harry B.; Veldman, Dirk J.

    2007-01-01

    OBJECTIVES: After cardiopulmonary bypass, patients often show redistribution hypothermia, also called afterdrop. Forced-air blankets help to reduce afterdrop. This study explores the effect of forced-air blankets on temperature distribution and peripheral perfusion. The blood perfusion data is used

  1. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    International Nuclear Information System (INIS)

    Zhang, Hao; Roediger, Lars A.; Oudkerk, Matthijs; Shen, Tianzhen; Miao, Jingtao

    2008-01-01

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16±4.08 (mean±SD) and 5.89±3.86, respectively, in the parenchyma, and 1.05±0.96 and 3.82±1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16±0.24 and 1.30±0.32, respectively, in the parenchyma, and 0.91±0.25 and 1.24±0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  2. Diffusion, Perfusion, and Histopathologic Characteristics of Desmoplastic Infantile Ganglioglioma.

    Science.gov (United States)

    Ho, Chang Y; Gener, Melissa; Bonnin, Jose; Kralik, Stephen F

    2016-07-01

    We present a case series of a rare tumor, the desmoplastic infantile ganglioglioma (DIG) with MRI diffusion and perfusion imaging quantification as well as histopathologic characterization. Four cases with pathologically-proven DIG had diffusion weighted imaging (DWI) and two of the four had dynamic susceptibility contrast imaging. All four tumors demonstrate DWI findings compatible with low-grade pediatric tumors. For the two cases with perfusion imaging, a higher relative cerebral blood volume was associated with higher proliferation index on histopathology for one of the cases. Our results are discussed in conjunction with a literature review.

  3. A novel, microscope based, non invasive Laser Doppler flowmeter for choroidal blood flow assessment

    Science.gov (United States)

    Strohmaier, C; Werkmeister, RM; Bogner, B; Runge, C; Schroedl, F; Brandtner, H; Radner, W; Schmetterer, L; Kiel, JW; Grabnerand, G; Reitsamer, HA

    2015-01-01

    Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non invasive laser Doppler flowmeter (NILDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4 – 3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NILDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p<0.05) and remained stable during a 1 hour measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x* 1,01 – 12,35 P.U., p < 0,001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye. PMID:21443871

  4. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  5. Role of perfusion SPECT in prediction and measurement of pulmonary complications after radiotherapy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Farr, Katherina P.; Khalil, Azza A.; Grau, Cai [Aarhus University Hospital, Department of Oncology, Aarhus C (Denmark); Kramer, Stine; Morsing, Anni [Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus C (Denmark)

    2015-07-15

    The purpose of the study was to evaluate the ability of baseline perfusion defect score (DS) on SPECT to predict the development of severe symptomatic radiation pneumonitis (RP) and to evaluate changes in perfusion on SPECT as a method of lung perfusion function assessment after curative radiotherapy (RT) for non-small-cell lung cancer (NSCLC). Patients with NSCLC undergoing curative RT were included prospectively. Perfusion SPECT/CT and global pulmonary function tests (PFT) were performed before RT and four times during follow-up. Functional activity on SPECT was measured using a semiquantitative perfusion DS. Pulmonary morbidity was graded by the National Cancer Institute's Common Terminology Criteria for Adverse Events version 4 for pneumonitis. Patients were divided into two groups according to the severity of RP. A total of 71 consecutive patients were included in the study. Baseline DS was associated with chronic obstructive pulmonary disease. A significant inverse correlation was found between baseline DS and forced expiratory volume in 1 s and diffusing capacity of the lung for carbon monoxide. Patients with severe RP had significantly higher baseline total lung DS (mean 5.43) than those with no or mild symptoms (mean DS 3.96, p < 0.01). PFT results were not different between these two groups. The odds ratio for total lung DS was 7.8 (95 % CI 1.9 - 31) demonstrating the ability of this parameter to predict severe RP. Adjustment for other potential confounders known to be associated with increased risk of RP was performed and did not change the odds ratio. The median follow-up time after RT was 8.4 months. The largest DS increase of 13.3 % was associated with severe RP at 3 months of follow-up (p < 0.01). The development of severe RP during follow-up was not associated with changes in PFT results. Perfusion SPECT is a valuable method for predicting severe RP and for assessing changes in regional functional perfusion after curative RT comparable with

  6. Role of CT perfusion imaging in evaluating the effects of multiple burr hole surgery on adult ischemic Moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Dong Wei; Zhao, Wen Yuan; Yang, Zhi Gang; Li, Qiang; Liu, Jian Min [Second Military Medical University, Department of Neurosurgery, Changhai Hospital, Shanghai (China); Zhang, Yong Wei [Second Military Medical University, Department of Neurology, Changhai Hospital, Shanghai (China); Xu, Bing; Ma, Xiao Long; Tian, Bing [Second Military Medical University, Department of Radiology, Changhai Hospital, Shanghai (China)

    2013-12-15

    To evaluate the effects of the multiple burr hole (MBH) revascularization on ischemic type adult Moyamoya disease (MMD) by computed tomography perfusion (CTP). Eighty-six ischemic MMD patients received CTP 1 week before and 3 weeks after MBH operation. Fifty-seven patients received it again at 6 month and underwent digital subtraction angiography (DSA) and mRS follow-up. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), time to peak (TTP), and relative values of ischemic symptomatic hemispheres were measured. Differences in pre- and post-surgery perfusion CT values were assessed. There were significant differences of CBF, TTP, and relative time to peak (rTTP) in ischemic hemisphere between 1 week before and 3 weeks after surgery, and no significant difference in relative cerebral blood flow (rCBF), CBV, relative cerebral blood volume (rCBV), MTT, relative mean transit time (rMTT). According to whether there was symptom improvement or not on 3 weeks after MBH, the rTTP value was not statistically significant in the patients whose symptoms were not improved at all on 3 weeks after operation. Six-month follow-up showed that CBF, rCBF, and rCBV values were significantly higher than those before operation. Postoperative MTT, TTP, rMTT, and rTTP values were significantly lower than those before operation. CTP is a sensitive method to obtain functional imaging of cerebral microcirculation, which can be a noninvasive assessment of the abnormalities of intracranial arteries and cerebral perfusion changes in MMD before and after surgery. CBF and TTP map, especially the relative values of TTP, seems to have the capability of being quite sensitive to the presence of altered brain perfusion at early time after indirect revascularization. (orig.)

  7. Perfusion-weighted MR imaging in persistent hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Mourand, Isabelle; Menjot de Champfleur, Nicolas; Carra-Dalliere, Clarisse; Le Bars, Emmanuelle; Bonafe, Alain; Thouvenot, Eric [Hopital Gui de Chauliac, Service de Neuroradiologie, Montpellier (France); Roubertie, Agathe [Hopital Gui de Chauliac, Service de Neuropediatrie, Montpellier (France)

    2012-03-15

    Hemiplegic migraine is a rare type of migraine that has an aura characterized by the presence of motor weakness, which may occasionally last up to several days, and then resolve without sequela. Pathogenesis of migraine remains unclear and, recently, perfusion-weighted imaging (PWI) has provided a non-invasive method to study hemodynamic changes during acute attacks. Two female patients were admitted in our hospital suffering from prolonged hemiparesis. In both cases, they underwent MRI examination using a 1.5 T magnet including axial diffusion-weighted and perfusion sequences. From each perfusion MRI acquisition two regions of interest were delineated on each hemisphere and, the index of flow, cerebral blood volume, mean transit time, and time to peak were recorded and asymmetry indices from each perfusion parameter were calculated. Perfusion alterations were detected during the attacks. In one case, we observed, after 3 h of left hemiparesia, hypoperfusion of the right hemisphere. In the other case, who presented a familial hemiplegic migraine attack, on the third day of a persistent aura consisting of right hemiplegia and aphasia, PWI revealed hyperperfusion of the left hemisphere. Asymmetry indices for temporal parameters (mean transit time and time to peak) were the most sensitive. These findings resolved spontaneously after the attacks without any permanent sequel or signs of cerebral ischemia on follow-up MRI. PWI should be indicated for patients with migraine attacks accompanied by auras to assess the sequential changes in cerebral perfusion and to better understand its pathogenesis. (orig.)

  8. Perfusion-weighted MR imaging in persistent hemiplegic migraine

    International Nuclear Information System (INIS)

    Mourand, Isabelle; Menjot de Champfleur, Nicolas; Carra-Dalliere, Clarisse; Le Bars, Emmanuelle; Bonafe, Alain; Thouvenot, Eric; Roubertie, Agathe

    2012-01-01

    Hemiplegic migraine is a rare type of migraine that has an aura characterized by the presence of motor weakness, which may occasionally last up to several days, and then resolve without sequela. Pathogenesis of migraine remains unclear and, recently, perfusion-weighted imaging (PWI) has provided a non-invasive method to study hemodynamic changes during acute attacks. Two female patients were admitted in our hospital suffering from prolonged hemiparesis. In both cases, they underwent MRI examination using a 1.5 T magnet including axial diffusion-weighted and perfusion sequences. From each perfusion MRI acquisition two regions of interest were delineated on each hemisphere and, the index of flow, cerebral blood volume, mean transit time, and time to peak were recorded and asymmetry indices from each perfusion parameter were calculated. Perfusion alterations were detected during the attacks. In one case, we observed, after 3 h of left hemiparesia, hypoperfusion of the right hemisphere. In the other case, who presented a familial hemiplegic migraine attack, on the third day of a persistent aura consisting of right hemiplegia and aphasia, PWI revealed hyperperfusion of the left hemisphere. Asymmetry indices for temporal parameters (mean transit time and time to peak) were the most sensitive. These findings resolved spontaneously after the attacks without any permanent sequel or signs of cerebral ischemia on follow-up MRI. PWI should be indicated for patients with migraine attacks accompanied by auras to assess the sequential changes in cerebral perfusion and to better understand its pathogenesis. (orig.)

  9. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    International Nuclear Information System (INIS)

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies

  10. Improved perfusion quantification in FAIR imaging by offset correction

    DEFF Research Database (Denmark)

    Sidaros, Karam; Andersen, Irene Klærke; Gesmar, Henrik

    2001-01-01

    Perfusion quantification using pulsed arterial spin labeling has been shown to be sensitive to the RF pulse slice profiles. Therefore, in Flow-sensitive Alternating-Inversion Recovery (FAIR) imaging the slice selective (ss) inversion slab is usually three to four times thicker than the imaging...... slice. However, this reduces perfusion sensitivity due to the increased transit delay of the incoming blood with unperturbed spins. In the present article, the dependence of the magnetization on the RF pulse slice profiles is inspected both theoretically and experimentally. A perfusion quantification...... model is presented that allows the use of thinner ss inversion slabs by taking into account the offset of RF slice profiles between ss and nonselective inversion slabs. This model was tested in both phantom and human studies. Magn Reson Med 46:193-197, 2001...

  11. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  12. Radionuclide ventilation-perfusion studies in pediatric respiratory diseases: 157 measurements of the distribution of ventilation and perfusion in 130 children

    International Nuclear Information System (INIS)

    Guillet, J.; Basse-Cathalinat, B.; Christophe, E.; Saudubray, F.

    1983-01-01

    Radionuclide investigations provide regional quantitative and kinetic data with a very low exposure. Results are dissonant with roentgenographic findings in 52% of cases and enhance diagnostic and prognostic accuracy. Although it provides poor quality images. The use of 133 Xe is preferable for ventilation studies to ensure correct evaluation of washout and trapping. According to the patient's age and position, 50% washout times vary from 5.6 to 8.7 seconds in the upper segments and from 5.6 to 8.5 seconds in the lower segments. Distribution of blood flow can be studied after intravenous injection of either sup(99m)Tc labelled microspheres of human albumin or 133 Xe saline solution. The former provides better quality images with studies of all incidences but may be contraindicated in cases of severe pulmonary hypertension or major right-to-left shunts. The latter allows a better sequential study. Radionuclide ventilation-perfusion studies are one of the major advances in pediatric pneumology in recent years [fr

  13. A pattern of cerebral perfusion anomalies between Major Depressive Disorder and Hashimoto Thyroiditis

    Science.gov (United States)

    2011-01-01

    Background This study aims to evaluate relationship between three different clinical conditions: Major Depressive Disorders (MDD), Hashimoto Thyroiditis (HT) and reduction in regional Cerebral Blood Flow (rCBF) in order to explore the possibility that patients with HT and MDD have specific pattern(s) of cerebral perfusion. Methods Design: Analysis of data derived from two separate data banks. Sample: 54 subjects, 32 with HT (29 women, mean age 38.8 ± 13.9); 22 without HT (19 women, mean age 36.5 ± 12.25). Assessment: Psychiatric diagnosis was carried out by Simplified Composite International Diagnostic Interview (CIDIS) using DSM-IV categories; cerebral perfusion was measured by 99 mTc-ECD SPECT. Statistical analysis was done through logistic regression. Results MDD appears to be associated with left frontal hypoperfusion, left temporal hypoperfusion, diffuse hypoperfusion and parietal perfusion asymmetry. A statistically significant association between parietal perfusion asymmetry and MDD was found only in the HT group. Conclusion In HT, MDD is characterized by a parietal flow asymmetry. However, the specificity of rCBF in MDD with HT should be confirmed in a control sample with consideration for other health conditions. Moreover, this should be investigated with a longitudinally designed study in order to determine a possible pathogenic cause. Future studies with a much larger sample size should clarify whether a particular perfusion pattern is associated with a specific course or symptom cluster of MDD. PMID:21910915

  14. Whole tumour first-pass perfusion using a low-dose method with 64-section multidetector row computed tomography in oesophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Chen Tianwu; Yang Zhigang; Dong Zhihui; Li Yuan; Yao Jin; Wang Qiling; Qian Lingling

    2011-01-01

    Purpose: To propose a low-dose method at tube current-time product of 50 mAs for whole tumour first-pass perfusion of oesophageal squamous cell carcinoma using 64-section multidetector row computed tomography (MDCT), and to assess the original image quality and accuracy of perfusion parameters. Materials and methods: Fifty-nine consecutive patients with confirmed oesophageal squamous cell carcinomas were enrolled into our study, and underwent whole tumour first-pass perfusion scan with 64-section MDCT at 50 mAs. Image data were statistically reviewed focusing on original image quality demonstrated by image-quality scores and signal-to-noise (S/N) ratios; and perfusion parameters including perfusion (PF, in ml/min/ml), peak enhanced density (PED, in HU), time to peak (TTP, in seconds) and blood volume (BV, in ml/100 g) for the tumour. To test the interobserver agreement of perfusion measurements, perfusion analyses were repeatedly performed. Results: Original image-quality scores were 4.71 ± 0.49 whereas S/N ratios were 5.21 ± 2.05, and the scores were correlated with the S/N ratios (r = 0.465, p < 0.0001). Mean values for PF, PED, TTP and BV of the tumour were 33.27 ± 24.15 ml/min/ml, 24.06 ± 9.87 HU, 29.42 ± 8.61 s, and 12.45 ± 12.22 ml/100 g, respectively. Intraclass correlation coefficient between the replicated measurements of each perfusion parameter was greater than 0.99, and mean difference of the replicated measurements of each parameter was close to zero. Conclusion: Whole tumour first-pass perfusion with 64-section MDCT at low-dose radiation could be reproducible to assess microcirculation in oesophageal squamous cell carcinoma without compromising subjective original image quality of the tumour.

  15. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E; Hedegaard, Morten

    2007-01-01

    The transplacental passage of monomethylphtalate (mMP) and mono (2-ethylhexyl) phthalate (mEHP) was studied using an ex vivo placental perfusion model with simultaneous perfusion of fetal and maternal circulation in a single cotyledon. Umbilical cord blood and placental tissue collected both before...... plasma samples. mMP and possibly other short-chained phthalate monoesters in maternal blood can cross the placenta by slow transfer, whereas the results indicate no placental transfer of mEHP. Further studies are recommended....

  16. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    Science.gov (United States)

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  17. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  18. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    Science.gov (United States)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  19. Vessel encoded arterial spin labeling with cerebral perfusion: preliminary study

    International Nuclear Information System (INIS)

    Wu Bing; Xiao Jiangxi; Xie Cheng; Wang Xiaoying; Jiang Xuexiang; Wong, E.C.; Wang Jing; Guo Jia; Zhang Beiru; Zhang Jue; Fang Jing

    2008-01-01

    Objective: To evaluate a noninvasive vessel encoded imaging for selective mapping of the flow territories of the left and fight internal carotid arteries and vertebral-basilar arteries. Methods: Seven volunteers [(33.5 ± 4.1) years; 3 men, 4 women] and 6 patients [(55.2 ± 3.2) years; 2 men, 4 women] were given written informed consent approved by the institutional review board before participating in the study. A pseudo-continuous tagging pulse train is modified to encode all vessels of interest. The selectivity of this method was demonstrated. Regional perfusion imaging was developed on the same arterial spin labeling sequence. Perfusion-weighted images of the selectively labeled cerebral arteries were obtained by subtraction of the labeled from control images. The CBF values of hemisphere, white matter, and gray matter of volunteers were calculated. The vessel territories on patients were compared with DSA. The low perfusion areas were compared with high signal areas on T 2 -FLAIR. Results: High SNR maps of left carotid, right carotid, and basilar territories were generated in 8 minutes of scan time. Cerebral blood flow values measured with regional perfusion imaging in the complete hemisphere (32.6 ± 4.3) ml·min -1 · 100 g -1 , white matter (10.8 ± 0.9) ml·min -1 ·100 g -1 , and gray matter (55.6±2.9) ml·min -1 · 100 g -1 were in agreement with data in the literature. Vessel encoded imaging in patients had a good agreement with DSA. The low perfusion areas were larger than high signal areas on T 2 -FLAIR. Conclusion: We present a new method capable of evaluating both quantitatively and qualitatively the individual brain- feeding arteries in vivo. (authors)

  20. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  1. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  2. Measurement of cerebral perfusion after zolpidem administration in the baboon model.

    Science.gov (United States)

    Clauss, R P; Dormehl, I C; Oliver, D W; Nel, W H; Kilian, E; Louw, W K

    2001-01-01

    A recent report showed that zolpidem (CAS 82626-48-0) can lead to the arousal of a semi-comatosed patient. Zolpidem is clinically used for the treatment of insomnia. It belongs to the imidazopyridine chemical class and is a non benzodiazepine drug. It illicits its pharmacological action via the GABA receptor system through stimulation of particularly the omega 1 receptors. In this study, the effect of zolpidem on brain perfusion was examined by 99mTc hexamethyl-propylene amine oxime (HMPAO) split dose brain SPECT on four normal baboons and in one baboon with abnormal neurological behaviour. The global and regional brain perfusion was not significantly affected in the normal brains. In some regions of the abnormal baboon brain, however, there was a disproportionate increase in perfusion after zolpidem.

  3. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    International Nuclear Information System (INIS)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques

  4. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    Science.gov (United States)

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  5. Perfusion imaging with single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Holman, B.L.; Hill, T.C.

    1987-01-01

    SPECT with perfusion tracers is useful in a number of circumstances: (1) In acute cerebral infarction while the CT scan may be normal for several days after onset of symptoms, the uptake of SPECT perfusion tracers will be altered immediately after the onset of the stroke. Even when the CT scan has become abnormal, the physiologic abnormality may exceed the anatomic abnormality. One may, therefore be able to measure the extent of the reversibly ischemic tissue early enough to justify more agressive therapeutic interventions. (2) For endarterectomy and other surgical and medical therapies serial measurements of regional cerebral perfusion with SPECT may provide a readily available tool to assess their efficacy. (3) SPECT perfusion imaging may become the method of choice for the diagnosis and evaluation of Alzheimer's disease. (4) In patients with epilepsy, the extent and location of the abnormally perfused focus may be important to medical and surgical management. Follow-up examination may be useful in documenting the effectiveness of therapy

  6. The natural history of misery perfusion in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Shinji; Fujii, Kiyotaka; Matsushima, Toshio; Fukui, Masashi; Sadoshima, Shouzou; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-03-01

    This report reviews the natural courses of misery perfusion in 5 patients with atherosclerotic cerebrovascular occlusion diseases. Cases 1 showed partial improvement and Case 2 showed deterioration of misery perfusion on positron emission tomography (PET). These 2 patients did not show any clinical changes during the follow-up periods. Case 3 showed remarkable improvement of misery perfusion during the 2-year follow-ups, but his neurological condition worsened. The EC-IC bypass improved both in PET and clinical symptoms. Case 4 had a stroke at the region of misery perfusion in PET. Case 5 had a lacunar infarction 2 years after the EC-IC bypass on the opposite side. PET taken one month before the stroke did not show any signs of hypoperfusion in the area of the lacunar infarction. Misery perfusion seems not to be a static but a dynamic condition that can develop into cerebral infarction by some hemodynamic stresses. Cerebral cortical or lobar infarction may occur in the region of severe misery perfusion. EC-IC bypass may prevent impending infarction of the cerebral cortex by improving the regional cerebral blood flow. However, EC-CI bypass will not prevent the lacunar infarction of the basal ganglia or internal capsule. (author).

  7. Relaxivity of blood pool contrast agent depends on the host tissue as suggested by semianalytical simulations

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij

    Concentration of magnetic resonance imaging (MRI) contrast agents (CA) cannot be measured directly and is commonly determined indirectly using their relaxation effect. This requires knowledge of the relaxivity of the used CA. Quantitative perfusion studies involve measurement of CA concentration...... studies (3,4) as demonstrated in (5). It was previously found (6) that the perfusion measurements using dynamic susceptibility contrast inherently overestimate cerebral blood flow and volume. In view of the present result, this is attributed to the significant difference in the relaxivity of the CA...

  8. Lung perfusion scintigraphy in congenital heart disease

    International Nuclear Information System (INIS)

    Sugimura, Hiroshi; Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Oonishi, Takashi; Futami, Shigemi; Watanabe, Katsushi

    1990-01-01

    Lung perfusion scintigrams were reviewed retrospectively in 28 patients with congenital heart disease, whose ages ranged from the first year to 16 years with an average age of 5 years and 6 months. Seventy four MBq (2 mCi), 111 MBq (2 mCi), and 185 MBq (5 mCi) of Tc-99m macroaggregated albumin were iv injected in the age groups of 0-3, 4-11, and more than 11 years, respectively. Five minutes later, images were obtained in six projections. Abnormal findings on lung perfusion scintigrams were observed in 13 patients (46%). Of these patients, 8 (29%) had a partially decreased blood flow and 5 (17%) had a decreased blood flow in the unilateral lung. No significant difference in the occurrence of abnormal findings was observed among the age groups, although they tended to occur in younger patients. Sex, underlying conditions, and hemodynamics were also independent of scintigraphically abnormal findings. Even when classifying the patients as having either cyanotic or non-cyanotic heart disease, no significant difference in hemodynamics was observed between the group of abnormal findings and the group of normal findings. Pulmonary arteriography available in all patients failed to reveal abnormal findings, with the exception of pulmonary artery stenosis in 2 patients that corresponded to a decreased blood flow in the unilateral lung. Pulmonary artery stenosis seemed to be responsible for abnormal pulmonary blood flow, although other causes remained uncertain. (N.K.)

  9. Renal hemodynamic changes with aging: a preliminary study using CT perfusion in the healthy elderly.

    Science.gov (United States)

    Zhao, Hong; Gong, Jingshan; Wang, Yan; Zhang, Zuoquan; Qin, Peixin

    2010-01-01

    To investigate renal blood flow perfusion parameter changes associated with aging using multislice spiral computed tomography (CT). This prospective study was approved by the institute's ethics committee for clinical study and written informed consent was obtained from all subjects. Forty-two consecutive patients who underwent abdominal CT without obvious renal abnormality at plain scanning were enrolled in this study. The renal perfusion scan was carried out using 16-slice spiral CT. The Pearson correlation coefficient was used to examine the correlation between perfusion parameter changes with aging. In both the cortex and medulla, blood flow (BF) and blood volume (BV) were negatively correlated with age, while time-to-peak (TTP) value and mean transit time (MTT) showed a positive correlation with age. Changes in BF, TTP, and MTT were found to have a statistically significant correlation with age in both the cortex and medulla, while the correlation between BV and age showed no statistical significance. It is feasible to assess renal hemodynamics changes with aging in the elderly using the current clinically available CT perfusion imaging technology in vivo. It may be helpful in the management of aged patients to familiarize with the renal hemodynamics changes in clinical work-up. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Effect of forced-air heaters on perfusion and and temperature distribution during and after open-heart surgery

    NARCIS (Netherlands)

    Severens, N.M.W.; Marken Lichtenbelt, van W.; Leeuwen, van G.M.J.; Frijns, A.J.H.; Steenhoven, van A.A.; Mol, de B.A.J.M.; Wezel, H.B.; Veldman, D.J.

    2007-01-01

    Objectives: After cardiopulmonary bypass, patients often show redistribution hypothermia, also called afterdrop. Forced-air blankets help to reduce afterdrop. This study explores the effect of forced-air blankets on temperature distribution and peripheral perfusion. The blood perfusion data is used

  11. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    Energy Technology Data Exchange (ETDEWEB)

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  12. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    International Nuclear Information System (INIS)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B.; Grittner, Ulrike; Schneider, Alice; Rocco, Andrea

    2016-01-01

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg n = img n + 1 - img n - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  13. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    Energy Technology Data Exchange (ETDEWEB)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B. [Charite-Universitaetsmedizin, Academic Neuroradiology, Center for Stroke Research (CSB), Berlin (Germany); Grittner, Ulrike [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Charite, Department for Biostatistics and Clinical Epidemiology, Berlin (Germany); Schneider, Alice [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Rocco, Andrea [Charite, Department of Neurology and Center for Stroke Research, Berlin (Germany)

    2016-05-15

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg{sub n} = img{sub n} + 1 - img{sub n} - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  14. Peritumoral brain edema in intracranial tumor evaluated by CT perfusion imaging

    International Nuclear Information System (INIS)

    Shi Yuxin; Xu Jianfeng

    2005-01-01

    Objective: To semi-quantitatively evaluate the cerebral perfusion in the peritumoral brain edema of cerebral tumors using CT perfusion imaging. Methods: Twenty-one patients with peritumoral brain edema (including pathologically confirmed meningiomas n=4, metastasis n=10, gliomas n=7) were examined by CT perfusion imaging. The regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) were calculated for peritumoral brain edema and the contralateralwhite matter. The rCBF and rCBV were compared between peritumoral brain edema and the contralateral white matter. The mean ratios (edema/contralateral white matter) of rCBF and rCBV were compared among the three tumors. Results: The rCBF and rCBV of peritumoral brain edema were significantly lower than those of contralateral white matter in patients with meningiomas and metastasis (rCBF: t=2.92 and 3.82, P 0.05). The mean ratios (edema/contralateralwhite matter) of rCBF and rCBV were not significantly different between meningiomas and metastasis (t=0.23 and 0.73, P>0.05), but both of them were significantly lower than those of gliomas (t=3.05 and 3.37, P<0.01, 0.005). Conclusion: The rCBF and rCBV in peritumoral brain edema were significantly lower than those of contralateral white matter in patients with meningiomas and metastasis, while almost the same with or higher than those of contralateral white matter in patients with gliomas. CT perfusion can provide quantitative information of blood flow in peritumoral brain edema, and is useful in the diagnosis and follow-up of cerebral tumors. (authors)

  15. Measurement of cerebral white matter perfusion using pseudocontinuous arterial spin labeling 3T magnetic resonance imaging--an experimental and theoretical investigation of feasibility.

    Directory of Open Access Journals (Sweden)

    Wen-Chau Wu

    Full Text Available PURPOSE: This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL 3T magnetic resonance imaging (MRI at a relatively fine resolution to mitigate partial volume effect from gray matter. MATERIALS AND METHODS: The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28 ± 3 years were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms, at a spatial resolution (1.56 x 1.56 x 5 mm(3 finer than commonly used (3.5 x 3.5 mm(2, 5-8 mm in thickness. Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay. RESULTS: Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2 to support perfusion measurement in the majority (~60% of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. CONCLUSION: PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.

  16. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  17. Permissive hypotension in the extremely low birthweight infant with signs of good perfusion.

    LENUS (Irish Health Repository)

    Dempsey, E M

    2012-01-31

    INTRODUCTION: Many practitioners routinely treat infants whose mean arterial blood pressure in mm Hg is less than their gestational age in weeks (GA). OBJECTIVE: To assess the effectiveness of utilising a combined approach of clinical signs, metabolic acidosis and absolute blood pressure (BP) values when deciding to treat hypotension in the extremely low birthweight (ELBW) infant. METHODS: Retrospective cohort study of all live born ELBW infants admitted to our neonatal intensive care unit over a 4-year period. Patients were grouped as either normotensive (BP never less than GA), hypotensive and not treated (BPperfusion; we termed this permissive hypotension) and hypotensive treated (BPperfusion). RESULTS: 118 patients were admitted during this period. Blood pressure data were available on 108 patients. 53% of patients were hypotensive (mean BP in mm Hg less than GA in weeks). Treated patients had lower birth weight and GA, and significantly lower blood pressure at 6, 12, 18 and 24 h. Normotensive patients and patients designated as having permissive hypotension had similar outcomes. Mean blood pressure in the permissive group increased from 26 mm Hg at 6 h to 31 mm Hg at 24 h. In a logistic regression model, treated hypotension is independently associated with mortality, odds ratio 8.0 (95% CI 2.3 to 28, p<0.001). CONCLUSIONS: Blood pressure spontaneously improves in ELBW infants during the first 24 h. Infants hypotensive on GA criteria but with clinical evidence of good perfusion had as good an outcome as normotensive patients. Treated low blood pressure was associated with adverse outcome.

  18. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    International Nuclear Information System (INIS)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A.

    1998-01-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual's T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  19. Statistical parametric mapping of Tc-99m HMPAO SPECT cerebral perfusion in the normal elderly

    Energy Technology Data Exchange (ETDEWEB)

    Turlakow, A.; Scott, A.M.; Berlangieri, S.U.; Sonkila, C.; Wardill, T.D.; Crowley, K.; Abbott, D.; Egan, G.F.; McKay, W.J.; Hughes, A. [Austin and Repatriation Medical Centre, Heidelberg, VIC (Australia). Departments of Nuclear Medicine and Centre for PET Neurology and Clinical Neuropsychology

    1998-06-01

    Full text: The clinical value of Tc-99m HMPAO SPECT cerebral blood flow studies in cognitive and neuropsychiatric disorders has been well described. Currently, interpretation of these studies relies on qualitative or semi- quantitative techniques. The aim of our study is to generate statistical measures of regional cerebral perfusion in the normal elderly using statistical parametric mapping (Friston et al, Wellcome Department of Cognitive Neurology, London, UK) in order to facilitate the objective analysis of cerebral blood flow studies in patient groups. A cohort of 20 healthy, elderly volunteers, aged 68 to 81 years, was prospectively selected on the basis of normal physical examination and neuropsychological testing. Subjects with risk factors, or a history of cognitive impairment were excluded from our study group. All volunteers underwent SPECT cerebral blood flow imaging, 30 minutes following the administration of 370 MBq Tc-99m HMPAO, on a Trionix Triad XLT triple-headed scanner (Trionix Research Laboratory Twinsburg, OH) using high resolution, fan-beam collimators resulting in a system resolution of 10 mm full width at half-maximum (FWHM). The SPECT cerebral blood flow studies were analysed using statistical parametric mapping (SPM) software specifically developed for the routine statistical analysis of functional neuroimaging data. The SPECT images were coregistered with each individual`s T1-weighted MR volume brain scan and spatially normalized to standardised Talairach space. Using SPM, these data were analyzed for differences in interhemispheric regional cerebral blood flow. Significant asymmetry of cerebral perfusion was detected in the pre-central gyrus at the 95th percentile. In conclusion, the interpretation of cerebral blood flow studies in the elderly should take into account the statistically significant asymmetry in interhemispheric pre-central cortical blood flow. In the future, clinical studies will be compared to statistical data sets in age

  20. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, Mudassar; Byrne, James V. [University of Oxford, Nuffield Department of Surgical Sciences, Oxford (United Kingdom)

    2015-09-15

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  1. C-arm flat detector computed tomography parenchymal blood volume imaging: the nature of parenchymal blood volume parameter and the feasibility of parenchymal blood volume imaging in aneurysmal subarachnoid haemorrhage patients

    International Nuclear Information System (INIS)

    Kamran, Mudassar; Byrne, James V.

    2015-01-01

    C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31 %) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91 % sensitive and 100 % specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (∼60 % blood flow and ∼40 % blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (∼60 %) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia. (orig.)

  2. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease.

    Science.gov (United States)

    Li, Jin-Ping; Zhao, De-Li; Jiang, Hui-Jie; Huang, Ya-Hua; Li, Da-Qing; Wan, Yong; Liu, Xin-Ding; Wang, Jin-E

    2011-02-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor in China, and early diagnosis is critical for patient outcome. In patients with HCC, it is mostly based on liver cirrhosis, developing from benign regenerative nodules and dysplastic nodules to HCC lesions, and a better understanding of its vascular supply and the hemodynamic changes may lead to early tumor detection. Angiogenesis is essential for the growth of primary and metastatic tumors due to changes in vascular perfusion, blood volume and permeability. These hemodynamic and physiological properties can be measured serially using functional computed tomography perfusion (CTP) imaging and can be used to assess the growth of HCC. This study aimed to clarify the physiological characteristics of tumor angiogenesis in cirrhotic liver disease by this fast imaging method. CTP was performed in 30 volunteers without liver disease (control subjects) and 49 patients with liver disease (experimental subjects: 27 with HCC and 22 with cirrhosis). All subjects were also evaluated by physical examination, laboratory screening and Doppler ultrasonography of the liver. The diagnosis of HCC was made according to the EASL criteria. All patients underwent contrast-enhanced ultrasonography, pre- and post-contrast triple-phase CT and CTP study. A mathematical deconvolution model was applied to provide hepatic blood flow (HBF), hepatic blood volume (HBV), mean transit time (MTT), permeability of capillary vessel surface (PS), hepatic arterial index (HAI), hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP) data. The Mann-Whitney U test was used to determine differences in perfusion parameters between the background cirrhotic liver parenchyma and HCC and between the cirrhotic liver parenchyma with HCC and that without HCC. In normal liver, the HAP/HVP ratio was about 1/4. HCC had significantly higher HAP and HAI and lower HPP than background liver parenchyma adjacent to the HCC. The value of HBF at the tumor

  3. Ocular blood flow decreases during passive heat stress in resting humans

    OpenAIRE

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-01-01

    Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...

  4. Limbic system perfusion in Alzheimer's disease measured by MRI-coregistered HMPAO SPET

    International Nuclear Information System (INIS)

    Callen, David J.A.; Black, Sandra E.; Caldwell, Curtis B.

    2002-01-01

    The goal of this study was to perform a systematic, semi-quantitative analysis of limbic perfusion in patients with Alzheimer's disease (AD) using coregistered single-photon emission tomography (SPET) images aligned to magnetic resonance (MR) images. Limbic perfusion in 40 patients with mild to moderate AD was compared with that of 17 age-, sex-, and education-matched normal controls (NC). HMPAO SPET scans and 3D T1-weighted MR images were acquired for each subject. Structures of the limbic system (i.e. hippocampus, amygdala, anterior thalamus, hypothalamus, mamillary bodies, basal forebrain, septal area and cingulate, orbitofrontal and parahippocampal cortices) were traced on the MR images and transferred to the coregistered SPET scans. Perfusion ratios for all limbic regions were calculated relative to cerebellar perfusion. General linear model multivariate analysis revealed that, overall, limbic structures showed significant hypoperfusion (F=7.802, P 2 =0.695) in AD patients compared with NC. Greatest differences (d≥0.8) were found in the hippocampus, as well as all areas of the cingulate cortex. Significant relative hypoperfusion was also apparent in the parahippocampal cortex, amygdala/entorhinal cortex, septal area and anterior thalamus, all of which showed medium to large effect sizes (d=0.6-0.8). No significant relative perfusion differences were detected in the basal forebrain, hypothalamus, mamillary bodies or orbitofrontal cortex. Logistic regression indicated that posterior cingulate cortex perfusion was able to discriminate AD patients from NC with 93% accuracy (95% sensitivity, 88% specificity). The current results suggest that most, but not all, limbic structures show significant relative hypoperfusion in AD. These findings validate previous post-mortem studies and could be useful in improving diagnostic accuracy, monitoring disease progression and evaluating potential treatment strategies in AD. (orig.)

  5. Factors affecting regional pulmonary blood flow in chronic ischemic heart disease

    International Nuclear Information System (INIS)

    Pistolesi, M.; Miniati, M.; Bonsignore, M.

    1988-01-01

    To assess the effect of left heart disease on pulmonary blood flow distribution, we measured mean pulmonary arterial and wedge pressures, cardiac output, pulmonary vascular resistance, pulmonary blood volume, and arterial oxygen tension before and after treatment in 13 patients with longstanding ischemic heart failure and pulmonary edema. Pulmonary edema was evaluated by a radiographic score, and regional lung perfusion was quantified on a lung scan by the upper to lower third ratio (U:L ratio) of pulmonary blood flow per unit of lung volume. In all cases, redistribution of lung perfusion toward the apical regions was observed; this pattern was not affected by treatment. After treatment, pulmonary vascular pressures, resistance, and edema were reduced, while pulmonary blood volume did not change. At this time, pulmonary vascular resistance showed a positive correlation with the U:L ratio (r = 0.78; P less than 0.01), whereas no correlation was observed between U:L ratio and wedge pressure, pulmonary edema, or arterial oxygen tension. Hence, redistribution of pulmonary blood flow, in these patients, reflects chronic structural vascular changes prevailing in the dependent lung regions

  6. Reduced Perfusion in Broca’s Area in Developmental Stuttering

    Science.gov (United States)

    Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C. R.; Lythgoe, David; Zelaya, Fernando O.; Peterson, Bradley S.

    2016-01-01

    Objective To study resting cerebral blood flow in children and adults with developmental stuttering. Methods We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. Results We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared to healthy controls in Broca’s area bilaterally and the superior frontal gyrus. rCBF values in Broca’s area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared to healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. Conclusions rCBF is reduced in Broca’s region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca’s region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. PMID:28035724

  7. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  8. Paradoxical perfusion metrics of high-grade gliomas with an oligodendroglioma component: quantitative analysis of dynamic susceptibility contrast perfusion MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, Leonard; Park, Sun-Won [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul (Korea, Republic of); Yoo, Roh-Eul; Kang, Koung Mi; Yun, Tae Jin; Kim, Ji-hoon; Sohn, Chul-Ho [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae Min; Lee, Se-Hoon [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Won, Jae-Kyung; Park, Sung-Hye [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2015-11-15

    The aim of this study is to investigate perfusion characteristics of glioblastoma with an oligodendroglioma component (GBMO) compared with conventional glioblastoma (GBM) using dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) imaging and microvessel density (MVD). The study was approved by the institutional review board. Newly diagnosed high-grade glioma patients were enrolled (n = 72; 20 GBMs, 14 GBMOs, 19 anaplastic astrocytomas (AAs), 13 anaplastic oligodendrogliomas (AOs), and six anaplastic oligoastrocytomas (AOAs)). All participants underwent preoperative MR imaging including DSC perfusion MR imaging. Normalized cerebral blood volume (nCBV) values were analyzed using a histogram approach. Histogram parameters were subsequently compared across each tumor subtype and grade. MVD was quantified by immunohistochemistry staining and correlated with perfusion parameters. Progression-free survival (PFS) was assessed according to the tumor subtype. GBMO displayed significantly reduced nCBV values compared with GBM, whereas grade III tumors with oligodendroglial components (AO and AOA) exhibited significantly increased nCBV values compared with AA (p < 0.001). MVD analyses revealed the same pattern as nCBV results. In addition, a positive correlation between MVD and nCBV values was noted (r = 0.633, p < 0.001). Patients with oligodendroglial tumors exhibited significantly increased PFS compared with patients with pure astrocytomas in each grade. In contrast to grade III tumors, the presence of oligodendroglial components in grade IV tumors resulted in paradoxically reduced perfusion metrics and MVD. In addition, patients with GBMO exhibited a better clinical outcome compared with patients with GBM. (orig.)

  9. Reduced perfusion in Broca's area in developmental stuttering.

    Science.gov (United States)

    Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C R; Lythgoe, David; Zelaya, Fernando O; Peterson, Bradley S

    2017-04-01

    To study resting cerebral blood flow in children and adults with developmental stuttering. We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared with healthy controls in Broca's area bilaterally and the superior frontal gyrus. rCBF values in Broca's area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared with healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. rCBF is reduced in Broca's region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca's region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. Hum Brain Mapp 38:1865-1874, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Effects of ethanol and hyperosmotic perfusates on albumin synthesis and release

    International Nuclear Information System (INIS)

    Rothschild, M.A.; Oratz, M.; Schreiber, S.S.; Mongelli, J.

    1986-01-01

    Sucrose and ethanol inhibit albumin synthesis; sucrose via an osmotic mechanism and ethanol during its metabolism. The present study was undertaken to compare the effects of both of these agents on albumin synthesis and secretion, and to see if ethanol inhibition could be related to an osmotic effect. Male, fed rabbits served as liver donors in all studies. There were a total of 35 studies: 13 control; 10 ethanol (39 to 52 mM); 4 cycloheximide (0.5 mM), and 8 sucrose (1%). Plasma volume was measured with 125 I-albumin (human) and extracellular volume measured with either /sup 99m/Tc diethylenetriamine pentaacetic acid or [ 14 C]sucrose. During perfusion, rabbit albumin content in the perfusate was measured immunologically every 15 to 30 min for 225 min. Interstitial albumin efflux was measured by the rate of appearance in the perfusate of 125 I-albumin given to 10 other rabbits 3 days prior to hepatic removal and perfusion. During the initial 75 min of perfusion, 74% of the in vivo equilibrated exchangeable 125 I-albumin appeared in the perfusate, and during this period the rabbit albumin that entered the perfusate was taken to represent efflux from the interstitial volume plus synthesis. Rabbit albumin appearing in the perfusate during the later period of 150 min was taken to represent mainly synthesis and was used to calculate the amount of albumin that would be synthesized in 75 min. The difference between these two values would be hepatic interstitial albumin appearing in the perfusate

  11. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes

    Energy Technology Data Exchange (ETDEWEB)

    Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)

    2013-12-15

    The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)

  12. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    2016-08-01

    Full Text Available The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.

  13. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  14. Vascular perfusion of reproductive organs in pony mares and heifers during sedation with detomidine or xylazine.

    Science.gov (United States)

    Araujo, Reno R; Ginther, O J

    2009-01-01

    To assess the vascular effects of detomidine and xylazine in pony mares and heifers, respectively, as determined in a major artery and by extent of vascular perfusion of reproductive organs. 10 pony mares and 10 Holstein heifers. Pony mares were assigned to receive physiologic saline (0.9% NaCl) solution (n = 5) or detomidine (3.0 mg/mare, IV; 5). Heifers were assigned to receive saline solution (5) or xylazine (14 mg/heifer, IM; 5). Color Doppler ultrasonographic examinations were performed immediately before and 10 minutes after administration of saline solution or sedative. In spectral Doppler mode, a spectral graph of blood flow velocities during a cardiac cycle was obtained at the internal iliac artery and at the ovarian pedicle. In color-flow mode, color signals of blood flow in vessels of the corpus luteum and endometrium were assessed. Systemic effects of sedation in the 2 species were evident as a decrease in heart rate; increase in duration of systole, diastole, or both; decrease in volume of blood flow; and decrease in velocity of blood flow within the internal iliac artery. However, an effect of sedatives on local vascular perfusion in the ovaries and endometrium was not detected. Sedation with detomidine in pony mares and xylazine in heifers did not affect vascular perfusion in reproductive organs. These sedatives can be used in experimental and clinical color Doppler evaluations of vascular perfusion of the corpus luteum and endometrium.

  15. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    Science.gov (United States)

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although

  16. Tissue perfusion as a key underlying concept of pressure ulcer development and treatment.

    Science.gov (United States)

    Wywialowski, E F

    1999-03-01

    The purpose of this article is to refine and advance the theory that tissue perfusion is the key concept in the development and delayed healing of pressure ulcers. The person likely to have (be at risk for) pressure ulcers is at greater risk for inadequate tissue perfusion generally and specifically at pressure points. Accordingly, the tissue perfusion theory of pressure ulcer development states that the factors that contribute to inadequate tissue perfusion should be used to predict (identify risk factors for) pressure ulcer development and delayed healing. Factors influencing a person's adequacy of tissue perfusion need to be assessed to identify risk for pressure ulcers. In addition, adequate tissue perfusion needs to be maintained to provide for healing of such wounds. Current beliefs about the causes and prevention of pressure ulcers are described. Physiologic components of the tissue perfusion theory are discussed: cellular exchange of nutrients and wastes, autoregulation of blood flow at the cellular level, and regulatory mechanisms that affect tissue perfusion when it is significantly compromised. The North American Nursing Diagnosis Association (NANDA) framework is used to classify or group examples of common pathophysiologic, treatment-related, situational, and maturational factors. Implications for research, practice, and education also are discussed.

  17. Brain perfusion in acute and chronic hyperglycemia in rats

    International Nuclear Information System (INIS)

    Kikano, G.E.; LaManna, J.C.; Harik, S.I.

    1989-01-01

    Recent studies show that acute and chronic hyperglycemia cause a diffuse decrease in regional cerebral blood flow and that chronic hyperglycemia decreases the brain L-glucose space. Since these changes can be caused by a decreased density of perfused brain capillaries, we used 30 adult male Wistar rats to study the effect of acute and chronic hyperglycemia on (1) the brain intravascular space using radioiodinated albumin, (2) the anatomic density of brain capillaries using alkaline phosphatase histochemistry, and (3) the fraction of brain capillaries that are perfused using the fluorescein isothiocyanate-dextran method. Our results indicate that acute and chronic hyperglycemia do not affect the brain intravascular space nor the anatomic density of brain capillaries. Also, there were no differences in capillary recruitment among normoglycemic, acutely hyperglycemic, and chronically hyperglycemic rats. These results suggest that the shrinkage of the brain L-glucose space in chronic hyperglycemia is more likely due to changes in the blood-brain barrier permeability to L-glucose

  18. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    Science.gov (United States)

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  19. Basic consideration of diffusion/perfusion imaging

    International Nuclear Information System (INIS)

    Tamagawa, Yoichi; Kimura, Hirohiko; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Nakatsugawa, Shigekazu; Ishii, Yasushi; Sakuma, Hajime; Tsukamoto, Tetsuji.

    1990-01-01

    In magnetic resonance imaging (MRI), microscopic motion of biological system such as molecular diffusion of water and microcirculation of blood in the capillary network (perfusion) has been proposed to cause signal attenuation as an intravoxel incoherent motion (IVIM). Quantitative imaging of the IVIM phenomenon was attempted to generate from a set of spin-echo (SE) sequences with or without sensitization by motion probing gradient (MPG). The IVIM imaging is characterized by a parameter, apparent diffusion coefficient (ADC), which is an integration of both the diffusion and the perfusion factor on voxel-by-voxel basis. Hard ware was adjusted to avoid image artifact mainly produced by eddy current. Feasibility of the method was tested using bottle phantom filled with water at different temperature and acetone, and the calculated ADC values of these media corresponded well with accepted values of diffusion. The method was then applied to biological system to investigate mutual participation of diffusion/perfusion on the ADC value. The result of tumor model born on nude mouse suggested considerable participation of perfusion factor which immediately disappeared after sacrificing the animal. Meanwhile, lower value of sacrificed tissue without microcirculation was suggested to have some restriction of diffusion factor by biological tissue. To substantiate the restriction effect on the diffusion, a series of observation have made on a fiber phantom, stalk of celory with botanical fibers and human brain with nerve fibers, in applying unidirectional MPG along the course of these banch of fiber system. The directional restriction effect of diffusion along the course of fiber (diffusion anisotrophy) was clearly visualized as directional change of ADC value. The present method for tissue characterization by diffusion/perfusion on microscopic level will provide a new insight for evaluation of functional derangement in human brain and other organs. (author)

  20. Affection of blood supply of focal hepatic mass on apparent diffusion coefficient of the lesions

    International Nuclear Information System (INIS)

    Chen Zaizhi; Wu Yulin; Xu Zhongfei; Yang Zhenghan; Chen Min; Zhou Cheng; Xie Jingxia

    2002-01-01

    Objective: To investigate the affection of lesion blood supply on apparent diffusion coefficient (ADC) of focal hepatic mass. Methods: Diffusion-weighted imaging (DWI) with different b values was performed in 87 patients with 159 focal hepatic lesions. ADCs of lesion, liver, spleen, gallbladder were measured in every case. Results: On DWI with small b value and small b value remainder, ADCs were affected by blood perfusion of tissues or lesions. The mean ADC of hypervascular lesions was significantly higher than that of hypovascular lesions on DWI with small b value, and hemoangiomas got the highest mean ADC. The mean ADC of hepatic cysts was not affected by b value. Conclusion: Blood perfusion affects ADC of tissue or focal hepatic lesion, particularly on DWI with small b value, and to some degree, DWI and ADC can reflect the blood supply of focal hepatic lesion

  1. Evaluation of noncoronary sources of left ventricular perfusion to intercoronary collateral-dependent myocardium due to chronic major vessel occlusion: absent contribution of luminal and extracardiac channels

    International Nuclear Information System (INIS)

    Crystal, G.J.; Downey, H.F.; Bashour, F.A.

    1981-01-01

    Liminal contribution to perfusion of collateral-dependent left ventricular (LV) myocardium was evaluated in six dogs. A portion of LV free wall was rendered collateral-dependent by gradual occlusion of left circumflex artery with Ameroid constrictor. Eight to 10 weeks after implantation of constrictor, measurements of LV myocardial flow were made by left atrial injections of 9-10 micro radioactive microspheres. To measure total collateral flow, microspheres were injected under control conditions, and to measure luminal contribution to collateral flow, microspheres were injected after ligation of right coronary artery during extracorporeal perfusion of left common coronary artery (LCCA) with microsphere-free arterial blood, and during stoppage of flow through LCCA. Under control conditions, myocardial blood flow in collateral-dependent region, 1.01 +/- 0.31 ml/min/gm, was not significantly different from that in normal region, 1.06 +/- 0.32 ml/min/gm. Flow from luminal collateral vessels was negligible (less than 0.005 ml/min/gm) in both collateral-dependent and normal myocardium, and was not affected by stoppage of flow through LCCA. These results indicate that luminal collateral vessels, as well as collateral vessels originating from other noncoronary sources, do not contribute significantly to perfusion of normal or collateral-dependent LV myocardium

  2. Monitoring system for isolated limb perfusion based on a portable gamma camera

    International Nuclear Information System (INIS)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J.; Vidal-Sicart, S.; Pons, F.; Roe, N.; Rull, R.; Pavon, N.; Pavia, J.

    2009-01-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-α) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-α and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is ±1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-α and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-α and melphalan has been indicated. (orig.)

  3. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  4. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    Science.gov (United States)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  5. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV)

    International Nuclear Information System (INIS)

    Li, Zhen-lin; Zhang, Kai; Li, Wang-jiang; Chen, Xian; Wu, Bin; Song, Bin; Li, Hang

    2014-01-01

    To investigate the feasibility of 70 kV cerebral CT perfusion by comparing image quality and radiation exposure to 80 kV. Thirty patients with suspected cerebral ischemia who underwent dual-source CT perfusion were divided into group A (80 kV, 150 mAs) and group B (70 kV, 150 mAs). Quantitative comparisons were used for maximum enhancement, signal-to-noise index (SNI), and values of cerebral blood flow (CBF), cerebral blood flow (CBV), mean transit time (MTT) on CBF, CBV, and MTT images, and radiation dose from these two groups. Qualitative perfusion images were assessed by two readers. Maximum enhancement for group B was higher than group A (P < 0.05). There were no significant differences between the two groups for SNI on CBF and CBV maps (P = 0.06 - 0.576), but significant differences for MTT when SNI was measured on frontal white matter and temporo-occipital white matter (P < 0.05). There were no differences among values of CBF, CBV, and MTT for both groups (P = 0.251-0.917). Mean image quality score in group B was higher than group A for CBF (P < 0.05), but no differences for CBV (P = 0.542) and MTT (P = 0.962). Radiation dose for group B decreased compared with group A. 70 kV cerebral CT perfusion reduces radiation dose without compromising image quality. (orig.)

  6. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen-lin; Zhang, Kai; Li, Wang-jiang; Chen, Xian; Wu, Bin; Song, Bin [West China Hospital of Sichuan University, Department of Radiology, Chengdu, Sichuan (China); Li, Hang [Sichuan Provincial People' s Hospital, Department of Radiology, Chengdu, Sichuan (China)

    2014-08-15

    To investigate the feasibility of 70 kV cerebral CT perfusion by comparing image quality and radiation exposure to 80 kV. Thirty patients with suspected cerebral ischemia who underwent dual-source CT perfusion were divided into group A (80 kV, 150 mAs) and group B (70 kV, 150 mAs). Quantitative comparisons were used for maximum enhancement, signal-to-noise index (SNI), and values of cerebral blood flow (CBF), cerebral blood flow (CBV), mean transit time (MTT) on CBF, CBV, and MTT images, and radiation dose from these two groups. Qualitative perfusion images were assessed by two readers. Maximum enhancement for group B was higher than group A (P < 0.05). There were no significant differences between the two groups for SNI on CBF and CBV maps (P = 0.06 - 0.576), but significant differences for MTT when SNI was measured on frontal white matter and temporo-occipital white matter (P < 0.05). There were no differences among values of CBF, CBV, and MTT for both groups (P = 0.251-0.917). Mean image quality score in group B was higher than group A for CBF (P < 0.05), but no differences for CBV (P = 0.542) and MTT (P = 0.962). Radiation dose for group B decreased compared with group A. 70 kV cerebral CT perfusion reduces radiation dose without compromising image quality. (orig.)

  7. Ventilation-perfusion distribution in normal subjects.

    Science.gov (United States)

    Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A

    2012-09-01

    Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.

  8. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  9. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Directory of Open Access Journals (Sweden)

    Xiufeng Li

    2014-01-01

    Full Text Available To facilitate quantification of cerebellum cerebral blood flow (CBF, studies were performed to systematically optimize arterial spin labeling (ASL parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM and white matter (WM, and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  10. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    Science.gov (United States)

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  11. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    Science.gov (United States)

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  12. Measurement of lung volume by lung perfusion scanning using SPECT and prediction of postoperative respiratory function

    International Nuclear Information System (INIS)

    Andou, Akio; Shimizu, Nobuyosi; Maruyama, Shuichiro

    1992-01-01

    Measurement of lung volume by lung perfusion scanning using single photon emission computed tomography (SPECT) and its usefulness for the prediction of respiratory function after lung resection were investigated. The lung volumes calculated in 5 patients by SPECT (threshold level 20%) using 99m Tc-macroaggregated albumin (MAA), related very closely to the actually measured lung volumes. This results prompted us to calculate the total lung volume and the volume of the lobe to be resected in 18 patients with lung cancer by SPECT. Based on the data obtained, postoperative respiratory function was predicted. The predicted values of forced vital capacity (FVC), forced expiratory volume (FEV 1.0 ), and maximum vital volume (MVV) showed closer correlations with the actually measured postoperative values (FVC, FEV 1.0 , MVV : r=0.944, r=0.917, r=0.795 respectively), than the values predicted by the ordinary lung perfusion scanning. This method facilitates more detailed evaluation of local lung function on a lobe-by-lobe basis, and can be applied clinically to predict postoperative respiratory function. (author)

  13. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  14. Design of an integrated photo detector circuit for laser doppler blood flow monitoring

    NARCIS (Netherlands)

    Nieland, J.; Nieland, J.; van Kranenburg, H.; Wallinga, Hans; Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    1999-01-01

    A method to measure the blood perfusion of tissue is to apply photons to tissue and measure the frequency shift of the Doppler shifted photons.. To avoid the use of fibers, a chip was designed which contains photodetectors and electronic circuitry to amplify the signal. This IC serves as an

  15. Perfusion lung scintigraphy in primary pulmonary hypertension

    International Nuclear Information System (INIS)

    Ogawa, Y.; Hayashida, K.; Uehara, T.; Shimonagata, T.; Nishimura, T.; Osaka Univ., Suita

    1993-01-01

    15 cases of primary pulmonary hypertension were classified into two groups by patterns of perfusion lung scintigraphy. Perfusion scintigrams showed multiple, small, ill-defined defects (mottled + ve) pattern in eight cases, and the remaining seven cases had a normal (mottled - ve) pattern. The mean pulmonary arterial pressure in patients with a mottled pattern (54 ± 10 mmHg) was higher than in those with a normal pattern (42 ± 9 mmHg, p < 0.05). There were no significant differences between the two groups in right ventricular ejection fraction, partial pressures of oxygen in the arterial blood or alveolo-arterial oxygen difference. All the patients with a mottled pattern died within 2 years following the lung scintigraphy. There was a significant difference in the survival curves between the two groups. (author)

  16. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  17. Dynamic CT myocardial perfusion imaging: detection of ischemia in a porcine model with FFR verification

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    Dynamic cardiac CT perfusion (CTP) is a high resolution, non-invasive technique for assessing myocardial blood ow (MBF), which in concert with coronary CT angiography enable CT to provide a unique, comprehensive, fast analysis of both coronary anatomy and functional ow. We assessed perfusion in a porcine model with and without coronary occlusion. To induce occlusion, each animal underwent left anterior descending (LAD) stent implantation and angioplasty balloon insertion. Normal ow condition was obtained with balloon completely de ated. Partial occlusion was induced by balloon in ation against the stent with FFR used to assess the extent of occlusion. Prospective ECG-triggered partial scan images were acquired at end systole (45% R-R) using a multi-detector CT (MDCT) scanner. Images were reconstructed using FBP and a hybrid iterative reconstruction (iDose4, Philips Healthcare). Processing included: beam hardening (BH) correction, registration of image volumes using 3D cubic B-spline normalized mutual-information, and spatio-temporal bilateral ltering to reduce partial scan artifacts and noise variation. Absolute blood ow was calculated with a deconvolutionbased approach using singular value decomposition (SVD). Arterial input function was estimated from the left ventricle (LV) cavity. Regions of interest (ROIs) were identi ed in healthy and ischemic myocardium and compared in normal and occluded conditions. Under-perfusion was detected in the correct LAD territory and ow reduction agreed well with FFR measurements. Flow was reduced, on average, in LAD territories by 54%.

  18. Perfusion magnetic resonance imaging provides additional information as compared to anatomical imaging for decision-making in vestibular schwannoma

    International Nuclear Information System (INIS)

    Kleijwegt, M.C.; Mey, A.G.L. van der; Wiggers-deBruine, F.T.; Malessy, M.J.A; Osch, M.J.P. van

    2016-01-01

    •DSC/ASL-MRI can be acquired in growing VS with sufficient image quality.•In most patients DSC and ASL techniques provide similar qualitative scores.•These techniques can be of importance in future decision-making. DSC/ASL-MRI can be acquired in growing VS with sufficient image quality. In most patients DSC and ASL techniques provide similar qualitative scores. These techniques can be of importance in future decision-making. The added value of perfusion MRI for decision-making in vestibular schwannoma (VS) patients is unknown. MRI offers two perfusion methods: the first employing contrast agent (dynamic susceptibility contrast (DSC)-MRI) that provides information on cerebral blood volume (CBV) and cerebral blood flow (CBF), the second by magnetic labeling of blood (arterial spin labeling (ASL)-MRI), providing CBF-images. The goal of the current study is to investigate whether DSC and ASL perfusion MRI provides complimentary information to current anatomical imaging in treatment selection process of VS. Nine patients with growing VS with extrameatal diameter >9 mm were included (>2 mm/year and 20% volume expansion/year) and one patient with 23 mm extrameatal VS without growth. DSC and ASL perfusion MRI were obtained on 3 T MRI. Perfusion in VS was scored as hyperintense, hypointense or isointense compared to the contralateral region. Seven patients showed hyperintense signal on DSC and ASL sequences. Three patients showed iso- or hypointense signal on at least one perfusion map (1 patient hypointense on both DSC-MRI and ASL; 1 patient isointense on DSC-CBF; 1 patient isointense on ASL). All patients showed enhancement on post-contrast T1 anatomical scan. Perfusion MR provides additional information compared to anatomical imaging for decision-making in VS

  19. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  20. Bone blood flow measured by 41Ar clearance formed by 44Ca(n,α)41Ar

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.

    1983-01-01

    A technique to measure regional inert gas washout in bone, in vivo, by measuring 41 Ar clearance formed by fast-neutron activation of 44 Ca has been developed. Following fast-neutron irradiation of whole rats, the perfusion-limited clearance of 41 Ar was measured for both dead and living rats. The clearance rate for the live rats indicate that the bone perfusion is in the range of 3 to 20 ml/100 Argon distribution volume

  1. Assessment of left ventricular function by gated myocardial perfusion and gated blood-pool SPECT. Can we use the same reference database?

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.K.; Hasegawa, Shinji; Yoshioka, Jun; Yamaguchi, Hitoshi; Tsujimura, Eiichiro; Nishimura, Tsunehiko [Osaka Univ., Suita (Japan). Graduate School of Medicine

    2000-04-01

    The purpose of this study was to compare left ventricular (LV) volume and ejection fraction (LVEF) measurements obtained with electrocardiographic gated single-photon emission computed tomographic (SPECT) myocardial perfusion imaging (GS-MPI) with those obtained with gated SPECT cardiac blood-pool imaging (GS-pool). Fifteen patients underwent GS-MPI with technetium-99m tetrofosmin and GS-pool with technetium-99m-erythrocyte, within a mean interval of 8{+-}3 days. Eight patients had suspected dilated cardiomyopathy and seven patients had angiographically significant coronary artery disease. End-diastolic volume (EDV), end-systolic volume (ESV) and LVEF measurements were estimated from GS-MPI images by means of Cedars-Sinai automatic quantitative program and from GS-pool images by the threshold technique. Mean differences between GS-MPI and GS-pool in EDV, ESV and LVEF measurements were -2.8{+-}10.5 ml [95% confidence interval (CI): -8.6{+-}3.0 ml], 2.6{+-}7.3 ml (CI: -1.4-6.6 ml) and -2.3{+-}5.1% (CI: -5.1-0.6%), respectively. No significant difference in the mean differences from 0 was found for EDV, ESV or LVEF measurements. Bland-Altman plots revealed no trend over the measured LV volumes and LVEF. For all parameters, regression lines approximated lines of identity. The excellent agreement between GS-MPI and GS-pool measurements suggests that, for estimation of LV volumes and LVEF, these two techniques may be used interchangeably and measurements by one method can serve as a reference for the other. (author)

  2. Whole body perfusion for hybrid aortic arch repair: evolution of selective regional perfusion with a modified extracorporeal circuit.

    Science.gov (United States)

    Fernandes, Philip; Walsh, Graham; Walsh, Stephanie; O'Neil, Michael; Gelinas, Jill; Chu, Michael W A

    2017-04-01

    Patients undergoing hybrid aortic arch reconstruction require careful protection of vital organs. We believe that whole body perfusion with tailored dual circuitry may help to achieve optimal patient outcomes. Our circuit has evolved from a secondary circuit utilizing a cardioplegia delivery device for lower body perfusion to a dual-oxygenator circuit. This allows individually controlled regional perfusion with ease of switching from secondary to primary circuit for total body flow. The re-design allows for separate flow and temperature regulation with two oxygenators in parallel. All patients underwent a single-stage operation for simultaneous treatment of arch and descending aortic pathology via a sternotomy, using a hybrid frozen elephant trunk technique. We report six consecutive patients undergoing hybrid arch and frozen elephant trunk reconstruction using a dual-oxygenator circuit. Five patients underwent elective surgery and one was emergent. One patient had an acute dissection while three underwent concomitant procedures, including a Ross procedure and two valve-sparing root reconstructions. Three cases were redo sternotomies. The mean pump time was 358 ± 131 min, the aortic cross clamp time 243 ± 135 min, the cardioplegia volume of 33,208 ml ± 16,173, cerebral ischemia 0 min, lower body ischemia 76 ± 34 min and the average lower body perfusion time was 142 min. Two patients did not require any donor blood products. The median intensive care unit (ICU) and hospital lengths of stay (LOS) were two days and 10 days, respectively. The average peak serum lactate on CPB was 7.47 mmol/L and, at admission to the ICU, it was 3.37 mmol/L. Renal and respiratory failure developed in the salvage acute type A dissection patient. No other complications occurred in this series. Whole body perfusion as delivered through individually controlled dual-oxygenator circuitry allows maximum flexibility for hybrid aortic arch reconstruction. A modified circuit perfusion

  3. Myocardial perfusion scintigraphy with thallium-201 - principle and method

    International Nuclear Information System (INIS)

    Dressler, J.

    1981-01-01

    Since from the cardiological and cardio-surgical aspects non-invasive methods practicable in the diagnostics of regional myocardial blood perfusion are claiming priority, the myocardial perfusion scintigraphy with thallium 201 has gained more and more importance in the diagnostics of coronary heart diseases. Although radiothallium because of its nucleo-physical characteristics is not regarded as ideal radiopharmaceutical, it is at present, because of its potassium-analogue biokinetics the best radiopharmaceutical to represent the regional coronary perfusion distribution, the vitality and configuration of the heart muscle non-invasively. With careful clinical indication and under consideration of the physico-technical limitations, the informative value provided by the serial scintigraphy with thallium 201 is greater than that provided by the excercise ECG. Various possibilities for solving the problem of quantitative analysis of the myocardial scintigrams have been given. Up to the present day a standardised evaluation procedure corresponding to that of the visual scintigram interpretation has not yet found general acceptance. (orig.) [de

  4. Quantitative assessment of myocardial blood flow by measurement of fractional myocardial uptake of 201Tl

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Ishii, Yasushi; Torizuka, Kanji; Kadota, Kazunori; Kambara, Hirofumi

    1980-01-01

    Fractional Myocardial uptake of 201 Tl was measured for the quantitative assessment of myocardial blood flow in coronary artery disease (CAD). 10 normals and 28 CAD, 7 of which have less than 50% stenosis (CAD I) and 21 of which have more than 50% stenosis (CAD II) in the proximal portion of coronary arteries, were studied at rest and with submaximal exercise loading by bicycle ergometer. After intravenous injection of 201 Tl, its rapid transport process was recorded during the initial 5 minutes by a scintillation camera and a minicomputer. Total injected dosage (T) was obtained from the counts of the entire chest region during the initial passage of the tracer through the heart and lung. Myocardial uptake (M) was counted with the same geometry from the subsequent accumulation within the myocardial region with subtraction of the background activities in the upper mediastinal region (B). The fractional myocardial uptake of 201 Tl ((M-B)/T) is assumed to be proportional to the fractional myocardial blood flow to cardiac output (MBF/CO) according to the indicator fractionation principle. The average value of MBF/CO at rest in CAD (4.11 +- 1.12%) was significantly greater than in normals (3.36 +- 0.49%), which may be caused by an increased left ventricular mass in CAD. Change rate of MBF/CO on the exercise loading was significantly less in CAD I (1.36 +- 0.14) and in CAD II (1.11 +- 0.21) than in normals (1.75 +- 0.11). MBF/CO increased proportionally to the increment of the double product of heart rate and systolic blood pressure by exercise loading in normals, whereas it didn't in CAD. The sensitivity of this method was superior to the stress electrocardiogram and the stress myocardial perfusion imaging, not only in CAD II but also in CAD I. This result indicated that this type of global assessment of the myocardial reserve capacity is valuable in addition to the simple stress myocardial perfusion imaging. (author)

  5. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  6. Thallium-201 myocardial perfusion imaging during transient coronary occlusion at the time of PTCA

    International Nuclear Information System (INIS)

    Nakagawa, Tatsuya; Sugihara, Hiroki; Inagaki, Suetsugu

    1989-01-01

    To evaluate myocardial perfusion during transient coronary arterial occlusion, thallium-201 was administered intravenously during percutaneous transluminall coronary angioplasty (PTCA) in 12 patients with effort angina, and the resulting perfusion images were compared with those of exercise stress obtained before PTCA. Thallium-201 was injected at the last inflation of an angioplastic baloon and occlusion was maintained for 60 to 90 sec. Three projections of planar images were obtained immediately after PTCA, using a portable gamma camera in an angiography room. These perfusion images obtained during PTCA and exercise were visually interpreted and compared. Myocardial perfusion defects due to the responsible vessel occlusion were observed at early imaging after PTCA, and were fully redistributed three hrs post injection. In 10 patients without angiographically imaged collateral vessels, there were no significatn differences in perfusion between images during PTCA and during exercise. Two patients whose collaterals were observed during coronary angiography before PTCA had higher perfusion scores during PTCA than during exercise. We concluded that intravenous injection of thallium-201 during PTCA is a useful means for assessing alteration of myocardial perfusion due to transient coronary occlusion without increasing the risk of angioplastic procedures, and that it provides more precise information about the jeopardized myocardium, perfused by antegrade blood flow. (author)

  7. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model

    International Nuclear Information System (INIS)

    Herrero, P.; Markham, J.; Shelton, M.E.; Weinheimer, C.J.; Bergmann, S.R.

    1990-01-01

    Positron emission tomography (PET) centers without cyclotrons use generator-produced rubidium-82 (82Rb) for assessment of myocardial perfusion. The aim of the present study was to determine whether myocardial blood flow could be assessed quantitatively with 82Rb and PET. Because the myocardial extraction fraction of 82Rb varies inversely and nonlinearly with flow and cannot be measured conveniently with PET, we used an experimentally derived mathematical function defining the relation between single-pass extraction fraction of 82Rb and flow to obviate the necessity of measuring the extraction fraction directly. Myocardial blood flow in absolute terms (ml/g/min) was estimated from dynamic PET scans after intravenous administration of 82Rb in intact dogs and compared with flows measured with radiolabeled microspheres. In 36 comparisons in 13 dogs studied at rest, or after coronary occlusion, reperfusion, or after coronary hyperemia induced with intravenous dipyridamole, over the flow range from 0.2 to 2.0 ml/g/min, estimates of perfusion with rubidium correlated well with flows measured concomitantly with microspheres, although there was a slight underestimation of flow with rubidium (flow by 82Rb = 0.92 x flow by microspheres-0.021, r = 0.83). In general, estimates of flow in ischemic regions were less reliable than estimates for regions with normal flow. Thus, although the relation between myocardial extraction and retention of 82Rb and flow can vary under a variety of physiological and pathophysiological conditions, this study demonstrates the ability to obtain quantitative estimates of myocardial blood flow with 82Rb and PET under carefully defined conditions without measuring the extraction fraction directly

  8. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy

    Science.gov (United States)

    Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.

    2010-05-01

    Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.

  9. Effects of Combined Far-Infrared Radiation and Acupuncture at ST36 on Peripheral Blood Perfusion and Autonomic Activities

    Directory of Open Access Journals (Sweden)

    Cheng-Chan Yang

    2017-01-01

    Full Text Available Using four-channel photoplethysmography (PPG for acquiring peripheral arterial waveforms, this study investigated vascular and autonomic impacts of combined acupuncture-far infrared radiation (FIR in improving peripheral circulation. Twenty healthy young adults aged 25.5±4.6 were enrolled for 30-minute measurement. Each subject underwent four treatment strategies, including acupuncture at ST36 (Zusanli, pseudoacupuncture, FIR, and combined acupuncture-FIR at different time points. Response was assessed at 5-minute intervals. Area under arterial waveform at baseline was defined as AreaBaseline, whereas AreaStim referred to area at each 5-minute substage during and after treatment. AreaStim/AreaBaseline was compared at different stages and among different strategies. Autonomic activity at different stages was assessed using low-to-high frequency power ratio (LHR. The results demonstrated increased perfusion for each therapeutic strategy from stage 1 to stage 2 (all p<0.02. Elevated perfusion was noted for all treatment strategies at stage 3 compared to stage 1 except pseudoacupuncture. Increased LHR was noted only in subjects undergoing pseudoacupuncture at stage 3 compared to stage 1 (p=0.045. Reduced LHR at stage 2 compared to stage 1 was found only in combined treatment group (p=0.041. In conclusion, the results support clinical benefits of combined acupuncture-FIR treatment in enhancing peripheral perfusion and parasympathetic activity.

  10. Evaluating acute effects of Electro Convulsive Therapy (ECT) on brain perfusion with Tc-99m HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Ozguven, M.; Ozturk, E.; Gunalp, B.; Ozgen, F.; Bayhan, H.

    1992-01-01

    Regional cerebral blood flow (rCBF) was measured by Tc-99m HMPAO brain perfusion SPECT in 10 schizophrenes (8 male, 2 female) undergoing electro convulsive therapy (ECT) and the results were compared to those of baseline studies performed 3 days prior to the ECT application to evaluate its acute effect on brain perfusion. ECT caused a redistribution in the tracers uptake. There was a global increase in the rCBF and the uptake became more pronounced in the basal ganglia (left: 44.4+-1.9%, right: 43.1+-19%) and to a degree in the parietal (left: 26.5+-4.1%, right: 25+-3.4%) and temporal (left: 22.9+-4.3%, right: 22.3+-3.6%) cortices. When evaluating the effects of ECT on rCBF, factors like the used perfusion agent, the injection and rCBF measurement times, clinical status of the patient, duration of the illness, used therapeutic agents and variations in the ECT application should be taken into consideration because the obtained data may reflect either the ictal or post-ictal changes on rCBF and is specific to the group of patients undergoing the study

  11. Clinical evaluation of pulmonary perfusion MRI using FAIR (flow-sensitive alternating inversion recovery)-HASTE (Half-Fourier Single-Shot TurboSE) method

    International Nuclear Information System (INIS)

    Togami, Izumi; Sasai, Nobuya; Tsunoda, Masatoshi; Sei, Tetsurou; Sato, Shuhei; Yabuki, Takayuki; Hiraki, Yoshio

    2002-01-01

    The FAIR-HASTE method is a kind of noninvasive perfusion MR imaging obtained without the use of contrast media. By subtracting a flow-insensitive image from a flow-sensitive image, contrast enhancement of inflowing blood achieved. In the present study, we applied pulmonary perfusion FAIR-HASTE sequence for 23 patients with various pulmonary diseases, and compared the findings with those by pulmonary perfusion scintigraphy and Gadolinium perfusion MRI. Pulmonary perfusion imaging with the FAIR-HASTE method was possible in all clinical cases, and the findings corresponded well to those obtained by perfusion MRI using contrast media or pulmonary scintigraphy. The FAIR-HASTE method is a promising method for the evaluation of pulmonary perfusion. (author)

  12. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    Science.gov (United States)

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  13. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET.

    Science.gov (United States)

    Tomiyama, Yuuki; Manabe, Osamu; Oyama-Manabe, Noriko; Naya, Masanao; Sugimori, Hiroyuki; Hirata, Kenji; Mori, Yuki; Tsutsui, Hiroyuki; Kudo, Kohsuke; Tamaki, Nagara; Katoh, Chietsugu

    2015-09-01

    To develop and validate a method for quantifying myocardial blood flow (MBF) using dynamic perfusion magnetic resonance imaging (MBFMRI ) at 3.0 Tesla (T) and compare the findings with those of (15) O-water positron emission tomography (MBFPET ). Twenty healthy male volunteers underwent magnetic resonance imaging (MRI) and (15) O-water positron emission tomography (PET) at rest and during adenosine triphosphate infusion. The single-tissue compartment model was used to estimate the inflow rate constant (K1). We estimated the extraction fraction of Gd-DTPA using K1 and MBF values obtained from (15) O-water PET for the first 10 subjects. For validation, we calculated MBFMRI values for the remaining 10 subjects and compared them with the MBFPET values. In addition, we compared MBFMRI values of 10 patients with coronary artery disease with those of healthy subjects. The mean resting and stress MBFMRI values were 0.76 ± 0.10 and 3.04 ± 0.82 mL/min/g, respectively, and showed excellent correlation with the mean MBFPET values (r = 0.96, P < 0.01). The mean stress MBFMRI value was significantly lower for the patients (1.92 ± 0.37) than for the healthy subjects (P < 0.001). The use of dynamic perfusion MRI at 3T is useful for estimating MBF and can be applied for patients with coronary artery disease. © 2014 Wiley Periodicals, Inc.

  14. Evaluation of brain perfusion in Alzheimer disease with perfusion computed tomography and comparison to elderly patient without dementia.

    Science.gov (United States)

    Yildirim, Tülin; Karakurum Göksel, Başak; Demir, Şenay; Tokmak, Naime; Tan, Meliha

    2016-04-19

    The aim of this study was to evaluate perfusion computed tomography (PCT) findings in patients with Alzheimer disease and to compare them with those of patients without dementia. PCT was performed in 35 patients: 20 with Alzheimer disease (mean age, 69.7 ± 5.5 years) and 15 control subjects (mean age, 67.5 ± 3.5 years). Control subjects were elderly individuals with no cognitive problems who were admitted with headaches. All PCT examinations were performed on a 4-slice CT unit. The PCT analysis software program was used to calculate regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), regional time-to-peak (rTTP) values in the bilateral frontal, temporal, and occipital cortices, and bilateral lentiform nucleus. rCBF values in the bilateral frontal and temporal cortices and bilateral lentiform nucleus were significantly lower in the patients with Alzheimer disease than in the control subjects. There were no significant differences in rCBV values between Alzheimer disease and the control group. rTTP values in all cortical areas and bilateral lentiform nucleus were significantly higher in the patients with Alzheimer disease than in the control subjects. PCT is a rapid and reliable imaging modality for evaluating brain perfusion in Alzheimer disease.

  15. TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps

    NARCIS (Netherlands)

    A. Mendrik (Adrienne); E.J.P.A. Vonken; B.T.J. van Ginneken (Berbke); J.R. Riordan (John ); H.W.A.M. de Jong (Hugo); T. van Seeters (Tom); E.J. Smit (Ewoud); M.A. Viergever (Max); M. Prokop (Mathias)

    2011-01-01

    textabstractCerebral computed tomography perfusion (CTP) scans are acquired to detect areas of abnormal perfusion in patients with cerebrovascular diseases. These 4D CTP scans consist of multiple sequential 3D CT scans over time. Therefore, to reduce radiation exposure to the patient, the amount of

  16. Detectable perfusion changes in MAG3 studies

    International Nuclear Information System (INIS)

    Shuter, B.; Bernar, A.; Roach, P.

    1998-01-01

    Full text: The use of 120 MBq 99m Tc-MAG 3 instead of 600 MBq 99m Tc-DTPA in renal imaging has degraded the images obtained during the perfusion phase. An increase of the minimum detectable change (MDC) in blood flow (BF) would also be expected. In transplant patients, renal BF is an important factor in patient management and the MDC should be small to allow early detection of reduced perfusion. We determined the mean and coefficient of variation (CoV: standard deviation/mean) of three renal perfusion indices as a function of counts in the time-activity curves (TACs). Transplant patients were given a dose of about 300 MBq of 99m Tc-MAG3 and images acquired at 8 fps for 60s. TACs made up from 8, 4, 2 or I images per second allowed calculation of renal perfusion indices as if doses of 300, 150, 75 and 38 MBq had been administered. Perfusion indices based on area under the TACs up to the arterial peak (API), the maximum slopes of the TACs (SPI) and the maximum slope of renal TAC and height of arterial TAC (BPI) were calculated by our routine renal software package. As the administered dose decreased, the CoV rose for all indices, least for BPI and most for API. BPI CoV increased from ∼10% at 300 MBq to 20% at 75 MBq, but API CoV rose from 6% to 46%. Mean BPI was stable over the dose range, but mean API showed a systematic increase of about 50% over the 300 MBq result. We conclude that at 120 MBq the MDC (expressed as 2*CoV) in BF is 30-60%, whereas at 600 MBq it may be as low as 10%, allowing earlier confident detection of a change in BF. The BPI was the preferred perfusion index as its mean value changed little and it had the least CoV at lower activities. The data also imply that relative kidney perfusion in the one individual will be much less accurate with 120 MBq of MAG 3

  17. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  18. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Li Chao; Lv Haibo

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3–127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2–53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7–124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2–62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14–47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice. (author)

  19. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model.

    Science.gov (United States)

    Sun, Chang-Jin; Li, Chao; Lv, Hai-Bo; Zhao, Cong; Yu, Jin-Ming; Wang, Guang-Hui; Luo, Yun-Xiu; Li, Yan; Xiao, Mingyong; Yin, Jun; Lang, Jin-Yi

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.

  20. Perfusion lung scintigraphy in primary pulmonary hypertension

    International Nuclear Information System (INIS)

    Ogawa, Yoji; Nishimura, Tsunehiko; Kumita, Shin-ichirou; Hayashida, Kohei; Uehara, Toshiisa; Shimonagata, Tsuyoshi; Ohno, Akira

    1991-01-01

    Fifteen cases with primary pulmonary hypertension (PPH) were classified into two groups by using the perfusion lung scan pattern. Eight cases had multiple, small, ill-defined defects (mottled pattern), and remaining seven cases had no mottled pattern. These two groups were compared with mean pulmonary arterial pressure (mean PAP), right ventricular ejection fraction (RVEF), blood gas at room air (PaO 2 ), and alveolar-arterial O 2 difference (A-aDo 2 ). The cases with mottled pattern showed a significant increase in mean PAP. There were no significant differences in RVEF, PaO 2 , and A-aDo 2 , between the groups. The survival rate of the patients with mottled pattern was significantly lower than that without mottled pattern (p<0.05). We concluded that perfusion lung scan is very useful for evaluation of the prognosis in primary pulmonary hypertension. (author)