WorldWideScience

Sample records for blood flow autoregulation

  1. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... of renal autoregulation, a broad band perturbation of the arterial pressure was employed in both the simulations and the experiments. Renal blood flow and tubular pressure were used as response variables in the comparison. To better approximate the situation in vivo where a large number of individual...... data, which shows a unimodal curve for the admittance phase. The ability of the model to reproduce the experimental data supports the hypothesis that dynamic autoregulation of renal blood flow is due to the combined action of TGF and the myogenic response....

  2. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study.

    Science.gov (United States)

    Ku, Hsiao-Lun; Wang, Jiunn-Kae; Lee, Hsin-Chien; Lane, Timothy Joseph; Liu, I-Chao; Chen, Yung-Chan; Lee, Yao-Tung; Lin, I-Cheng; Lin, Chia-Pei; Hu, Chaur-Jong; Chi, Nai-Fang

    2017-10-01

    Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    Science.gov (United States)

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  4. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  5. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics

    DEFF Research Database (Denmark)

    Bentsen, N; Larsen, B; Lassen, N A

    1975-01-01

    Using the arteriovenous oxygen difference method autoregulation of cerebral blood flow (CBF) was tested in 16 long-term diabetics and eight control patients. Blood pressure was raised by angiotensin infusion and lowered by trimethaphan camsylate infusion, in some cases combined with head-up tilting...... of the patient. Regression analysis was carried out on the results in order to quantify autoregulatory capacity. In the control patients CBF did not vary with moderate blood pressure variations, indicating normal autoregulation. In four of the 16 diabetic patients CBF showed significant pressure dependency......, indicating impaired autoregulation. The cause of impaired autoregulation in some long-term diabetics is believed to be diffuse or multifocal dysfunction of cerebral arterioles due to diabetic vascular disease. Other conditions with impaired autoregulation are discussed and compared with that seen in long...

  6. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......, the flow in the pedicle was reduced and the flow was recorded. RESULTS: The flaps showed a strong autoregulatory response with complete compensation for flow reductions of up to 70-80%. Infusion of nimodipine caused a 28+/-10% increase in blood flow and removed the autoregulation. Papaverine caused...... a further increase in blood flow by 61+/-19%. The time control experiments proved that the experimental procedure was reproducible and stable over time. CONCLUSIONS: A tissue flap can nearly completely compensate for repeated flow reductions of up to 70-80%. This is due to a decrease in the peripheral...

  7. Differences in dynamic autoregulation of renal blood flow between SHR and WKY rats

    DEFF Research Database (Denmark)

    Chen, Y M; Holstein-Rathlou, N H

    1993-01-01

    by chaotic fluctuations. We sought to determine whether this change was associated with a change in the dynamic autoregulation of renal blood flow. In halothane-anesthetized 250- to 320-g SHR and WKY rats, renal blood flow was measured during "white noise" forcing of arterial blood pressure. The frequency...... conclude that the change in the dynamics of TGF leads to a change in the dynamic autoregulation of renal blood flow between SHR and WKY rats. This change results in a more efficient dynamic autoregulation of renal blood flow in the SHR compared with the WKY rats. The functional consequences of this......In halothane-anesthetized Wistar-Kyoto (WKY) rats the single-nephron blood flow and the proximal tubule pressure oscillate at a frequency of 35-50 mHz because of the operation of the tubuloglomerular feedback (TGF) mechanism. In spontaneously hypertensive rats (SHR) the oscillations are replaced...

  8. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Xiao

    2017-01-01

    Full Text Available During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  9. Dynamics of renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    Two separate components could be resolved in tests of the dynamic autoregulation of renal blood flow. The slow component corresponds to the frequency at which spontaneous proximal tubular pressure oscillations are found, and are most likely due to the operation of the TGF. The high frequency...

  10. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  11. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  12. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Springborg, Jacob Bertram; Ma, XiaoDong; Rochat, Per

    2002-01-01

    the intracarotid (133)Xe method. CBF autoregulation was preserved in both sham-operated groups (lower limits of mean arterial blood pressure: 91+/-3 and 98+/-3 mmHg in groups A and B, respectively). In the vehicle treated SAH-group, autoregulation was abolished and the relationship between CBF and blood pressure...... administered recombinant EPO on impaired cerebral blood flow (CBF) autoregulation after experimental subarachnoid haemorrhage (SAH). Four groups of male Sprague-Dawley rats were studied: group A, sham operation plus vehicle; group B, sham operation plus EPO; group C, SAH plus vehicle; group D, SAH plus EPO...

  13. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Leyssac, Paul Peter; Skøtt, Ole

    2000-01-01

    The role for ANG II in renal blood flow (RBF) autoregulation is unsettled. The present study was designed to test the effect of clamping plasma ANG II concentrations ([ANG II]) by simultaneous infusion of the angiotensin-converting enzyme inhibitor captopril and ANG II on RBF autoregulation...... in halothane-anesthetized Sprague-Dawley rats. Autoregulation was defined as the RBF response to acute changes in renal perfusion pressure (RPP). Regulation was defined as changes in RBF during long-lasting changes in RPP. The results showed that a prolonged reduction of RPP reset the lower limit...

  14. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change

    Science.gov (United States)

    Evans, D.; Harris, A.; Garrett, M.; Chung, H. S.; Kagemann, L.

    1999-01-01

    BACKGROUND/AIMS—Autoregulation of blood flow during posture change is important to ensure consistent organ circulation. The purpose of this study was to compare the change in retrobulbar ocular blood flow in glaucoma patients with normal subjects during supine and upright posture.
METHODS—20 open angle glaucoma patients and 20 normal subjects, similar in age and sex distribution, were evaluated. Blood pressure, intraocular pressure, and retrobulbar blood velocity were tested after 30 minutes of sitting and again after 30 minutes of lying. Retrobulbar haemodynamic measures of peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) were obtained in the ophthalmic and central retinal arteries using colour Doppler imaging (CDI).
RESULTS—When changing from the upright to supine posture, normal subjects demonstrated a significant increase in OA EDV (p = 0.016) and significant decrease in OA RI (p = 0.0006) and CRA RI (p = 0.016). Glaucoma patients demonstrated similar changes in OA measures of EDV (p = 0.02) and RI (p = 0.04), but no change in CRA measures.
CONCLUSION—Glaucoma patients exhibit faulty autoregulation of central retinal artery blood flow during posture change.

 PMID:10381668

  15. Impaired autoregulation of blood flow in subcutaneous tissue of long-term type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Kastrup, J; Nørgaard, T; Parving, H H

    1985-01-01

    subjects. Blood flow was measured by the local 133Xenon washout technique. Mean arterial blood pressure was reduced by a maximum of 23 mmHg by elevating the limb above heart level and elevating to a maximum of 70 mmHg by head-up tilt; in the latter position venous pressure was kept constant and low...... with clinical microangiopathy, autoregulation of blood flow was impaired, blood flow changing approximately 20% per 10 mmHg change in arterial blood pressure; the slope of the autoregulation curves was significantly higher compared with the two control groups (p less than 0.02). Resting mean arterial blood...

  16. Cerebral Blood Flow Autoregulation in Sepsis for the Intensivist: Why Its Monitoring May Be the Future of Individualized Care.

    Science.gov (United States)

    Goodson, Carrie M; Rosenblatt, Kathryn; Rivera-Lara, Lucia; Nyquist, Paul; Hogue, Charles W

    2018-02-01

    Cerebral blood flow (CBF) autoregulation maintains consistent blood flow across a range of blood pressures (BPs). Sepsis is a common cause of systemic hypotension and cerebral dysfunction. Guidelines for BP management in sepsis are based on historical concepts of CBF autoregulation that have now evolved with the availability of more precise technology for its measurement. In this article, we provide a narrative review of methods of monitoring CBF autoregulation, the cerebral effects of sepsis, and the current knowledge of CBF autoregulation in sepsis. Current guidelines for BP management in sepsis are based on a goal of maintaining mean arterial pressure (MAP) above the lower limit of CBF autoregulation. Bedside tools are now available to monitor CBF autoregulation continuously. These data reveal that individual BP goals determined from CBF autoregulation monitoring are more variable than previously expected. In patients undergoing cardiac surgery with cardiopulmonary bypass, for example, the lower limit of autoregulation varied between a MAP of 40 to 90 mm Hg. Studies of CBF autoregulation in sepsis suggest patients frequently manifest impaired CBF autoregulation, possibly a result of BP below the lower limit of autoregulation, particularly in early sepsis or with sepsis-associated encephalopathy. This suggests that the present consensus guidelines for BP management in sepsis may expose some patients to both cerebral hypoperfusion and cerebral hyperperfusion, potentially resulting in damage to brain parenchyma. The future use of novel techniques to study and clinically monitor CBF autoregulation could provide insight into the cerebral pathophysiology of sepsis and offer more precise treatments that may improve functional and cognitive outcomes for survivors of sepsis.

  17. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2000-01-01

    BACKGROUND AND PURPOSE: Cerebral blood flow (CBF) autoregulation is impaired in patients with acute bacterial meningitis: this may be caused by cerebral arteriolar dilatation. We tested the hypothesis that CBF autoregulation is recovered by acute mechanical hyperventilation in 9 adult patients...... with acute bacterial meningitis. METHODS: Norepinephrine was infused to increase mean arterial pressure (MAP) 30 mm Hg from baseline. Relative changes in CBF were concomitantly recorded by transcranial Doppler ultrasonography of the middle cerebral artery, measuring mean flow velocity (V...... completely during hyperventilation. The slope of the autoregulation curve decreased during hyperventilation compared with normoventilation (Pmeningitis, indicating...

  18. Impaired autoregulation of cerebral blood flow in long-term type I (insulin-dependent) diabetic patients with nephropathy and retinopathy

    DEFF Research Database (Denmark)

    Kastrup, J; Rørsgaard, S; Parving, H H

    1986-01-01

    Autoregulation of cerebral blood flow, i.e., the maintenance of cerebral blood flow within narrow limits during changes in arterial perfusion pressure, was studied in nine healthy control subjects and in 12 long-term Type I (insulin-dependent) diabetic patients with clinical microangiopathy...... the previous findings suggesting that autoregulation of cerebral blood flow is impaired in some long-term Type I diabetic patients with clinical microangiopathy (arteriolar hyalinosis)........ Cerebral blood flow was measured by the intravenous 133Xenon method. Mean arterial blood pressure was elevated approximately 30 mmHg by intravenous infusion of angiotensin amide II and lowered about 10 mmHg by intravenous infusion of trimethaphan camsylate. In the control subjects the flow/pressure curve...

  19. Cerebral blood flow autoregulation in hypertension and effects of antihypertensive drugs

    DEFF Research Database (Denmark)

    Barry, David; Lassen, N A

    1984-01-01

    If antihypertensive treatment, especially emergency blood pressure lowering, is always to be safe, more thought should be given to autoregulation of cerebral blood in the hypertensive patient. This topic is reviewed in the present article, in the hypertensive patient. This topic is reviewed...... in the present article, particular emphasis being placed on the resetting of the lower limit of autoregulation to higher pressure in hypertension and the effects of acute administration of anti-hypertensive drugs on CBF and CBF-autoregulation....

  20. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model...... correctly predicted gain and phase only in the low-frequency range. Experimental results revealed a second component of vascular control active at 100-150 mHz that was not predicted by the simulation. Forcings at single frequencies showed that the system behaves linearly except in the band of 33-50 m...

  1. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  2. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    Science.gov (United States)

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  4. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.

    Science.gov (United States)

    Goettel, Nicolai; Patet, Camille; Rossi, Ariane; Burkhart, Christoph S; Czosnyka, Marek; Strebel, Stephan P; Steiner, Luzius A

    2016-06-01

    Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200).

  5. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    Science.gov (United States)

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  6. Application of wavelet analysis to detect dysfunction in cerebral blood flow autoregulation during experimental hyperhomocysteinaemia.

    Science.gov (United States)

    Aleksandrin, Valery V; Ivanov, Alexander V; Virus, Edward D; Bulgakova, Polina O; Kubatiev, Aslan A

    2018-04-03

    The purpose of the present study was to investigate the use of laser Doppler flowmetry (LDF) signals coupled with spectral wavelet analysis to detect endothelial link dysfunction in the autoregulation of cerebral blood flow in the setting of hyperhomocysteinaemia (HHcy). Fifty-one rats were assigned to three groups (intact, control, and HHcy) according to the results of biochemical assays of homocysteine level in blood plasma. LDF signals on the rat brain were recorded by LAKK-02 device to measure the microcirculatory blood flow. The laser operating wavelength and output power density were1064 nm and 0.051 W/mm 2 , respectively. A Morlet mother wavelet transform was applied to the measured 8-min LDF signals, and periodic oscillations with five frequency intervals were identified (0.01-0.04 Hz, 0.04-0.15 Hz, 0.15-0.4 Hz, 0.4-2 Hz, and 2-5 Hz) corresponding to endothelial, neurogenic, myogenic, respiratory, and cardiac origins, respectively. In initial state, the amplitude of the oscillations decreased by 38% (P wavelet analysis may be successfully applied to detect the dysfunction of the endothelial link in cerebral vessel tone and to reveal the pathological shift of lower limit of autoregulation.

  7. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.

    Science.gov (United States)

    Grifoni, Samira C; Chiposi, Rumbidzayi; McKey, Susan E; Ryan, Michael J; Drummond, Heather A

    2010-02-01

    Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.

  8. Altered whole kidney blood flow autoregulation in a mouse model of reduced β-ENaC

    Science.gov (United States)

    Grifoni, Samira C.; Chiposi, Rumbidzayi; McKey, Susan E.; Ryan, Michael J.

    2010-01-01

    Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (∼5 s) and slow acting tubuloglomerular feedback (TGF; ∼25 s). Previous studies suggest epithelial Na+ channel (ENaC) family proteins, β-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether β-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced β-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0–5, 6–25, and 110–120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by ∼50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between β-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in β-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest β-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo. PMID:19889952

  9. High-NaCl intake impairs dynamic autoregulation of renal blood flow in ANG II-infused rats

    DEFF Research Database (Denmark)

    Saeed, Aso; Dibona, Gerald F; Marcussen, Niels

    2010-01-01

    The aim of this study was to investigate dynamic autoregulation of renal blood flow (RBF) in ANG II-infused rats and the influence of high-NaCl intake. Sprague-Dawley rats received ANG II (250 ng·kg(-1)·min(-1) sc) or saline vehicle (sham) for 14 days after which acute renal clearance experiments...

  10. Autoregulation of cerebral circulation in hypertension

    International Nuclear Information System (INIS)

    Strandgaard, S.

    1978-01-01

    The present work deals with the effects of high blood pressure on cerebrovascular autoregulation, i.e. the mechanism that ensures a constant blood flow in the brain tissue by way of varying the calibre of the smallest resistance vessels. It has been shown that in patients with severe, untreated or uncontrolled hypertension, the lower limit of autoregulation of cerebral blood flow is shifted towards high blood pressure, thus decreasing the tolerance to acute hypotension. This is a functional correlate of the morphological changes present in hypertensive arterioles, i.e. wall thickening and luminal narrowing. Observations in a group of effectively treated hypertensive patients strongly suggest that a readaptation of autoregulation towards normal may take place during long-term entihypertensive treatment. Thus, the present findings should not be interpreted as a warning against clinical blood pressure lowering, which is known from other studies to protect the patient against stroke. Rather, the present observations are a support of the view that a severely elevated blood pressure should be lowered gradually, without aiming at an immediate normalization. It has also been demonstrated that some hypertensive patients do not readapt their cerebrovascular autoregulation towards normal during treatment, and may be better served in the long run with a blood pressure somewhat above normal. An upper blood pressure limit of autoregulation of cerebral blood flow has been demonstrated in man and experimental animal in the present and other investigations. With a blood pressure rise of 40-60% above the resting awake level, autoregulation may fail, and cerebral blood flow increases. At the upper limit of autoregulation, a ''sausage-string'' pattern has been observed in the cat's pial arterioles. It has been shown by vessel calibre measurements to consist of localized dilatations superimposed on autoregulatory arteriolar constriction. At higher pressures, vasodilatation becomes

  11. The Dual Role of Cerebral Autoregulation and Collateral Flow in the Circle of Willis After Major Vessel Occlusion.

    Science.gov (United States)

    Kennedy McConnell, Flora; Payne, Stephen

    2017-08-01

    Ischaemic stroke is a leading cause of death and disability. Autoregulation and collateral blood flow through the circle of Willis both play a role in preventing tissue infarction. To investigate the interaction of these mechanisms a one-dimensional steady-state model of the cerebral arterial network was created. Structural variants of the circle of Willis that present particular risk of stroke were recreated by using a network model coupled with: 1) a steady-state physiological model of cerebral autoregulation; and 2) one wherein the cerebral vascular bed was modeled as a passive resistance. Simulations were performed in various conditions of internal carotid and vertebral artery occlusion. Collateral flow alone is unable to ensure adequate blood flow ([Formula: see text] normal flow) to the cerebral arteries in several common variants during internal carotid artery occlusion. However, compared to a passive model, cerebral autoregulation is better able to exploit available collateral flow and maintain flows within [Formula: see text] of baseline. This is true for nearly all configurations. Hence, autoregulation is a crucial facilitator of collateral flow through the circle of Willis. Impairment of this response during ischemia will severely impact cerebral blood flows and tissue survival, and hence, autoregulation should be monitored in this situation.

  12. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    . The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal......The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model...

  13. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...... technique. Reduction in arterial perfusion pressure was produced by elevating the limb 20 and 40 cm above heart level. Blood flow remained within 10% of control values when the limb was elevated in normal subjects. In five of the seven diabetic subjects blood flow fell significantly in both tissues when...

  14. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Science.gov (United States)

    Dick, Gregory M.; Namani, Ravi; Patel, Bhavesh; Kassab, Ghassan S.

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic data with standard criteria; (b) assign results to diameter categories defined by morphometry; and (c) use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease. PMID:29875686

  15. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    Directory of Open Access Journals (Sweden)

    Gregory M. Dick

    2018-05-01

    Full Text Available Myogenic responses (pressure-dependent contractions of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure. Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a analyze myogenic data with standard criteria; (b assign results to diameter categories defined by morphometry; and (c use our novel multiscale flow model to determine the extent to which ex vivo myogenic reactivity can explain autoregulation in vivo. When myogenic responses from the literature are an input for our model, the predicted coronary autoregulation approaches in vivo observations. More complete and appropriate data are now available to investigate the regulation of coronary blood flow in swine, a highly relevant model for human physiology and disease.

  16. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

    Science.gov (United States)

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-05-29

    This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Extracorporeal circuits and autoregulation: effect of albumin coating

    NARCIS (Netherlands)

    Borgdorff, P.; Kok, W. E.; van den Bos, G. C.

    1992-01-01

    Autoregulation of muscle blood flow often is difficult to demonstrate when extracorporeal perfusion is used. This could be caused by contact of blood and foreign material. Accordingly, we tested whether autoregulation is preserved when the system is coated with albumin. Polyurethane tubing between

  18. Autoregulation of brain circulation in severe arterial hypertension

    DEFF Research Database (Denmark)

    Strandgaard, S; Olesen, Jes; Skinhoj, E

    1973-01-01

    Cerebral blood flow was studied by the arteriovenous oxygen difference method in patients with severe hypertension and in normotensive controls. The blood pressure was lowered to study the lower limit of autoregulation (the pressure below which cerebral blood flow decreases) and the pressure limit...... of brain hypoxia. Both limits were shifted upwards in the hypertensive patients, probably as a consequence of hypertrophy of the arteriolar walls. These findings have practical implications for antihypertensive therapy.When the blood pressure was raised some patients showed an upper limit of autoregulation...

  19. Heterogeneity of brain blood flow and permeability during acute hypertension

    International Nuclear Information System (INIS)

    Baumbach, G.L.; Heistad, D.D.

    1985-01-01

    The purpose of this study was to examine regional autoregulation of blood flow in the brain during acute hypertension. In anesthetized cats severe hypertension increased blood flow more in cerebrum (159%) and cerebellum (106%) than brain stem (58%). In contrast to the heterogeneous autoregulatory response, hypocapnia produced uniform vasoconstriction in the brain. The authors also compared vasodilatation during severe hypertension with vasodilatation during hypercapnia. During hypercapnia, blood flow increased as much in brain stem, as in cerebrum and cerebellum. Thus, regional differences in autoregulation appear to be specific for autoregulatory stimulus and are not secondary to nonspecific differences in vasoconstrictor or vasodilator capacity. To determine whether the blood-brain barrier is more susceptible to hypertensive disruption in regions with less effective autoregulation, permeability of the barrier was quantitated with 125 I-albumin. Severe hypertension produced disruption of the barrier in cerebrum but not in brain stem. Thus, there are parallel differences in effectiveness of autoregulation and susceptibility to disruption of the blood-brain barrier in different regions of the brain

  20. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Strauss, Gitte I; Mehlsen, Jesper

    2006-01-01

    Cerebral blood flow autoregulation is lost in patients with severe liver cirrhosis. The cause of this is unknown. We determined whether autonomic dysfunction was related to impaired cerebral autoregulation in patients with cirrhosis. Fourteen patients with liver cirrhosis and 11 healthy volunteers...... were recruited. Autonomic function was assessed in response to deep breathing, head-up tilt and during 24-h Holter monitoring. Cerebral autoregulation was assessed by determining the change in mean cerebral blood flow velocity (MCAVm, transcranial Doppler) during an increase in blood pressure induced...... by norepinephrine infusion (NE). The severity of liver disease was assessed using the Child-Pugh scale (class A, mild; class B, moderate; class C, severe liver dysfunction).NE increased blood pressure similarly in the controls (27 (24-32) mmHg) and patients with the most severe liver cirrhosis (Child-Pugh C, 31 (26...

  1. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  2. To autoregulate or not to autoregulate--that is no longer the question

    DEFF Research Database (Denmark)

    Greisen, Gorm

    2009-01-01

    In the late 1970s, high cerebral blood flow was perceived as a cause of intracranial hemorrhage in the preterm infant. Intracranial hemorrhage was diagnosed by computed tomography and ultrasound found to be frequent not only in babies who died. Hemorrhage was soon linked to cerebral palsy...... involved in cerebral blood flow and oxygenation. Meanwhile, some basic questions regarding autoregulation remain unanswered, and some concepts from the 1970s still direct clinical practice....

  3. The relationship between cardiac output and dynamic cerebral autoregulation in humans.

    Science.gov (United States)

    Deegan, B M; Devine, E R; Geraghty, M C; Jones, E; Ólaighin, G; Serrador, J M

    2010-11-01

    Cerebral autoregulation adjusts cerebrovascular resistance in the face of changing perfusion pressures to maintain relatively constant flow. Results from several studies suggest that cardiac output may also play a role. We tested the hypothesis that cerebral blood flow would autoregulate independent of changes in cardiac output. Transient systemic hypotension was induced by thigh-cuff deflation in 19 healthy volunteers (7 women) in both supine and seated positions. Mean arterial pressure (Finapres), cerebral blood flow (transcranial Doppler) in the anterior (ACA) and middle cerebral artery (MCA), beat-by-beat cardiac output (echocardiography), and end-tidal Pco(2) were measured. Autoregulation was assessed using the autoregulatory index (ARI) defined by Tiecks et al. (Tiecks FP, Lam AM, Aaslid R, Newell DW. Stroke 26: 1014-1019, 1995). Cerebral autoregulation was better in the supine position in both the ACA [supine ARI: 5.0 ± 0.21 (mean ± SE), seated ARI: 3.9 ± 0.4, P = 0.01] and MCA (supine ARI: 5.0 ± 0.2, seated ARI: 3.8 ± 0.3, P = 0.004). In contrast, cardiac output responses were not different between positions and did not correlate with cerebral blood flow ARIs. In addition, women had better autoregulation in the ACA (P = 0.046), but not the MCA, despite having the same cardiac output response. These data demonstrate cardiac output does not appear to affect the dynamic cerebral autoregulatory response to sudden hypotension in healthy controls, regardless of posture. These results also highlight the importance of considering sex when studying cerebral autoregulation.

  4. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-01-01

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain

  5. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats

    DEFF Research Database (Denmark)

    Chon, K H; Chen, Y M; Holstein-Rathlou, N H

    1998-01-01

    We compared the dynamic characteristics in renal autoregulation of blood flow of normotensive Sprague-Dawley rats (SDR) and spontaneously hypertensive rats (SHR), using both linear and nonlinear systems analysis. Linear analysis yielded only limited information about the differences in dynamics......, NMSE are significantly higher in SHR than SDR, suggesting a more complex nonlinear system in SHR. The contribution of the third-order kernel in describing the dynamics of renal autoregulation in arterial blood pressure and blood flow was found to be important. Moreover, we have identified the presence...

  6. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...... arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range ... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  7. Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.

    Science.gov (United States)

    Braakman, R; Sipkema, P; Westerhof, N

    1990-06-01

    The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.

  8. Cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2001-01-01

    Ph.d. afhandlingen omhandler sammenhængen mellem hjernens blodtilførsel (CBF) og middelarterietrykket (MAP) hos patienter med akut bakteriel meningitis. Hos raske er CBF uafhængig af MAP, hvilket kaldes CBF autoregulation. Svækket autoregulation antages at øge risikoen for cerebral hypoperfusion og...... iskæmi under episoder med lavt MAP, og for cerebral hyperperfusion og vasogent ødem ved højt MAP. CBF autoregulationen undersøgtes hos tyve voksne patienter med akut bakteriel meningitis i den tidlige sygdomsfase (... meningitis, men retableres ved klinisk restitution. Autoregulationen kan endvidere delvis retableres ved akut hyperventilation. Fundene har potentiel betydning for valg af supportiv terapi hos patienter med meningitis....

  9. Cerebral autoregulation during whole-body hypothermia and hyperthermia stimulus.

    Science.gov (United States)

    Doering, T J; Aaslid, R; Steuernagel, B; Brix, J; Niederstadt, C; Breull, A; Schneider, B; Fischer, G C

    1999-01-01

    The purpose of the study contained herein was to investigate the effects of old traditional physiotherapeutic treatments on cerebral autoregulation. Treatment consisted of complete body immersion in cold or warm water baths. Fifteen volunteers were investigated by means of transcranial Doppler sonography and a servo-controlled noninvasive device for blood pressure measuring. One group of 8 volunteers (mean age, 27.2+/-3.5 yr; gender, 3 females/5 males) was subjected to cold baths of 22 degrees C for 20 min Another group of 7 volunteers (mean age, 52.1+/-8.5 yr; gender, 4 females/3 males) took hyperthermic baths at rising water temperatures from 36 degrees to 42 degrees C, increased by 1 degree C every 5 min. Each volunteer in both groups underwent autoregulation tests two to four times before, during, and after the thermic bath. Dynamic autoregulation was measured by the response of cerebral blood flow velocity to a transient decrease of the mean arterial blood pressure, induced by rapid deflation of thigh cuffs. The autoregulation index, i.e., a measure of the speed of change of cerebral autoregulation, was used to quantify the response. Further parameters were core temperature, blood pressure (mm Hg) and CO2et. During hypothermic baths, core temperature decreased by 0.3 degrees C (P = 0.001), measured between preliminary phase and the end of the bath; the autoregulation index decreased significantly (P whole-body thermostimulus. Application of hyperthermic baths increased the autoregulation index, and hypothermic baths decreased the autoregulation index. Further studies are needed to prove the positive effects of thermo-stimulating water applications on cerebral hemodynamics in patients with cerebral diseases.

  10. Effects of external pressure loading on human skin blood flow measured by 133Xe clearance

    International Nuclear Information System (INIS)

    Holloway, G.A. Jr.; Daly, C.H.; Kennedy, D.; Chimoskey, J.

    1976-01-01

    Forearm skin blood flow was measured during external pressure loading in normal human subjects using 133 Xe washout from intracutaneous injection sites. Pressures ranging between 5 and 150 mmHg were applied through a 3-cm-diameter disc placed over the site of flow determination. The pressure was maintained constant by a servo-controlled loading mechanism. Flow decreased with pressures from 5 to 10 and 30 to 150 mmHg, but remained constant with pressures from 10 to 30 mmHg. Reactive hyperemia occurred following removal of pressures of 90 mmHg or greater, but did not occur following removal of lower pressures. The pressure-flow curve for parasacral skin of paraplegic subjects closely paralleled the pressure-flow curve of normal skin at pressures tested: 5 to 15 mmHg. These data are interpreted to demonstrate autoregulation of skin blood flow. Autoregulation in parasacral skin of paraplegic subjects suggests a peripheral mechanism. The occurrence of hyperemia at pressures which exceed the ability of skin to autoregulate suggests that both autoregulation and post occlusion hyperemia may have the same mechanism

  11. On the efficacy of linear system analysis of renal autoregulation in rats

    DEFF Research Database (Denmark)

    Chon, K H; Chen, Y M; Holstein-Rathlou, N H

    1993-01-01

    In order to assess the linearity of the mechanisms subserving renal blood flow autoregulation, broad-band arterial pressure fluctuations at three different power levels were induced experimentally and the resulting renal blood flow responses were recorded. Linear system analysis methods were...

  12. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  13. Comparison of Optic Nerve Head Blood Flow Autoregulation among Quadrants Induced by Decreased Ocular Perfusion Pressure during Vitrectomy

    Directory of Open Access Journals (Sweden)

    Ryuya Hashimoto

    2017-01-01

    Full Text Available Purpose. The present study aimed to examine changes in optic nerve head (ONH blood flow autoregulation in 4 quadrants (superior, nasal, inferior, and temporal with decreased ocular perfusion pressure (OPP during vitrectomy in order to determine whether there is a significant difference of autoregulatory capacity in response to OPP decrease at each ONH quadrant. Methods. This study included 24 eyes with an epiretinal membrane or macular hole that underwent vitrectomy at Toho University Sakura Medical Center. Following vitrectomy, the tissue mean blur rate (MBR, which reflects ONH blood flow, was measured. Mean tissue MBRs in the four quadrants were generated automatically in the software analysis report. Measurements were conducted before and 5 and 10 min after intraocular pressure (IOP elevation of approximately 15 mmHg in the subjects without systemic disorders. Results. The baseline tissue MBR of the temporal quadrant was significantly lower than that of the other 3 quadrants (all P<0.05. However, the time courses of tissue MBR in response to OPP decrease were not significantly different among the four quadrants during vitrectomy (P=0.23. Conclusions. There is no significant difference in the autoregulatory capacity of the four ONH quadrants in patients without systemic disorders during vitrectomy.

  14. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Ikemura, Tsukasa; Kashima, Hideaki; Yamaguchi, Yuji; Miyaji, Akane; Hayashi, Naoyuki

    2015-01-01

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  15. A Pulse Wave Velocity Based Method to Assess the Mean Arterial Blood Pressure Limits of Autoregulation in Peripheral Arteries

    Directory of Open Access Journals (Sweden)

    Ananya Tripathi

    2017-11-01

    Full Text Available Background: Constant blood flow despite changes in blood pressure, a phenomenon called autoregulation, has been demonstrated for various organ systems. We hypothesized that by changing hydrostatic pressures in peripheral arteries, we can establish these limits of autoregulation in peripheral arteries based on local pulse wave velocity (PWV.Methods: Electrocardiogram and plethysmograph waveforms were recorded at the left and right index fingers in 18 healthy volunteers. Each subject changed their left arm position, keeping the right arm stationary. Pulse arrival times (PAT at both fingers were measured and used to calculate PWV. We calculated ΔPAT (ΔPWV, the differences between the left and right PATs (PWVs, and compared them to the respective calculated blood pressure at the left index fingertip to derive the limits of autoregulation.Results: ΔPAT decreased and ΔPWV increased exponentially at low blood pressures in the fingertip up to a blood pressure of 70 mmHg, after which changes in ΔPAT and ΔPWV were minimal. The empirically chosen 20 mmHg window (75–95 mmHg was confirmed to be within the autoregulatory limit (slope = 0.097, p = 0.56. ΔPAT and ΔPWV within a 20 mmHg moving window were not significantly different from the respective data points within the control 75–95 mmHg window when the pressure at the fingertip was between 56 and 110 mmHg for ΔPAT and between 57 and 112 mmHg for ΔPWV.Conclusions: Changes in hydrostatic pressure due to changes in arm position significantly affect peripheral arterial stiffness as assessed by ΔPAT and ΔPWV, allowing us to estimate peripheral autoregulation limits based on PWV.

  16. Nonlinear Analysis of Renal Autoregulation Under Broadband Forcing Conditions

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Chen, Y M

    1994-01-01

    Linear analysis of renal blood flow fluctuations, induced experimentally in rats by broad-band (pseudorandom) arterial blood pressure forcing at various power levels, has been unable to explain fully the dynamics of renal autoregulation at low frequencies. This observation has suggested...... the possibility of nonlinear mechanisms subserving renal autoregulation at frequencies below 0.2 Hz. This paper presents results of 3rd-order Volterra-Wiener analysis that appear to explain adequately the nonlinearities in the pressure-flow relation below 0.2 Hz in rats. The contribution of the 3rd-order kernel...... in describing the dynamic pressure-flow relation is found to be important. Furthermore, the dependence of 1st-order kernel waveforms on the power level of broadband pressure forcing indicates the presence of nonlinear feedback (of sigmoid type) based on previously reported analysis of a class of nonlinear...

  17. Insight of Human Stroke from blood flow and blood pressure

    Science.gov (United States)

    Chen, Zhi; Ivanov, Plamen Ch.; Hu, Kun; Stanley, H. Eugene

    2003-03-01

    Stroke is is one of the leading cause of death and disability in the world. It is well believed that stroke is caused by the disturbance of cerebrovascular autoregulation. We investigate the blood flow on the left and right middle cerebral artery and beat-to-beat blood pressure simultaneously measured from the finger, for both subjects with stroke and healthy subjects. Synchronization technique is used to distinguish the difference between these two groups.

  18. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...

  19. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  20. T-type Ca(2+) channels and Autoregulation of Local Blood Flow

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Nielsen, Morten Schak; Salomonsson, Max

    2017-01-01

    L-type voltage gated Ca(2+) channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca(2+) channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pre...

  1. Dysfunctional regulation of ocular blood flow: A risk factor for glaucoma?

    Directory of Open Access Journals (Sweden)

    Danny Moore

    2008-04-01

    Full Text Available Danny Moore, Alon Harris, Darrell WuDunn, Nisha Kheradiya, Brent Siesky1Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USAAbstract: Primary open angle glaucoma (OAG is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and associated visual field loss. OAG is an emerging disease with increasing costs and negative outcomes, yet its fundamental pathophysiology remains largely undetermined. A major treatable risk factor for glaucoma is elevated intraocular pressure (IOP. Despite the medical lowering of IOP, however, some glaucoma patients continue to experience disease progression and subsequent irreversible vision loss. The scientific community continues to accrue evidence suggesting that alterations in ocular blood flow play a prominent role in OAG disease processes. This article develops the thesis that dysfunctional regulation of ocular blood flow may contribute to glaucomatous optic neuropathy. Evidence suggests that impaired vascular autoregulation renders the optic nerve head susceptible to decreases in ocular perfusion pressure, increases in IOP, and/or increased local metabolic demands. Ischemic damage, which likely contributes to further impairment in autoregulation, results in changes to the optic nerve head consistent with glaucoma. Included in this review are discussions of conditions thought to contribute to vascular regulatory dysfunction in OAG, including atherosclerosis, vasospasm, and endothelial dysfunction.Keywords: glaucoma, autoregulation, blood flow, atherosclerosis, vasospasm, endothelial dysfunction

  2. Mechanisms of temporal variation in single-nephron blood flow in rats

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H; Marsh, D J

    1993-01-01

    Modified laser-Doppler velocimetry was used to determine the number of different mechanisms regulating single-nephron blood flow. Two oscillations were identified in star vessel blood flow, one at 20-50 mHz and another at 100-200 mHz. Tubuloglomerular feedback (TGF) mediates the slower oscillation......, and the faster one is probably myogenic in origin. Acute hypertension increased autospectral power in the 20-50 mHz and 100-200 mHz frequency bands to 282 +/- 50 and 248 +/- 64%, respectively, of control even though mean single-nephron blood flow was autoregulated. Mean blood flow increased 24.6 +/- 6.1% when...... components in efferent arteriole blood flow....

  3. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.

    Science.gov (United States)

    Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D

    2014-05-01

    We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Role of Coronary Myogenic Response in Pressure-Flow Autoregulation in Swine: A Meta-Analysis With Coronary Flow Modeling

    OpenAIRE

    Gregory M. Dick; Ravi Namani; Bhavesh Patel; Ghassan S. Kassab

    2018-01-01

    Myogenic responses (pressure-dependent contractions) of coronary arterioles play a role in autoregulation (relatively constant flow vs. pressure). Publications on myogenic reactivity in swine coronaries vary in caliber, analysis, and degree of responsiveness. Further, data on myogenic responses and autoregulation in swine have not been completely compiled, compared, and modeled. Thus, it has been difficult to understand these physiological phenomena. Our purpose was to: (a) analyze myogenic d...

  5. Cerebral autoregulation is minimally influenced by the superior cervical ganglion in two- week-old lambs, and absent in preterm lambs immediately following delivery.

    Directory of Open Access Journals (Sweden)

    Adam J Czynski

    Full Text Available Cerebral vessels in the premature newborn brain are well supplied with adrenergic nerves, stemming from the superior cervical ganglia (SCG, but their role in regulation of blood flow remains uncertain. To test this function twelve premature or two-week-old lambs were instrumented with laser Doppler flow probes in the parietal cortices to measure changes in blood flow during changes in systemic blood pressure and electrical stimulation of the SCG. In lambs delivered prematurely at ∼129 days gestation cerebral perfusion and driving pressure demonstrated a direct linear relationship throughout the physiologic range, indicating lack of autoregulation. In contrast, in lambs two-weeks of age, surgical removal of one SCG resulted in ipsilateral loss of autoregulation during pronounced hypertension. Electrical stimulation of one SCG elicited unilateral increases in cerebral resistance to blood flow in both pre-term and two-week-old lambs, indicating functioning neural pathways in the instrumented, anesthetized lambs. We conclude cerebral autoregulation is non-functional in preterm lambs following cesarean delivery. Adrenergic control of cerebral vascular resistance becomes effective in newborn lambs within two-weeks after birth but SCG-dependent autoregulation is essential only during pronounced hypertension, well above the normal range of blood pressure.

  6. No apparent role for T-type Ca2+ channels in renal autoregulation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Hassing; Salomonsson, Max; Hansen, Pernille B. Lærkegaard

    2016-01-01

    -type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous......Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully...... pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels...

  7. Nonlinear analysis of renal autoregulation in rats using principal dynamic modes

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Holstein-Rathlou, N H

    1999-01-01

    This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and colle......This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing...... and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results...

  8. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  9. Dynamic autoregulation and renal injury in Dahl rats

    DEFF Research Database (Denmark)

    Karlsen, F M; Andersen, C B; Leyssac, P P

    1997-01-01

    of hypertension, a gradual impairment of autoregulatory control of renal blood flow might expose the glomerular circulation to periods of elevated pressure, resulting in renal injuries in Dahl S rats. Dynamic autoregulatory capacity was assessed in Dahl S and Dahl salt-resistant (Dahl R) rats, SHR, and Sprague......-Dawley rats by inducing broad-band fluctuations in the arterial blood pressure and simultaneously measuring renal blood flow. Dynamic autoregulation was estimated by the transfer function using blood pressure as the input and renal blood flow as the output. Renal morphological injuries were evaluated in Dahl......The Dahl salt-sensitive (Dahl S) rat develops hypertension and renal injuries when challenged with a high salt diet and has been considered to be a model of chronic renal failure. Renal injuries appear very early in life compared with the spontaneously hypertensive rat (SHR). During the course...

  10. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Pedersen, Michael; Brandt, Christian T.; Knudsen, Gitte Moos

    2008-01-01

    during incremental reductions in cerebral perfusion pressure (CPP) by controlled hemorrhage. Autoregulation was preserved in all rats without meningitis (groups A and E) and was lost in 24 of 25 meningitis rats (groups B, C, and D) (P

  11. Regulation of cerebral blood flow in patients with autonomic dysfunction and severe postural hypotension

    DEFF Research Database (Denmark)

    Hesse, Birger; Mehlsen, Jesper; Boesen, Finn

    2002-01-01

    Whether cerebral blood flow (CBF) autoregulation is maintained in autonomic dysfunction has been debated for a long time, and the rather sparse data available are equivocal. The relationship between CBF and mean arterial blood pressure (MABP) was therefore tested in eight patients with symptoms...

  12. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    International Nuclear Information System (INIS)

    Pavlov, A.N.; Sosnovtseva, O.V.; Pavlova, O.N.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron. In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic for normotensive rats, but irregular (or chaotic) for rats with hypertension. Modulation phenomena are clearly observed in both types of rats, but the effect is stronger in those with hypertension.

  13. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  14. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...

  15. Tracking time-varying cerebral autoregulation in response to changes in respiratory PaCO2

    International Nuclear Information System (INIS)

    Liu, Jia; Simpson, M David; Allen, Robert; Yan, Jingyu

    2010-01-01

    Cerebral autoregulation has been studied by linear filter systems, with arterial blood pressure (ABP) as the input and cerebral blood flow velocity (CBFV—from transcranial Doppler Ultrasound) as the output. The current work extends this by using adaptive filters to investigate the dynamics of time-varying cerebral autoregulation during step-wise changes in arterial PaCO 2 . Cerebral autoregulation was transiently impaired in 11 normal adult volunteers, by switching inspiratory air to a CO 2 /air mixture (5% CO 2 , 30% O 2 and 65% N 2 ) for approximately 2 min and then back to the ambient air, causing step-wise changes in end-tidal CO 2 (EtCO 2 ). Simultaneously, ABP and CBFV were recorded continuously. Simulated data corresponding to the same protocol were also generated using an established physiological model, in order to refine the signal analysis methods. Autoregulation was quantified by the time-varying phase lead, estimated from the adaptive filter model. The adaptive filter was able to follow rapid changes in autoregulation, as was confirmed in the simulated data. In the recorded signals, there was a slow decrease in autoregulatory function following the step-wise increase in PaCO 2 (but this did not reach a steady state within approximately 2 min of recording), with a more rapid change in autoregulation on return to normocapnia. Adaptive filter modelling was thus able to demonstrate time-varying autoregulation. It was further noted that impairment and recovery of autoregulation during transient increases in EtCO 2 occur in an asymmetric manner, which should be taken into account when designing experimental protocols for the study of autoregulation

  16. Impaired cerebral autoregulation during upright tilt in patients with severe brain injury

    DEFF Research Database (Denmark)

    Hansen, Christian Riberholt; Olesen, Niels; Thing, Mira

    in the middle cerebral artery and expressed as the flow velocity. Continuous arterial blood pressure (ABP) was recorded from the index finger using photoplethysmography. CBFV autoregulation was determined by the correlation between CBF and BP. An estimated cerebral perfusion pressure (CPP) was established...

  17. [The influence of positive end-expiratory pressure on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome].

    Science.gov (United States)

    Yang, Chunli; Chen, Zhi; Lu, Yuanhua; He, Huiwei; Zeng, Weihua

    2014-05-01

    To explore the influence of different positive end-expiratory pressure (PEEP) levels on cerebral blood flow (CBF) and cerebrovascular autoregulation in patients with acute respiratory distress syndrome(ARDS). A prospective study was conducted. Moderate or severe ARDS patients admitted to Department of Critical Care Medicine of Jiangxi Provincial People's Hospital from January 1st, 2013 to October 1st, 2013 were enrolled. The changes in hemodynamics, respiratory mechanics and gas exchange under different levels of PEEP were observed. CBF velocity of middle cerebral artery (MCA) was measured using transcranial Doppler (TCD), and breath-holding index (BHI) was also calculated. 35 patients with ARDS were included. The oxygenation index (OI), peak inspiratory pressure (PIP), plat pressure (Pplat) and central venous pressure (CVP) were markedly elevated (OI: 324.7±117.2 mmHg vs. 173.4±95.8 mmHg, t=5.913, P=0.000; PIP: 34.7±9.1 cmH2O vs. 26.1±7.9 cmH2O,t=4.222, P=0.000; Pplat: 30.5±8.4 cmH2O vs. 22.2±7.1 cmH2O, t=4.465, P=0.000; CVP: 12.1±3.5 mmHg vs. 8.8±2.2 mmHg, t=4.723, P=0.000) when PEEP was increased from (6.4±1.0) cmH2O to (14.5±2.0) cmH2O (1 cmH2O=0.098 kPa). But no significant difference in the heart rate (85.5±19.1 beats/min vs. 82.7±17.3 beats/min, t=0.643, P=0.523), mean arterial pressure (73.5±12.4 mmHg vs. 76.4±15.1 mmHg, t=0.878, P=0.383) and CBF velocity of MCA [peak systolic flow velocity (Vmax): 91.26±17.57 cm/s vs. 96.64±18.71 cm/s, t=1.240, P=0.219; diastolic flow velocity (Vmin): 31.54±7.71 cm/s vs. 33.87±8.53 cm/s, t=1.199, P=0.235; mean velocity (Vmean): 51.19±12.05 cm/s vs. 54.27±13.36 cm/s, t=1.013, P=0.315] was found. 18 patients with BHI<0.1 at baseline demonstrated that cerebral vasomotor reactivity was poor. BHI was slightly decreased with increase in PEEP (0.78±0.16 vs. 0.86±0.19, t=1.905, P=0.061). Some of moderate or severe ARDS patients without central nervous system disease have independent of preexisting cerebral

  18. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Reinhard, Matthias; Neunhoeffer, Florian; Gerds, Thomas A

    2010-01-01

    and 5 after ictus. Autoregulation was noninvasively measured from spontaneous fluctuations of blood pressure and middle cerebral artery flow velocity (assessed by transcranial Doppler) using the correlation coefficient index Mx. From the same signals, non-invasive cerebral perfusion pressure...

  19. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    International Nuclear Information System (INIS)

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J.

    1987-01-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo 2 ). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo 2 but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin

  20. Further understanding of cerebral autoregulation at the bedside : possible implications for future therapy

    NARCIS (Netherlands)

    Donnelly, Joseph; Aries, Marcel J.; Czosnyka, Marek

    Cerebral autoregulation reflects the ability of the brain to keep the cerebral blood flow (CBF) relatively constant despite changes in cerebral perfusion pressure. It is an intrinsic neuroprotective physiological phenomenon often suggested as part of pathophysiological pathways in brain research.

  1. Dynamic Cerebral Autoregulation Changes during Sub-Maximal Handgrip Maneuver

    Science.gov (United States)

    Nogueira, Ricardo C.; Bor-Seng-Shu, Edson; Santos, Marcelo R.; Negrão, Carlos E.; Teixeira, Manoel J.; Panerai, Ronney B.

    2013-01-01

    Purpose We investigated the effect of handgrip (HG) maneuver on time-varying estimates of dynamic cerebral autoregulation (CA) using the autoregressive moving average technique. Methods Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO2 pressure (PETCO2), and noninvasive arterial blood pressure (ABP) were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP), resistance area-product (RAP), and time-varying autoregulation index (ARI) were obtained. Results PETCO2 did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005), which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. Conclusion Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism. PMID:23967113

  2. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Directory of Open Access Journals (Sweden)

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  3. A study of renal blood flow regulation using the discrete wavelet transform

    Science.gov (United States)

    Pavlov, Alexey N.; Pavlova, Olga N.; Mosekilde, Erik; Sosnovtseva, Olga V.

    2010-02-01

    In this paper we provide a way to distinguish features of renal blood flow autoregulation mechanisms in normotensive and hypertensive rats based on the discrete wavelet transform. Using the variability of the wavelet coefficients we show distinctions that occur between the normal and pathological states. A reduction of this variability in hypertension is observed on the microscopic level of the blood flow in efferent arteriole of single nephrons. This reduction is probably associated with higher flexibility of healthy cardiovascular system.

  4. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Chacón, M; Nuñez, N; Henríquez, C; Panerai, R B

    2008-01-01

    Measurement of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to changes in arterial blood pressure (ABP), has been performed with an index of autoregulation (ARI), related to the parameters of a second-order differential equation model, namely gain (K), damping factor (D) and time constant (T). Limitations of the ARI were addressed by increasing its numerical resolution and generalizing the parameter space. In 16 healthy subjects, recordings of ABP (Finapres) and CBF velocity (ultrasound Doppler) were performed at rest, before, during and after 5% CO 2 breathing, and for six repeated thigh cuff maneuvers. The unconstrained model produced lower predictive error (p < 0.001) than the original model. Unconstrained parameters (K'–D'–T') were significantly different from K–D–T but were still sensitive to different measurement conditions, such as the under-regulation induced by hypercapnia. The intra-subject variability of K' was significantly lower than that of the ARI and this parameter did not show the unexpected occurrences of zero values as observed with the ARI and the classical value of K. These results suggest that K' could be considered as a more stable and reliable index of dynamic autoregulation than ARI. Further studies are needed to validate this new index under different clinical conditions

  5. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular...... simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic...... pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons...

  6. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  7. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension*

    DEFF Research Database (Denmark)

    Brassard, Patrice; Kim, Yu-Sok; van Lieshout, Johannes

    2012-01-01

    OBJECTIVE:: The administration of endotoxin to healthy humans reduces cerebral blood flow but its influence on dynamic cerebral autoregulation remains unknown. We considered that a reduction in arterial carbon dioxide tension would attenuate cerebral perfusion and improve dynamic cerebral autoreg...

  8. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  9. Dependency of cerebral blood flow upon mean arterial pressure in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Larsen, Fin Stolze; Qvist, Jesper

    2000-01-01

    Diseases, Copenhagen University Hospital, Denmark. PATIENTS: Sixteen adult patients with acute bacterial meningitis. INTERVENTION: Infusion of norepinephrine to increase MAP. MEASUREMENTS: During a rise in MAP induced by norepinephrine infusion, we measured relative changes in CBF by transcranial Doppler......OBJECTIVE: Patients with acute bacterial meningitis are often treated with sympathomimetics to maintain an adequate mean arterial pressure (MAP). We studied the influence of such therapy on cerebral blood flow (CBF). DESIGN: Prospective physiologic trial. SETTING: The Department of Infectious....... Autoregulation was classified as impaired if Vmean increased by >10% per 30 mm Hg increase in MAP and if no lower limit of autoregulation was identified by the computer program; otherwise, autoregulation was classified as preserved. MAIN RESULTS: Initially, Vmean increased from a median value of 46 cm/sec (range...

  10. Impaired autoregulation of cerebral blood flow in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1979-01-01

    Cerebral blood flow was measured, using the 133Xe clearance technique, a few hours after birth in 19 infants with varying degrees of respiratory distress syndrome. Ten of these infants had had asphyxia at birth. The least affected infants with normotension (systolic blood pressure 60 to 65 mm Hg......) had CBF values of about 40 ml/100 gm/minute. Hypotensive infants with asphyxia at birth or RDS or both had values for CBF of about 20 ml/100 gm/minute, or less. CBF was strongly correlated with the arterial blood pressure, showing a linear relationship that was identical in infants with asphyxia...

  11. Relationships between cerebral autoregulation and markers of kidney and liver injury in neonatal encephalopathy and therapeutic hypothermia.

    Science.gov (United States)

    Lee, J K; Perin, J; Parkinson, C; O'Connor, M; Gilmore, M M; Reyes, M; Armstrong, J; Jennings, J M; Northington, F J; Chavez-Valdez, R

    2017-08-01

    We studied whether cerebral blood pressure autoregulation and kidney and liver injuries are associated in neonatal encephalopathy (NE). We monitored autoregulation of 75 newborns who received hypothermia for NE in the neonatal intensive care unit to identify the mean arterial blood pressure with optimized autoregulation (MAP OPT ). Autoregulation parameters and creatinine, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed using adjusted regression models. Greater time with blood pressure within MAP OPT during hypothermia was associated with lower creatinine in girls. Blood pressure below MAP OPT related to higher ALT and AST during normothermia in all neonates and boys. The opposite occurred in rewarming when more time with blood pressure above MAP OPT related to higher AST. Blood pressures that optimize cerebral autoregulation may support the kidneys. Blood pressures below MAP OPT and liver injury during normothermia are associated. The relationship between MAP OPT and AST during rewarming requires further study.

  12. Ten-minute umbilical cord occlusion markedly reduces cerebral blood flow and heat production in fetal sheep.

    NARCIS (Netherlands)

    Lotgering, F.K.; Bishai, J.M.; Struijk, P.C.; Blood, A.B.; Hunter, C.J.; Power, G.G.; Longo, L.D.

    2003-01-01

    OBJECTIVE: The study was undertaken to determine to what extent a 10-minute total umbilical cord occlusion affects autoregulation of cerebral blood flow and cerebral heat production in the fetus. STUDY DESIGN: In seven chronically catheterized late-gestation fetal sheep (127-131 days' gestation), we

  13. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.

    2005-01-01

    We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length...... hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca-i), potential difference, rate of actin - myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...

  14. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality

    International Nuclear Information System (INIS)

    Bellapart, Judith; Fraser, John F; Chan, Gregory S H; Tzeng, Yu-Chieh; Ainslie, Philip N; Dunster, Kimble R; Barnett, Adrian G; Boots, Rob

    2011-01-01

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects

  15. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J.M.C.; Stewart, Roy; Staal, Michiel J; Elting, Jan-Willem J.

    ObjectivesTranscutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  16. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Laan, M. ter; Dijk, J.M. van; Stewart, R.; Staal, M.J.; Elting, J.W.

    2014-01-01

    OBJECTIVES: Transcutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  17. Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Tweed, W A

    1979-01-01

    reaching CBF values up to 6 times normal at normal MABP of about 60 to 70 mmHg, and severe ischemia reaching CBF values close to zero in large cortical areas at MABP of 30 mmHg. CVP remained essentially unchanged at 10--15 mmHg. The severe and prolonged asphyxia rendered the blood-brain barrier leaky......Cerebral blood flow (CBF) was studied in non-exteriorized near-term sheep fetuses using the radioactive microsphere technique. By partially occluding the umbilical vessels for a period of 1--1 1/2 hours a progressive and severe asphyxia with a final arterial pH of 6.90 was achieved. Varying...... the mean arterial blood pressure in the fetuses by blood withdrawal or infusion in this state, CBF was measured at different perfusion pressures (mean arterial blood pressure (MABP) minus central venous pressure (CVP)). A passive flow/pressure relationship--loss of autoregulation--was found, with hyperemia...

  18. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Katsogridakis, Emmanuel; Panerai, Ronney B; Bush, Glen; Fan, Lingke; Birch, Anthony A; Simpson, David M; Allen, Robert; Potter, John F

    2012-01-01

    The assessment of cerebral autoregulation (CA) relies mostly on methods that modulate arterial blood pressure (ABP). Despite advances, the gold standard of assessment remains elusive and clinical practicality is limited. We investigate a novel approach of assessing CA, consisting of the intermittent application of thigh cuffs using square wave sequences. Our aim was to increase ABP variability whilst minimizing volunteer discomfort, thus improving assessment acceptability. Two random square wave sequences and two maximum pressure settings (80 and 150 mmHg) were used, corresponding to four manoeuvres that were conducted in random order after a baseline recording. The intermittent application of thigh cuffs resulted in an amplitude dependent increase in ABP (p = 0.001) and cerebral blood flow velocity (CBFV) variability (p = 0.026) compared to baseline. No statistically significant differences in mean heart rate or heart rate variability were observed (p = 0.108 and p = 0.350, respectively), suggesting that no significant sympathetic response was elicited. No significant differences in the CBFV step response were observed, suggesting no distortion of autoregulatory parameters resulted from the use of thigh cuffs. We conclude that pseudorandom binary sequences are an effective and safe alternative for increasing ABP variability. This new approach shows great promise as a tool for the robust assessment of CA. (paper)

  19. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  20. Influence of Gravity on Blood Volume and Flow Distribution

    Science.gov (United States)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  1. Intravenous beta-endorphin administration fails to alter hypothalamic blood flow in rats expressing normal or reduced nitric oxide synthase activity

    NARCIS (Netherlands)

    Benyo, Z.; Szabo, C; Velkel, M.H; Bohus, B.G J; Wahl, M.A; Sandor, P

    1996-01-01

    beta-Endorphin (beta-END) significantly contributes to the maintenance of hypothalamic blood flow (HBF) autoregulation during hemorrhagic hypotension in rats. Recently, several natural and synthetic opioid peptides were reported to induce nitric oxide (NO)-mediated dilation in the cerebrovascular

  2. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  3. Elderly women regulate brain blood flow better than men do.

    Science.gov (United States)

    Deegan, Brian M; Sorond, Farzaneh A; Galica, Andrew; Lipsitz, Lewis A; O'Laighin, Gearoid; Serrador, Jorge M

    2011-07-01

    Orthostatic intolerance and falls differ between sexes and change with age. However, it remains unclear what role cerebral autoregulation may play in this response. This study was designed to determine whether cerebral autoregulation, assessed using transcranial Doppler ultrasound, is more effective in elderly females than in males. We used transcranial Doppler ultrasound to evaluate cerebral autoregulation in 544 (236 male) subjects older than age 70 years recruited as part of the MOBILIZE Boston study. The MOBILIZE Boston study is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. We assessed CO2 reactivity and transfer function gain, phase, and coherence during 5 minutes of quiet sitting and autoregulatory index during sit-to-stand tests. Male subjects had significantly lower CO2 reactivity (males, 1.10 ± 0.03; females, 1.32 ± 0.43 (cm/s)/%CO2; Peffective cerebral autoregulation. However, reduced autoregulation in males was not below the normal range, indicating autoregulation was intact but less effective. Female subjects were better able to maintain cerebral flow velocities during postural changes and demonstrated better cerebral autoregulation. The mechanisms of sex-based differences in autoregulation remain unclear but may partially explain the higher rates of orthostatic hypotension-related hospitalizations in elderly men.

  4. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  5. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Panerai, R B; Smith, S M; Rathbone, W E; Samani, N J; Sammons, E L; Bentley, S; Potter, J F

    2008-01-01

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BP AO ), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO 2 . Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BP AO . Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BP AO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BP AO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model

  6. Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.

    Directory of Open Access Journals (Sweden)

    Michał M Placek

    Full Text Available Classic methods for assessing cerebral autoregulation involve a transfer function analysis performed using the Fourier transform to quantify relationship between fluctuations in arterial blood pressure (ABP and cerebral blood flow velocity (CBFV. This approach usually assumes the signals and the system to be stationary. Such an presumption is restrictive and may lead to unreliable results. The aim of this study is to present an alternative method that accounts for intrinsic non-stationarity of cerebral autoregulation and the signals used for its assessment.Continuous recording of CBFV, ABP, ECG, and end-tidal CO2 were performed in 50 young volunteers during normocapnia and hypercapnia. Hypercapnia served as a surrogate of the cerebral autoregulation impairment. Fluctuations in ABP, CBFV, and phase shift between them were tested for stationarity using sphericity based test. The Zhao-Atlas-Marks distribution was utilized to estimate the time-frequency coherence (TFCoh and phase shift (TFPS between ABP and CBFV in three frequency ranges: 0.02-0.07 Hz (VLF, 0.07-0.20 Hz (LF, and 0.20-0.35 Hz (HF. TFPS was estimated in regions locally validated by statistically justified value of TFCoh. The comparison of TFPS with spectral phase shift determined using transfer function approach was performed.The hypothesis of stationarity for ABP and CBFV fluctuations and the phase shift was rejected. Reduced TFPS was associated with hypercapnia in the VLF and the LF but not in the HF. Spectral phase shift was also decreased during hypercapnia in the VLF and the LF but increased in the HF. Time-frequency method led to lower dispersion of phase estimates than the spectral method, mainly during normocapnia in the VLF and the LF.The time-frequency method performed no worse than the classic one and yet may offer benefits from lower dispersion of phase shift as well as a more in-depth insight into the dynamic nature of cerebral autoregulation.

  7. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  8. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.; Prough, D.S.; Stump, D.A.; McIntyre, R.W.

    1989-01-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mm Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass

  9. Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Croughwell, N.; Lyth, M.; Quill, T.J.; Newman, M.; Greeley, W.J.; Smith, L.R.; Reves, J.G.

    1990-01-01

    We tested the hypothesis that insulin-dependent diabetic patients with coronary artery bypass graft surgery experience altered coupling of cerebral blood flow and oxygen consumption. In a study of 23 patients (11 diabetics and 12 age-matched controls), cerebral blood flow was measured using 133Xe clearance during nonpulsatile, alpha-stat blood gas managed cardiopulmonary bypass at the conditions of hypothermia and normothermia. In diabetic patients, the cerebral blood flow at 26.6 +/- 2.42 degrees C was 25.3 +/- 14.34 ml/100 g/min and at 36.9 +/- 0.58 degrees C it was 27.3 +/- 7.40 ml/100 g/min (p = NS). The control patients increased cerebral blood flow from 20.7 +/- 6.78 ml/100 g/min at 28.4 +/- 2.81 degrees C to 37.6 +/- 8.81 ml/100 g/min at 36.5 +/- 0.45 degrees C (p less than or equal to 0.005). The oxygen consumption was calculated from jugular bulb effluent and increased from hypothermic values of 0.52 +/- 0.20 ml/100 g/min in diabetics to 1.26 +/- 0.28 ml/100 g/min (p = 0.001) at normothermia and rose from 0.60 +/- 0.27 to 1.49 +/- 0.35 ml/100 g/min (p = 0.0005) in the controls. Thus, despite temperature-mediated changes in oxygen consumption, diabetic patients did not increase cerebral blood flow as metabolism increased. Arteriovenous oxygen saturation gradients and oxygen extraction across the brain were calculated from arterial and jugular bulb blood samples. The increase in arteriovenous oxygen difference between temperature conditions in diabetic patients and controls was significantly different (p = 0.01). These data reveal that diabetic patients lose cerebral autoregulation during cardiopulmonary bypass and compensate for an imbalance in adequate oxygen delivery by increasing oxygen extraction

  10. Effects of midazolam on cerebral blood flow in human volunteers

    International Nuclear Information System (INIS)

    Forster, A.; Juge, O.; Morel, D.

    1982-01-01

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133 Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension

  11. Cerebral blood flow in normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-01-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed

  12. Regional cerebral blood flow of Moyamoya disease in the chronic state as studied using a three-dimensional method. With special reference to CO/sub 2/ response and autoregulation

    Energy Technology Data Exchange (ETDEWEB)

    Ejiri, Takao; Endo, Hideo; Kubo, Naohiko; Kanaya, Haruyuki

    1986-02-01

    Regional cerebral blood flow (rCBF) was measured in six adult and five juvenile cases with moyamoya disease, using single-photon-emission CT and the Xe-133 inhalation method. In the resting state, the rCBF value in the basal moyamoya region was within normal limits. The characteristic of rCBF was a decrease in the cerebral cortex, especially in the temporal region of the juvenile cases. CO/sub 2/ response by 5 % CO/sub 2/ inhalation was disturbed not only in the cerebral cortex, but also in the basal moyamoya region; also the degree of such impairment showed site-to-site differences. On the other hand, rCBF changes under hyperventilation showed a good response in the cerebral cortex, but was mostly absent in the basal moyamoya region. Autoregulation under induced hypertension seemed to be preserved both in the cerebral cortex and in the basal moyamoya region. Under induced hypotension, however, an impairment of autoregulation was shown both in the cerebral cortex and in the basal moyamoya region. The rCBF value in the cerebellum was slightly higher than that in the cerebrum. The vascular response of the cerebellum was not preserved under hypercapnia and hypotension; however, it showed almost normal behavior under hypocapnia and hypertension. In summary, it might be concluded that the impairment of vascular response in the basal moyamoya region during various functional tests was not due to the secondary effects following the decrease in the rCBF. It may also be speculated that these impairments of vascular response may be directly attributed to various pathological alterations in the arterial vascular wall, i.e., the maximal dilatation and rigidity of the vessels in the moyamoya region, as evidenced in the previous reports.

  13. Intensive Blood Pressure Control Affects Cerebral Blood Flow in Type 2 Diabetes Mellitus Patients

    NARCIS (Netherlands)

    Kim, Yu-Sok; Davis, Shyrin C. A. T.; Truijen, Jasper; Stok, Wim J.; Secher, Niels H.; van Lieshout, Johannes J.

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic

  14. [Acute mild hypoxia impairment of dynamic cerebral autoregulation assessed by spectral analysis and thigh-cuff deflation].

    Science.gov (United States)

    Katsukawa, Hajime; Ogawa, Yojiro; Aoki, Ken; Yanagida, Ryo; Iwasaki, Kenichi

    2012-01-01

    Acute hypoxia may impair dynamic cerebral autoregulation. However, previous studies have been controversial. The difference in methods of estimation of dynamic cerebral autoregulation is reported to be responsible for conflicting reports. We, therefore, conducted this study using two representative methods of estimation of dynamic cerebral autoregulation to test our hypothesis that dynamic cerebral autoregulation is impaired during acute exposure to mild hypoxia. Eleven healthy men were exposed to 15% oxygen concentration for two hours. They were examined under normoxia (21% O(2)) and hypoxia (15% O(2)). The mean arterial pressure (MAP) in the radial artery was measured by tonometry, and cerebral blood flow velocity (CBFv) in the middle cerebral artery was measured by transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analyses of beat-by-beat changes in MAP and CBFv. Moreover, the dynamic rate of regulation and percentage restoration of CBFv were estimated when a temporal decrease in arterial pressure was induced by thigh-cuff deflation. Arterial oxygen saturation decreased significantly during hypoxia (97±0% to 88±1%), whereas respiratory rate was unchanged, as was steady-state CBFv. With 15% O(2), the very-low-frequency power of CBFv variability increased significantly. Transfer function coherence (0.40±0.02 to 0.53±0.05) and gain (0.51±0.07 cm/s/mmHg to 0.79±0.11 cm/s/mmHg) in the very-low-frequency range increased significantly. Moreover, the percentage restoration of CBF velocity determined by thigh-cuff deflation decreased significantly during hypoxia (125±25% to 65±8%). Taken together, these results obtained using two representative methods consistently indicate that mild hypoxia impairs dynamic cerebral autoregulation.

  15. Shoulder surgery in the beach chair position is associated with diminished cerebral autoregulation but no differences in postoperative cognition or brain injury biomarker levels compared with supine positioning: the anesthesia patient safety foundation beach chair study.

    Science.gov (United States)

    Laflam, Andrew; Joshi, Brijen; Brady, Kenneth; Yenokyan, Gayane; Brown, Charles; Everett, Allen; Selnes, Ola; McFarland, Edward; Hogue, Charles W

    2015-01-01

    Although controversial, failing to consider the gravitational effects of head elevation on cerebral perfusion is speculated to increase susceptibility to rare, but devastating, neurologic complications after shoulder surgery in the beach chair position (BCP). We hypothesized that patients in the BCP have diminished cerebral blood flow autoregulation than those who undergo surgery in the lateral decubitus position (LDP). A secondary aim was to examine whether there is a relationship between patient positioning during surgery and postoperative cognition or serum brain injury biomarker levels. Patients undergoing shoulder surgery in the BCP (n = 109) or LDP (n = 109) had mean arterial blood pressure (MAP) and regional cerebral oxygen saturation (rScO2) monitored with near-infrared spectroscopy. A continuous, moving Pearson correlation coefficient was calculated between MAP and rScO2, generating the variable cerebral oximetry index (COx). When MAP is in the autoregulated range, COx approaches zero because there is no correlation between cerebral blood flow and arterial blood pressure. In contrast, when MAP is below the limit of autoregulation, COx is higher because there is a direct relationship between lower arterial blood pressure and lower cerebral blood flow. Thus, diminished autoregulation would be manifest as higher COx. Psychometric testing was performed before surgery and then 7 to 10 days and 4 to 6 weeks after surgery. A composite cognitive outcome was determined as the Z-score. Serum S100β, neuron-specific enolase, and glial fibrillary acidic protein were measured at baseline, after surgery, and on postoperative day 1. After adjusting for age and history of hypertension, COx (P = 0.035) was higher and rScO2 lower (P surgery between the BCP and the LDP groups. There was no difference in serum biomarker levels between the 2 position groups : Compared with patients in the LDP, patients undergoing shoulder surgery in the BCP are more likely to have higher COx

  16. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow

    DEFF Research Database (Denmark)

    Jensen, Elisa Pouline; Poulsen, Steen Seier; Kissow, Hannelouise

    2015-01-01

    was to localize renal GLP-1 receptors and describe GLP-1 mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using 125I-GLP-1......, 125I-exendin-4 (GLP-1 analog) and 125I-exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1 mediated effects on blood pressure (BP), renal blood flow (RBF), heart rate (HR), renin secretion, urinary flow rate and Na+ and K+ excretion were...... conclude that GLP-1 receptors are located in the renal vasculature including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases renal blood flow in normotensive rats....

  17. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates

    DEFF Research Database (Denmark)

    Hahn, Gitte Holst

    2013-01-01

    Increased preterm delivery rate and survival of preterm infants of whom a considerable proportion survive with neurodevelopmental impairment calls for better knowledge of mechanisms associated with brain injury. This thesis focuses on cerebral autoregulation and is based on clinical studies of very...... us to evaluate the precision and validity of this method. We monitored 22 preterm neonates and demonstrated that reliable detection of impaired cerebral autoregulation requires several hours of monitoring. However, weighting measurements with large variations in blood pressure in favour of those...

  18. Effect of strict metabolic control on regulation of subcutaneous blood flow in insulin-dependent diabetic patients

    DEFF Research Database (Denmark)

    Kastrup, J; Mathiesen, E R; Saurbrey, Nina

    1987-01-01

    washout technique. Mean arterial blood pressure was reduced by a maximum of 23 mmHg by elevating the limb above heart level and elevated to a maximum of 65 mmHg by head-up tilt; in the latter position venous pressure was kept constantly low by activation of the leg muscle vein pump (heel raising......The effect of 10 weeks of improved metabolic control on the impaired autoregulation of the subcutaneous blood flow was studied at the level of the lateral malleolus in eight long-term insulin-dependent diabetic patients with clinical microangiopathy. Blood flow was measured by the local 133-Xenon......). Improved metabolic control was achieved using either continuous subcutaneous insulin infusion or multiple insulin injections. The blood glucose concentration declined from (median) 12.7 to 6.8 mmol/l and the HbA1C level from 10.1 to 7.5% during strict metabolic control (p less than 0.01 and p less than 0...

  19. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis

    International Nuclear Information System (INIS)

    Ashwal, S.; Stringer, W.; Tomasi, L.; Schneider, S.; Thompson, J.; Perkin, R.

    1990-01-01

    We examined total and regional cerebral blood flow (CBF) by stable xenon computed tomography in 20 seriously ill children with acute bacterial meningitis to determine whether CBF was reduced and to examine the changes in CBF during hyperventilation. In 13 children, total CBF was normal (62 +/- 20 ml/min/100 gm) but marked local variability of flow was seen. In five other children, total CBF was significantly reduced (26 +/- 10 ml/min/100 gm; p less than 0.05), with flow reduced more in white matter (8 +/- 5 ml/min/100 gm) than in gray matter (30 +/- 15 ml/min/100 gm). Autoregulation of CBF appeared to be present in these 18 children within a range of mean arterial blood pressure from 56 to 102 mm Hg. In the remaining two infants, brain dead within the first 24 hours, total flow was uniformly absent, averaging 3 +/- 3 ml/min/100 gm. In seven children, CBF was determined at two carbon dioxide tension (PCO2) levels: 40 (+/- 3) mm Hg and 29 (+/- 3) mm Hg. In six children, total CBF decreased 33%, from 52 (+/- 25) to 35 (+/- 15) ml/min/100 gm; the mean percentage of change in CBF per millimeter of mercury of PCO2 was 3.0%. Regional variability of perfusion to changes in PCO2 was marked in all six children. The percentage of change in CBF per millimeter of mercury of PCO2 was similar in frontal gray matter (3.1%) but higher in white matter (4.5%). In the seventh patient a paradoxical response was observed; total and regional CBF increased 25% after hyperventilation. Our findings demonstrate that (1) CBF in children with bacterial meningitis may be substantially decreased globally, with even more variability noted regionally, (2) autoregulation of CBF is preserved, (3) CBF/CO2 responsitivity varies among patients and in different regions of the brain in the same patient, and (4) hyperventilation can reduce CBF below ischemic thresholds

  20. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...... developed clinical AMS (AMS+) and were more hypoxaemic relative to subjects without AMS (AMS-). A more marked increase in the venous concentration of the ascorbate radical (A(*-)), lipid hydroperoxides (LOOH) and increased susceptibility of low-density lipoprotein (LDL) to oxidation was observed during...

  1. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Strauss, Gitte I; Mehlsen, Jesper

    2006-01-01

    .0+/-2.0 bpm) compared to the controls (21.7+/-2.2 bpm, p=0.001, Tukey' test). Systolic blood pressure fell during head-up tilt only in patients with severe cirrhosis. Our results imply that cerebral autoregulation was impaired in the most severe cases of liver cirrhosis, and that those with impaired cerebral...

  2. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods.

    Science.gov (United States)

    Zeiler, Frederick A; Donnelly, Joseph; Calviello, Leanne; Menon, David K; Smielewski, Peter; Czosnyka, Marek

    2017-12-01

    The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO 2 ) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE ® , BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO 2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of

  3. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2016-01-01

    Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.

  5. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Govindan, R B; Vezina, Gilbert; Chang, Taeun; Andescavage, Nickie N; Wang, Yunfei; Al-Shargabi, Tareq; Metzler, Marina; Harris, Kari; du Plessis, Adre J

    2015-08-01

    Impaired cerebral autoregulation may contribute to secondary injury in newborns with hypoxic-ischemic encephalopathy (HIE). Continuous, noninvasive assessment of cerebral pressure autoregulation can be achieved with bedside near-infrared spectroscopy (NIRS) and systemic mean arterial blood pressure (MAP) monitoring. This study aimed to evaluate whether impaired cerebral autoregulation measured by NIRS-MAP monitoring during therapeutic hypothermia and rewarming relates to outcome in 36 newborns with HIE. Spectral coherence analysis between NIRS and MAP was used to quantify changes in the duration [pressure passivity index (PPI)] and magnitude (gain) of cerebral autoregulatory impairment. Higher PPI in both cerebral hemispheres and gain in the right hemisphere were associated with neonatal adverse outcomes [death or detectable brain injury by magnetic resonance imaging (MRI), P < 0.001]. NIRS-MAP monitoring of cerebral autoregulation can provide an ongoing physiological biomarker that may help direct care in perinatal brain injury. Copyright © 2015 the American Physiological Society.

  6. Cutaneous and subcutaneous blood flow measurements in psoriasis

    International Nuclear Information System (INIS)

    Klemp, P.

    1987-01-01

    The experiments - published in 7 papers in The Journal of Investigative Dermatology 1983-86 - have demonstrated: 1. The accuracy of the local 133 Xe washout method is about 15% for estimation of the cutaneous blood flow (CBF), and about 10% for subcutaneous blood flow measurements (SBF). In measurements of absolute CBF values a graphic curve resolution of the washout curve should alwaus be performed. Otherwise the CBF might be considerably underestimated. 2. CdTe(Cl) mini-detectors can be attached directly to the skin, and might yield measurements of both CBF and SBF that can substitute for those made with conventional detectors. 3. The laser Doppler measurements could not be correlated to quantitative measurements of the CBF. 4. The tissue-to-blood partition coefficient for 133 Xe of lesional psoriatic skin (LS) is increased. 5. In untreated, LS of patients with active psoriasis the CBF is about a factor of 10 times higher than the CBF of normal individuals. In non-lesional skin (NLS) of patients with active psoriasis the CBF is about a factor of 2 higher than the CBF of normal individuals. However, the CBF did not differ in NLS of patients with minimal skin manifestations. The high CBF decreases gradualy during antipsoriatic treatment. 6. A paradoxical autoregulation of the CBF was observed in LS. 7. The high CBF is not due to a maximally dilated vascular bed. 8. The SBF in LS areas was a factor of higher than the SBF in normal individuals. 9. A normal, local regulation of the SBF was found. (author)

  7. Dopamine therapy does not affect cerebral autoregulation during hypotension in newborn piglets

    DEFF Research Database (Denmark)

    Eriksen, Vibeke Ramsgaard; Rasmussen, Martin Bo; Hahn, Gitte Holst

    2017-01-01

    measurements, PaCO2 and arterial saturation were stable. MAP levels ranged between 14 and 82 mmHg. Cerebral autoregulation (CA) capacity was calculated as the ratio between %-change in cerebrovascular resistance and %-change in MAP induced by the in/deflation of the arterial balloon. A breakpoint in CA...... capacity was identified at a MAP of 38±18 mmHg without dopamine and at 44±18, 31±14, and 24±14 mmHg with dopamine infusion rates of 10, 25, and 40 μg/kg/min (p = 0.057). Neither the index of steady-state cerebral perfusion nor cerebral venous saturation were affected by dopamine infusion. Conclusion......: Dopamine infusion tended to improve CA capacity at low blood pressures while an index of steady-state cerebral blood flow and cerebral venous saturation were unaffected by dopamine infusion. Thus, dopamine does not appear to impair CA in newborn piglets....

  8. tPA variant tPA-A296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1.

    Science.gov (United States)

    Armstead, William M; Hekierski, Hugh; Yarovoi, Serge; Higazi, Abd Al-Roof; Cines, Douglas B

    2018-01-01

    Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A, 296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A 296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A 296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1. © 2017 Wiley Periodicals, Inc.

  9. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods

    OpenAIRE

    Budohoski, Karol P; Czosnyka, Marek; Smielewski, Peter; Varsos, Georgios V; Kasprowicz, Magdalena; Brady, Ken M; Pickard, John D; Kirkpatrick, Peter J

    2012-01-01

    In patients after subarachnoid hemorrhage (SAH) failure of cerebral autoregulation is associated with delayed cerebral ischemia (DCI). Various methods of assessing autoregulation are available, but their predictive values remain unknown. We characterize the relationship between different indices of autoregulation. Patients with SAH within 5 days were included in a prospective study. The relationship between three indices of autoregulation was analyzed: two indices calculated using spontaneous...

  10. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    Science.gov (United States)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  11. Ventricular distension and diastolic coronary blood flow in the anaesthetized dog.

    Science.gov (United States)

    Gattullo, D; Linden, R J; Losano, G; Pagliaro, P; Westerhof, N

    1993-01-01

    There appears to be no agreement as to whether or not an increase in diastolic left ventricular pressure and/or volume can cause a decrease in diastolic coronary blood flow. We investigated the problem in the anaesthetized dog using a flaccid freely distensible latex balloon inserted into the left ventricle with the animal on extracorporeal circulation and the coronary perfusion pressure constant at about 45 mm Hg. Maximal vasodilatation and suppression of autoregulation in coronary vasculature was obtained by the intracoronary infusion of dipyridamole (10-40 mg/h). Ventricular volume was changed in steps of 10 ml from 10 to 70 ml and back to 10 ml, whilst recording coronary blood flow and left ventricular pressure in the left circumflex coronary artery. Over a range of ventricular volumes from 20 to 50 ml and a concomitant rise in diastolic ventricular pressure to about 20 mm Hg there was no change in the diastolic coronary flow. Only when the ventricular volume was more than two times the control value (i.e. exceeded 50 ml) and left ventricular pressure was more than 20 mm Hg, was there a decrease in coronary flow. During the return of the volume to the control level there was a fall in diastolic flow and ventricular contractility with respect to the values obtained when the volume was increased; these two effects were transient lasting less than 10 min. It was not considered that any of the three models of the coronary circulation, waterfall, intramyocardial pump or varying elastance model could explain our results.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using doubl...

  13. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade...

  14. Analysis of dynamic autoregulation assessed by the cuff deflation method.

    Science.gov (United States)

    Hlatky, Roman; Valadka, Alex B; Robertson, Claudia S

    2006-01-01

    Dynamic testing of cerebral pressure autoregulation is more practical than static testing for critically ill patients. The process of cuff deflation is innocuous in the normal subject, but the systemic and cerebral effects of cuff deflation in severely head-injured patients have not been studied. The purposes of this study were to examine the physiological effects of cuff deflation and to study their impact on the calculation of autoregulatory index (ARI). In 24 severely head-injured patients, 388 thigh cuff deflations were analyzed. The physiological parameters were recorded before, during, and after a transient decrease in blood pressure. Autoregulation was graded by generating an ARI value from 0 to 9. Mean arterial blood pressure (MAP) dropped rapidly during the first 2-3 seconds, but the nadir MAP was not reached until 8 +/- 7 seconds after the cuff deflation. MAP decreased by an average value of 19 +/- 5 mmHg. Initially the tracings for MAP and cerebral perfusion pressure (CPP) were nearly identical, but after 30 seconds, variable increases in intracranial pressure caused some differences between the MAP and CPP curves. The difference between the ARI values calculated twice using MAP as well as CPP was zero for 70% of left-sided studies and 73% for right-sided studies and less than or equal to 1 for 93% of left- and 95% of right-sided cuff deflations. Transient and relatively minor perturbations were detected in systemic physiology induced by dynamic testing of cerebral pressure autoregulation. Furthermore, this study confirms that the early changes in MAP and CPP after cuff deflation are nearly identical. MAP can substitute for CPP in the calculation of ARI even in the severely brain-injured patient.

  15. Role of endocannabinoids and cannabinoid-1 receptors in cerebrocortical blood flow regulation.

    Directory of Open Access Journals (Sweden)

    András Iring

    Full Text Available Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1 receptor blockade and inhibition of cannabinoid reuptake, respectively on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H.In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v. failed to influence blood pressure (BP, cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v. induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H.Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the

  16. Cardiovascular and Postural Control Interactions during Hypergravity: Effects on Cerebral Autoregulation in Males and Females

    Science.gov (United States)

    Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut

    2012-07-01

    Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.

  17. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2011-01-01

    Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence...... of the NIRS and ABP signals (i.e. correlation in the frequency domain) detects impairment of CA, whereas gain (i.e. magnitude of ABP variability passing from systemic to cerebral circulation) estimates the degree of this impairment. So far, however, this method has not been validated. In 12 newborn piglets......, we compared NIRS-derived measures of CA with a conventional measure of CA: cerebral blood flow was measured by laser Doppler flowmetry, and changes in ABP were induced by inflating a thoracic aorta balloon. CA capacity was calculated as %¿CVR/%¿ABP (i.e. percentage of full autoregulatory capacity...

  18. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2011-01-01

    Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence...... of the NIRS and ABP signals (i.e. correlation in the frequency domain) detects impairment of CA, whereas gain (i.e. magnitude of ABP variability passing from systemic to cerebral circulation) estimates the degree of this impairment. So far, however, this method has not been validated. In 12 newborn piglets......, we compared NIRS-derived measures of CA with a conventional measure of CA: cerebral blood flow was measured by laser Doppler flowmetry, and changes in ABP were induced by inflating a thoracic aorta balloon. CA capacity was calculated as %ΔCVR/%ΔABP (i.e. percentage of full autoregulatory capacity...

  19. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M

    2016-01-01

    (-1) ; P = 0·91 versus baseline; P = 0·14 versus LPS]. While our findings support the concept that dynamic cerebral autoregulation is enhanced during the very early stages of sepsis, they remain inconclusive with regard to more advanced stages of disease, because thigh-cuff deflation failed to induce...... (Ps...

  20. Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men

    DEFF Research Database (Denmark)

    Ogoh, Shigehiko; Sørensen, Henrik; Hirasawa, Ai

    2016-01-01

    men. Both ICA (mean ± SD; by 17 ± 8%, P = 0.005) and ECA (by 37 ± 15%, P 5 s) than for the ECA blood flow (17 ± 5 s; P = 0.019). The ICA blood flow recovery...... from hypoperfusion was delayed with prazosin (17 ± 4 s versus control 9 ± 5 s, P = 0.006), whereas ECA recovery remained unchanged (P = 0.313) despite a similar reduction in mean arterial pressure (−20 ± 4 mmHg versus control −23 ± 7 mmHg, P = 0.148). These findings suggest that α1-receptor blockade...

  1. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients.

    Science.gov (United States)

    Hori, Daijiro; Hogue, Charles; Adachi, Hideo; Max, Laura; Price, Joel; Sciortino, Christopher; Zehr, Kenton; Conte, John; Cameron, Duke; Mandal, Kaushik

    2016-04-01

    Perioperative blood pressure management by targeting individualized optimal blood pressure, determined by cerebral blood flow autoregulation monitoring, may ensure sufficient renal perfusion. The purpose of this study was to evaluate changes in the optimal blood pressure for individual patients, determined during cardiopulmonary bypass (CPB) and during early postoperative period in intensive care unit (ICU). A secondary aim was to examine if excursions below optimal blood pressure in the ICU are associated with risk of cardiac surgery-associated acute kidney injury (CSA-AKI). One hundred and ten patients undergoing cardiac surgery had cerebral blood flow monitored with a novel technology using ultrasound tagged near infrared spectroscopy (UT-NIRS) during CPB and in the first 3 h after surgery in the ICU. The correlation flow index (CFx) was calculated as a moving, linear correlation coefficient between cerebral flow index measured using UT-NIRS and mean arterial pressure (MAP). Optimal blood pressure was defined as the MAP with the lowest CFx. Changes in optimal blood pressure in the perioperative period were observed and the association of blood pressure excursions (magnitude and duration) below the optimal blood pressure [area under the curve (AUC) blood pressure during early ICU stay and CPB was correlated (r = 0.46, P AUC blood pressure during CPB and in the ICU was correlated. Excursions below optimal blood pressure (AUC blood pressure management based on cerebral autoregulation monitoring during the perioperative period may help improve CSA-AKI-related outcomes. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Influence exerted by new pyrimidine derivatives on cerebral circulation auto-regulation and vasodilatating function of vessels endothelium in rats' brains under chronic hemic hypoxia

    Directory of Open Access Journals (Sweden)

    A.V. Voronkov

    2018-03-01

    Full Text Available Our research goal was to examine influences exerted by new pyrimidine derivatives coded as BL0 and BL2 on cerebral hemodynamics auto-regulation parameters and vasodilatating function of vessels endothelium as risk factors causing ischemic and hemorrhagic strokes under chronic hemic hypoxia. We performed an experiment on white Wistar rats to prove that endothelial dysfunction which evolves under chronic hemic hypoxia leads to disorders in endothelium-mediated mechanisms for cerebral circulation auto-regulation in rats. We modeled hypoxia in animals via granting them free access to 0.2 % sodium nitrite solution instead of ordinary drinking water. Endothelial dysfunction was confirmed as per disorders in vasodilatation and vasoconstriction reactions at intravenous introduction of acetyl choline (0.1 mg/kg and methyl ether hydrochloride nitro-L-arginine (10 mg/kg. Cerebral blood flow speed was measured with MM-D-K-Minimax v.2.1. ultrasound Doppler. We assessed cerebral circulation auto-regulation as per compression test results which allowed us to calculate overshoot coefficient and auto-regulation power. Examined pyrimidine derivatives and comparison preparations were introduced orally 60 minutes prior to taking readings. Mexidol doses were calculated on the basis of interspecific recalculation of a maximum daily dose for a man. Nicergoline dose was taken as a most effective one as per literature data. When new pyrimidine derivatives BL0 and BL2 are applied under chronic hemic hypoxia, it causes overshoot coefficient to grow authentically higher than in a negative control group but it doesn't exert any positive influence on collateral reserve parameter, namely auto-regulation power. BL0 and BL2 improve endothelium vasodilatating function at intravenous acetylcholine introduction (0.1 mg/kg and don't exert any influence on vasoconstricting function at L-NAME intravenous introduction (10 mg/kg. The examined substance BL0 has more apparent

  3. Severe hypertension in pregnancy: Using dynamic checklists to ...

    African Journals Online (AJOL)

    matter and occasionally in the cortex of the occipital and parietal lobes.[3] Recently, Van Veen et al.[4] investigated cerebral blood flow autoregulation by measuring cerebral artery blood flow velocity using transcranial Doppler ultrasound and found impaired autoregulation in women with pre-eclampsia when compared with ...

  4. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study.

    Science.gov (United States)

    Proescholdt, Martin A; Faltermeier, Rupert; Bele, Sylvia; Brawanski, Alexander

    2017-01-01

    Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  5. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study

    Directory of Open Access Journals (Sweden)

    Martin A. Proescholdt

    2017-01-01

    Full Text Available Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca, correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp. In this study we compared the results of the sca with the pressure reactivity index (PRx, an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc. The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  6. Stability estimation of autoregulated genes under Michaelis-Menten-type kinetics

    Science.gov (United States)

    Arani, Babak M. S.; Mahmoudi, Mahdi; Lahti, Leo; González, Javier; Wit, Ernst C.

    2018-06-01

    Feedback loops are typical motifs appearing in gene regulatory networks. In some well-studied model organisms, including Escherichia coli, autoregulated genes, i.e., genes that activate or repress themselves through their protein products, are the only feedback interactions. For these types of interactions, the Michaelis-Menten (MM) formulation is a suitable and widely used approach, which always leads to stable steady-state solutions representative of homeostatic regulation. However, in many other biological phenomena, such as cell differentiation, cancer progression, and catastrophes in ecosystems, one might expect to observe bistable switchlike dynamics in the case of strong positive autoregulation. To capture this complex behavior we use the generalized family of MM kinetic models. We give a full analysis regarding the stability of autoregulated genes. We show that the autoregulation mechanism has the capability to exhibit diverse cellular dynamics including hysteresis, a typical characteristic of bistable systems, as well as irreversible transitions between bistable states. We also introduce a statistical framework to estimate the kinetics parameters and probability of different stability regimes given observational data. Empirical data for the autoregulated gene SCO3217 in the SOS system in Streptomyces coelicolor are analyzed. The coupling of a statistical framework and the mathematical model can give further insight into understanding the evolutionary mechanisms toward different cell fates in various systems.

  7. Exosomes from eosinophils autoregulate and promote eosinophil functions.

    Science.gov (United States)

    Cañas, José Antonio; Sastre, Beatriz; Mazzeo, Carla; Fernández-Nieto, Mar; Rodrigo-Muñoz, José Manuel; González-Guerra, Andrés; Izquierdo, Manuel; Barranco, Pilar; Quirce, Santiago; Sastre, Joaquín; Del Pozo, Victoria

    2017-05-01

    Eosinophils are able to secrete exosomes that have an undefined role in asthma pathogenesis. We hypothesized that exosomes released by eosinophils autoregulate and promote eosinophil function. Eosinophils of patients with asthma ( n = 58) and healthy volunteers ( n = 16) were purified from peripheral blood, and exosomes were isolated and quantified from eosinophils of the asthmatic and healthy populations. Apoptosis, adhesion, adhesion molecules expression, and migration assays were performed with eosinophils in the presence or absence of exosomes from healthy and asthmatic individuals. Reactive oxygen species (ROS) were evaluated by flow cytometry with an intracellular fluorescent probe and nitric oxide (NO) and a colorimetric kit. In addition, exosomal proteins were analyzed by mass spectrometry. Eosinophil-derived exosomes induced an increase in NO and ROS production on eosinophils. Moreover, exosomes could act as a chemotactic factor on eosinophils, and they produced an increase in cell adhesion, giving rise to a specific augmentation of adhesion molecules, such as ICAM-1 and integrin α2. Protein content between exosomes from healthy and asthmatic individuals seems to be similar in both groups. In conclusion, we found that exosomes from the eosinophils of patients with asthma could modify several specific eosinophil functions related to asthma pathogenesis and that they could contribute fundamentally to the development and maintenance of asthma. © Society for Leukocyte Biology.

  8. Changes in cerebral blood flow and psychometric indicators in veterans with early forms of chronic brain ischemia

    Directory of Open Access Journals (Sweden)

    Vasilenko Т.М.

    2015-09-01

    Full Text Available The goal is to study the cerebral blood flow and psychometric characteristics in veterans of Afghanistan with early forms of chronic brain ischemia. Material and Methods. The study included 74 veterans of the Afghan war aged from 45 to 55 years: group 1, 28 people with NPNKM; Group 2-28 patients with circulatory encephalopathy stage 1; group 3-18 healthy persons. Doppler examination of cerebral vessels was carried out on the unit «Smart-lite». Reactive and personal anxiety of patients was assessed using the scale of Spielberger, evaluation of the quality of life through the test SAN. Determining the level of neuroticism and psychoticism was conducted by the scale of neuroticism and psy-choticism. Results: The study of cerebral blood flow in the Afghan war veterans showed signs of insolvency of carotid and carotid-basilar anastomoses, hypoperfusion phenomenon with the depletion of autoregulation, violation of the outflow of venous blood at the level of the microvasculature, accompanied by cerebral arteries spasm. More than 40% of patients with early forms of chronic brain ischemia had high personal anxiety, low levels of well-being and activity, with maximum expression of dyscirculatory hypoxia. Conclusion. Readaptation of veterans of Afghanistan is accompanied by the changes in psychometric performance and the formation of the earliest forms of brain chronic ischemia associated with inadequate hemodynamics providing increased functional activity of the brain and the inefficiency of compensatory-adaptive reactions.

  9. Dopamine therapy does not affect cerebral autoregulation during hypotension in newborn piglets.

    Directory of Open Access Journals (Sweden)

    Vibeke Ramsgaard Eriksen

    Full Text Available Hypotensive neonates who have been treated with dopamine have poorer neurodevelopmental outcome than those who have not been treated with dopamine. We speculate that dopamine stimulates adrenoceptors on cerebral arteries causing cerebral vasoconstriction. This vasoconstriction might lead to a rightward shift of the cerebral autoregulatory curve; consequently, infants treated with dopamine would have a higher risk of low cerebral blood flow at a blood pressure that is otherwise considered "safe".In anaesthetized piglets, perfusion of the brain, monitored with laser-doppler flowmetry, and cerebral venous saturation was measured at different levels of hypotension. Each piglet was studied in two phases: a phase with stepwise decreases in MAP and a phase with stepwise increases in MAP. We randomized the order of the two phases, whether dopamine was given in the first or second phase, and the infusion rate of dopamine (10, 25, or 40 μg/kg/min. In/deflation of a balloon catheter, placed in vena cava, induced different levels of hypotension. At each level of hypotension, fluctuations in MAP were induced by in/deflations of a balloon catheter in descending aorta.During measurements, PaCO2 and arterial saturation were stable. MAP levels ranged between 14 and 82 mmHg. Cerebral autoregulation (CA capacity was calculated as the ratio between %-change in cerebrovascular resistance and %-change in MAP induced by the in/deflation of the arterial balloon. A breakpoint in CA capacity was identified at a MAP of 38±18 mmHg without dopamine and at 44±18, 31±14, and 24±14 mmHg with dopamine infusion rates of 10, 25, and 40 μg/kg/min (p = 0.057. Neither the index of steady-state cerebral perfusion nor cerebral venous saturation were affected by dopamine infusion.Dopamine infusion tended to improve CA capacity at low blood pressures while an index of steady-state cerebral blood flow and cerebral venous saturation were unaffected by dopamine infusion. Thus

  10. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion.

    Science.gov (United States)

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G

    2018-05-01

    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Role of blood flow and blood flow modifiers in clinical hyperthermia therapy

    International Nuclear Information System (INIS)

    Olch, A.J.

    1986-01-01

    A quantitative assessment of the effect of localized magnetic-loop hyperthermia on blood flow was performed on 12 patients (19 tumor studies) using the Xenon-133 clearance method. After it was discovered that blood flow in most of the tumors increased in response to needle injection, a physiologically based, one compartment model was developed that included both a hyperemic (transient) and a steady state component. In the tumors of six patients, increases in blood flow induced by heat were also observed. The same model was used to describe the measured clearance data for both types of hyperemic response. The ability of tumor vessels to respond dynamically to stress and the degree of response may be predictive of tumor heating efficiency and subsequent therapeutic response. Many tumors treated by hyperthermia, therefore, do not reach therapeutic temperatures (42 0 C). One explanation for this may be that some tumors react to thermal stress in a manner similar to normal tissues; i.e., they increase blood flow during hyperthermia in order to dissipate heat. Higher temperatures might be achieved in these heat-resistant tumors by administering vasoconstrictive agents in an effort to reduce blood flow. In the second part of this research study, the extent to which pharmacologic inhibition of local blood flow might allow higher temperatures to develop in normal muscles exposed to localized radiofrequency hyperthermia was determined. It was found that the local muscle temperature rise could be increased by at least 90% in dogs and rabbits with the use of a local vasoconstrictive drug

  12. Dynamic Cerebral Autoregulation after Cardiopulmonary Bypass

    DEFF Research Database (Denmark)

    Christiansen, Claus Behrend; Berg, Ronan M G; Plovsing, Ronni R

    2016-01-01

    Background Cerebral hemodynamic disturbances in the peri- or postoperative period may contribute to postoperative cognitive dysfunction (POCD) in patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). We therefore examined dynamic cerebral autoregulation (d...

  13. The Impact of Variational Primary Collaterals on Cerebral Autoregulation

    Directory of Open Access Journals (Sweden)

    Zhen-Ni Guo

    2018-06-01

    Full Text Available The influence of the anterior and posterior communicating artery (ACoA and PCoA on dynamic cerebral autoregulation (dCA is largely unknown. In this study, we aimed to test whether substantial differences in collateral anatomy were associated with differences in dCA in two common types of stenosis according to digital subtraction angiography (DSA: either isolated basal artery and/or bilateral vertebral arteries severe stenosis/occlusion (group 1; group 1A: with bilateral PCoAs; and group 1B: without bilateral PCoAs, or isolated unilateral internal carotid artery severe stenosis/occlusion (group 2; group 2A: without ACoA and with PCoA; group 2B: with ACoA and without PCoAs; and group 2C: without both ACoA and PCoA. The dCA was calculated by transfer function analysis (a mathematical model, and was evaluated in middle cerebral artery (MCA and/or posterior cerebral artery (PCA. Of a total of 231 non-acute phase ischemic stroke patients who received both dCA assessment and DSA in our lab between 2014 and 2017, 51 patients met inclusion criteria based on the presence or absence of ACoA or PCoA, including 21 patients in the group 1, and 30 patients in the group 2. There were no significant differences in gender, age, and mean blood pressure between group 1A and group 1B, and among group 2A, group 2B, and group 2C. In group 1, the PCA phase difference values (autoregulatory parameter were significantly higher in the subgroup with patent PCoAs, compared to those without. In group 2, the MCA phase difference values were higher in the subgroup with patent ACoA, compared to those without. This pilot study found that the cross-flow of the ACoA/PCoA to the affected area compensates for compromised dCA in the affected area, which suggests an important role of the ACoA/PCoA in stabilizing cerebral blood flow.

  14. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  15. Dynamic Cerebral Autoregulation in Pregnancy and the Risk of Preeclampsia

    DEFF Research Database (Denmark)

    Janzarik, Wibke G; Ehlers, Elena; Ehmann, Renata

    2014-01-01

    Preeclampsia may affect severely the cerebral circulation leading to impairment of cerebral autoregulation, edema, and ischemia. It is not known whether impaired autoregulation occurs before the clinical onset of preeclampsia, and whether this can predict the occurrence of preeclampsia. Seventy......) of respiratory-induced 0.1 Hz hemodynamic oscillations. Uterine artery ultrasound was performed to search for a notch sign as an early marker of general endothelial dysfunction. All women were followed up until 6 weeks after delivery for the occurrence of preeclampsia. The autoregulation parameter gain did...... not differ between pregnant and nonpregnant women. Phase was slightly but significantly higher in pregnant women, indicating better DCA. Women with a notch sign did not show altered DCA. A history of preeclampsia during a previous pregnancy was associated with lower phase in middle cerebral artery...

  16. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension.

    Science.gov (United States)

    Drummond, Heather A; Stec, David E

    2015-06-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na + Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.

  17. A Nonlinear Dynamic Approach Reveals a Long-Term Stroke Effect on Cerebral Blood Flow Regulation at Multiple Time Scales

    Science.gov (United States)

    Hu, Kun; Lo, Men-Tzung; Peng, Chung-Kang; Liu, Yanhui; Novak, Vera

    2012-01-01

    Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary

  18. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double......-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results...

  19. Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI

    Science.gov (United States)

    Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger

    2015-03-01

    In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.

  20. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  1. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow.

    Science.gov (United States)

    Jensen, Elisa P; Poulsen, Steen S; Kissow, Hannelouise; Holstein-Rathlou, Niels-Henrik; Deacon, Carolyn F; Jensen, Boye L; Holst, Jens J; Sorensen, Charlotte M

    2015-04-15

    Glucagon-like peptide (GLP)-1 has a range of extrapancreatic effects, including renal effects. The mechanisms are poorly understood, but GLP-1 receptors have been identified in the kidney. However, the exact cellular localization of the renal receptors is poorly described. The aim of the present study was to localize renal GLP-1 receptors and describe GLP-1-mediated effects on the renal vasculature. We hypothesized that renal GLP-1 receptors are located in the renal microcirculation and that activation of these affects renal autoregulation and increases renal blood flow. In vivo autoradiography using (125)I-labeled GLP-1, (125)I-labeled exendin-4 (GLP-1 analog), and (125)I-labeled exendin 9-39 (GLP-1 receptor antagonist) was performed in rodents to localize specific GLP-1 receptor binding. GLP-1-mediated effects on blood pressure, renal blood flow (RBF), heart rate, renin secretion, urinary flow rate, and Na(+) and K(+) excretion were investigated in anesthetized rats. Effects of GLP-1 on afferent arterioles were investigated in isolated mouse kidneys. Specific binding of (125)I-labeled GLP-1, (125)I-labeled exendin-4, and (125)I-labeled exendin 9-39 was observed in the renal vasculature, including afferent arterioles. Infusion of GLP-1 increased blood pressure, RBF, and urinary flow rate significantly in rats. Heart rate and plasma renin concentrations were unchanged. Exendin 9-39 inhibited the increase in RBF. In isolated murine kidneys, GLP-1 and exendin-4 significantly reduced the autoregulatory response of afferent arterioles in response to stepwise increases in pressure. We conclude that GLP-1 receptors are located in the renal vasculature, including afferent arterioles. Activation of these receptors reduces the autoregulatory response of afferent arterioles to acute pressure increases and increases RBF in normotensive rats. Copyright © 2015 the American Physiological Society.

  2. Effect of acute exposure to hypergravity (GX vs. GZ) on dynamic cerebral autoregulation

    Science.gov (United States)

    Serrador, J. M.; Wood, S. J.; Picot, P. A.; Stein, F.; Kassam, M. S.; Bondar, R. L.; Rupert, A. H.; Schlegel, T. T.

    2001-01-01

    We examined the effects of 30 min of exposure to either +3GX (front-to-back) or +GZ (head-to-foot) centrifugation on cerebrovascular responses to 80 degrees head-up tilt (HUT) in 14 healthy individuals. Both before and after +3 GX or +3 GZ centrifugation, eye-level blood pressure (BP(eye)), end tidal PCO2 (PET(CO2)), mean cerebral flow velocity (CFV) in the middle cerebral artery (transcranial Doppler ultrasound), cerebral vascular resistance (CVR), and dynamic cerebral autoregulatory gain (GAIN) were measured with subjects in the supine position and during subsequent 80 degrees HUT for 30 min. Mean BP(eye) decreased with HUT in both the GX (n = 7) and GZ (n = 7) groups (P centrifugation only in the GZ group (P centrifugation. CFV decreased during HUT more significantly after centrifugation than before centrifugation in both groups (P centrifugation compared with before centrifugation, GAIN increased in both groups (P centrifugation resulted in a leftward shift of the cerebral autoregulation curve. We speculate that this leftward shift may have been due to vestibular activation (especially during +GX) or potentially to an adaptation to reduced cerebral perfusion pressure during +GZ.

  3. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions

  4. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  5. Measurement of organ blood flow using tritiated water. II. Uterine blood flow in conscious pregnant ewes

    International Nuclear Information System (INIS)

    Brown, B.W.; Oddy, V.H.; Jones, A.W.

    1982-01-01

    Total uterine blood flow was measured with a tritiated water (TOH) diffusion method and with radioactive microspheres in six, conscious, pregnant ewes. With continuous infusion of TOH, equilibrium between the TOH concentration in utero-ovarian venous blood and arterial blood was attained within 50 min of the start of the infusion. The concentration of TOH in uterine and foetal tissue and in foetal blood water was the same as that in uterine venous water by 40 min; at this time, the concentration of TOH in the water of amniotic and allantoic fluids was 96% of that in uterine venous blood water. Estimates of total uterine blood flow obtained using TOH were highly correlated with those obtained with microspheres and the corresponding mean flow values obtained with the two techniques did not significantly differ. The percentage of the total uterine blood flow passing through arteriovenous anastomoses ranged from 1.4 to 3.3%

  6. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.

    Science.gov (United States)

    Casellas, D; Moore, L C

    1990-03-01

    Videometric measurements of changes in vessel lumen diameters were made to investigate autoregulatory and tubuloglomerular feedback (TGF) responses of early efferent arterioles (EA), mid-to-late afferent arterioles (MAA), and terminal, juxtaglomerular afferent arterioles (JAA) in rat juxtamedullary nephrons in vitro. High-contrast shadow-cast images of blood-perfused arterioles at the glomerular vascular pole were obtained with incident illumination and long-working-distance objectives fitted to a compound microscope. In response to an increase in blood perfusion pressure from 60 to 140 mmHg, strong autoregulatory vasoconstriction was observed in the MAA and JAA, with respective reductions in mean luminal diameter of 23 +/- 4 and 40 +/- 4% (mean +/- SE); EA diameter was unchanged. In response to TGF excitation by direct microinjection of Ringer solution into the cortical thick ascending limb segment near the macula densa, JAA luminal diameter decreased by 34 +/- 5%. The TGF responses were completely inhibited by the addition of 0.1 mM furosemide to the tubular injectate. Calcium channel blockade achieved by adding 1 microM nimodipine to the superfusate had no effect on early EA diameter but produced a blood pressure-dependent JAA and MAA vasodilation and complete inhibition of autoregulatory responses. These results provide direct evidence that the distal afferent arteriole in juxtamedullary nephrons is a major effector site for both renal autoregulation and tubuloglomerular feedback.

  7. Blood flow and blood volume in a transplanted rat fibrosarcoma

    International Nuclear Information System (INIS)

    Tozer, G.M.; Morris, C.C.

    1990-01-01

    Blood flow measurements following i.v. infusion of iodi-antipyrine labelled with 14 C ( 14 C-IAP) and blood volume measurements following i.v. injection of 125 I human serum albumin and 51 Cr-labelled red blood cells were made in a transplanted rat fibrosarcoma for comparison with various normal tissues. The tumour-blood partition co-efficient for 14 C-IAP w as found to be 0.79 ± 0.07 which is similar to most of the normal tissues studied. The solubility of 14 C-IAP in plasma was found to be higher than that in whole blood. Blood flow to tumours 3 was found to be 17.9 ± 4.0 ml blood 100 g tissue -1 xmin -1 . These values were considered to be primarily measurements of nutritive flow. Blood in the tumours was found to occupy around 1% of the tissue space which was similar to that found for normal muscle and skin. There was no direct correlation between % blood volume and blood flow for the different tissues studied. Th haematocrit of blood contained in tumour tissue was calculated to be significantly lower than that of blood contained in the normal tissues. It was suspected that permeability of tumour blood vessel walls to 125 I-HSA could have accounted for this difference. (author). 41 refs.; 2 figs.; 3 tabs

  8. Radioisotopic flow scanning for portal blood flow and portal hypertension

    International Nuclear Information System (INIS)

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-01-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed

  9. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  10. Dynamic cerebral autoregulation and cerebrovascular reactivity: a comparative study in lacunar infarct patients

    International Nuclear Information System (INIS)

    Gommer, E D; Mess, W H; Reulen, J P H; Staals, J; Van Oostenbrugge, R J; Lodder, J

    2008-01-01

    The major purpose of this study was to simultaneously evaluate dCA before and shortly after cerebral vasodilatation evoked by infusion of acetazolamide (ACZ). It was questioned if and to what degree dCA was changed after ACZ infusion. Using 15 mg kg −1 ACZ infusion cerebrovascular reactivity (CVR) was assessed in 29 first ever lacunar stroke patients (19 M/10 F). During the CVR-test, the electrocardiogram, non-invasive finger arterial blood pressure (ABP) and middle cerebral artery blood flow velocity (CBFV) were recorded. DCA based on spontaneous blood pressure variations was evaluated in 24 subjects by linear transfer function analysis. Squared coherence, gain and phase angle in the frequency range of autoregulation (0.04–0.16 Hz) were compared before and after ACZ infusion. After ACZ infusion, median phase angle decreased significantly (p < 0.005 Wilcoxon) to 0.77 rad compared to a pre-test baseline value of 1.05 rad, indicating less efficient dCA due to ACZ. However, post-test phase values are still mostly within the normal range. Poor and statistically non-significant correlations were found between CVR and absolute dCA phase angle. It can be concluded that CVR testing with body weight adjusted infusion of ACZ lowers dCA performance but by no means exhausts dCA, suggesting that in this way maximal CVR is not determined. Characterizing dCA based on transfer function analysis of ABP to CBFV needs no provocation and adverse patient effects are minimal. The poor correlation between CVR and dCA phase angle supports an interpretation that CVR and dCA study different mechanisms of cerebrovascular control

  11. Impacts of Simulated Weightlessness by Dry Immersion on Optic Nerve Sheath Diameter and Cerebral Autoregulation

    Directory of Open Access Journals (Sweden)

    Marc Kermorgant

    2017-10-01

    Full Text Available Dry immersion (DI is used to simulate weightlessness. We investigated in healthy volunteers if DI induces changes in ONSD, as a surrogate marker of intracranial pressure (ICP and how these changes could affect cerebral autoregulation (CA. Changes in ICP were indirectly measured by changes in optic nerve sheath diameter (ONSD. 12 healthy male volunteers underwent 3 days of DI. ONSD was indirectly assessed by ocular ultrasonography. Cerebral blood flow velocity (CBFV of the middle cerebral artery was gauged using transcranial Doppler ultrasonography. CA was evaluated by two methods: (1 transfer function analysis was calculated to determine the relationship between mean CBFV and mean arterial blood pressure (ABP and (2 correlation index Mxa between mean CBFV and mean ABP.ONSD increased significantly during the first day, the third day and the first day of recovery of DI (P < 0.001.DI induced a reduction in Mxa index (P < 0.001 and an elevation in phase shift in low frequency bandwidth (P < 0.05. After DI, Mxa and coherence were strongly correlated with ONSD (P < 0.05 but not before DI. These results indicate that 3 days of DI induces significant changes in ONSD most likely reflecting an increase in ICP. CA was improved but also negatively correlated with ONSD suggesting that a persistent elevation ICP favors poor CA recovery after simulated microgravity.

  12. Nutrient and nonnutrient renal blood flow

    International Nuclear Information System (INIS)

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H.

    1990-01-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%)

  13. Microsphere estimates of blood flow: Methodological considerations

    International Nuclear Information System (INIS)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L.

    1988-01-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 x 10 6 microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period

  14. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance...

  15. Modified Beer-Lambert law for blood flow.

    Science.gov (United States)

    Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G

    2014-11-01

    We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.

  16. Blood cell interactions and segregation in flow.

    Science.gov (United States)

    Munn, Lance L; Dupin, Michael M

    2008-04-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.

  17. The effect of isovolemic hemodilution with oxycyte, a perfluorocarbon emulsion, on cerebral blood flow in rats.

    Directory of Open Access Journals (Sweden)

    Zhong-jin Yang

    Full Text Available BACKGROUND: Cerebral blood flow (CBF is auto-regulated to meet the brain's metabolic requirements. Oxycyte is a perfluorocarbon emulsion that acts as a highly effective oxygen carrier compared to blood. The aim of this study is to determine the effects of Oxycyte on regional CBF (rCBF, by evaluating the effects of stepwise isovolemic hemodilution with Oxycyte on CBF. METHODOLOGY: Male rats were intubated and ventilated with 100% O(2 under isoflurane anesthesia. The regional (striatum CBF (rCBF was measured with a laser doppler flowmeter (LDF. Stepwise isovolemic hemodilution was performed by withdrawing 4ml of blood and substituting the same volume of 5% albumin or 2 ml Oxycyte plus 2 ml albumin at 20-minute intervals until the hematocrit (Hct values reached 5%. PRINCIPAL FINDINGS: In the albumin-treated group, rCBF progressively increased to approximately twice its baseline level (208+/-30% when Hct levels were less than 10%. In the Oxycyte-treated group on the other hand, rCBF increased by significantly smaller increments, and this group's mean rCBF was only slightly higher than baseline (118+/-18% when Hct levels were less than 10%. Similarly, in the albumin-treated group, rCBF started to increase when hemodilution with albumin caused the CaO(2 to decrease below 17.5 ml/dl. Thereafter, the increase in rCBF was accompanied by a nearly proportional decrease in the CaO(2 level. In the Oxycyte-treated group, the increase in rCBF was significantly smaller than in the albumin-treated group when the CaO(2 level dropped below 10 ml/dl (142+/-20% vs. 186+/-26%, and rCBF returned to almost baseline levels (106+/-15 when the CaO(2 level was below 7 ml/dl. CONCLUSIONS/SIGNIFICANCE: Hemodilution with Oxycyte was accompanied with higher CaO(2 and PO(2 than control group treated with albumin alone. This effect may be partially responsible for maintaining relatively constant CBF and not allowing the elevated blood flow that was observed with albumin.

  18. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts...

  19. The effect of partial portal decompression on portal blood flow and effective hepatic blood flow in man: a prospective study.

    Science.gov (United States)

    Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J

    1995-12-01

    With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.

  20. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  1. Three-dimensional imaging of absolute blood flow velocity and blood vessel position under low blood flow velocity based on Doppler signal information included in scattered light from red blood cells

    Science.gov (United States)

    Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi

    2017-11-01

    The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.

  2. Autoregulation of glomerular filtration rate during spironolactone treatment in hypertensive patients with type 1 diabetes: a randomized crossover trial

    DEFF Research Database (Denmark)

    Schjoedt, K.J.; Christensen, P.K.; Jorsal, A.

    2009-01-01

    if spironolactone affects the ability to autoregulate GFR. METHODS: Sixteen hypertensive type 1 diabetic patients with persistent normoalbuminuria (presumed normal autoregulation) completed this randomized, double-masked, crossover trial. After a 4-week wash-out period, patients received spironolactone 25 mg o...... correlated with diabetes duration (R = 0.67, P type 1 diabetic patients with normoalbuminuria. Our data......BACKGROUND: Autoregulation of GFR, i.e. maintenance of relative constancy of GFR despite variations in mean arterial pressure (MAP) >80 mmHg, is impaired in diabetic kidney disease; furthermore, some antihypertensive drugs may jeopardize autoregulation. The aim of our study was to establish...

  3. Blood flow determinations utilizing digital densitometry

    International Nuclear Information System (INIS)

    Lois, F.; Mankovich, N.J.; Gomes, A.S.

    1987-01-01

    A method of obtaining relative and absolute blood flow measurements from digital densitometry was evaluated with a simulated vessel phantom and a hydrodynamic model. A digital vascular imaging system capable of acquisition in 512 2 and 1024 2 mode was used. Relative and absolute blood flow were measured using parameters derived from the densitometric curve. Since application of densitometric data to absolute flow measurements requires the vessel diameter, an algorithm for vessel size determination was created. Gray scale changes were demonstrated to be linearly related to contrast concentration. The variance of vessel size determination was significantly different in all combinations of 1024 2 and 512 2 imaging with 15 cm or 35 cm field size. The error in vessel size determination was significantly less using the larger 1024 2 matrix and the smaller 15 cm image intensifier field size, as shown by the smaller variance. In relative flow determinations, there was good correlation between the flow and four parameters of the densitometric curve with no significant differences between 512 2 and 1024 2 imaging. Absolute flow determinations had slightly lower correlation to actual flow but were not significantly different from relative flow determinations. Relative and absolute blood flow determinations can be performed adequately with either 512 2 or 1024 2 imaging. The increased accuracy in vessel size determination with 1024 2 imaging makes this high resolution system potentially perferable to determine absolute blood flow. (orig.)

  4. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  5. Nasal mucosal blood flow after intranasal allergen challenge

    International Nuclear Information System (INIS)

    Holmberg, K.; Bake, B.; Pipkorn, U.

    1988-01-01

    The nasal mucosal blood flow in patients with allergic rhinitis was determined at nasal allergen challenges with the 133 Xenon washout method. Determinations were made in 12 subjects before and 15 minutes after challenge with diluent and increasing doses of allergen. The time course was followed in eight subjects by means of repeated measurements during 1 hour after a single allergen dose. Finally, the blood flow was measured after unilateral allergen challenge in the contralateral nasal cavity. A dose-dependent decrease in blood flow was found after nasal challenge with increasing doses of allergens, whereas challenge with diluent alone did not induce any changes. The highest allergen dose, which also induced pronounced nasal symptoms, resulted in a decrease in blood flow of 25% (p less than 0.001). The time-course study demonstrated a maximum decrease in blood flow 10 to 20 minutes after challenge and then a gradual return to baseline. Unilateral allergen challenge resulted in a decrease in blood flow in the contralateral, unchallenged nasal cavity, suggesting that part of the allergen-induced changes in blood flow were reflex mediated

  6. Mammary blood flow regulation in the nursing rabbit

    International Nuclear Information System (INIS)

    Katz, M.; Creasy, R.K.

    1984-01-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit

  7. Flow regulation in coronary vascular tree: a model study.

    Directory of Open Access Journals (Sweden)

    Xinzhou Xie

    Full Text Available Coronary blood flow can always be matched to the metabolic demand of the myocardium due to the regulation of vasoactive segments. Myocardial compressive forces play an important role in determining coronary blood flow but its impact on flow regulation is still unknown. The purpose of this study was to develop a coronary specified flow regulation model, which can integrate myocardial compressive forces and other identified regulation factors, to further investigate the coronary blood flow regulation behavior.A theoretical coronary flow regulation model including the myogenic, shear-dependent and metabolic responses was developed. Myocardial compressive forces were included in the modified wall tension model. Shear-dependent response was estimated by using the experimental data from coronary circulation. Capillary density and basal oxygen consumption were specified to corresponding to those in coronary circulation. Zero flow pressure was also modeled by using a simplified capillary model.Pressure-flow relations predicted by the proposed model are consistent with previous experimental data. The predicted diameter changes in small arteries are in good agreement with experiment observations in adenosine infusion and inhibition of NO synthesis conditions. Results demonstrate that the myocardial compressive forces acting on the vessel wall would extend the auto-regulatory range by decreasing the myogenic tone at the given perfusion pressure.Myocardial compressive forces had great impact on coronary auto-regulation effect. The proposed model was proved to be consistent with experiment observations and can be employed to investigate the coronary blood flow regulation effect in physiological and pathophysiological conditions.

  8. Postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine

  9. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Sibuya, Isoo; Oiji, Arata; Kawakatsu, Sinobu; Morinobu, Shigeru; Totsuka, Shiro; Kinoshita, Osami; Yazaki, Mitsuyasu.

    1990-01-01

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  10. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques.......The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation......, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...

  11. Blood flow in healed and inflamed periodontal tissues of dogs

    International Nuclear Information System (INIS)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p 1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow. (author)

  12. Regulation of pulpal blood flow

    International Nuclear Information System (INIS)

    Kim, S.

    1985-01-01

    The regulation of blood flow of the dental pulp was investigated in dogs and rats anesthetized with sodium pentobarbital. Pulpal blood flow was altered by variations of local and systemic hemodynamics. Macrocirculatory blood flow (ml/min/100 g) in the dental pulp was measured with both the 133 Xe washout and the 15-microns radioisotope-labeled microsphere injection methods on the canine teeth of dogs, to provide a comparison of the two methods in the same tooth. Microcirculatory studies were conducted in the rat incisor tooth with microscopic determination of the vascular pattern, RBC velocity, and intravascular volumetric flow distribution. Pulpal resistance vessels have alpha- and beta-adrenergic receptors. Activation of alpha-receptors by intra-arterial injection of norepinephrine (NE) caused both a reduction in macrocirculatory Qp in dogs and decreases in arteriolar and venular diameters and intravascular volumetric flow (Qi) in rats. These responses were blocked by the alpha-antagonist PBZ. Activation of beta-receptors by intra-arterial injection of isoproterenal (ISO) caused a paradoxical reduction of Qp in dogs. In rats, ISO caused a transient increase in arteriolar Qi followed by a flow reduction; arteriolar dilation was accompanied by venular constriction. These macrocirculatory and microcirculatory responses to ISO were blocked by the alpha-antagonist propranolol

  13. Variability of the autoregulation index decreases after removing the effect of the very low frequency band

    NARCIS (Netherlands)

    Elting, J. W.; Maurits, N. M.; Aries, M. J. H.

    Dynamic cerebral autoregulation (dCA) estimates show large between and within subject variability. Sources of variability include low coherence and influence of CO2 in the very low frequency (VLF) band, where dCA is active. This may lead to unreliable transfer function and autoregulation index (ARI)

  14. Prediction of blood pressure and blood flow in stenosed renal arteries using CFD

    Science.gov (United States)

    Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul

    2018-04-01

    In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.

  15. A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.

    Science.gov (United States)

    Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang

    2018-04-15

    The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular

  16. Assessment of hand blood flow: a modified technique

    International Nuclear Information System (INIS)

    Kirsh, J.C.; Tepperman, P.S.

    1985-01-01

    A blood flow artifact has been identified with the conventional bolus-injection technique in radionuclide studies of hand disorders. The artifact, consisting of increased blood flow on the injected side, was demonstrated in 22 of 25 subjects. Using a modified injection technique to allow time for local blood flow to return to the basal state, the artifact could be eliminated in 19 of 23 additional subjects. Use of this simple protocol should help avoid misinterpretation of blood flow asymmetry in the assessment of hand disorders

  17. Bone blood flow after spinal paralysis in the rat

    International Nuclear Information System (INIS)

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K.

    1990-01-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow

  18. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.; Adler, G.; Venci, R.; Lanphier, E.H.; DeLuca, P.M. Jr.

    1984-01-01

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41 Ar from the bone mineral matrix following fast neutron activation of 44 Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  19. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  20. Modeling microcirculatory blood flow: current state and future perspectives.

    Science.gov (United States)

    Gompper, Gerhard; Fedosov, Dmitry A

    2016-01-01

    Microvascular blood flow determines a number of important physiological processes of an organism in health and disease. Therefore, a detailed understanding of microvascular blood flow would significantly advance biophysical and biomedical research and its applications. Current developments in modeling of microcirculatory blood flow already allow to go beyond available experimental measurements and have a large potential to elucidate blood flow behavior in normal and diseased microvascular networks. There exist detailed models of blood flow on a single cell level as well as simplified models of the flow through microcirculatory networks, which are reviewed and discussed here. The combination of these models provides promising prospects for better understanding of blood flow behavior and transport properties locally as well as globally within large microvascular networks. © 2015 Wiley Periodicals, Inc.

  1. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  2. Investigation of intrarenal blood flow and urine flow aspects by scintillation camera

    International Nuclear Information System (INIS)

    Kawamura, J.; Hosokawa, S.; Yoshida, O.; Ishii, Y.; Torizuka, K.

    1977-01-01

    In order to clarify intrarenal dynamic processes related to regional distribution in patients with unilateral renal disease, two radioactive tracers, 133 Xe and /sup 99m/Tc-diethylenetriaminepentaacetic acid (/sup 99m/Tc-DTPA) were introduced into a renal artery and intrarenal blood flow and urine flow aspects were observed by scintillation camera. Cortical blood flow decreased and medullary blood flow relatively increased with the advance of renal damage. Urine flow curve from normal cortex showed two phasic patterns. One early phase might correspond to the appearance of the tracer through the proximal tubule and a second phase might correspond to the appearance of the tracer through the loop of Henle to the distal tubule. Under mannitol diuresis, two phasic urine flow curves from the cortex became obscured and the peak time of pelvic curve shifted to the earlier period. These studies were considered to be useful in evaluating unilateral renal function and might offer a good insight for intrarenal physiology concerning blood flow as well as urine flow

  3. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1) identificat......Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... global MFR and major adverse cardiovascular events (MACE), and together with new diagnostic possibilities from measuring the longitudinal myocardial perfusion gradient, cardiac (82)Rb PET faces a promising clinical future. This article reviews current evidence on quantitative (82)Rb PET's ability...

  4. Predictive Value of Dynamic Cerebral Autoregulation Assessment in Surgical Management of Patients with High-Grade Carotid Artery Stenosis

    Directory of Open Access Journals (Sweden)

    Vladimir B. Semenyutin

    2017-11-01

    Full Text Available Dynamic cerebral autoregulation (DCA capacity along with the degree of internal carotid artery (ICA stenosis and characteristics of the plaque can also play an important role in selection of appropriate treatment strategy. This study aims to classify the patients with severe ICA stenosis according to preoperative state of DCA and to assess its dynamics after surgery. Thirty-five patients with severe ICA stenosis having different clinical type of disease underwent reconstructive surgery. DCA was assessed with transfer function analysis (TFA by calculating phase shift (PS between Mayer waves of blood flow velocity (BFV and blood pressure (BP before and after operation. In 18 cases, regardless of clinical type, preoperative PS on ipsilateral side was within the normal range and did not change considerably after surgery. In other 17 cases preoperative PS was reliably lower both in patients with symptomatic and asymptomatic stenosis. Surgical reconstruction led to restoration of impaired DCA evidenced by significant increase of PS in postoperative period. Our data suggest that regardless clinical type of disease various state of DCA may be present in patients with severe ICA stenosis. This finding can contribute to establishing the optimal treatment strategy, and first of all for asymptomatic patients. Patients with compromised DCA should be considered as ones with higher risk of stroke and first candidates for reconstructive surgery.

  5. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants

    DEFF Research Database (Denmark)

    Eriksen, Vibeke R; Hahn, Gitte H; Greisen, Gorm

    2014-01-01

    AIM: Hypotension is a common problem in newborn infants and is associated with increased mortality and morbidity. Dopamine is the most commonly used antihypotensive drug therapy, but has never been shown to improve neurological outcomes. This study tested our hypothesis that dopamine affects...... cerebral autoregulation (CA). METHODS: Near-infrared spectroscopy was used to measure the cerebral oxygenation index in 60 very preterm infants, and mean arterial blood pressure was monitored towards the end of their first day of life. Measurements were performed continuously for two to three hour periods......, but the anticipated difference in cerebral oxygenation was not detected. The need for mechanical ventilation in the first day of life and incidences of mortality was higher in the dopamine group. CONCLUSION: Dopamine therapy was associated with decreased CA in preterm infants. We were unable to determine whether...

  6. A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System

    Institute of Scientific and Technical Information of China (English)

    GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong

    2009-01-01

    Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.

  7. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.

  8. Quantitative assessment of limb blood flow using Tc-99m labeled red blood cells

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Shougase, Takashi; Kawamura, Naoyuki; Tsukamoto, Eriko; Nakada, Kunihiro; Sakuma, Makoto; Furudate, Masayori

    1987-01-01

    A quantitative assessment of limb blood flow using a non-diffusible radioindicator, Tc-99m labeled red blood cells, was reported. This was an application of venous occlusion plethysmography using radionuclide which was originally proposed by M. Fukuoka et al. The peripheral blood flow (mean ± s.e.) of 30 legs in a normal control group was 1.87 ± 0.08 ml/100 ml/min. In heart diseases (46 legs), it was 1.49 ± 0.13 ml/100 ml/min. The limb blood flow between a control group and heart diseases was statistically significant (p < 0.01) in the t-test. The peripheral blood flow at rest between diseased legs and normal legs in occlusive arterial disorders was also statistically significant (p < 0.01) in a paired t-test. RAVOP was done after the completion of objective studies such as radionuclide angiography or ventriculography. Technique and calculation of a blood flow were very easy and simple. RAVOP study which was originally proposed by Fukuoka et al. was reappraised to be hopeful for quantitative measurement of limb blood flow as a non-invasive technique using Tc-99m labeled red blood cells. (author)

  9. Increased bone marrow blood flow in polycythemia vera

    International Nuclear Information System (INIS)

    Lathinen, R.; Lathinen, T.; Hyoedynmaa, S.

    1983-01-01

    Bone marrow blood flow was measured in polycythemia vera, in compensatory and in relative polycythemia with a 133 Xe washout method. In the treated polycythemia vera bone marrow blood flow was significantly increased compared with the age-matched controls. The fraction of blood flow entering the bone and flowing through the hematopoietic marrow was markedly increased in both the untreated and the treated polycythemia vera. Although the number of observations in compensatory and relative polycythemia was small, the results suggest that bone marrow blood flow is not markedly increased in these diseases. The results also suggest that in older patients the simple 133 Xe method may support the diagnosis of polycythemia vera. (orig.)

  10. Increased bone marrow blood flow in polycythemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Lathinen, R.; Lathinen, T.; Hyoedynmaa, S.

    1983-01-01

    Bone marrow blood flow was measured in polycythemia vera, in compensatory and in relative polycythemia with a /sup 133/Xe washout method. In the treated polycythemia vera bone marrow blood flow was significantly increased compared with the age-matched controls. The fraction of blood flow entering the bone and flowing through the hematopoietic marrow was markedly increased in both the untreated and the treated polycythemia vera. Although the number of observations in compensatory and relative polycythemia was small, the results suggest that bone marrow blood flow is not markedly increased in these diseases. The results also suggest that in older patients the simple /sup 133/Xe method may support the diagnosis of polycythemia vera.

  11. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  12. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M.; Okajima, T.; Sato, H.

    2001-01-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  13. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  14. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  15. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  16. MR measurement of coronary arterial blood flow velocity. Evaluation of age, stenosis and drugs as factors affecting coronary blood flow

    International Nuclear Information System (INIS)

    Taoka, Yoshiaki; Harada, Masafumi; Nishitani, Hiromu; Yukinaka, Michiko; Nomura, Masahiro

    1998-01-01

    Coronary arterial blood flow velocity was measured using MRI. Two types of phase contrast methods were used for the measurements, one of which exhibited good resolving power whereas the other provided more distinct images acquired while the subject patients held their breath. Before measuring coronary arterial blood flow velocity, accuracy of the two phase contrast methods was evaluated using a phantom. The results obtained with both methods largely agreed with the values obtained using the phantom. Using both methods, the patterns of coronary arterial blood flow over one cardiac cycle were essentially identical. A peak was noted in late systole or in early diastole in the right coronary artery, whereas in the left coronary artery, a peak was noted somewhat later in diastole. In healthy volunteers, no significant difference in the maximal flow velocity in the coronary arteries was found from one age group to another. Among patients with coronary arterial stenosis, coronary arterial blood flow velocity central to the area of stenosis was lower than that observed in the healthy volunteers. Coronary arterial blood flow velocity was observed to decrease after administration of isosorbide dinitrate and increased following administration of nifedipine. (author)

  17. Regulation of local subcutaneous blood flow in patients with psoriasis and effects of antipsoriatic treatment on subcutaneous blood flow

    International Nuclear Information System (INIS)

    Klemp, P.

    1985-01-01

    Local regulation of the doubled subcutaneous blood flow (SBF) rates in psoriatic lesional skin was studied in 8 patients using a traumatic epicutaneous 133 Xe labeling washout technique. Venous stasis of 40 mm Hg induced a significant reduction in the SBF (-34%, p less than 0.01), i.e., a normal vasoconstrictor response. Limb elevation of 40 cm above heart level induced no statistical changes in the SBF (p = 0.50), i.e., a normal local autoregulation response. This indicates normal, local regulation mechanisms of SBF in psoriasis. In another 8 patients, the effect on SBF of a 4-week antipsoriatic treatment with tar was studied in lesional and symmetrically nonlesional skin areas. One patient was clear of psoriasis on day 22, and was followed only to that time. The mean pretreatment SBF in lesional skin areas was 3.87 +/- SD 0.78 ml X (100 g X min)-1, which was not statistically different from measurements on days 3, 7, 14, and 21 after treatment had started. Between day 21 and day 28, the SBF decreased significantly to 3.38 +/- SD 0.78 ml X (100 g X min)-1, p less than 0.05. The difference between the pretreatment SBF and SBF at the end of treatment was statistically significant, p less than 0.05. The changes in SBF in symmetrically nonlesional skin areas were statistically nonsignificant during the period of treatment. Pretreatment SBF was 2.60 +/- SD 1.08 (N = 8), and on day 28 was 1.91 +/- SD 0.74 ml X (100 g X min)-1 (N = 7). However, the tendency of a decreasing SBF at the end of treatment was a clear trend, since SBF in 6 of 7 patients decreased during the third week and in the patient who was discharged on day 22, a decrease in the SBF was observed on days 14 and 21

  18. Cerebral responses to exercise and the influence of heat stress in human fatigue.

    Science.gov (United States)

    Robertson, Caroline V; Marino, Frank E

    2017-01-01

    There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.

  19. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...... of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation...... TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can...

  20. X-ray PIV measurements of blood flows without tracer particles

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon

    2006-01-01

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects. (orig.)

  1. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptom...

  2. Blood flow velocity in migraine attacks - a transcranial Doppler study

    International Nuclear Information System (INIS)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D.

    1991-01-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs

  3. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  4. The effect of ultrasound on arterial blood flow: 1. Steady fully developed flow

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper models the effects of ultrasound heating of the tissues and the resultant perturbation on blood flow in the arteries and veins. It is assumed that the blood vessel is rigid and the undisturbed flow is fully developed. Acoustical perturbation on this Poiseuille flow, for the general three-dimensional flow with heat transfer in an infinitely long pipe is considered. Closed form analytical solutions are obtained to the problem. It is discovered that the effects of the ultrasound heating are concentrated at the walls of the blood vessels. (author). 4 refs

  5. Renal blood flow in sepsis: a complex issue

    OpenAIRE

    Molitoris, Bruce A

    2005-01-01

    The clinical complexity of sepsis and the regional variability in renal blood flow present a difficult challenge for the clinician or investigator in understanding the role and clinical importance of reduced blood flow in the pathophysiology of sepsis-induced acute renal failure. Understanding the role of regional microvasculature flow and interactions between endothelium and white blood cells in the local delivery of oxygen and substrates is of critical importance. Therefore, measuring total...

  6. Measurement of Finger Blood Flow in Raynauds Phenomenon by Radionuclide Angiography

    International Nuclear Information System (INIS)

    Lim, Sang Moo; Chung, June Key; Lee, Myung Chul; Kim, Sang Joon; Choi, Sung Jae; Koh, Chang Soon

    1987-01-01

    In Raynauds phenomenon, the authors measured finger blood flow after ice water exposure by analyzing the time activity curve of radionuclide angiography on both hands. The results were as follows: 1) The digital blood flow did not decrease after ice water exposure in normal subjects. 2) In the patients with Raynauds phenomenon, there were two groups: the one had decreased digital blood flow after cold exposure, and the other had paradoxically increased digital blood flow after cold exposure. 3) There was no difference in the digital blood flow of hand in room temperature between the normal and the patients with reduced digital blood flow after cold exposure, but the digital blood flow of the hand in room temperature was markedly reduced in the patients with paradoxically increased flow after cold exposure. 4) In the static image the difference was not significant in comparison with the dynamic study, because it represents pooling of the blood in the vein rather than flow. 5) After the treatment with nifedipine, the digital blood flow increased. In conclusion, the radionuclide angiography was useful in measuring the digital blood flow in Raynauds phenomenon, and further studies with various drugs is expected.

  7. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    DEFF Research Database (Denmark)

    Hahn, GH; Christensen, KB; Leung, TS

    2010-01-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely...... determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants....... We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GAABP within the power spectrum did not improve the precision. However, adjusting...

  8. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    International Nuclear Information System (INIS)

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-01-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using 18 F) and bone turnover (using 85 Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by 18 F correlated with an index of 85 Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group

  9. The role of blood flow in chronic duodenal ulcer

    Energy Technology Data Exchange (ETDEWEB)

    Gompertz, R.H.K.; Mathie, R.T.; Michalowski, A.S.; Spencer, J.; Baron, J.H.; Williamson, R.C.N.

    1996-01-01

    Changes in gastroduodenal blood flow have been implicated in the pathogenesis of duodenal ulcer. The authors have studied duodenal blood flow during the development of an acute to chronic duodenal ulcer by using the abscopal model, in which ulcers are generated as an indirect effect of lower mediastinal irradiation. Female CFLP mice were randomly allocated to one of three groups. Irradiated ``controls`` received 18 Gy 250 kV X-rays to the upper mediastinum. The lower mediastinum group received the same dose of irradiation, which has been shown to induce typical chronic duodenal ulcers in 45% of animals so treated. Animals were studied by means of radiolabelled microspheres 3 or 7 days later. Proximal duodenal blood flow specifically was reduced by 32% in the lower mediastinum group compared with irradiated controls at 7 days. There was no significant difference in blood flow to the stomach and to the distal duodenum. The decrease in proximal duodenal blood flow in the lower mediastinum group did not differ in the five animals that developed ulcer compared with the seven that did not. Although, there is an overall decrease in duodenal blood flow associated with chronic duodenal ulcer, reduced blood flow may not explain individual susceptibility to ulceration. 21 refs., 1 fig., 2 tabs.

  10. Corticosteroid Reduces Blood Flow to Femoral Heads in Rabbits.

    Science.gov (United States)

    Hou, S.M.; Liu, T.K.; Kao, M.C.

    1994-12-01

    Avascular necrosis of the femoral head is one of the common problems in orthopedic practice in Taiwan. The subchondral bone loses its blood supply which weakens its biomechanical support. Steroid overuse is one of many possible etiologies in reducing blood flow to the femoral head. Laser Doppler velocimeter is a precise monitor of regional blood flow of bone which is expressed in perfusion units (PU). In the control group the rabbits were injected with normal saline and there were no statistical differences between blood flow to the right hip (39.26 +/- 5.64 PU) and left hip (38.58 +/- 4.35 PU). In group B a weekly injection of methylprednisolone into rabbits for 6 weeks demonstrated the reduction of blood flow of femoral head (24.74 +/- 3.13 PU) by the laser Doppler velocimeter. The flow decreased further (15.93 +/- 2.33 PU) by 12 weeks of steroid treatment. In group C after a weekly injection of steroid for 6 weeks the flow became 31.63 +/- 4.79 PU. The steroid was then discontinued for 3 weeks and the flow was 34.6 +/- 1.34 PU. In group D the blood flow was 25.89 +/- 4.01 PU after 6 weeks of steroid treatment and we stopped the steroid for 6 weeks, the blood flow became 29.86 +/- 2.59 PU. The merit of our experiment established a model of study in avascular necrosis of the femoral head in rabbits. Copyright 1994 S. Karger AG, Basel

  11. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow

    International Nuclear Information System (INIS)

    Swiontkowski, M.F.; Tepic, S.; Perren, S.M.; Moor, R.; Ganz, R.; Rahn, B.A.

    1986-01-01

    Laser Doppler flowmetry (LDF) was used to measure bone blood flow in the rabbit femoral condyles. To correlate the LDF output signal blood cell flux to in vivo blood flow, simultaneous measurements using LDF and 85 Sr-labeled microspheres were made in an adult rabbit model. There was no correlation between the two methods for blood flow in the femoral condyles and the correlation between the two methods for blood flow in the femoral head does not achieve statistical significance. An LDF signal of 0.4 V was approximately equal to a microsphere measured flow rate of 0.4 ml blood/g bone/min. The strength of the correlation in the latter case may have been affected by (a) large arteriovenous shunts, (b) inadequate mixing of the microspheres with a left ventricular injection, and (c) insufficient numbers of microspheres present in the bone samples. When LDF was used to evaluate the effect of elevated intracapsular pressure on femoral head blood flow in skeletally mature rabbits, femoral head subchondral bone blood flow declined with increasing intracapsular pressure from a baseline value of 0.343 +/- 0.036 to a value of 0.127 +/- 0.27 at 120 cm of water pressure. The decline in femoral head blood flow was statistically significant at pressures of 40 cm of water or higher (p less than 0.001), and evaluation of sections of the proximal femora made from preterminal disulphine blue injections confirmed these findings. Intracapsular tamponade has an adverse effect on femoral head blood flow beginning well below central venous pressure and should be considered in the pathophysiology of posttraumatic and nontraumatic necrosis of the femoral head. Laser Doppler flowmetry was easy to use and appears to be a reproducible technique for evaluating femoral head blood flow, offering distinct advantages over the microsphere technique for measuring bone blood flow

  12. In vivo evaluation of femoral blood flow measured with magnetic resonance

    International Nuclear Information System (INIS)

    Henriksen, O.; Staahlberg, F.; Thomsen, C.; Moegelvang, J.; Persson, B.; Lund Univ.

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory arrest. The mean T2 of non-flowing blood was found to be 105±31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein. (orig.)

  13. Sequential topographical portrayal of myocardial blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Richeson, J.F.; Waag, R.C.; Zwierzynski, D.; Schenk, E.A. (Univ. of Rochester School of Medicine and Dentistry, NY (USA))

    1989-08-01

    Methods to portray myocardial blood flow in a two-dimensional continuum are advantageous in that they allow blood flow history to be overlaid on histological or histochemical descriptions of the consequences of ischemia. We describe here autoradiographic methods that allow such portrayals at three separate times during the evolution of ischemic injury. A computer-based image-analysis system was used to derive such flow maps by taking advantage of the physical characteristics of radioactive isotopes.

  14. Collateral sources of costal and crural diaphragmatic blood flow

    International Nuclear Information System (INIS)

    Lockhat, D.; Magder, S.; Roussos, C.

    1985-01-01

    We measured the contribution of aortic, internal mammary, and intercostal arteries to the blood flow to the costal and crural segments of the diaphragm and other respiratory muscles in seven dogs breathing against a fixed inspiratory elastic load. We used radiolabeled microspheres to measure the blood flow with control circulation, occlusion of the aorta distal to the left subclavian artery, combined occlusion of the aorta and both internal mammary arteries, and occlusion of internal mammary arteries alone. With occlusion of the aorta distal to the left subclavian artery, blood flow to the crural diaphragm decreased from 40.3 to 23.5 ml . min-1 X 100 g-1, whereas costal flow did not change significantly (from 41.7 to 38.1 ml . min-1 . 100 g-1). Blood flows to the sternomastoid and scalene muscles (above the occlusion) increased by 200 and 340%, respectively, whereas flows to the other respiratory muscles did not change significantly. Blood flows to organs above the occlusion either remained unchanged or increased, whereas flows to those below the occlusion all decreased. When the internal mammary artery was also occluded, flows to the crural segment decreased further to 12.1 and costal flow decreased to 20.4 ml X min-1 X 100 g-1. Internal mammary arterial occlusion alone in two dogs had no effect on diaphragmatic flow. In conclusion, intercostal collateral vessels are capable of supplying a significant proportion of blood flow to both segments of the diaphragm but the costal segment is better served than the crural segment

  15. Vascular structure determines pulmonary blood flow distribution

    Science.gov (United States)

    Hlastala, M. P.; Glenny, R. W.

    1999-01-01

    Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.

  16. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension.

    Science.gov (United States)

    Drummond, Heather A

    2012-01-01

    Pressure-induced constriction (also known as the "myogenic response") is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na(+) Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.

  17. Blood Cell Interactions and Segregation in Flow

    OpenAIRE

    Munn, Lance L.; Dupin, Michael M.

    2008-01-01

    For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allo...

  18. Measurement of limb blood flow using technetium-labelled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-05-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with /sup 99/Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4 +- 3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1 +- 2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain.

  19. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    Science.gov (United States)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  20. Collision Based Blood Cell Distribution of the Blood Flow

    Science.gov (United States)

    Cinar, Yildirim

    2003-11-01

    Introduction: The goal of the study is the determination of the energy transferring process between colliding masses and the application of the results to the distribution of the cell, velocity and kinetic energy in arterial blood flow. Methods: Mathematical methods and models were used to explain the collision between two moving systems, and the distribution of linear momentum, rectilinear velocity, and kinetic energy in a collision. Results: According to decrease of mass of the second system, the velocity and momentum of constant mass of the first system are decreased, and linearly decreasing mass of the second system captures a larger amount of the kinetic energy and the rectilinear velocity of the collision system on a logarithmic scale. Discussion: The cause of concentration of blood cells at the center of blood flow an artery is not explained by Bernoulli principle alone but the kinetic energy and velocity distribution due to collision between the big mass of the arterial wall and the small mass of blood cells must be considered as well.

  1. The effect of sympathectomy on bone blood flow in man

    International Nuclear Information System (INIS)

    Lahtinen, T.; Alhava, E.M.; Hyoedynmaa, S.; Hendolin, H.; Oksala, I.

    1982-01-01

    The effect of lumbar sympathectomy on bone blood flow was measured in seven patients with a Xe-133 washout method. On the third postoperative day there was a significant increase of blood flow in the proximal femur and a slight increase in the proximal tibia. Two months after the operation blood flow in the proximal part of the femur was no more significantly increased but in the proximal tibia there was a significant increase. The study suggests that the positive effect of sympathectomy on bone blood flow may be of value in cases where the increase of blood flow to peripheral bones is required

  2. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

    Science.gov (United States)

    Hamamoto, Yuichiro; Ogata, Tadanori; Morino, Tadao; Hino, Masayuki; Yamamoto, Haruyasu

    2007-08-15

    An in vivo study to measure rat spinal cord blood flow in real-time at the site of compression using a newly developed device. To evaluate the change in thoracic spinal cord blood flow by compression force and to clarify the association between blood flow recovery and motor deficiency after a spinal cord compression injury. Until now, no real-time measurement of spinal cord blood flow at the site of compression has been conducted. In addition, it has not been clearly determined whether blood flow recovery is related to motor function after a spinal cord injury. Our blood flow measurement system was a combination of a noncontact type laser Doppler system and a spinal cord compression device. The rat thoracic spinal cord was exposed at the 11th vertebra and spinal cord blood flow at the site of compression was continuously measured before, during, and after the compression. The functioning of the animal's hind-limbs was evaluated by the Basso, Beattie and Bresnahan scoring scale and the frequency of voluntary standing. Histologic changes such as permeability of blood-spinal cord barrier, microglia proliferation, and apoptotic cell death were examined in compressed spinal cord tissue. The spinal blood flow decreased on each increase in the compression force. After applying a 5-g weight, the blood flow decreased to compression), while no significant difference was observed between the 20-minute ischemia group and the sham group. In the 20-minute ischemia group, the rats whose spinal cord blood flow recovery was incomplete showed significant motor function loss compared with rats that completely recovered blood flow. Extensive breakdown of blood-spinal cord barrier integrity and the following microglia proliferation and apoptotic cell death were detected in the 40-minute complete ischemia group. Duration of ischemia/compression and blood flow recovery of the spinal cord are important factors in the recovery of motor function after a spinal cord injury.

  3. Comparison of blood flow and cell function in ischemic skin flaps

    International Nuclear Information System (INIS)

    Bean, D.; Rees, R.S.; O'Leary, J.P.; Lynch, J.B.

    1984-01-01

    Cellular function and blood flow in acute, steroid-treated, and surgically delayed random skin flaps have been examined. In these studies, the period following flap elevation could be divided into early (0-2 hr), intermediate (4-6 hr), and late (12 hr) periods of ischemia, based on the cutaneous blood flow and cellular function measured by thallium-201 uptake. There was a close correlation between blood flow and cellular function during the early period of ischemia which became worse with time. Blood flow studies demonstrated a significant difference between the early and intermediate periods of ischemia which was abolished by surgical delay. Improvement in cellular function was accomplished by improved blood flow in the surgically delayed flaps, while steroid-treated flaps enhanced cellular metabolism by another mechanism. Cellular function approximated blood flow during the early and immediate period of ischemia. Steroids may augment cellular function without improving blood flow, while surgical delay improves cellular function by improving blood flow

  4. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    , corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...... arrest. The mean T2 of non-flowing blood was found to be 105 +/- 31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate......Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...

  5. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  6. Abnormality in cerebellar blood flow in solo vertigo patients

    International Nuclear Information System (INIS)

    Nagahori, Takeshi; Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-01-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5±8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3±9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8±8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1±5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6±10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8±8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  7. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-01-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133 xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  8. Myocardial blood flow during induced aortic hypertension in dogs

    International Nuclear Information System (INIS)

    Thai, B.N.; Levesque, M.J.; Nerem, R.M.

    1986-01-01

    Myocardial blood flow was measured in anesthetized dogs during control conditions and under conditions where the aortic pressure was increased due to aortic constriction or during infusion. Blood flow was measured using the radioactive microsphere technique. Radioactive microspheres (15 m Ce-141, Sr-85, and Sc-46) were injected under control, aortic constriction and arterenol infusion in four dogs and under control conditions in two others. All microsphere injections were performed under stabilized conditions. It was found that coronary blood flow rose by 80% during aortic constriction and by 158% during arterenol infusion (P < 0.05). This increase in blood flow was not uniform throughout the heart, and higher increases were observed in the middle and apex regions of the left ventricle. Furthermore, under hypertension the increase in blood flow in LAD (left anterior descending) perfused territories was slightly higher than that in CFX (left circumflex) perfused territories

  9. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...... a crucial role in the development of perinatal hypoxic brain injury....

  10. Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine

    2006-01-01

    -legged dynamic knee-extension exercise. Local blockade was produced by infusing nitro-L-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1......Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising...... skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-D-[(18)F]glucose without and with local blockade of NO and PG at rest and during one...

  11. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  12. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  13. Local viscosity distribution in bifurcating microfluidic blood flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  14. Determination of myocardial blood flow by videodensitometry

    International Nuclear Information System (INIS)

    Erikson, U.; Helmius, G.; Hennig, K.; Johansson, L.; Enghoff, E.; Ruhn, G.

    1981-01-01

    Videodensitometry has hitherto been used as a tool for measuring regional blood flow in the kidneys and lungs by means of the well known Stewart Hamilton curve (wash-out) technique. This preliminary report suggests the possibility of using this method to measure coronary blood flow. Thirty-six patients, 29 of whom had angina pectoris, underwent videodensitometry in connection with coronary angiography. (orig.) [de

  15. Determination of splenic blood flow by inhalation of radioactive rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Huchzermeyer, H; Schmitz-Feuerhake, I; Reblin, T [Medizinische Hochschule Hannover (Germany, F.R.). Abt. fuer Nuklearmedizin und Spezielle Biophysik; Medizinische Hochschule Hannover (Germany, F.R.). Abt. fuer Gastroenterologie)

    1977-10-01

    We have evaluated the /sup 133/Xenon inhalation method for the determination of splenic blood flow. In twenty-two healthy persons the blood flow was on average 109 +- 4 ml/100 g x min, which is equivalent to a total blood flow of about 170 ml/min. In patients with chronic fatty liver hepatitis specific blood flow was reduced (81 +- 10 ml/100 g x min) as it was in patients with cirrhotic liver without splenomegaly (75 +- 2 ml/100 g x min.). With increasing weight of the spleen, the total blood flow rises, although specific blood flow is low. Our results obtained by the /sup 133/Xenon inhalation method are similar to results obtained by others using intraarterial injection of tracer gas. The advantages of the inhalation method as a non-traumatic method are: 1) the stress for the patient is very small; 2) blood flow measurements can be repeated within short periods of time. We consider for the present the /sup 133/Xenon inhalation method to be the method of choice for the determination of the splenic blood flow.

  16. Measurement of regional hepatic blood flow by scintiphotosplenoportography

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T; Kimura, K; Kamada, T; Abe, H [Osaka Univ. (Japan). Dept. of Radiology and Nuclear Medicine

    1978-08-01

    A new technique for estimating regional hepatic blood flow using the inert gas washout technique and scintillation camera following injection of /sup 133/Xe into the spleen is presented. This technique is easily, rapidly and repeatedly performed and permits the measurement of nutrient hepatic tissue blood flow. Measurement of regional hepatic blood flow in right and/or left lobes was performed in 28 patients. In all but one patient the right lobar flow value was equal to or greater than the left one. The right lobar flow was 86.20 +- 12.83 ml/100 gm/min in 3 patients without liver disease, 75.12 +- 14.54 ml/100 gm/min in 12 with chronic hepatitis and 51.24 +- 17.13 ml/100 gm/min in 11 with liver cirrhosis. This result suggests that hepatic tissue blood flow is significantly decreased in patients with liver cirrhosis. Scintillation camera images of initial xenon distribution in combination with monitor of washout curves over the liver also provide more information on the presence of extra- and intrahepatic shunts. Therefore, this technique appears to be clinically useful in evaluation of hemodynamic phenomena associated with liver diseases.

  17. Uteroplacental blood flow during alkalosis in the sheep

    International Nuclear Information System (INIS)

    Buss, D.D.; Bisgard, G.E.; Rawlings, C.A.; Rankin, J.H.G.

    1975-01-01

    Uteroplacental blood flow was measured by the radioactive-microsphere technique in eight near-term pregnant ewes during a normal control period and during maternal metabolic alkalosis. All measurements were made on awake, unanesthetized animals. Alkalosis, defined for this study as an arterial pH of 7.60 or greater, was produced by the oral administration of sodium bicarbonate, 3 g/kg body wt. The rise in pH thus produced was unaccompanied by significant changes in systemic arterial blood pressure and cardiac output, while maternal arterial P/sub CO 2 / rose slightly from control levels. Cotyledonary blood flow declined from a control value of 1.177 ml/min to 1.025 ml/min during alkalosis. This decline of 13 percent in cotyledonary blood flow is significant (P less than 0.02). Blood flow to the remaining uterine tissue, or noncotyledonary uterus, did not change with alkalosis, being maintained at approximately 195 ml/min. It is concluded that maternal alkalosis, unaccompanied by major changes in P /sub CO 2 / and systemic arterial pressure, causes a small increase in the resistance of the uteroplacental circulation

  18. The blood flow changes associated with idiopathic and secondary intracranial hypertension

    International Nuclear Information System (INIS)

    Bateman, G.

    2002-01-01

    Full text: The radiological diagnosis of idiopathic intracranial hypertension (IIH) is one of exclusion and as the MR venogram is prone to flow artefacts, the diagnosis of secondary intracranial hypertension (SIH) can also be problematic. The purpose of this paper is to define the blood flow characteristics, which are useful in the diagnosis of these conditions. Twelve patients with clinical findings suggestive of IIH and 12 control subjects were investigated with MR venography and MR flow quantification studies of the cerebral arteries and veins. Total cerebral blood flow, superior sagittal sinus (SSS) and straight sinus (ST) blood flows were measured. MR venography confirmed 7 of the 12 patients had venous outflow obstruction and thus SIH. The remaining 5 patients had IIH. The control patients mean total blood flow was 855 ml/min, the SSS flow was 400ml/min and the ST flow 117 ml/min. The total blood flow in the IIH patients was 46% higher (P = 0.0002) and the ST blood flow 38% higher (P = 0.05) than the control group, the SSS flow was 17% higher but this failed to reach significance. In SIH the SSS flow was reduced by 25% (P = 0.003) compared with the control group, the total and ST blood flow were not significantly altered. In IIH there is hyperaemia and the SSS appears limited in its ability to increase flow, therefore venous collaterals carry a greater load. In SIH, selective obstruction of the SSS reduces flow in this vessel but total blood flow is normal indicating there is also increased flow in collateral veins. Presumably the limited ability of the SSS to drain blood away from the brain in each condition raises venous sinus pressure and alters CSF resorption giving raised CSF pressure. Copyright (2002) Blackwell Science Pty Ltd

  19. Trial on MR portal blood flow measurement with phase contrast technique

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Togami, Izumi

    1991-01-01

    Portal blood flow measurement is considered to be important for the analysis of hemodynamics in various liver diseases. The Doppler ultrasound method has been used extensively during the past several years for measuring portal blood flow, as a non-invasive method. However, the Doppler ultrasound technique do not allow the portal blood flow to be measured in cases of obesity, with much intestinal gas, and so on. In this study, we attempted to measure the blood flow in the main trunk of portal vein as an application of MR phase contrast technique to the abdominal region. In the flow phantom study, the flow volumes and the velocities measured by phase contrast technique showed a close correlation with those measured by electromagnetic flowmeter. In the clinical study with 10 healthy volunteers, various values of portal blood flow were obtained. Mean portal blood flow could be measured within the measuring time (about 8 minutes) under natural breathing conditions. Phase contrast technique is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  20. Cutaneous blood flow rate in areas with and without arteriovenous anastomoses during exercise

    DEFF Research Database (Denmark)

    Midttun, M.; Sejrsen, Per

    1998-01-01

    Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow......Arteriovenous anastomoses, capillaries, cutaneous bllod flow rate, exercise, finger blood flow, skin blood flow...

  1. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  2. Glucagon-like peptide-2 increases mesenteric blood flow in humans

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Henriksen, Birthe Merete

    2008-01-01

    a significant association between IV and SC administration of synthetic GLP-2 and changes in mesenteric blood flow. An exponential dose-response relationship was observed after IV infusion. The meal-induced changes in mesenteric blood flow over time were similar to those obtained by SC GLP-2. Thus, our results......OBJECTIVE: Mesenteric blood flow is believed to be influenced by digestion and absorption of ingested macronutrients. We hypothesized that the intestinotrophic hormone, GLP-2 (glucagons-like peptide 2), may be involved in the regulation of mesenteric blood flow. Changes in mesenteric blood flow...... were measured by Doppler ultrasound scanning of the superior mesenteric artery (SMA). The aim of the study was to demonstrate the influence of GLP-2 on this flow, expressed as changes in resistance index (RI). MATERIAL AND METHODS: A homogeneous group of 10 fasting healthy volunteers completed a 2-day...

  3. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    Science.gov (United States)

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  4. Tumor blood flow and pH changes after glucose administration

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Tupchong, L.; Leeper, D.B.

    1987-01-01

    The authors used a laser doppler technique to correlate blood flow changes with pH changes in human tumors after glucose ingestion. Three PTs with large superficial tumors ingested 100 gm glucose. A 21g needle pH electrode (Micro-electrodes, Inc.) and a 21g ''Laserflo'' fiberoptic laser doppler blood flow probe (TSI, Minneapolis, MN) were used at the same location. Blood glucose was measured by finger stick every 7.5 min. One PT with a squamous cell CA with extensive necrosis had only a small increase in blood glucose and an increase in tumor pH. Blood flow readings were within 6.4-18.4ml/100g/min. Another PT with a squamous CA had a drop in tumor pH (7.46 to 7.05) as blood glucose increased from 85 to 137 mg/dl by 55 min. Blood flow remained in a range of 7.7-13.8 ml/100g/min with a mean of 11.4. The third PT with a sarcoma had tumor pH and blood glucose measurements on two occasions, with similar results. Blood glucose rose from approx. 100 to 150 mg/dl by 52.5 min with a drop in tumor pH from approx. 7.4 to 7.25. On the second trial, tumor blood flow was measured and, while erratic (6.4-24.9ml/100g/min), decreased by approx. 50%. These preliminary data show that the laser doppler blood flow technique is quite sensitive to movement artifact and interference by free hemoglobin. Currently, it is inconclusive whether blood flow is altered with blood glucose and tumor pH changes. Further studies may prove this to be a valuable tool in predicting tumor response to hyperthermia

  5. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    Danet, Bernard.

    1974-01-01

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131 I or sup(99m)Tc, 113 In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers ( 133 Xe, 85 Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed [fr

  6. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    International Nuclear Information System (INIS)

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-01-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  7. Noxious heat and scratching decrease histamine-induced itch and skin blood flow.

    Science.gov (United States)

    Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D

    2005-12-01

    The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.

  8. Diaschisis with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Slater, R.; Reivich, M.; Goldberg, H.; Banka, R.; Greenberg, J.

    1977-01-01

    Fifteen patients admitted to Philadelphia General Hospital with acute strokes had repeated measurements of cerebral blood flow measured by the /sup 133/X inhalation method. A progressive decline in cerebral blood flow in both hemispheres was observed during the first week after infarction in twelve of these patients. This decline could be partially explained by loss of autoregulation, but could not be correlated with level of consciousness, clinical status of PCO2. This progressive decline in flow in the non-ischemic hemisphere indicates a process more complex than a simple destruction of axonal afferants to neurons as implied by the term diaschisis. The flow changes in the non-ischemic hemisphere are likely caused by a combination of the immediate effects of decreased neuronal stimulation modified by loss of autoregulation, release of vasoactive substances, cerebral edema, and other factors.

  9. Left coronary arterial blood flow: Noninvasive detection by Doppler US

    International Nuclear Information System (INIS)

    Gramiak, R.; Holen, J.; Moss, A.J.; Gutierrez, O.H.; Picone, A.L.; Roe, S.A.

    1986-01-01

    Continuous wave (CW) and pulsed Doppler ultrasound studies with spectral analysis were used to detect the left coronary arterial blood flow in patients who were undergoing routine echocardiography. The pulmonary artery is a stable ultrasonic landmark from which detection of the blood flow can be effected. The left coronary artery can be distinguished by its blood flow toward the cardiac apex and by specific, functional flow features. Flow patterns vary among the left main, circumflex, and anterior descending arteries; patterns also vary with respiration cycles. In the present study, coronary arterial blood flow was detected in 58 of 70 patients (83%). Findings were validated by selectively injecting an agitated saline contrast medium into the left coronary artery and, in another study, by comparing human Doppler phasic flow waveforms with electromagnetic flowmeter recordings obtained in dogs

  10. Total hepatofugal portal blood flow in cirrhosis demonstrated by transhepatic portography

    Energy Technology Data Exchange (ETDEWEB)

    Burcharth, F; Aagaard, J

    1988-01-01

    We investigated 108 patients with cirrhosis of the liver and portal hypertension by percutaneous transhepatic portography to demonstrate the occurrence and frequency of total hepatofugal portal blood flow. Sixteen patients (14.8%) had a total hepatofugal portal blood flow. The aetiology of portal hypertension and the portal pressure did not differ from that in the group of patients with hepatopetal portal blood flow. A significantly higher percentage of patients in the group with hepatofugal flow had gastro-oesophageal varices (P < 0.025). All patients with varices had bled. Half of the patients in the group with hepatofugal blood flow had a false splenoportographic diagnosis of portal vein thrombosis. In conclusion, total hepatofugal postal blood flow exists more often than hitherto assumed. Hepatofugal blood flow does not relieve portal hypertension nor prevent development of gastro-oesophageal varices or bleeding.

  11. Muscle blood flow at onset of dynamic exercise in humans.

    Science.gov (United States)

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  12. Dynamics of blood flow: twenty years of achievement

    International Nuclear Information System (INIS)

    Rosendorff, C.

    1988-01-01

    The physiology of blood circulation has evolved from the descriptive phenomenology of William Harvey's time to an interdisciplinary science, involving elements of fluid dynamics, vessel wall mechanics, electrophysiology, cell biology, biochemistry and molecular biology. Most of these new developments have occured during the lifetime of the South African Medical Research Council. Highlights of the research undertaken by the Council regarding circulatory physiology are given. In the 1960s the use of xenon-133 to study the flow of blood to the brain resulted in the first systematic description of cerebral blood flow and its control by sympathetic nerves. During the 1970s this technique was refined and the use of radioactive microspheres for the measurement of tissue blood flow was developed. Research concerning the control of blood vessels in the kidney was also carried out, and this showed that the sympathetic nerves control renal blood flow by releasing a local hormone called renin. The renal release of renin was later recognised as being important in the control of blood pressure. Another development was the discovery that vascular sensitivity to noradrenaline was increased in certain types of liver diseases. An analysis of the blood of patients with obstructive jaundice showed that the substance responsible for this noradrenaline effect was a combination of cholesterol and lipo-protein. This led to the theory that excessive cholesterol in the blood may be dangerous. In the late 1970s a shift in research emphasis to coronary artery physiology occurred and the 1980s saw research move into the area of cell biology

  13. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.

    1987-01-01

    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  14. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work is to investi......The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work...... is to investigate the blood flow pat- terns within a group of healthy volunteers (4 females, 7 males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry...... to elderly. Thus, changes in blood flow patterns in the AA related to age and gender is observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development....

  15. Modeling skin blood flow: a neuro-physiological approach

    NARCIS (Netherlands)

    Kingma, B.R.M.; Saris, W.H.M.; Frijns, A.J.H.; Steenhoven, van A.A.; Marken Lichtenbelt, van W.D.

    2010-01-01

    In humans skin blood flow (SBF) plays a major role in body heat loss. Therefore the accuracy of models ofhuman thermoregulation depends for a great deal on their ability to predict skin blood flow. Most SBFmodelsuse body temperatures directly for calculation of skin perfusion. However, humans do not

  16. The measurement of limb blood flow using technetium-labelled red blood cells

    International Nuclear Information System (INIS)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-01-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with 99 Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4+-3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1+-2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain. (author)

  17. Brain blood flow and blood pressure during hypoxia in the epaulette shark Hemiscyllium ocellatum, a hypoxia-tolerant elasmobranch.

    Science.gov (United States)

    Söderström, V; Renshaw, G M; Nilsson, G E

    1999-04-01

    The key to surviving hypoxia is to protect the brain from energy depletion. The epaulette shark (Hemiscyllium ocellatum) is an elasmobranch able to resist energy depletion and to survive hypoxia. Using epi-illumination microscopy in vivo to observe cerebral blood flow velocity on the brain surface, we show that cerebral blood flow in the epaulette shark is unaffected by 2 h of severe hypoxia (0.35 mg O2 l-1 in the respiratory water, 24 C). Thus, the epaulette shark differs from other hypoxia- and anoxia-tolerant species studied: there is no adenosine-mediated increase in cerebral blood flow such as that occurring in freshwater turtles and cyprinid fish. However, blood pressure showed a 50 % decrease in the epaulette shark during hypoxia, indicating that a compensatory cerebral vasodilatation occurs to maintain cerebral blood flow. We observed an increase in cerebral blood flow velocity when superfusing the normoxic brain with adenosine (making sharks the oldest vertebrate group in which this mechanism has been found). The adenosine-induced increase in cerebral blood flow velocity was reduced by the adenosine receptor antagonist aminophylline. Aminophylline had no effect upon the maintenance of cerebral blood flow during hypoxia, however, indicating that adenosine is not involved in maintaining cerebral blood flow in the epaulette shark during hypoxic hypotension.

  18. Quantification of cerebral blood flow via Duplex sonography

    International Nuclear Information System (INIS)

    Vogl, G.; Pohl, P.; Willeit, J.; Aichner, F.

    1987-01-01

    An attempt was made to measure quantitatively the total cerebral blood flow by means of Duplex sonography. In a group of healthy young subjects a median value for total cerebral blood flow was obtained amounting to 469 ml/min ± 30%, repeat measurements yielded a maximum deviation of ± 11%. In three patients the values obtained after severe apoplectic insult due to occlusion of the internal carotid artery were definitely below the value of the group of healthy subjects, whereas the value for the total blood flow was in the upper range of normal values in a patient with occlusion of the a. cerebri media. Comparative measurements of the regional cerebral blood flow with xenon 13 yielded in those patients with occlusion of the internal carotid artery a markedly reduced mean flow and in the patient with occlusion of the a. cerebri media a less markedly reduced mean flow. Regionally reduced perfusion was seen in all the four patients in the range of the clinically and computer tomographically well-known ischaemia zone. Thanks to the simplicity of this sonographic examination method it could be a useful decision parameter in determining the indication for a reconstruction of the carotid artery, especially in asymptotic patients. (orig.) [de

  19. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  20. Cerebral blood flow in Binswanger's disease

    International Nuclear Information System (INIS)

    Kawabata, Keita; Tachibana, Hisao; Sugita, Minoru

    1991-01-01

    Eight patients with a clinical diagnosis of Binswanger's disease (BD) were evaluated with I-123 IMP SPECT. The SPECT findings were compared with those in 7 other patients with Alzheimer's disease (AD) and 9 normal subjects. The ratios of I-123 IMP in the temporal cortex, thalamus, and basal ganglia to that in the cerebellum were lower in the BD group than the normal group. The BD group had a higher ratio of the occipital cortex/the cerebellum than the control group, suggesting a decreased blood flow in the cerebellum. When I-123 IMP ratio in various areas to that in the occipital cortex was examined, both the BD and AD groups seemed to have a decreased blood flow over the whole cerebrum. The BD group had a lower I-123 IMP uptake in the thalamus and basal ganglia, and the AD group had it in the parietal cortex, relative to the occipital cortex. Blood flow patterns for BD were found to be different from those for AD. This suggests the difference in areas responsible for etiology between BD and AD. (N.K.)

  1. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    Science.gov (United States)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  2. Thermographic venous blood flow characterization with external cooling stimulation

    Science.gov (United States)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  3. Heterogeneity of cerebral blood flow: a fractal approach

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Hartikainen, P.

    2000-01-01

    Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de

  4. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Lou, H.C.; Lassen, N.A.; Friis-Hansen, B.

    1977-01-01

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  5. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    International Nuclear Information System (INIS)

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-01-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow

  6. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M

    1983-01-01

    ). Autoregulation was impaired in all of the collaterally perfused areas while the CO2-response always was preserved. Steal phenomena were not seen. In the surrounding brain tissue, autoregulation was normal in 5 patients and impaired in 3 while the CO2-response seemed to be normal. The results confirm...

  7. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  8. Subcutaneous blood flow in man during sleep with continous epdural anaesthesia

    DEFF Research Database (Denmark)

    Sindrup, JH; Petersen, Lars Jelstrup; Kastrup, Jens

    1996-01-01

    BACKGROUND: Subcutaneous blood flow increases during sleep and we evaluated if this increase is affected by epidural anaesthesia. METHODS: Lower leg subcutaneous blood flow was determined by 133Xenon clearance in ten subjects during continous epidural anaesthesia at L2-L3 including eight hours...... of sleep, while the opper abdominal subcutaneous blood flow served as control. RESULTS: Epidural anaesthesia to the level of the umbilicus was followed by an increase in the lower leg subcutaneous blood flow fra 3.4 (1.8-6.3) to 7.8 (3.6-16.9) ml min-1 (median and range; P....4-7.6) ml min-1 100 g-1 after 88 (45-123) min. In contrast, until the period of sleep the upper abdominal region blood flow remained at 5.2 (3.2-6.4) ml min-1 100 g-1. During sleep, lower leg subcutaneous blood flow did not change significantly, but the upper abdominal flow increased to 6.2 (5.2-7.2) ml min...

  9. Transplacental diffusion and blood flow of gravid bovine uterus

    International Nuclear Information System (INIS)

    Reynolds, L.P.; Ferrell, C.L.; Ford, S.P.

    1985-01-01

    Electromagnetic blood flow transducers and uterine arterial, uterine venous, umbilical venous, fetal femoral arterial, and fetal femoral venous catheters were implanted in 11 cows on day 161 +/- 4 of gestation. Antipyrine (0.66 M) plus NaCl (0.16 M) dissolved in deuterium oxide (D 2 O), or H 2 O, was infused at a constant rate into the fetal femoral vein catheter. Concentrations of antipyrine and D 2 O in uterine arterial and venous blood and antipyrine in fetal arterial and umbilical venous blood, as well as middle uterine arterial blood flow (electromagnetic transducer), were determined. Antipyrine and D 2 O gave similar estimates (steady-state diffusion method) of gravid uterine blood flow. In addition, the slope of the regression of D 2 O on antipyrine estimates was not different from one. Electromagnetic transducers gave estimates of uterine blood flow that were 32-42% of those obtained with steady-state diffusion but were correlated with estimates obtained by use of both antipyrine and D 2 O. The transplacental clearance rate of antipyrine was similar (per kg placenta) to that observed in ewes. It was suggested that the maternal and fetal microvasculatures of the bovine placenta could have a concurrent arrangement with vascular shunts or maldistribution of flows, as has been suggested for the ewe

  10. Ocular blood flow decreases during passive heat stress in resting humans.

    Science.gov (United States)

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-12-06

    Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Ocular blood flow, end-tidal carbon dioxide (P(ET)CO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35 °C (normothermia) for 30 min and (2) at 50 °C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects' blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively. The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.

  11. Quantitative blood flow analysis with digital techniques

    International Nuclear Information System (INIS)

    Forbes, G.

    1984-01-01

    The general principles of digital techniques in quantitating absolute blood flow during arteriography are described. Results are presented for a phantom constructed to correlate digitally calculated absolute flow with direct flow measurements. The clinical use of digital techniques in cerebrovascular angiography is briefly described. (U.K.)

  12. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  13. Supraorbital cutaneous blood flow rate during carotid endarterectomy

    DEFF Research Database (Denmark)

    Hove, Jens D; Rosenberg, Iben; Sejrsen, Per

    2006-01-01

    : The supraorbital cutaneous blood flow rate was measured by the application of heat to the skin and following the subsequent dissipation of the heat in seven patients undergoing carotid endarterectomy. At the same time, the oxygenation in the right and left frontal region was monitored by near-infrared spectroscopy......BACKGROUND: The supraorbital skin region is supplied by the supraorbital artery, which is a branch of the internal carotid artery. The supraorbital cutaneous blood flow rate may therefore be influenced by changes in the internal carotid artery flow during carotid endarterectomy. METHODS...... (NIRS). RESULTS: During cross-clamping of the carotid artery, the ipsilateral NIRS-determined frontal oxygenation tended to decrease [67 +/- 13% to 61 +/- 11% (P = 0.06); contralateral 68 +/- 11% to 66 +/- 8%] as did the supraorbital cutaneous blood flow rate from 56 +/- 23 to 44 +/- 7 ml 100 g(-1) min...

  14. Blood flow patterns during incremental and steady-state aerobic exercise.

    Science.gov (United States)

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  15. Coronary blood flow during cardiopulmonary resuscitation in swine

    International Nuclear Information System (INIS)

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic [EMF] and radiomicrosphere [RMS]) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal

  16. Influence of Dai-kenchu-to (DKT) on human portal blood flow.

    Science.gov (United States)

    Ogasawara, Takashi; Morine, Yuji; Ikemoto, Tetsuya; Imura, Satoru; Fujii, Masahiko; Soejima, Yuji; Shimada, Mitsuo

    2008-01-01

    Dai-kenchu-to (DKT) is known as an herbal medicine used for postoperative ileus. However, no report exists about the effect of DKT on portal blood flow. The aim of this study is to clarify the influence of DKT on portal blood flow. To healthy volunteers (Healthy; n = 6), cirrhotic patients (Cirrhosis; n = 7) and liver-transplant patients (LTx; n = 3), DKT (2.5g) with 100mL of warm water was orally administrated in the DKT group, and only warm water was administrated in the control group. The portal blood flow rate (M-VEL: cm/sec.) and portal blood flow (Flow volume: mL/min.) was measured each time after administration using an ultrasonic Doppler method. Furthermore, the arterial blood pressure and heart rate was measured at the same time points. In the DKT group, a significant increase of M-VEL (120%) and flow volume (150%) 30 minutes after administration was observed in both Healthy and Cirrhosis in comparison with the control group. In LTx, there was also a significant increase of flow volume (128%) 30 minutes after administration. However, there was no change in average blood pressure and heart rate in all groups. DKT increases portal blood flow in early phase after oral administration without any significant changes in the blood pressure and heart rate.

  17. Measurement of blood flow through surgical anastomosis using the radioactive microsphere technique

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, S.J.; Delgado, G.; Butterfield, A.; Dritschilo, A.; Harbert, J.

    1985-10-01

    Two different radioactive microspheres ( U Ce and UWSc) were used to measure blood flow to an area of the large intestine in dogs before and after a surgical resection was performed with surgical staples. The healing of an anastomosis is theoretically related to the blood flow to the anastomotic site. Blood flow studies were conducted in three dogs using this technique. The average blood flow preoperatively was 0.558 mL/minute per gram and 1.04 mL/minute per gram postoperatively. These results indicate a statistically significant increase in blood flow at the anastomotic site six days after anastomosis when compared with the blood flow to the same area before any surgical procedures.

  18. Measurement of blood flow through surgical anastomosis using the radioactive microsphere technique

    International Nuclear Information System (INIS)

    Hummel, S.J.; Delgado, G.; Butterfield, A.; Dritschilo, A.; Harbert, J.

    1985-01-01

    Two different radioactive microspheres ( 141 Ce and 46 Sc) were used to measure blood flow to an area of the large intestine in dogs before and after a surgical resection was performed with surgical staples. The healing of an anastomosis is theoretically related to the blood flow to the anastomotic site. Blood flow studies were conducted in three dogs using this technique. The average blood flow preoperatively was 0.558 mL/minute per gram and 1.04 mL/minute per gram postoperatively. These results indicate a statistically significant increase in blood flow at the anastomotic site six days after anastomosis when compared with the blood flow to the same area before any surgical procedures

  19. Investigation of spiral blood flow in a model of arterial stenosis.

    Science.gov (United States)

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  20. Negative autoregulation matches production and demand in synthetic transcriptional networks.

    Science.gov (United States)

    Franco, Elisa; Giordano, Giulia; Forsberg, Per-Ola; Murray, Richard M

    2014-08-15

    We propose a negative feedback architecture that regulates activity of artificial genes, or "genelets", to meet their output downstream demand, achieving robustness with respect to uncertain open-loop output production rates. In particular, we consider the case where the outputs of two genelets interact to form a single assembled product. We show with analysis and experiments that negative autoregulation matches the production and demand of the outputs: the magnitude of the regulatory signal is proportional to the "error" between the circuit output concentration and its actual demand. This two-device system is experimentally implemented using in vitro transcriptional networks, where reactions are systematically designed by optimizing nucleic acid sequences with publicly available software packages. We build a predictive ordinary differential equation (ODE) model that captures the dynamics of the system and can be used to numerically assess the scalability of this architecture to larger sets of interconnected genes. Finally, with numerical simulations we contrast our negative autoregulation scheme with a cross-activation architecture, which is less scalable and results in slower response times.

  1. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping (abstract)

    Science.gov (United States)

    Rossow, Molly; Mantulin, William M.; Gratton, Enrico

    2009-04-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles-such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  2. Effect of warming and flow rate conditions of blood warmers on red blood cell integrity.

    Science.gov (United States)

    Poder, T G; Pruneau, D; Dorval, J; Thibault, L; Fisette, J-F; Bédard, S K; Jacques, A; Beauregard, P

    2016-11-01

    Fluid warmers are routinely used to reduce the risk of hypothermia and cardiac complications associated with the infusion of cold blood products. However, warming blood products could generate haemolysis. This study was undertaken to compare the impact of temperature of blood warmers on the per cent haemolysis of packed red blood cells (RBCs) heated at different flow rates as well as non-flow conditions. Infusion warmers used were calibrated at 41·5°C ± 0·5°C and 37·5°C ± 0·5°C. Cold RBC units stored at 4°C in AS-3 (n = 30), aged 30-39 days old, were divided into half units before being allocated under two different scenarios (i.e. infusion pump or syringe). Blood warmers were effective to warm cold RBCs to 37·5°C or 41·5°C when used in conjunction with an infusion pump at flow rate up to 600 ml/h. However, when the warmed blood was held in a syringe for various periods of time, such as may occur in neonatal transfusions, the final temperature was below the expected requirements with measurement as low as 33·1°C. Increasing the flow with an infusion pump increased haemolysis in RBCs from 0·2% to up to 2·1% at a flow rate of 600 ml/h regardless of the warming device used (P < 0·05). No relevant increase of haemolysis was observed using a syringe. The use of a blood warmer adjusted to 41·5°C is probably the best choice for reducing the risk of hypothermia for the patient without generating haemolysis. However, we should be cautious with the use of an infusion pump for RBC transfusion, particularly at high flow rates. © 2016 International Society of Blood Transfusion.

  3. Placental blood flow measurements with radioisotopes in the pregnant guinea pig

    International Nuclear Information System (INIS)

    Schmitt, R.; Giese, W.; Kurz, C.S.; Kuenzel, W.

    1976-01-01

    In 15 pregnant guinea pigs near term the blood flow (BF) of the myometrium and the placenta as well as the cardiac output were measured with 99 Tcsup(m)-labelled microspheres. In front of one placenta the clearance of 133 Xe was estimated in the same animal. For the 133 Xe measurement a theoretical concept is presented. The mean placental BF is 105ml/(minx100g)(SD:84) for 99 Tcsup(m) and 244(SD:80)ml/(minx100g) for 133 Xe. The difference in both flow values is assumed to be related to foetal placental BF. The placental blood flow is also related to the location of the placenta in the uterine horn. The ratio of myometrial blood flow to placental blood flow decreased with an increase in the mean arterial blood pressure. The measurements are a preliminary report of an attempt to compare two different methods in measuring placental blood flow. (author)

  4. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate t...

  5. Modeling cerebral blood flow during posture change from sitting to standing

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, M.; Tran, H.T.

    2004-01-01

    extremities, the brain, and the heart. We use physiologically based control mechanisms to describe the regulation of cerebral blood flow velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. To justify the fidelity of our mathematical model and control......Abstract Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow velocity regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture...

  6. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S

    1983-01-01

    . The Xe-133 flow maps are essentially based on the average Xe-133 concentration over the initial 2 min during and after an inhalation of the inert gas lasting 1 min. These maps agreed very well with the early IMP maps obtained over the initial 10 min following an i.v. bolus injection. The subsequent IMP......, and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow....

  7. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    Science.gov (United States)

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity

  8. Effective RES blood flow changes in children with homozygous β-thalassemia in relation to blood transfusion

    International Nuclear Information System (INIS)

    Karpathios, T.; Dimitriou, P.; Giamouris, J.; Nicolaidou, P.; Antipas, S.E.; Matsaniotis, N.

    1983-01-01

    Denatured radioiodinated human serum albumin (DHA) clearance studies at a dose of 1 mg/kg body wt., were carried out in 16 thalassemic children, prior to and 7-10 days following blood transfusion, to investigate changes of the effective RES blood flow which might accompany the posttransfusion spleen size diminution. A statistically significant increase (P<0.001) of the DHA plasma clearance rate was observed 7-10 days following blood transfusion denoting an increase of the blood flow to the effective RES while at the same time the spleen diminished in size. It is suggested that changes in the effective RES blood flow in these patients are directly related to changes in the intrasplenic circulatory capacity. (orig.)

  9. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  10. Regulation of bone blood flow in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Boushel, Robert; Hellsten, Ylva

    2018-01-01

    of cyclooxygenase (COX) enzyme, thus prostaglandin (PG) synthesis on femoral bone marrow blood flow by positron emission tomography in healthy young men at rest and during one leg dynamic exercise. In an additional group of healthy men, the role of adenosine (ADO) in the regulation of BBF during exercise......The mechanisms that regulate bone blood flow (BBF) in humans are largely unknown. Animal studies suggest that nitric oxide (NO) could be involved and in the present study we investigated the effects of inhibition of nitric oxide synthase (NOS) alone and in combination with inhibition.......036), but did not affect BBF significantly during exercise (5.5±1.4 ml/100g/min, p=0.25). On the other hand, while combined NOS and COX inhibition did not cause any further reduction of blood flow at rest (0.6±0.2 ml/100g/min), the combined blockade reduced BBF during exercise by ~21%, to 5.0±1.8 ml/100g/min (p...

  11. Intraneural blood flow analysis during an intraoperative Phalen's test in carpal tunnel syndrome.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Awara, Kousuke; Takeno, Kenichi; Miyazaki, Tsuyoshi; Kubota, Masafumi; Negoro, Kohei; Baba, Hisatoshi

    2010-08-01

    Phalen's test has been one of the most significant of clinical signs when making a clinical diagnosis of idiopathic carpal tunnel syndrome (CTS). However, it is unknown whether intraneural blood flow changes during Phalen's test in patients with CTS. In this study, an intraoperative Phalen's test was conducted in patients with CTS to observe the changes in intraneural blood flow using a laser Doppler flow meter. During Phalen's test, intraneural blood flow showed a sharp decrease, which lasted for 1 min. Intraneural blood flow decreased by 56.7%-100% (average, 78.0%) in the median nerve relative to the blood flow before the test. At 1 min after completing the test, intraneural blood flow returned to the baseline value. After carpal tunnel release, there was no marked decrease in intraneural blood flow. This study demonstrated that the blood flow in the median nerve is reduced when Phalen's test is performed in vivo. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Regulation of Blood Flow in Contracting Skeletal Muscle in Aging

    DEFF Research Database (Denmark)

    Piil, Peter Bergmann

    Oxygen delivery to skeletal muscle is regulated precisely to match the oxygen demand; however, with aging the regulation of oxygen delivery during exercise is impaired. The present thesis investigated mechanisms underlying the age-related impairment in regulation of blood flow and oxygen delivery......GMP) was used as intervention, and skeletal muscle blood flow, oxygen delivery, and functional sympatholysis was examined. The two studies included 53 healthy, habitually active, male subjects. All subjects participated in an experimental day in which femoral arterial blood flow and blood pressure were assessed...... that improving sympatholytic capacity by training may be a slower process in older than in young men. In conclusion, this thesis provides new important knowledge related to the regulation of skeletal muscle blood flow in aging. Specifically, it demonstrates that changes in cGMP signaling is an underlying cause...

  13. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    Science.gov (United States)

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P empty tube (P calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  14. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    Shames, D.M.; Korobkin, M.

    1976-01-01

    To determine whether externally monitored early renal uptake of 131 I-hippurate is proportional to renal blood flow, the renal uptake of 131 -hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131 I-hippurate, about 1 μCi of either 85 Sr- or 95 Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131 I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131 I-hippurate

  15. Radionuclide study on hepatic blood flow in Schistosomiasis Japonica

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Junichi; Uchiyama, Guio; Hayakawa, Kazushige; Hayashi, Sanshin; Araki, Tsutomu; Arai, Takao; Iuchi, Masahiko

    1986-11-01

    Schistosomiasis Japonica is a regional disease found in elderly people who were living in once-endemic areas in Japan. Yamanashi was one of these areas until 1970, since when no newly infected patients were reported. The disease is characteristic of developing irreversible interstitial fibrosis of the liver, where parasites migrate and lay eggs. Portal hypertension, esophageal varices and hepatocellular carcinomas are the common features of the results. In order to estimate patient's hepatic blood flow, radionuclide angiography of the liver with the use of 10 - 15 millicuries of Tc-99m phytate were performed prior to the conventional multiview imaging. Twenty-two patients with schistosomiasis and twelve adults without evidence of liver disease were studied. A time-activity curve of the right lobe of the liver was generated by a computer, and the ratio of arterial blood flow to portal blood flow was calculated. As a result, a good correlation was found between the arterial to portal blood flow ratio and the grade of hepatic fibrosis verified by laparoscopic biopsy. The development of esophageal varices were likely to correlate well with the blood flow ratio rather than scores on the conventional static liver and spleen scintigram. The study was useful for evaluating patient's clinical stages and prognosis.

  16. Radionuclide study on hepatic blood flow in Schistosomiasis Japonica

    International Nuclear Information System (INIS)

    Okada, Junichi; Uchiyama, Guio; Hayakawa, Kazushige; Hayashi, Sanshin; Araki, Tsutomu; Arai, Takao; Iuchi, Masahiko.

    1986-01-01

    Schistosomiasis Japonica is a regional disease found in elderly people who were living in once-endemic areas in Japan. Yamanashi was one of these areas until 1970, since when no newly infected patients were reported. The disease is characteristic of developing irreversible interstitial fibrosis of the liver, where parasites migrate and lay eggs. Portal hypertension, esophageal varices and hepatocellular carcinomas are the common features of the results. In order to estimate patient's hepatic blood flow, radionuclide angiography of the liver with the use of 10 - 15 millicuries of Tc-99m phytate were performed prior to the conventional multiview imaging. Twenty-two patients with schistosomiasis and twelve adults without evidence of liver disease were studied. A time-activity curve of the right lobe of the liver was generated by a computer, and the ratio of arterial blood flow to portal blood flow was calculated. As a result, a good correlation was found between the arterial to portal blood flow ratio and the grade of hepatic fibrosis verified by laparoscopic biopsy. The development of esophageal varices were likely to correlate well with the blood flow ratio rather than scores on the conventional static liver and spleen scintigram. The study was useful for evaluating patient's clinical stages and prognosis. (author)

  17. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    Science.gov (United States)

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  18. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  19. Concomitant administration of nitrous oxide and remifentanil reduces oral tissue blood flow without decreasing blood pressure during sevoflurane anesthesia in rabbits.

    Science.gov (United States)

    Kasahara, Masataka; Ichinohe, Tatsuya; Okamoto, Sota; Okada, Reina; Kanbe, Hiroaki; Matsuura, Nobuyuki

    2015-06-01

    To determine whether continuous administration of nitrous oxide and remifentanil—either alone or together—alters blood flow in oral tissues during sevoflurane anesthesia. Eight male tracheotomized Japanese white rabbits were anesthetized with sevoflurane under mechanical ventilation. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), common carotid arterial blood flow (CCBF), tongue mucosal blood flow (TMBF), mandibular bone marrow blood flow (BBF), masseter muscle blood flow (MBF), upper alveolar tissue blood flow (UBF), and lower alveolar tissue blood flow (LBF) were recorded in the absence of all test agents and after administration of the test agents (50 % nitrous oxide, 0.4 μg/kg/min remifentanil, and their combination) for 20 min. Nitrous oxide increased SBP, DBP, MAP, CCBF, BBF, MBF, UBF, and LBF relative to baseline values but did not affect HR or TMBF. Remifentanil decreased all hemodynamic variables except DBP. Combined administration of nitrous oxide and remifentanil recovered SBP, DBP, MAP, and CCBF to baseline levels, but HR and oral tissue blood flow remained lower than control values. Our findings suggest that concomitant administration of nitrous oxide and remifentanil reduces blood flow in oral tissues without decreasing blood pressure during sevoflurane anesthesia in rabbits.

  20. Measurement of regional cerebral blood flow by xenon-enhanced computed tomography

    International Nuclear Information System (INIS)

    Nakagomi, Tadayoshi; Yoshimasu, Norio; Kim, Shi-in; Takano, Koichi; Segawa, Hiromu.

    1982-01-01

    Serial CT scanning was carried out during and after inhalation of 50% non-radioactive xenon in humans. Our results of this research was as follows; 1) In normal subjects, blood flow in gray matter was 82 +- 11 and that in white matter 24 +- 5 ml/100 gm/min. 2) The blood flow of the brain tumors was close to that of gray matter, whereas blood flow of edematous white matter surrounding the tumor was decreased. 3) The blood flow in cerebral infarctions was always decreased. Effect of STA-MCA bypass was also evaluated. 4) In cerebral arterio-venous malformations, the blood flow in the white matter surrounding nidus was not decreased. This method appeared to have several advantages over conventional isotope method and to provide useful clinical and research informations. (author)

  1. Regional cerebral blood flow characteristics of the Sturge-Weber syndrome

    International Nuclear Information System (INIS)

    Riela, A.R.; Stump, D.A.; Roach, E.S.; McLean, W.T. Jr.; Garcia, J.C.

    1985-01-01

    Four patients with the Sturge-Weber syndrome were studied using the non-invasive Xenon-133 inhalation technique. All four patients had decreased regional cerebral blood flow in the area of their lesion, and in two patients who were subsequently tested with 5% carbon dioxide inhalation, impaired vasomotor reactivity was documented. Diminished regional cerebral blood flow is consistent with previously described nuclide flow studies which demonstrated a delay in the initial perfusion blush in the region of the abnormal vasculature. The focal decrease in blood flow was greatest in the most severely affected patient, but was also prominent in the two younger patients, both of whom have excellent neurologic function. These studies suggest that localized decrease in blood flow and vasomotor dysfunction in Sturge-Weber syndrome can precede the occurrence of severe neurologic impairment and extensive cerebral atrophy and possibly be a major contributing factor in progressive dysfunction. A secondary observation was that the blood flow in the unaffected hemisphere was significantly greater in two children compared to the two adults and was similar to the age-related differences reported for normal children and adults

  2. Skeletal blood flow: implications for bone-scan interpretation

    International Nuclear Information System (INIS)

    Charkes, N.D.

    1980-01-01

    The dispersion of the skeleton throughout the body and its complex vascular anatomy require indirect methods for the measurement of skeletal blood flow. The results of one such method, compartmental analysis of skeletal tracer kinetics, are presented. The assumptions underlying the models were tested in animals and found to be in agreement with experimental observations. Based upon the models and the experimental results, inferences concerning bone-scan interpretation can be drawn: decreased cardiac output produces low-contrast (technically poor) scans; decreased skeletal flow produces photon-deficient lesions; increase of cardiac output or of generalized systemic blood flow is undetectable 1 to 2 h after dose; increased local skeletal blood flow results from disturbance of the bone microvasculature and can occur from neurologic (sympatholytic) disorders or in association with focal abnormalities that also incite the formation of reactive bone (e.g., metastasis, fracture, etc.). Mathematical solutions of tracer kinetic data thus become relevant to bone-scan interpretation

  3. Noninvasive measurement of an index of renal blood flow

    International Nuclear Information System (INIS)

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  4. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  5. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  6. Luteal blood flow in patients undergoing GnRH agonist long protocol

    Directory of Open Access Journals (Sweden)

    Takasaki Akihisa

    2011-01-01

    Full Text Available Abstract Background Blood flow in the corpus luteum (CL is closely related to luteal function. It is unclear how luteal blood flow is regulated. Standardized ovarian-stimulation protocol with a gonadotropin-releasing hormone agonist (GnRHa long protocol causes luteal phase defect because it drastically suppresses serum LH levels. Examining luteal blood flow in the patient undergoing GnRHa long protocol may be useful to know whether luteal blood flow is regulated by LH. Methods Twenty-four infertile women undergoing GnRHa long protocol were divided into 3 groups dependent on luteal supports; 9 women were given ethinylestradiol plus norgestrel (Planovar orally throughout the luteal phase (control group; 8 women were given HCG 2,000 IU on days 2 and 4 day after ovulation induction in addition to Planovar (HCG group; 7 women were given vitamin E (600 mg/day orally throughout the luteal phase in addition to Planovar (vitamin E group. Blood flow impedance was measured in each CL during the mid-luteal phase by transvaginal color-pulsed-Doppler-ultrasonography and was expressed as a CL-resistance index (CL-RI. Results Serum LH levels were remarkably suppressed in all the groups. CL-RI in the control group was more than the cutoff value (0.51, and only 2 out of 9 women had CL-RI values Conclusion Patients undergoing GnRHa long protocol had high luteal blood flow impedance with very low serum LH levels. HCG administration improved luteal blood flow impedance. This suggests that luteal blood flow is regulated by LH.

  7. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage uni.......0001). The synchronism of the nocturnal subcutaneous hyperemia and the decrease in systemic mean arterial blood pressure point to a common, possibly central nervous or humoral, eliciting mechanism.......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...

  8. Regional blood flow studies with radioisotopes

    International Nuclear Information System (INIS)

    Holman, B.L.; McNiel, B.J.; Adelstein, S.J.

    1975-01-01

    The methodological approaches to blood flow analysis include (1) diffusible indicator methods, (2) clearance techniques and (3) nondiffusible indicator methods. In each case, accurate measurements of blood flow can be obtained by developing mathematical models which relate the time-dependent observation derived from following the fate of a radiotracer as a function of time to the physiological process itself. Application of these models to biological systems involves constraints and necessitates compromises which may affect the validity of the measurements. Nevertheless, when these techniques are carefully applied and adequately validated, they have provided critical physiological information about such organ systems as the brain and kidney and promise to provide diagnostic information in patients with suspected coronary and peripheral vascular disease

  9. Pulmonary and systemic blood flow contributions to upper airways in canine lung

    International Nuclear Information System (INIS)

    Barman, S.A.; Ardell, J.L.; Parker, J.C.; Perry, M.L.; Taylor, A.E.

    1988-01-01

    The blood flow contributions and drainage patterns of the pulmonary and systemic circulations in the upper airways (trachea and main bronchi) were assessed in anesthetized dogs by injecting 15-μm radiolabeled microspheres into the right and left heart, respectively. After the animals were killed, the tracheal cartilage, tracheal muscle-mucosa, and main bronchi were excised. The tracheal cartilage and tracheal muscle-mucosa were divided into lower, middle, and upper segments for blood flow determinations. The pulmonary contribution to tracheal blood flow was very small, being higher in the lower segments. The systemic contribution to these same tracheal regions was significantly higher, and higher in the upper segments. The pulmonary and systemic circulations each contributed ∼50% to the main bronchi blood flow. The pulmonary blood flow contribution alone to the trachea and main bronchi was also determined in subsequent experiments that utilized the isolated lung, and these blood flows were not significantly different from the pulmonary contribution measured in the intact lungs. The present results indicate that the systemic (bronchial) circulation is the primary source of tracheal blood flow and that both the pulmonary and systemic circulations may contribute ∼50% of the blood flow to the main bronchi in dog lungs

  10. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    Science.gov (United States)

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  11. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  12. Computational model on pulsatile flow of blood through a tapered ...

    Indian Academy of Sciences (India)

    S PRIYADHARSHINI

    2017-11-02

    Nov 2, 2017 ... It is pertinent to note that the magnitudes of flow resistance are higher in the case of ... mathematical model on non-Newtonian flow of blood through a ..... The important predictions of the present investigation are enumerating the .... drug carriers for targeted drug delivery, reducing blood flow at the time of ...

  13. Total and regional blood flows in vascularized skeletal muscle grafts in rabbits

    International Nuclear Information System (INIS)

    Burton, H.W.; Stevenson, T.R.; Dysko, R.C.; Gallagher, K.P.; Faulkner, J.A.

    1988-01-01

    The transplantation of whole skeletal muscles is a common clinical procedure. Although atypical blood flows have been reported in small free muscle grafts, the blood flow of large neurovascular-intact (NVI) and neurovascular-anastomosed (NVA) grafts have not been measured. Because the maximum specific force (N/cm 2 ) of NVI and NVA grafts is 65% that of control muscles, we hypothesized that total and regional blood flows of NVI and NVA grafts at rest and during twitch contractions are significantly lower than lower flows of control muscles. In rabbits, blood flows of control rectus femoris (RFM) muscles and NVI and NVA grafts of RFM muscles were measured by the radioactive-microsphere technique. Total blood flows in grafts were not different from the control RFM muscle values, except for a higher resting flow in NVA grafts and a lower flow at 3 Hz in NVI grafts. Minor variations in regional flows were observed. We conclude that the operative procedures of grating and repair of blood vessels affect the vascular bed of muscles minimally, and the deficits observed in grafts do not arise from inadequate perfusion

  14. Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance

    International Nuclear Information System (INIS)

    Tamura, Toshiyo; Togawa, Tatsuo; Fukuoka, Masakazu; Kawakami, Kenji.

    1982-01-01

    The regional blood flow in the calf was determined simultaneously by thermal measurement and by 133 Xe clearance technique. Calf blood flow (Ft) by thermal measurement was accounted for by the equation of the form Ft=(CdT*d+Ho-Mb)/rho sub(b)c su b(D) (Ta-Td), where Cd is thermal capacitance of the calf compartment, T*d is the change of calf tissue temperature, Ta is arterila blood temperature, Td is calf tissue temperature, Ho is the heat dissipation from the compartment to the environment, Mb is estimated metabolism of the calf tissue and rho sub(b)c sub(b) is the product of density and specific heat of blood. The healthy men were chosen for the experiments. Total calf blood flow was 2.53+-1.31ml/(min-100ml calf), and muscle blood flow was 2.63+-1.69ml/(min- 100ml muscle) and skin blood flow 7.19+-3.83ml/(min-100ml skin) measured by 133 Xe clearance. On the basis of the results, an estimate has been made of the proportions of the calf volume which can be ascribed to skin and muscle respectively. Estimated muscle and skin blood flow were correlated with total calf blood flow(r=0.98). (author)

  15. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Nobuhiko [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Wada, Toru [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Kashima, Kyoko; Okada, Yoshiyuki [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Unno, Nobuya [Nagano Children' s Hospital, Center for Perinatal Medicine, Nagano (Japan); Kitagawa, Michihiro [National Center for Child Health and Development, Department of Prenatal Medicine and Maternal Care, Tokyo (Japan); Chiba, Toshio [National Center for Child Health and Development, Department of Strategic Medicine, Tokyo (Japan)

    2005-08-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  16. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    International Nuclear Information System (INIS)

    Hata, Nobuhiko; Wada, Toru; Kashima, Kyoko; Okada, Yoshiyuki; Unno, Nobuya; Kitagawa, Michihiro; Chiba, Toshio

    2005-01-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  17. Total hepatofugal portal blood flow in cirrhosis demonstrated by transhepatic portography

    International Nuclear Information System (INIS)

    Burcharth, F.; Aagaard, J.; Herlev Hospital

    1988-01-01

    We investigated 108 patients with cirrhosis of the liver and portal hypertension by percutaneous transhepatic portography to demonstrate the occurrence and frequency of total hepatofugal portal blood flow. Sixteen patients (14.8%) had a total hepatofugal portal blood flow. The aetiology of portal hypertension and the portal pressure did not differ from that in the group of patients with hepatopetal portal blood flow. A significantly higher percentage of patients in the group with hepatofugal flow had gastro-oesophageal varices (P [de

  18. Investigation of spiral blood flow in a model of arterial stenosis

    OpenAIRE

    Paul, M.C.; Larman, A.

    2009-01-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360–1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard κ–ω model is employed for simulation of the blood flow for the...

  19. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  20. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1989-01-01

    The reaction of cerebral blood flow to acute changes in arterial carbon dioxide pressure (PaCO2) and mean arterial blood pressure was determined in 57 preterm infants supported by mechanical ventilation (mean gestational age 30.1 weeks) during the first 48 hours of life. All infants had normal brain sonograms at the time of the investigation. In each infant, global cerebral blood flow was determined by xenon-133 clearance two to five times within a few hours at different levels of PaCO2. Changes in PaCO2 followed adjustments of the ventilator settings. Arterial oxygen pressure was intended to be kept constant, and mean arterial blood pressure fluctuated spontaneously between measurements. The data were analyzed by stepwise multiple regression, with changes in global cerebral blood flow, PaCO2, mean arterial blood pressure, and postnatal age or intracranial hemorrhage used as variables. In infants with persistently normal brain sonograms, the global cerebral blood flow-carbon dioxide reactivity was markedly lower during the first day of life (mean 11.2% to 11.8%/kPa PaCO2) compared with the second day of life (mean 32.6/kPa PaCO2), and pressure-flow autoregulation was preserved. Similarly, global cerebral blood flow-carbon dioxide reactivity and pressure-flow autoregulation were present in infants in whom mild intracranial hemorrhage developed after the study. In contrast, global cerebral blood flow reactivity to changes in PaCO2 and mean arterial blood pressure was absent in infants in whom ultrasonographic signs of severe intracranial hemorrhage subsequently developed. These infants also had about 20% lower global cerebral blood flow before hemorrhage, in comparison with infants whose sonograms were normal, a finding that suggests functional disturbances of cerebral blood flow regulation

  1. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy

    Science.gov (United States)

    Cochran, J. M.; Chung, S. H.; Leproux, A.; Baker, W. B.; Busch, D. R.; DeMichele, A. M.; Tchou, J.; Tromberg, B. J.; Yodh, A. G.

    2017-06-01

    We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n  =  4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.

  2. Ocular blood flow decreases during passive heat stress in resting humans

    OpenAIRE

    Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki

    2013-01-01

    Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...

  3. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO2

    International Nuclear Information System (INIS)

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.

    1987-01-01

    Measurement of 133 Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO 2 at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO 2 of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption

  4. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    International Nuclear Information System (INIS)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-01-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferret was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of 137 Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system

  5. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    Science.gov (United States)

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  6. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  7. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    International Nuclear Information System (INIS)

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-01-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically

  8. Simulating nailfold capillaroscopy sequences to evaluate algorithms for blood flow estimation.

    Science.gov (United States)

    Tresadern, P A; Berks, M; Murray, A K; Dinsdale, G; Taylor, C J; Herrick, A L

    2013-01-01

    The effects of systemic sclerosis (SSc)--a disease of the connective tissue causing blood flow problems that can require amputation of the fingers--can be observed indirectly by imaging the capillaries at the nailfold, though taking quantitative measures such as blood flow to diagnose the disease and monitor its progression is not easy. Optical flow algorithms may be applied, though without ground truth (i.e. known blood flow) it is hard to evaluate their accuracy. We propose an image model that generates realistic capillaroscopy videos with known flow, and use this model to quantify the effect of flow rate, cell density and contrast (among others) on estimated flow. This resource will help researchers to design systems that are robust under real-world conditions.

  9. Dynamic properties of blood flow and leukocyte mobilization in infected flaps

    International Nuclear Information System (INIS)

    Feng, L.J.; Price, D.C.; Mathes, S.J.; Hohn, D.

    1990-01-01

    Two aspects of the inflammatory response to infection--blood flow alteration and leukocyte mobilization--are investigated in the canine model. The elevation of paired musculocutaneous (MC) and random pattern (RP) flaps allowed comparison of healing flaps with significant differences in blood flow (lower in random pattern flaps) and resistance to infection (greater in musculocutaneous flaps). Blood flow changes as determined by radioactive xenon washout were compared in normal skin and distal flap skin both after elevation and following bacterial inoculation. Simultaneous use of In-111 labeled leukocytes allowed determination of leukocyte mobilization and subsequent localization in response to flap infection. Blood flow significantly improved in the musculocutaneous flap in response to infection. Although total leukocyte mobilization in the random pattern flap was greater, the leukocytes in the musculocutaneous flap were localized around the site of bacterial inoculation within the dermis. Differences in the dynamic blood flow and leukocyte mobilization may, in part, explain the greater reliability of musculocutaneous flaps when transposed in the presence of infection

  10. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure.

    Science.gov (United States)

    Kise, Yuya; Kuniyoshi, Yukio; Inafuku, Hitoshi; Nagano, Takaaki; Hirayasu, Tsuneo; Yamashiro, Satoshi

    2015-01-01

    During thoracoabdominal surgery in which segmental arteries are sacrificed over a large area, blood supply routes from collateral networks have received attention as a means of avoiding spinal cord injury. The aim of this study was to investigate spinal cord blood supply through a collateral network by directly measuring spinal cord blood flow and spinal cord perfusion pressure experimentally. In beagle dogs (n = 8), the thoracoabdominal aorta and segmental arteries L1-L7 were exposed, and a temporary bypass was created for distal perfusion. Next, a laser blood flow meter was placed on the spinal dura mater in the L5 region to measure the spinal cord blood flow. The following were measured simultaneously when the direct blood supply from segmental arteries L2-L7 to the spinal cord was stopped: mean systemic blood pressure, spinal cord perfusion pressure (blood pressure within the aortic clamp site), and spinal cord blood flow supplied via the collateral network. These variables were then investigated for evidence of correlations. Positive correlations were observed between mean systemic blood pressure and spinal cord blood flow during interruption of segmental artery flow both with (r = 0.844, P flow with and without distal perfusion (r = 0.803, P network from outside the interrupted segmental arteries, and high systemic blood pressure (∼1.33-fold higher) was needed to obtain the preclamping spinal cord blood flow, whereas 1.68-fold higher systemic blood pressure was needed when distal perfusion was halted. Spinal cord blood flow is positively correlated with mean systemic blood pressure and spinal cord perfusion pressure under spinal cord ischemia caused by clamping a wide range of segmental arteries. In open and endovascular thoracic and thoracoabdominal surgery, elevating mean systemic blood pressure is a simple and effective means of increasing spinal cord blood flow, and measuring spinal cord perfusion pressure seems to be useful for monitoring

  11. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....

  12. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Kanoh, Masayuki

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured at rest using the 133 Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  13. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    Science.gov (United States)

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both Pmuscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  14. Analysis of blood flow patterns in aortic aneurysm by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi

    1993-01-01

    Cine MRI (0.5 T) using rephased gradient echo technique was performed to study the patterns of blood flow in the aortic aneurysm of 16 patients with aortic aneurysm, and the data were compared with those of 5 healthy volunteers. In the transaxial section, the blood flow in normal aorta appeared as homogeneous high intensity during systole. On the other hand, the blood flow in the aneurysm appeared as inhomogeneous flow enhancement with flow void. In the sagittal scan, the homogeneous flow enhancement in a normal aorta was also observed during systole and its apex of flow enhancement was 'taper'. The blood flow patterns in the aneurysm were classified as 'irregular', 'zonal', 'eddy', and 'obscure' depending on the contrast of flow enhancement and flow void. Their apexes were 'taper' or 'round'. The blood flow patterns in the aneurysm were related to the size of aneurysm. In patients with a large size 'aneurysm, their flow patterns were 'eddy' or 'obscure' and the flow enhancement was 'round'. On the other hand, in patients with a small size aneurysm, their flow patterns were 'irregular' or 'zonal', and their flow enhancement was 'taper'. Though the exact mechanism of abnormal flow patterns in an aortic aneurysm remains to be determined, cine MRI gives helpful informations in assessing blood flow dynamics in the aneurysm. (author)

  15. The effects of hypoxemia on myocardial blood flow during exercise.

    Science.gov (United States)

    Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J

    1989-03-01

    We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  17. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  18. Facial skin blood flow responses during exposures to emotionally charged movies.

    Science.gov (United States)

    Matsukawa, Kanji; Endo, Kana; Ishii, Kei; Ito, Momoka; Liang, Nan

    2018-03-01

    The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P < 0.05) with the subjective ratings of pleasantness and consciousness. The changes in lip skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of pleasantness, while the changes in infraorbital, subnasal, and chin skin vascular conductance negatively correlated (P < 0.05) with the subjective rating of consciousness. However, none of the changes in limb skin blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.

  19. Testicular blood flow in varicocele

    International Nuclear Information System (INIS)

    Iwamoto, Teruaki; Hirokawa, Makoto.

    1986-01-01

    Radioisotopic scrotal angiography was applied for study of testicular blood flow of patients with varicocele. Following iv. bolus injection of 10 ∼ 20 mCi of Tc human serum albumine, Tc RBC or Tc pertechnetate, time activity curve of radioactivity at corresponding bilateral areas of scrotum was simultaneously generated and compared. Eighty-four patients with overt varicocele (grade 2 and 3) at left side only, were selected for the present study and eight healthy young volunteers were studied as a control group. Three patterns of time activity curves were recognized. They are as follows. Type 1, where radioactivity was accumulated quickly in left side and then decreased gradually. Bilateral time activity curves were asymmetrical. Type 2, where time activity curves rose gradually and to a higher level at the left side than at the right side. Type 3, where bilateral time activity curves increased gradually, and symmetrically. All of the control group showed the same pattern as Type 3. Of the 84 patients examined, 34 patients showed Type 1, including 7 with grade 2 and 27 with grade 3. Twenty-four patients showed Type 2. consisting of 12 with grade 2 and 12 with grade 3. Twenty-six patients showed Type 3, consisting of 14 with grade 2 and 12 with grade 3. We presumed the following about testicular blood flow in varicocele: Type 1 pattern shows retrograde blood flow from the renal vein to the internal spermatic vein, Type 2 pattern shows poor venous return through the internal spermatic vein and Type 3 pattern shows good venous return though the presence of dilatated pampiniform plexus. (author)

  20. Partitioning of red blood cell aggregates in bifurcating microscale flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  1. Follicle vascularity coordinates corpus luteum blood flow and progesterone production.

    Science.gov (United States)

    de Tarso, S G S; Gastal, G D A; Bashir, S T; Gastal, M O; Apgar, G A; Gastal, E L

    2017-03-01

    Colour Doppler ultrasonography was used to compare the ability of preovulatory follicle (POF) blood flow and its dimensions to predict the size, blood flow and progesterone production capability of the subsequent corpus luteum (CL). Cows (n=30) were submitted to a synchronisation protocol. Follicles ≥7mm were measured and follicular wall blood flow evaluated every 12h for approximately 3.5 days until ovulation. After ovulation, cows were scanned daily for 8 days and similar parameters were evaluated for the CL. Blood samples were collected and plasma progesterone concentrations quantified. All parameters were positively correlated. Correlation values ranged from 0.26 to 0.74 on data normalised to ovulation and from 0.31 to 0.74 on data normalised to maximum values. Correlations between calculated ratios of both POF and CL in data normalised to ovulation and to maximum values ranged from moderate (0.57) to strong (0.87). Significant (Pprogesterone concentrations of the resultant CL. These findings indicate that follicle vascularity coordinates CL blood flow and progesterone production in synchronised beef cows.

  2. Cine-CT measurement of cortical renal blood flow

    International Nuclear Information System (INIS)

    Jaschke, W.R.; Gould, R.G.; Cogan, M.G.; Sievers, R.; Lipton, M.J.

    1987-01-01

    A modified indicator-dilution technique using radiographic contrast material and a cine-CT scanner was used to measure blood flow in the renal cortex of dogs. To validate this technique, CT measurements were correlated with simultaneous measurements of flow determined by radioactive microspheres. Measurements were taken during euvolemic conditions and after hemorrhage. Thirty-nine measurements were compared, covering a flow range from 1 to 7 ml min-1 g-1, and a good correlation was found between the cine-CT and microsphere results (r = 0.93; p less than 0.001). Additionally, cine-CT measurements were made of the mean transit time (MTT) of contrast material through the renal cortex, and the reciprocal of these MTT values was also well correlated to microsphere determined flow (r = 0.94; p less than 0.001). Thus, cine-CT appears to be a promising new technique for measuring renal blood flow

  3. Neonatal changes in renal blood flow distribution in puppies

    International Nuclear Information System (INIS)

    Aschinberg, L.C.; Goldsmith, D.I.; Olbing, H.; Spitzer, A.; Edelmann, C.M. Jr.; Blaufox, M.D.

    1975-01-01

    The intrarenal distribution of blood flow was studied in 31 newborn mongrel puppies from 18 h to 70 days using xenon washout and krypton autoradiography. Mean renal blood flow increased from 0.39 +- 0.05 ml/g per min (SE) the 1st wk to 2.06 +- 0.12 ml/g per min at 6 wk. During the 1st wk of life the renal cortex was perfused homogeneously at 0.88 +- 0.19 ml/g min (SE) and accounted for 35 +- 4 percent of the renal blood flow. During the 2nd wk a narrow, rapidly perfused zone of outer cortex was identified which was perfused at 3.35 +- 0.26 ml/g per min, received 19.53 +- 5.05 percent of the total renal blood flow, and represented 15 +- 4 percent of the mass of the total cortex. The inner cortex and outer medulla at this time received 53.40 +- 4.12 percent of the flow at 1.07 +- 0.08 ml/g per min. Outer cortical flow increased with age reaching adult values by about 6 to 10 wk when the rapidly perfused area represented 40 +- 8 percent of the cortex. These changes are parallel to the results of previously reported studies with microspheres in newborn puppies and are compatible with the well-established maturational changes noted in neonates of several species. They represent the first gas-washout studies in animals during the first 6 wk of life

  4. Effect of regional heating on the liver blood flow in rats

    International Nuclear Information System (INIS)

    Nakajima, T.; Song, C.W.; Osborn, J.L.; Rhee, J.G.; Levitt, S.H.

    1987-01-01

    The authors measured the blood flow in the liver of rats heated with a radio frequency capacitive heating device. The blood flow through the hepatic artery, as measured with the radioactive microsphere method, was 0.21 ml/min/gm; it increased by 13% and 16% when heated for 15 minutes at 41 0 C and 43 0 C, respectively. The portal vein blood flow was 1.09 ml/min/gm and decreased by 12% and 20% on heating for 15 minutes at 41 0 C and 43 0 C, respectively. The total liver blood flow, therefore, decreased by 11% at 41 0 C and by 14% at 43 0 C from the control value of 1.30 ml/min/gm

  5. Radionuclide and dopplergraphic assessment of portal hepatic blood flow in opisthorchiasis

    International Nuclear Information System (INIS)

    Borodulin, V.G.; Ermolitskij, N.M.; Zavadovskaya, V.D.; Prosekina, N.M.; Borodulin, Yu.V.

    1996-01-01

    Dynamic studies of the portal blood flow were carried out in 88 patients using colloid radionuclide gold-198 and Tc-99m-phytate and in 84 patients by dopplerography. Radionuclide studies showed that both radiopharmaceutical adequately reflected the portal blood flow in the liver. Portal blood flow values obtained by the duplex echographic method were 0.7 times lower than these estimated by radionuclide indirect angiography. The authors come to a conclusions that the share of the liver in colloid capture should be taken into consideration for the correct estimation of the level of portal hepatic hemodynamics. Portal hepatic blood flow was found markedly reduced in patients with chronic opisthorchiasis in comparison with normal controls, this difference being more expressed in male patients [ru

  6. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  7. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  8. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation

    International Nuclear Information System (INIS)

    Piiper, J.; Pendergast, D.R.; Marconi, C.; Meyer, M.; Heisler, N.; Cerretelli, P.

    1985-01-01

    The distribution of blood flow within the isolated perfused dog gastrocnemius muscle (weight 100-240 g) was studied by intra-arterial injection of radioactively labeled microspheres (diameter 15 micron) at rest and during supramaximal stimulation to rhythmic isotonic tetanic contractions of varied frequency against varied loads. After the experiment the muscle was cut into 180-250 pieces of approximately 0.75 g each, and the blood flow to each muscle piece was determined from its radioactivity. The inhomogeneity of blood flow was represented as the frequency distribution of the ratios of regional specific blood flow, i.e., blood flow per unit tissue weight of the piece, QR, to the overall specific blood flow of the muscle, Q. The QR/Q values for the individual pieces of a muscle were found to vary widely both at rest and during stimulation. With rising work load the frequency distribution had a tendency to broaden and flatten, indicating increasing perfusion inhomogeneity. On the average of the experiments, there was no significant difference in specific blood flow between the three anatomic components of the gastrocnemius (lateral and medial heads of gastrocnemius and flexor digitorum superficialis) nor between the superficial and deep portions within these anatomic components, only the distal third of the muscle was relatively less perfused compared with the proximal two-thirds. The considerable inhomogeneity of blood flow as revealed by microsphere embolization and by other methods is expected to exert important limiting effects on local O 2 supply, particularly during exercise

  9. Distribution of the pulmonary blood flow measured by ECT

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Itoh, H.; Todo, Y.; Ishii, Y.; Mukai, T. (Kyoto Univ. (Japan). Hospital)

    1981-05-01

    Distributions of pulmonary blood flow per unit lung volume were observed by using the combination of Tc-99m-MAA and radionuclide CT. Administration of Tc-99m-MAA to the patients were performed in sitting position. Ten patients were studied with this method. In nine patients, the blood flow distribution was greater in the direction of the gravity, namely, more blood flow in the lower than the upper lung region. In six patients were demonstrated the relation between blood flow and the vertical distance described by West et al. Thus, it was possible to evaluate the arterial and venous pressures of the lung with the estimated pressure of 4.15 +- 1.93 cmH/sub 2/O and -5.55 +- 2.48 cmH/sub 2/O in relation to the angle of Louis. The agreement was reasonably well with that reported by Butler and Paley. Three patients had pulmonary hypertension with the distribution of monotonous increase, of which slope was similar to that of zone III in other six patients. The last patient with COPD had quite different distribution from other nine patients.

  10. EFFICACY OF LASER PULSE FREQUENCIES ON BLOOD FLOW IN TYPE 2 DIABETIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Amir Nazih Wadee

    2017-04-01

    Full Text Available Background: Research reports had noted an apparent increase in cutaneous and deep blood flow as a result of low-intensity laser therapy (LLLT in normal subjects. The purpose of te study was to investigate the effective laser pulse frequency either (200 or 2000 Hz on improving blood flow in type 2 diabetic patients. Forty-five diabetic patients selected from out clinic of Kasr El-Aini Hospital, Cairo University assigned randomly into three groups. The blood flow volume, blood flow velocity and caliper of the blood vessel were evaluated before laser application and after twelve sessions using duplex Doppler ultrasound. Methods: Combined He-Ne and infrared LILT was administered three times a week for twelve sessions at intensity of 3 J, power 500 mW, 808 nm duration 15 min and pulse frequency 200 Hz for group I, 2000 Hz for group II, and sham LILT for group III on the sural artery at posterior aspect of dominant leg. Result: Paired t-test revealed that low pulse frequency (200 Hz LILT produced significant improvement in blood flow volume and blood flow velocity (t= 1.76, p= 0.001 and t= 2.8, p= 0.01 respectively (P<0.05. While there was no significant changes in caliper of the blood vessel of group I, blood flow volume, blood flow velocity or caliper of the blood vessel of group II and group III (t= 2.15, p= 1, t= 2.15, p= 1, t= 1.11 p= 0.31, t= 1.54, p= 0.15, t= 2.51, p= 1, t= 1.21 p= 0.33, t= 1.45, p= 0.15 respectively (P<0.05. ANOVA test in between groups revealed insignificant changes in all pre and post- measures except significant results in blood flow volume and velocity which indicating the superiority of group I on both group II and III by post hoc test. Conclusion: low pulse frequency of LILT (200 Hz could improve blood flow than high pulse frequency (2000 Hz.

  11. Uteroplacental blood flow measured by placental scintigraphy during epidural anaesthesia for caesarean section

    Energy Technology Data Exchange (ETDEWEB)

    Skjoeldebrand, A.; Eklund, J.; Johansson, H.; Lunell, N.-O.; Nylund, L.; Sarby, B.; Thornstroem, S. (Departments of Anaesthesiology, Obstetrics and Gynaecology and Medical Physics, Karolinska Institute at Huddinge University Hospital, Stockholm (Sweden))

    1990-01-01

    The uteroplacental blood flow was measured before and during epidural anaesthesia for caesarean section in 11 woman. The blood flow was measured with dynamic placental scintigraphy. After an i.v. injection of indium-113m chloride, the gamma radiation over the placenta was recorded with a computer-linked scintillation camera. The uteroplacental blood flow could be calculated from the isotope accumulation curve. The anaesthesia was performed with bupivacaine plain 0.5%, 18-22 ml and a preload of a balanced electrolyte solution 10 ml/kg b.w. was given. The placental blood flow decreased in eight patients and increased in three with a median change of -21%, not being statistically significant. No correlation between maternal blood pressure and placental blood flow was found. (author).

  12. Uteroplacental blood flow measured by placental scintigraphy during epidural anaesthesia for caesarean section

    International Nuclear Information System (INIS)

    Skjoeldebrand, A.; Eklund, J.; Johansson, H.; Lunell, N.-O.; Nylund, L.; Sarby, B.; Thornstroem, S.

    1990-01-01

    The uteroplacental blood flow was measured before and during epidural anaesthesia for caesarean section in 11 woman. The blood flow was measured with dynamic placental scintigraphy. After an i.v. injection of indium-113m chloride, the gamma radiation over the placenta was recorded with a computer-linked scintillation camera. The uteroplacental blood flow could be calculated from the isotope accumulation curve. The anaesthesia was performed with bupivacaine plain 0.5%, 18-22 ml and a preload of a balanced electrolyte solution 10 ml/kg b.w. was given. The placental blood flow decreased in eight patients and increased in three with a median change of -21%, not being statistically significant. No correlation between maternal blood pressure and placental blood flow was found. (author)

  13. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.

    Science.gov (United States)

    Kang, M J; Ji, H-S; Lee, S J

    2010-01-01

    In-vitro experiments were carried out to investigate the haemodynamic and haemorheological behaviours of haemodiluted blood flow through a microstenosis using a micro-particle image velocimetry (PIV) technique. The micro-PIV system employed in this study consisted of a two-head neodymium:yttrium-aluminium-garnet (Nd:YAG) laser, a cooled charge-coupled device camera, and a delay generator. To simulate blood flow in a stenosed vascular vessel, a polydimethylsiloxane (PDMS) microchannel with a sinusoidal throat of 80 per cent severity was employed. The width and depth of the microchannel were 100 microm and 50 microm, respectively. To compare the flow characteristics in the microstenosis, the same experiments were repeated in a straight microchannel under the same flow conditions. Using a syringe pump, human blood with 5 per cent haematocrit was supplied into the microstenosis channel. The flow characteristics and transport of blood cells through the microstenosis were investigated with various flowrates. The mean velocity fields were nearly symmetric with respect to the channel centreline. In the contraction section, the oncoming blood flow was accelerated rapidly, and the maximum velocity at the throat was almost 4.99 times faster than that of the straight microchannel without stenosis. In the diffusion section, the blood cells show rolling, deformation, twisting, and tumbling motion due to the flow-choking characteristics at the stenotic region. The results from this study will provide useful basic data for comparison with those obtained by clinical researchers.

  14. Renal function evaluation in the aged with normal blood pressure and high blood pressure

    International Nuclear Information System (INIS)

    Jacob Filho, W.; Carvalho Filho, E.T. de; Papaleo Netto, M.; Baptista, M.C.

    1986-01-01

    Thirty-four patients older than 65 years were divided into two groups according to their ages: I - 66 to 74 years (17 patients), II - 75 and over (17 patients). These elderly patients were also divided according to their arterial blood pressure level (BP): A - normal BP (14 patients), B high BP (20 patients). None of these patients presented any other disease that could affect kidney function, nor have used drugs that could interfere on the BP or on the kidney function. Glomerular filtration rate (GFR) and effective renal plasmatic flow (ERPF) were analysed by radioisotopic techniques. Furthermore the filtration fraction (FF) was evaluated by the GFR/ERPF ratio. The observed GFR, ERPF and FF variations in the age groups or in normotensive and hypertensive patients were not significant, but we could assume that the physiopathological mechanisms that cause a decreased GFR in consequence of age or of systemic hypertension could be of different origins. Thus in the old hypertensive patients, alterations in the autoregulated hemodynamic mechanism could occur. (author) [pt

  15. Cerebral blood flow and cerebrovascular response to acetazolamide in patients with chronic alcoholism

    OpenAIRE

    Oishi, M; Mochizuki, Y; Takasu, T

    1997-01-01

    Cerebral blood flow and cerebrovascular response to acetazolamide were studied in 12 patients with chronic alcoholism and 12 age matched healthy controls. Blood flows in the cerebral cortex, thalamus, and putamen were significantly lower in the chronic alcoholic group than in the healthy control group. The increase in blood flow caused by acetazolamide did not show any significant difference between the two groups. These findings suggest that the decreased cerebral blood flow i...

  16. Diet-induced changes in subcutaneous adipose tissue blood flow in man

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Astrup, A

    1990-01-01

    The effect of a carbohydrate-rich meal on subcutaneous adipose tissue blood flow was studied with and without continuous i.v. infusion of propranolol in healthy volunteers. The subcutaneous adipose tissue blood flow was measured with the 133Xe washout method in three different locations......: the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced...

  17. The effect of rapid decompression on femur blood flow of rabbits

    International Nuclear Information System (INIS)

    Yu Shaoning; Tian Wuxun; Zhu Xiangqi

    1997-01-01

    PURPOSE: To study the influence of regional blood flow in femur trochanter (FT) of rabbits' under rapid decompression after exposure to hyperbaric air. METHODS: Rabbits were placed in a hyperbaric chamber and exposed to the pressure of 0.5 MPa for 1.5 h, and the pressure was reduced to the atmosphere pressure at a uniform rate of 0.03 mPa/min. The regional blood flow of FT in rabbits were measured with 133 Xe washout methods. RESULTS: The normal average regional blood flow in left and right FT were 14.5 +- 1.7 and 14.1 +- 1.9 ml/(min·100g) respectively. After exposure to hyperbaric air with rapid decompression, the average regional blood flow of left and right FT were 11.1 +- 1.2 and 10.5 +- 1.6 ml/(min·100g) respectively. But the symptoms of dysbarism in these rabbits were various each other. CONCLUSIONS: After being exposed to hyperbaric air with rapid decompression, the blood flow of rabbits' femur trochanter were noticeably reduced

  18. Blood flow behavior in microchannels: past, current and future trends

    OpenAIRE

    Lima, R.; Ishikawa, Takuji; Imai, Yohsuke; Yamaguchi, Takami

    2012-01-01

    Over the years, various experimental methods have been applied in an effort to understand the blood flow behavior in microcirculation. Most of our current knowledge in microcirculation is based on macroscopic flow phenomena such as Fahraeus effect and Fahraeus-Linqvist effect. The development of optical experimental techniques has contributed to obtain possible explanations on the way the blood flows through microvessels. Although the past results have been encouraging, detailed s...

  19. Renal blood flow and oxygenation drive nephron progenitor differentiation.

    Science.gov (United States)

    Rymer, Christopher; Paredes, Jose; Halt, Kimmo; Schaefer, Caitlin; Wiersch, John; Zhang, Guangfeng; Potoka, Douglas; Vainio, Seppo; Gittes, George K; Bates, Carlton M; Sims-Lucas, Sunder

    2014-08-01

    During kidney development, the vasculature develops via both angiogenesis (branching from major vessels) and vasculogenesis (de novo vessel formation). The formation and perfusion of renal blood vessels are vastly understudied. In the present study, we investigated the regulatory role of renal blood flow and O2 concentration on nephron progenitor differentiation during ontogeny. To elucidate the presence of blood flow, ultrasound-guided intracardiac microinjection was performed, and FITC-tagged tomato lectin was perfused through the embryo. Kidneys were costained for the vasculature, ureteric epithelium, nephron progenitors, and nephron structures. We also analyzed nephron differentiation in normoxia compared with hypoxia. At embryonic day 13.5 (E13.5), the major vascular branches were perfused; however, smaller-caliber peripheral vessels remained unperfused. By E15.5, peripheral vessels started to be perfused as well as glomeruli. While the interior kidney vessels were perfused, the peripheral vessels (nephrogenic zone) remained unperfused. Directly adjacent and internal to the nephrogenic zone, we found differentiated nephron structures surrounded and infiltrated by perfused vessels. Furthermore, we determined that at low O2 concentration, little nephron progenitor differentiation was observed; at higher O2 concentrations, more differentiation of the nephron progenitors was induced. The formation of the developing renal vessels occurs before the onset of blood flow. Furthermore, renal blood flow and oxygenation are critical for nephron progenitor differentiation. Copyright © 2014 the American Physiological Society.

  20. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider.

    Science.gov (United States)

    Zhang, ZhiGuo; Fan, YuBo; Deng, XiaoYan; Wang, GuiXue; Zhang, He; Guidoin, Robert

    2008-10-01

    Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the velocity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  1. A numerical study of blood flow using mixture theory.

    Science.gov (United States)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.

  2. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko

    2001-01-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H 2 15 O dynamic study method, and blood volume was measured by means of the 15 O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean ±SD: 3.52±1.2), and blood volume was 1.67-6.03 ml/100 g (mean ±SD: 3.00±1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  3. Cerebral Pathophysiology in Extracorporeal Membrane Oxygenation: Pitfalls in Daily Clinical Management

    Directory of Open Access Journals (Sweden)

    Syed Omar Kazmi

    2018-01-01

    Full Text Available Extracorporeal membrane oxygenation (ECMO is a life-saving technique that is widely being used in centers throughout the world. However, there is a paucity of literature surrounding the mechanisms affecting cerebral physiology while on ECMO. Studies have shown alterations in cerebral blood flow characteristics and subsequently autoregulation. Furthermore, the mechanical aspects of the ECMO circuit itself may affect cerebral circulation. The nature of these physiological/pathophysiological changes can lead to profound neurological complications. This review aims at describing the changes to normal cerebral autoregulation during ECMO, illustrating the various neuromonitoring tools available to assess markers of cerebral autoregulation, and finally discussing potential neurological complications that are associated with ECMO.

  4. Relationship between preoperative radial artery and postoperative arteriovenous fistula blood flow in hemodialysis patients.

    Science.gov (United States)

    Sato, Michiko; Io, Hiroaki; Tanimoto, Mitsuo; Shimizu, Yoshio; Fukui, Mitsumine; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    It is recommended that arteriovenous fistula (AVF) blood flow should be more than 425 ml/min before cannulation. However, the relationship between preoperative radial artery flow (RAF) and postoperative AVF blood flow has still not been examined. Sixty-one patients with end-stage kidney disease (ESKD) were examined. They had an AVF prepared at Juntendo University Hospital from July 2006 through August 2007. Preoperative RAF and postoperative AVF blood flows were measured by ultrasonography. AVF blood flow gradually increased after the operation. AVF blood flow was significantly correlated with preoperative RAF. When preoperative RAF exceeded 21.4 ml/min, AVF blood flow rose to more than 425 ml/min. The postoperative AVF blood flow in the group with RAF of more than 20 ml/min was significantly higher than that in those with less than 20 ml/min. Preoperative RAF of less than 20 ml/min had a significantly high risk of primary AVF failure within 8 months compared with that of more than 20 ml/min. It appears that measurement of RAF by ultrasonography is useful for estimating AVF blood flow postoperatively and can predict the risk of complications in ESKD patients.

  5. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin

    importance. The present work provides new insight in to vasodilator interactions important for exercise hyperemia and sheds light on mechanisms important for vascular function and regulation of skeletal muscle blood flow in essential hypertension (high blood pressure) and aging and identifies mechanisms......The precise matching of blood flow, oxygen delivery and metabolism is essential as it ensures that any increase in muscle work is precisely matched by increases in oxygen delivery. Therefore, understanding the control mechanisms of skeletal muscle blood flow regulation is of great biological...... in the regulation of exercise hyperemia. Furthermore, blood flow to contracting leg skeletal muscles is reduced both in essential hypertension and with aging. The potential difference in vasoactive system(s) responsible for the reduction in blood flow in the two conditions is in agreement with the suggestion...

  6. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo

    1989-01-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  7. Blood transfusion in preterm infants improves intestinal tissue oxygenation without alteration in blood flow.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-11-01

    The objective of the study was to investigate the splanchnic blood flow velocity and oximetry response to blood transfusion in preterm infants according to postnatal age. Preterm infants receiving blood transfusion were recruited to three groups: 1-7 (group 1; n = 20), 8-28 (group 2; n = 21) and ≥29 days of life (group 3; n = 18). Superior mesenteric artery (SMA) peak systolic (PSV) and diastolic velocities were measured 30-60 min pre- and post-transfusion using Doppler ultrasound scan. Splanchnic tissue haemoglobin index (sTHI), tissue oxygenation index (sTOI) and fractional tissue oxygen extraction (sFTOE) were measured from 15-20 min before to post-transfusion using near-infrared spectroscopy. The mean pretransfusion Hb in group 1, 2 and 3 was 11, 10 and 9 g/dl, respectively. The mean (SD) pretransfusion SMA PSV in group 1, 2 and 3 was 0·63 (0·32), 0·81 (0·33) and 0·97 (0·40) m/s, respectively, and this did not change significantly following transfusion. The mean (SD) pretransfusion sTOI in group 1, 2 and 3 was 36·7 (19·3), 44·6 (10·4) and 41·3 (10·4)%, respectively. The sTHI and sTOI increased (P transfusion in all groups. On multivariate analysis, changes in SMA PSV and sTOI following blood transfusion were not associated with PDA, feeding, pretransfusion Hb and mean blood pressure. Pretransfusion baseline splanchnic tissue oximetry and blood flow velocity varied with postnatal age. Blood transfusion improved intestinal tissue oxygenation without altering mesenteric blood flow velocity irrespective of postnatal ages. © 2016 International Society of Blood Transfusion.

  8. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    Science.gov (United States)

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  9. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  10. Post-exercise blood flow restriction attenuates hyperemia similarly in males and females.

    Science.gov (United States)

    Dankel, Scott J; Mouser, J Grant; Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Loenneke, Jeremy P

    2017-08-01

    Our laboratory recently demonstrated that post-exercise blood flow restriction attenuated muscle hypertrophy only in females, which we hypothesized may be due to alterations in post-exercise blood flow. The aim of this study is to test our previous hypothesis that sex differences in blood flow would exist when employing the same protocol. Twenty-two untrained individuals (12 females; 10 males) performed two exercise sessions, each involving one set of elbow flexion exercise to volitional failure on the right arm. The experimental condition had blood flow restriction applied for a 3 min post-exercise period, whereas the control condition did not. Blood flow was measured using an ultrasound at the brachial artery and was taken 1 and 4 min post-exercise. This corresponded to 1 min post inflation and 1 min post deflation in the experimental condition. There were no differences in the alterations in blood flow between the control and experimental conditions when examined across sex. Increases in blood flow [mean (standard deviation)] were as follows: males 1 min [control 764 (577) %; experimental 113 (108) %], males 4 min [control 346 (313) %; experimental 449 (371) %], females 1 min [control 558 (367) %; experimental 87 (105) %], and females 4 min [control 191 (183) %; experimental 328 (223) %]. It does not appear that the sex-specific attenuation of muscle hypertrophy we observed previously can be attributed to different alterations in post-exercise blood flow. Future studies may wish to replicate our previous training study, or examine alternative mechanisms which may be sex specific.

  11. Results and validity of renal blood flow measurements using Xenon 133

    International Nuclear Information System (INIS)

    Serres, P.; Danet, B.; Guiraud, R.; Durand, D.; Ader, J.L.

    1975-01-01

    The renal blood flow was measured by external recording of the xenon 133 excretion curve. The study involved 45 patients with permanent high blood pressure and 7 transplant patients. The validity of the method was checked on 10 dogs. From the results it seems that the cortical blood flow, its fraction and the mean flow rate are the most representative of the renal haemodynamics parameters, from which may be established the repercussions of blood pressure on kidney vascularisation. Experiments are in progress on animals to check the compartment idea by comparing injections into the renal artery and into various kidney tissues in situ [fr

  12. Measurement of regional pulmonary blood volume in patients with increased pulmonary blood flow or pulmonary arterial hypertension

    International Nuclear Information System (INIS)

    Wollmer, P.; Rozcovek, A.; Rhodes, C.G.; Allan, R.M.; Maseri, A.

    1984-01-01

    The effects of chronic increase in pulmonary blood flow and chronic pulmonary hypertension on regional pulmonary blood volume was measured in two groups of patients. One group of patients had intracardiac, left-to-right shunts without appreciable pulmonary hypertension, and the other consisted of patients with Eisenmenger's syndrome or primary pulmonary hypertension, i.e. patients with normal or reduced blood flow and severe pulmonary hypertension. A technique based on positron tomography was used to measure lung density (by transmission scanning) and regional pulmonary blood volume (after inhalation of /sup 11/CO). The distribution of pulmonary blood volume was more uniform in patients with chronic increase in pulmonary blood flow than in normal subjects. There were also indications of an absolute increase in intrapulmonary blood volume by about 15%. In patients with chronic pulmonary arterial hypertension, the distribution of pulmonary blood volume was also abnormally uniform. There was, however, no indication that overall intrapulmonary blood volume was substantially different from normal subjects. The abnormally uniform distribution of pulmonary blood volume can be explained by recruitment and/or dilatation of vascular beds. Intrapulmonary blood volume appears to be increased in patients with intracardiac, left-to-right shunts. With the development of pulmonary hypertension, intrapulmonary blood volume falls, which may be explained by reactive changes in the vasculature and/or obliteration of capillaries

  13. Effect of couple stresses on hydromagnetic flow of blood through a ...

    African Journals Online (AJOL)

    The function of the coronary network is to supply blood to the heart; however, in cases of Coronary Artery Disease, the geometry has great influence on the nature of the blood flow and the overall performance of the heart. In this paper, the unsteady non-Newtonian flow of blood under couple stresses and a uniform external ...

  14. Influence of cold-water immersion on limb blood flow after resistance exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P lower (55%) than the control post-immersion (P water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  15. Synchrotron X-ray PIV Technique for Measurement of Blood Flow Velocity

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon; Je, Jung Ho

    2007-01-01

    Synchrotron X-ray micro-imaging method has been used to observe internal structures of various organisms, industrial devices, and so on. However, it is not suitable to see internal flows inside a structure because tracers typically employed in conventional optical flow visualization methods cannot be detectable with the X-ray micro-imaging method. On the other hand, a PIV (particle image velocimetry) method which has recently been accepted as a reliable quantitative flow visualization technique can extract lots of flow information by applying digital image processing techniques However, it is not applicable to opaque fluids such as blood. In this study, we combined the PIV method and the synchrotron X-ray micro-imaging technique to compose a new X-ray PIV technique. Using the X-ray PIV technique, we investigated the optical characteristics of blood for a coherent synchrotron X-ray beam and quantitatively visualized real blood flows inside an opaque tube without any contrast media. The velocity field information acquired would be helpful for investigating hemorheologic characteristics of the blood flow

  16. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  17. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  18. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical...... for automatic detection of complex flow patterns....

  19. Experimental studies of renal blood flow by digitized functional angiography

    International Nuclear Information System (INIS)

    Buersch, J.H.; Ochs, C.; Hahne, H.J.; Heintzen, P.H.

    1985-01-01

    New techniques of digital image processing have been experimentally tested for the assessment of renal blood flow. The underlying principle in functional angiography is the extraction of flow parameters. Basically, density-time variations of the contrast medium are analayzed from to each picture element of a 256x256 matrix. The real-time acquisition rate of images was 25/sec. For the calculation of angiographic flow a PDP 11/40 computer was used to interactively perform a time dependent segmentation of the renal arteries and the aorta. Subsequently, volume flow was calculated in relative units for the specific vascular segments under study. 15 control angiograms were made in 5 animals with cardiac output ranging between 0.8 to 2.2l/min. Unilateral renal blood flow was calculated as 24+-3.4% of pre-renal aortic flow without systematic side differences. Reproducibility from repeated flow measurements showed an SD of +-1.8% of the individual pre-renal aortic flow. Renal flow was also measured in 3 animals with an experimentally created 50% flow reduction of the left kidney. Angiographic flow in the left renal artery dropped to 12+-2% of pre-renal flow. The present experimental data suggest that digital angiography has sufficient diagnostic capabilities for the detection of abnormal renal blood flow. The technique may serve as a useful diagnostic adjunct to conventional angiography and has the potential of assisting in the evaluation of renal vascular hypertension. (orig.) [de

  20. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats

    DEFF Research Database (Denmark)

    Knudsen, Torben; Elmer, Henrik; Knudsen, Morten H

    2004-01-01

    A method is proposed in this paper which allows characterization of renal autoregulatory dynamics and efficiency using quantitative mathematical methods. Based on data from rat experiments, where arterial blood pressure and renal blood flow are measured, a quantitative model for renal blood flow...

  1. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P  0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Collateral blood flow in different cerebrovascular hierarchy provides endogenous protection in cerebral ischemia.

    Science.gov (United States)

    Luo, Chuanming; Liang, Fengyin; Ren, Huixia; Yao, Xiaoli; Liu, Qiang; Li, Mingyue; Qin, Dajiang; Yuan, Ti-Fei; Pei, Zhong; Su, Huanxing

    2017-11-01

    Collateral blood flow as vascular adaptions to focal cerebral ischemia is well recognized. However, few studies directly investigate the dynamics of collateral vessel recruitment in vivo and little is known about the effect of collateral blood flow in different cerebrovascular hierarchy on the neuropathology after focal ischemic stroke. Here, we report that collateral blood flow is critically involved in blood vessel compensations following regional ischemia. We occluded a pial arteriole using femtosecond laser ablating under the intact thinned skull and documented the changes of collateral flow around the surface communication network and between the surface communication network and subsurface microcirculation network using in vivo two photon microscopy imaging. Occlusion of the pial arteriole apparently increased the diameter and collateral blood flow of its leptomeningeal anastomoses, which significantly reduced the cortical infarction size. This result suggests that the collateral flow via surface communicating network connected with leptomeningeal anastomoses could greatly impact on the extent of infarction. We then further occluded the target pial arteriole and all of its leptomeningeal anastomoses. Notably, this type of occlusion led to reversals of blood flow in the penetrating arterioles mainly proximal to the occluded pial arteriole in a direction from the subsurface microcirculation network to surface arterioles. Interesting, the cell death in the area of ischemic penumbra was accelerated when we performed occlusion to cease the reversed blood flow in those penetrating arterioles, suggesting that the collateral blood flow from subsurface microcirculation network exerts protective roles in delaying cell death in the ischemic penumbra. In conclusion, we provide the first experimental evidence that collateral blood vessels at different cerebrovascular hierarchy are endogenously compensatory mechanisms in brain ischemia. © 2016 International Society of

  4. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  5. The influence of external compression on muscle blood flow during exercise

    International Nuclear Information System (INIS)

    Styf, J.

    1990-01-01

    Intramuscular pressures and muscle blood flow were measured in the anterior tibial muscle during dynamic concentric exercise in 14 subjects. Pressures were recorded by the microcapillary infusion method and muscle blood flow by the 133-Xenon clearance technique. Muscle blood flow during constant exercise decreased from 34.5 (SD = 10.3) to 10.6 (SD = 4.9) ml/100 g/min (P less than 0.001) when muscle relaxation pressure was increased from 13.5 (SD = 2.7) to 39.9 (SD = 9.0) mm Hg by external compression. Muscle relaxation pressure during exercise is the intramuscular pressure between contractions. External compression of the lower limb during exercise impedes muscle blood flow by increasing muscle relaxation pressure. The experimental model seems suitable to study the influence of external compression by knee braces on intramuscular pressure during exercise

  6. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  7. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.

    1987-09-01

    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.

  8. Renal transplantant blood flow in patients with acute tubular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huic, D; Crnkovic, S; Bubic-Filipi, L J; Grosev, D; Dodig, P; Porapat, M; Puretic, Z [Univ. Hospital Rebro, Zagreb (Croatia)

    1997-09-01

    The aim of this study was to investigate the quantity of renal transport blood flow in patients affected by acute tubular necrosis (ATN). During the four years period two hundred and thirty-three studies were performed using {sup 99m}Tc pertechnetate and {sup 131}I - OIH. Renal blood flow was calculated from the first-pass time activity curves generated over the kidney and aorta and expressed as a percentage of cardiac output (RBF/CO). Renal transplant blood flow is clearly diminished in ATN, similar as in acute rejection, and significantly related to the graft function, what means that RBF/CO value could potentially serve as a prognostic factor in the graft function recovery from ATN.

  9. Phase contrast MRI assessment of pedal blood flow

    International Nuclear Information System (INIS)

    Debatin, J.F.; Dalman, R.; Herfkens, R.J.; Harris, E.J.; Pelc, N.J.

    1995-01-01

    This study attempts to evaluate the reliability of cine phase contrast (PC) flow measurements in the assessment of normal pedal blood flow and quantitation of revascularisation-induced flow changes in patients with end-stage peripheral vascular occlusive disease (PVOD). Oblique axial cine-PC acquisitions were obtained on a 1.5 T MRI system at the level of the talotibial joints in 8 normal subjects on four separate occasions. Subsequently 8 patients with end-stage PVOD were examined before and after surgical revascularisation (bilateral, n = 2; unilateral, n = 6). Measured flow in the trifurcation vessels was highly variable among normal subjects. Total pedal flow ranged from 32 to 183 ml/min (mean 91 ml/min) and was significantly different between the subjects evaluated (P < 0.0001). Measurements in the same subject over time were considerably less variable (P < 0.005). Normal arterial flow patterns were consistently triphasic; those in patients with PVOD were either mono- or biphasic. Pedal flow measured by cine-PC in patients was reduced compared with normal subjects (mean 38.3 ml/min). Flow was slower in symptomatic limbs (26.7 ml/min) compared with asymptomatic ones (48.9 ml/min). Flow increases in revascularised limbs (mean 315%) were significantly different from those observed in non-affected limbs (P < 0.005). The ability to quantitate pedal blood flow and subsequent revascularisation-induced flow increases appears promising for the identification of optimal treatment options and monitoring of treatment results. (orig.)

  10. Determinants of pulmonary blood flow distribution.

    Science.gov (United States)

    Glenny, Robb W; Robertson, H Thomas

    2011-01-01

    The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.

  11. Renal cortical and medullary blood flow responses to altered NO-availability in humans

    DEFF Research Database (Denmark)

    Damkjaer, Mads; Vafaee, Manoucher; Møller, Michael Lehd

    2010-01-01

    The objective was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned and regional renal blood flow determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed...... of one voxel were eliminated stepwise from the external surface of the VOI ('voxel peeling'), and the blood flow subsequently determined in each new, reduced VOI. Blood flow in the shrinking volumes of interest (VOIs) decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood...... flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ±0.17 ml·(g·min)(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ±0.18 ml·(g·min)(-1) (p...

  12. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    Science.gov (United States)

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  13. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Goris, Maaike; Landheer, Sjoerd W.; Buikema, Hendrik; van Dokkum, Richard P. E.

    Introduction:Intact myogenic constriction plays a role in renal blood flow autoregulation and protection against pressure-related (renal) injury. However, to what extent alterations in renal artery myogenic constriction are involved in development of renal damage during aging is unknown. Therefore,

  14. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Roach, E.S.; Stump, D.A.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  15. Recovery of testicular blood flow following ligation of testicular vessels

    International Nuclear Information System (INIS)

    Pascual, J.A.; Villanueva-Meyer, J.; Salido, E.; Ehrlich, R.M.; Mena, I.; Rajfer, J.

    1989-01-01

    To determine whether initial ligation of the testicular vessels of the high undescended testis followed by a delayed secondary orchiopexy is a viable alternative to the classical Fowler-Stephens procedure, a series of preliminary experiments were conducted in the rat in which testicular blood flow was measured by the 133-xenon washout technique before, and 1 hour and 30 days after ligation of the vessels. In addition, testicular histology, and testis and sex-accessory tissue weights were measured in 6 control, 6 sham operated and 6 testicular vessel ligated rats 54 days after vessel ligation. The data demonstrate that ligation and division of the testicular blood vessels produce an 80 per cent decrease in testicular blood flow 1 hour after ligation of the vessels. However, 30 days later testis blood flow returns to the control and pre-treatment value. There were no significant changes in testis or sex-accessory tissue weights 54 days after vessel ligation. Histologically, 4 of the surgically operated testes demonstrated necrosis of less than 25 per cent of the seminiferous tubules while 1 testis demonstrated more than 75 per cent necrosis. The rest of the tubules in all 6 testes demonstrated normal spermatogenesis. From this study we conclude that initial testicular vessel ligation produces an immediate decrease in testicular blood flow but with time the collateral vessels are able to compensate and return the testis blood flow to its normal pre-treatment value. These preliminary observations lend support for the concept that initial ligation of the testicular vessels followed by a delayed secondary orchiopexy in patients with a high undescended testis may be a possible alternative to the classical Fowler-Stephens approach

  16. Effect of hyperthermia on blood flow in VX2 tumor transplanted in rabbit

    International Nuclear Information System (INIS)

    Arita, Takeshi

    1994-01-01

    Effect of hyperthermia on blood flow was evaluated using VX 2 rabbit carcinoma in both legs. Microwave energy at 2450 MHz was used to heat tumors for 40 minutes. An outer canula of 18 G Erasta was implanted in the depth of 2 cm in tumor to measure the temperature and to maintain at 43.0degC-44.0degC. The blood flow in tumors was evaluated by color doppler flow imaging and dynamic MRI. Disturbance of blood flow in the depth of surface 0 cm to 2 cm in tumors was showed at 10 minutes starting 43.0degC heating and at almost all sites disappearance of blood flow was showed at 40 minutes using color doppler flow imaging. But the blood flow beyond the depth of 2 cm was not so disturbed at 40 minutes, relatively. After hyperthermia T1WI and T2WI in heated tumor were no difference comparing with those in control tumor, but heated tumor showed no enhancement using dynamic MRI with TURBO-FLASH technique and post-enhanced T1WI. Histologically, there was extensive tumor necrosis and thrombus formation in heated tumor after 3 days and 1 week. Therefore color doppler flow imaging and dynamic MRI were considered to be useful for evaluation of blood flow in tumor after and during hyperthermia. (author)

  17. C-type period-doubling transition in nephron autoregulation

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Mosekilde, Erik; Holstein-Rathlou, Niels-Henrik

    2011-01-01

    The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period-doubling bif......The functional units of the kidney, called nephrons, utilize mechanisms that allow the individual nephron to regulate the incoming blood flow in response to fluctuations in the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscillations, period......-doubling bifurcations, mode-locking and other nonlinear dynamic phenomena in the tubular pressures and flows. Using a simplified nephron model, the paper examines how the regulatory mechanisms react to an external periodic variation in arterial pressure near a region of resonance with one of the internally generated...

  18. Blood flow in exercising muscles by xenon clearance and by microsphere trapping

    International Nuclear Information System (INIS)

    Cerretelli, P.; Marconi, C.; Pendergast, D.; Meyer, M.; Heisler, N.; Piiper, J.

    1984-01-01

    The accuracy of muscle blood flow measurement by the 133 Xe clearance method (Qxe) was assessed against direct venous outflow (Qv) and microsphere trapping flow (Qμ) determinations in isolated perfused dog gastrocnemius both at rest and during graded stimulation [O 2 consumption (Vo 2 ) up to 12 ml x 100 g -1 x min -1 ] and in the gastrocnemius, vastus lateralis, and triceps of intact dogs at rest and while running on a treadmill at varied speeds up to maximum Vo 2 . In 29 measurements performed in 11 isolated muscles, Qμ was in good agreement with Qv at rest and at all stimulation levels (Qμ/Qv = 1.0 r = 0.98). 133 Xe clearance yielded much lower blood flows than the venous outflow and the microsphere trapping methods. In 43 measurements in 11 muscles, the mean Qxe/Qv ratio was 0.57 +/- 0.03 (SE), independent of blood flow. Similarly, in 65 measurements in 2 intact dogs, the mean Qxe/Qμ ratio in all tested muscles was 0.49 +/- 0.02 (SE), independent of blood flow. These results show that the 133 Xe clearance method considerably underestimates blood flow in dog muscles

  19. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  20. Evaluation of hepatic blood flow using 99mTc-GSA in rats with hepatic blood flow manipulation

    International Nuclear Information System (INIS)

    Hiraguchi, Etsuo

    1995-01-01

    Blood clearance and hepatic uptake parameters of 99m Tc-DTPA-galactosyl human serum albumin ( 99m Tc-GSA) were evaluated in two groups of rats, normal liver group and CCl 4 induced chronic liver injury group. In each group, four subgroups were classified as follows: simple laparotomy (LAP), hepatic artery ligation (HAL), portal vein ligation (PVL) and both hepatic artery and portal vein ligation (HAL+PVL). 99m Tc-GSA was intravenously injected (50 μg/100 g B.W.) to rats. Heart and liver were targetted as region of interest and time activity curves (TACs) were obtained. The blood clearance parameters (HH4 and Kd) and the hepatic uptake parameters (LHL4 and Ku) were calculated from these TACs. In normal liver group, the mean HH4 of LAP was significantly different from those of PVL and HAL+PVL. Similarly, the other three parameters (LHL4, Kd and Ku) of LAP were significantly different from those of PVL and HAL+PVL. CCl 4 induced chronic liver injury group showed significant difference on all four parameters in four subgroups. Hepatic tissue blood flow rates (HTBFR) calculated by Laser Doppler flowmeter correlated well with 99m Tc-GSA parameters in both groups. These results suggest that 99m Tc-GSA is useful to estimate hepatic blood flow not only in rats with normal liver, but also in rats with CCl 4 induced chronic liver injury. (author)

  1. FDG metabolism and uptake versus blood flow in women with untreated primary breast cancers

    International Nuclear Information System (INIS)

    Zasadny, Kenneth R.; Tatsumi, Mitsuaki; Wahl, Richard L.

    2003-01-01

    The aim of this study was to determine the relationship between tumor blood flow and glucose utilization in women with untreated primary breast carcinomas. Noninvasive determinations of blood flow and glucose utilization with positron emission tomography (PET) were performed in 101 regions of tumor from nine women with untreated primary breast carcinoma. [ 15 O]H 2 O PET scans of tumor blood flow were compared with fluorine-18 fluoro-2-deoxy-D-glucose (FDG) PET scans of tumor glucose metabolism. Modeling of multiple parameters was undertaken and flow and glucose utilization compared. Mean whole-tumor blood flow was 14.9 ml dl -1 min -1 , but ranged from 7.6 to 29.2 ml dl -1 min -1 . Mean whole-tumor standardized uptake value corrected for lean body mass, SUV-lean (50-60 min), was 2.32±0.19 while mean K i was 1.2 ml dl -1 min -1 for FDG. SUV-lean and blood flow were strongly correlated (r=0.82, P=0.007) as were K 1 for FDG and flow (r=0.84, P=0.004). In these women with untreated breast cancers, FDG uptake (SUV-lean) and tumor blood flow are strongly correlated. The slope of FDG uptake versus blood flow appears higher at low flow rates, suggesting the possible presence of areas of tumor hypoxia. (orig.)

  2. [Microcirculatory blood and lymph flow examination in eyelid skin by laser Doppler flowmetry].

    Science.gov (United States)

    Safonova, T N; Kintyukhina, N P; Sidorov, V V; Gladkova, O V; Reyn, E S

    to study normal blood and lymph microcirculation of the upper and lower eyelids in different age groups. The study included 108 volunteers (216 eyes) aged from 20 to 80 years with no signs of changes in anterior segment structures, who were grouped by age ranges (20-30 years, 31-40 years, 41-50 years, 51-60 years, 61-70 years, and 71-80 years) into 6 groups equal in gender and quantitative composition. In all volunteers, microcirculation of the upper and lower eyelids was examined by laser Doppler flowmetry (LDF) ('LASMA MC-1' peripheral blood and lymph flow analyzer and 'LASMA MC' laser diagnostic complex, LASMA LLC). The average perfusion changes in blood and lymph flow as well as blood and lymph flow oscillations were analyzed. Blood and lymph flow in the microvasculature of the upper and lower eyelids is variable and depends on neither the age, nor gender of the test subject. On LDF-gram, every increase in amplitude of blood flow corresponds to a decrease in that of lymph flow. The non-invasive method of LDF expands our diagnostic capabilities as it enables assessment of not only blood, but also lymph flow. The data obtained can serve as a starting point for exploring microcirculation in different age groups in the presence of different pathological processes.

  3. Adrenergic influence on gastric mucosal blood flow in gastric fistula dogs

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Gottrup, F

    1984-01-01

    micrograms/kg/min) induced an increase in mucosal blood flow and a similar increase in acid secretion. If the dopamine infusion was preceded by alpha-receptor blockade, a pronounced increase in mucosal blood flow was observed without a similar increase in acid secretion. beta-adrenergic stimulation...

  4. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing

    Directory of Open Access Journals (Sweden)

    Veronica Betancur

    2017-12-01

    Full Text Available Lateral flow devices are versatile and serve a wide variety of purposes, including medical, agricultural, environmental, and military applications. Yet, the most promising opportunities of these devices for diagnosis might reside in point-of-care (POC applications. Disposable paper-based lateral flow strips have been of particular interest, because they utilize low-cost materials and do not require expensive fabrication instruments. However, there are constraints on tuning flow rates and immunoassays functionalization in papers, as well as technical challenges in sensors’ integration and concentration units for low-abundant molecular detection. In the present work, we demonstrated an integrated lateral flow device that applied the capillary forces with functionalized polymer-based microfluidics as a strategy to realize a portable, simplified, and self-powered lateral flow device (LFD. The polydimethylsiloxane (PDMS surface was rendered hydrophilic via functionalization with different concentrations of Pluronic F127. Controlled flow is a key variable for immunoassay-based applications for providing enough time for protein binding to antibodies. The flow rate of the integrated LFD was regulated by the combination of multiple factors, including Pluronic F127 functionalized surface properties and surface treatments of microchannels, resistance of the integrated flow resistor, the dimensions of the microstructures and the spacing between them in the capillary pump, the contact angles, and viscosity of the fluids. Various plasma flow rates were regulated and achieved in the whole device. The LFD combined the ability to separate high quality plasma from human whole blood by using a highly asymmetric plasma separation membrane, and created controlled and steady fluid flow using capillary forces produced by the interfacial tensions. Biomarker immunoglobulin G (IgG detection from plasma was demonstrated with a graphene nanoelectronic sensor integrated

  5. Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Neto Gabriel R.

    2014-07-01

    Full Text Available Strength training combined with blood flow restriction (BFR have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years were randomized into two groups: without Blood Flow Restriction (NFR, n = 6 and With Blood Flow Restriction (WFR, n = 6 that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups.

  6. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    Science.gov (United States)

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  8. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-03-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics.

  9. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    International Nuclear Information System (INIS)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-01-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics

  10. The effect of resting blood flow occlusion on exercise tolerance and W'.

    Science.gov (United States)

    Broxterman, Ryan M; Craig, Jesse C; Ade, Carl J; Wilcox, Samuel L; Barstow, Thomas J

    2015-09-15

    It has previously been postulated that the anaerobic work capacity (W') may be utilized during resting blood flow occlusion in the absence of mechanical work. We tested the hypothesis that W' would not be utilized during an initial range of time following the onset of resting blood flow occlusion, after which W' would be utilized progressively more. Seven men completed blood flow occlusion constant power severe intensity handgrip exercise to task failure following 0, 300, 600, 900, and 1,200 s of resting blood flow occlusion. The work performed above critical power (CP) was not significantly different between the 0-, 300-, and 600-s conditions and was not significantly different from the total W' available. Significantly less work was performed above CP during the 1,200-s condition than the 900-s condition (P W' available (P W' during resting blood flow occlusion did not begin until 751 ± 118 s, after which time W' was progressively utilized. The current findings demonstrate that W' is not utilized during the initial ∼751 s of resting blood flow occlusion, but is progressively utilized thereafter, despite no mechanical work being performed. Thus, the utilization of W' is not exclusive to exercise, and a constant amount of work that can be performed above CP is not the determining mechanism of W'. Copyright © 2015 the American Physiological Society.

  11. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin......-converting enzyme (ACE) blockade] or without (control) administration of the ACE inhibitor enalapril (10 mg iv). Splanchnic blood flow was estimated by indocyanine green, and splanchnic substrate exchange was determined by the arteriohepatic venous difference. Exercise led to an approximately 20-fold increase (P ...-blockade group vs. the control group, hormones, metabolites, VO(2), and RER followed the same pattern of changes in ACE-blockade and control groups during exercise. Splanchnic blood flow (at rest: 1.67 +/- 0.12, ACE blockade; 1.59 +/- 0.18 l/min, control) decreased during moderate exercise (0.78 +/- 0.07, ACE...

  12. Protection of spermatogenisis during X-irradiation and chemotherapy by temporary blood flow interruption

    International Nuclear Information System (INIS)

    Vliet, J. van.

    1989-01-01

    In an animal model the possibility was tested to interrupt the blood flow to the testis temporarily and repeatedly. Subsequently, it was investigated whether blood flow interuption during irradiation or during cytostatic drug administration could limit the damage induced to the spermatogonial stem cells. The effect of repeatedly blood flow interruptions on spermatogenesis was evaluated. (author). 192 refs.; 15 figs.; 11 tabs

  13. Modelling of the Blood Coagulation Cascade in an In Vitro Flow System

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Sørensen, Mads Peter; Efendiev, Messoud A.

    2010-01-01

    We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking...... and flow equations, which guarantee non negative concentrations at all times. The criteria is applied to the model of the blood coagulation cascade....

  14. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.

    Science.gov (United States)

    Chaturvedi, Akhil; Gorthi, Sai Siva

    2017-02-01

    Portable microfluidic diagnostic devices, including flow cytometers, are being developed for point-of-care settings, especially in conjunction with inexpensive imaging devices such as mobile phone cameras. However, two pervasive drawbacks of these have been the lack of automated sample preparation processes and cells settling out of sample suspensions, leading to inaccurate results. We report an automated blood sample preparation unit (ABSPU) to prevent blood samples from settling in a reservoir during loading of samples in flow cytometers. This apparatus automates the preanalytical steps of dilution and staining of blood cells prior to microfluidic loading. It employs an assembly with a miniature vibration motor to drive turbulence in a sample reservoir. To validate performance of this system, we present experimental evidence demonstrating prevention of blood cell settling, cell integrity, and staining of cells prior to flow cytometric analysis. This setup is further integrated with a microfluidic imaging flow cytometer to investigate cell count variability. With no need for prior sample preparation, a drop of whole blood can be directly introduced to the setup without premixing with buffers manually. Our results show that integration of this assembly with microfluidic analysis provides a competent automation tool for low-cost point-of-care blood-based diagnostics.

  15. Predicting bifurcation angle effect on blood flow in the microvasculature.

    Science.gov (United States)

    Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin

    2016-11-01

    Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?

    Science.gov (United States)

    Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek

    2017-09-01

    Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.

  17. Effects of cord compression on fetal blood flow distribution and O2 delivery

    International Nuclear Information System (INIS)

    Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.

    1987-01-01

    The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O 2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O 2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O 2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O 2 delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O 2 delivery

  18. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    International Nuclear Information System (INIS)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A.

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: 1) increased negative intrathoracic pressure swings (-25±1 cmH 2 O) induced by an inspiratory resistance; 2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and 3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au)

  19. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A. (Dept. of Respiratory Medicine, Westmead Hospital, Westmead, NSW (Australia))

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: (1) increased negative intrathoracic pressure swings (-25[+-]1 cmH[sub 2]O) induced by an inspiratory resistance; (2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and (3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au).

  20. Studies on age-related changes, regional and bilateral differences in the skin blood flow

    International Nuclear Information System (INIS)

    Park, Myung-Wook

    1992-01-01

    Xenon-133 clearance method was used to determine skin blood flow at different sites. The correlation between skin blood flow in the deltoid region and age was examined. In addition, regional and bilateral differences in skin blood flow were examined. The subjects were 60 men. They ranged in age from 23 to 72 years with a mean of 53.3±10.95. Fifty μCi of xenon-133 dissolved in 0.1 ml of sterile distilled water was injected into the skin area. The clearance curve over the skin was recorded for 30 minutes by a scintillation counter. Skin blood flow in the deltoid region decreased significantly with aging. Dorsal skin blood flow in the hands and feet were significantly lower than the deltoid region. Regarding skin blood flow in the deltoid regions, there was significantly bilateral difference. In the hands and feet, the dorsal skin was bilaterally nearly equal. In view of regional hemodynamics in the skin, the conditions for random-pattern skin flap and wound healing were unfavorable in the elderly as compared with younger persons. Skin blood flow decreased gradually from the upper part of the body to the lower part of the body. In skin blood flow in the dorsal skin of the hands and feet, no bilateral difference was observed. (N.K.)

  1. Renal cortical and medullary blood flow responses to altered NO availability in humans.

    Science.gov (United States)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L; Braad, Poul Erik; Petersen, Henrik; Høilund-Carlsen, Poul Flemming; Bie, Peter

    2010-12-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were performed at baseline, during constant intravenous infusion of nitric oxide (NO) donor glyceryl nitrate and after intravenous injection of NO synthase inhibitor N(ω)-monomethyl-L-arginine (L-NMMA). Using the CT image, the kidney pole areas were delineated as volumes of interest (VOI). In the data analysis, tissue layers with a thickness of one voxel were eliminated stepwise from the external surface of the VOI (voxel peeling), and the blood flow subsequently was determined in each new, reduced VOI. Blood flow in the shrinking VOIs decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ± 0.17 ml·g tissue(-1)·min(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ± 0.18 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans.

  2. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cerebral blood flow in migraine and cortical spreading depression

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  4. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    Science.gov (United States)

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  5. Effects of local single and fractionated X-ray doses on rat bone marrow blood flow and red blood cell volume

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hopewell, J.W.

    1985-01-01

    Time and dose dependent changes in blood flow and red blood cell volume were studied in the locally irradiated bone marrow of the rat femur after single and fractionated doses of X-rays. With the single dose of 10 Gy the bone marrow blood flow although initially reduced returned to the control levels by seven months after irradiation. With doses >=15 Gy the blood flow was still significantly reduced at seven months. The total dose levels predicted by the nominal standard dose equation for treatments in three, six or nine fractions produced approximately the same degree of reduction in the bone marrow blood flow seven months after the irradiation. However, the fall in the red blood cell volume was from 23 to 37% greater in the three fractions groups compared with that in the nine fractions groups. Using the red blood cell volume as a parameter the nominal standard dose formula underestimated the severity of radiation damage in rat bone marrow at seven months for irradiation with small numbers of large dose fractions. (orig.) [de

  6. Blood flow distribution with adrenergic and histaminergic antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-03-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects.

  7. Blood flow distribution with adrenergic and histaminergic antagonists

    International Nuclear Information System (INIS)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-01-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects

  8. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  9. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only inc...... the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation....

  10. Hydrogen clearance: Assessment of technique for measurement of skin-flap blood flow in pigs

    International Nuclear Information System (INIS)

    Thomson, J.G.; Kerrigan, C.L.

    1991-01-01

    The hydrogen clearance technique has been used for many years by investigators to determine brain blood flow and has been partially validated in this setting using other methods of blood flow measurement. The method has been modified to allow blood flow measurements in skin, but the accuracy of H2 clearance for measuring skin blood flow has not been determined. Multiple blood flow measurements were performed using H2 clearance and radioactive microspheres on skin flaps and control skin in pigs. On 12 pigs, a total of 117 flap and 42 control skin measurements were available for analysis. There was no significant difference between the two techniques in measuring mean control skin blood flow. In skin flaps, H2 clearance was significantly correlated to microsphere-measured blood flow, but it consistently gave an overestimate. Sources of error may include injury to the tissues by insertion of electrodes, consumption of H2 by the electrodes, or diffusion of H2 from the relatively ischemic flap to its well-vascularized bed. Further studies are necessary to determine the cause of this error and to measure the technique's accuracy in skeletal muscle and other flaps

  11. Relationship Between Blood Flow and Performance Recovery: A Randomized, Placebo-Controlled Study.

    Science.gov (United States)

    Borne, Rachel; Hausswirth, Christophe; Bieuzen, François

    2017-02-01

    To investigate the effect of different limb blood-flow levels on cycling-performance recovery, blood lactate concentration, and heart rate. Thirty-three high-intensity intermittent-trained athletes completed two 30-s Wingate anaerobic test sessions, 3 × 30-s (WAnT 1-3) and 1 × 30-s (WAnT 4), on a cycling ergometer. WAnT 1-3 and WAnT 4 were separated by a randomly assigned 24-min recovery intervention selected from among blood-flow restriction, passive rest, placebo stimulation, or neuromuscular electrical-stimulation-induced blood flow. Calf arterial inflow was measured by venous occlusion plethysmography at regular intervals throughout the recovery period. Performance was measured in terms of peak and mean power output during WAnT 1 and WAnT 4. After the recovery interventions, a large (r = .68 [90% CL .42; .83]) and very large (r = .72 (90% CL .49; .86]) positive correlation were observed between the change in calf arterial inflow and the change in mean and peak power output, respectively. Calf arterial inflow was significantly higher during the neuromuscular-electrical-stimulation recovery intervention than with the blood-flow-restriction, passive-rest, and placebo-stimulation interventions (P .05). No recovery effect was linked to heart rate or blood lactate concentration levels. For the first time, these data support the existence of a positive correlation between an increase in blood flow and performance recovery between bouts of high-intensity exercise. As a practical consideration, this effect can be obtained by using neuromuscular electrical stimulation-induced blood flow since this passive, simple strategy could be easily applied during short-term recovery.

  12. Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J

    1990-01-01

    The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY-like immunoreac......The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......+. In contrast, intracoronary NPY (0.01-10 micrograms) induced a considerable degree of vasoconstriction; the reduction of blood flow rate was dose related, with a maximum reduction to 52% of control values. The effect of intracoronary NPY (1 microgram) on maximally relaxed arterioles elicited by 30 s...... of ischemia was studied in separate experiments during reactive hyperemia. NPY induced a decrease in maximum blood flow during reactive hyperemia (166.6 vs. 214.6% of preocclusive blood flow rate, mean values; P = 0.05), an increase in the cumulative excess blood flow (61.0 vs. 35.3 ml/100 g; P = 0...

  13. Modeling of the blood rheology in steady-state shear flows

    International Nuclear Information System (INIS)

    Apostolidis, Alex J.; Beris, Antony N.

    2014-01-01

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling

  14. Architecture of the rat nephron-arterial network

    DEFF Research Database (Denmark)

    Marsh, Donald J; Postnov, Dmitry D; Rowland, Douglas

    2017-01-01

    Among solid organs the kidney's vascular network stands out because each nephron has 2 distinct capillary structures in series, and because tubuloglomerular feedback (TGF), one of the mechanisms responsible for blood flow autoregulation, is specific to renal tubules. TGF and the myogenic mechanis...

  15. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS

    NARCIS (Netherlands)

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA).

  16. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    International Nuclear Information System (INIS)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-01-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  17. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Hidenori, E-mail: hnakagawa-tdt@umin.ac.jp; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  18. Renal cortical and medullary blood flow responses to altered NO availability in humans

    DEFF Research Database (Denmark)

    Damkjær, Mads; Vafaee, Manoucher; Møller, Michael L

    2010-01-01

    The objective of this study was to quantify regional renal blood flow in humans. In nine young volunteers on a controlled diet, the lower abdomen was CT-scanned, and regional renal blood flow was determined by positron emission tomography (PET) scanning using H(2)(15)O as tracer. Measurements were......-NMMA injection to 1.57 ± 0.17 ml·g tissue(-1)·min(-1) (P blood flow was 4.67 ± 0.31 ml·g tissue(-1)·min(-1) during control, unchanged by glyceryl nitrate, and decreased after L-NMMA [3.48 ± 0.23 ml·(g·min)(-1), P renal medullary region in which...... the measured blood flow is 1) low, 2) independent of reduction in the VOI, and 3) reactive to changes in systemic NO supply. The technique seems to provide indices of renal medullary blood flow in humans....

  19. Evaluation of Renal Blood Flow and Oxygenation in CKD Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Khatir, Dinah S; Pedersen, Michael; Jespersen, Bente; Buus, Niels H

    2015-09-01

    Animal studies suggest that progression of chronic kidney disease (CKD) is related to renal hypoxia. With renal blood supply determining oxygen delivery and sodium absorption being the main contributor to oxygen consumption, we describe the relationship between renal oxygenation, renal artery blood flow, and sodium absorption in patients with CKD and healthy controls. Cross-sectional study. 62 stable patients with CKD stages 3 to 4 (mean age, 61±13 [SD] years) and 24 age- and sex-matched controls. CKD versus control status. Renal artery blood flow, tissue oxygenation (relative changes in deoxyhemoglobin concentration of the renal medulla [MR2*] and cortex [CR2*]), and sodium absorption. Renal artery blood flow was determined by phase-contrast magnetic resonance imaging (MRI); MR2* and CR2* were determined by blood oxygen level-dependent MRI. Ultrafiltered and reabsorbed sodium were determined from measured glomerular filtration rate (mGFR) and 24-hour urine collections. mGFR in patients was 37% that of controls (36±15 vs 97±23 mL/min/1.73 m(2); P renal artery blood flow was 72% that of controls (319 vs 443 mL/min; P renal artery blood flow or sodium absorption. Increasing arterial blood oxygen tension by breathing 100% oxygen had very small effects on CR2*, but reduced MR2* in both groups. Only renal artery blood flow was determined and thus regional perfusion could not be related to CR2* or MR2*. In CKD, reductions of mGFR and reabsorbed sodium are more than double that of renal artery blood flow, whereas cortical and medullary oxygenation are within the range of healthy persons. Reduction in glomerular filtration fraction may prevent renal hypoxia in CKD. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Cerebral blood flow and oximetry response to blood transfusion in relation to chronological age in preterm infants.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-06-01

    Preterm infants frequently receive blood transfusion (BT) and the aim of this study was to measure the effect of BT on cerebral blood flow and oxygenation in preterm infants in relation to chronological age. Preterm infants undergoing intensive care recruited to three chronological age groups: 1 to 7 (Group 1; n=20), 8 to 28 (Group 2; n=21) & ≥29days of life (Group 3; n=18). Pre and post-BT anterior cerebral artery (ACA) time averaged mean velocity (TAMV) and superior vena cava (SVC) flow were measured. Cerebral Tissue Haemoglobin Index (cTHI) and Oxygenation Index (cTOI) were measured from 15-20min before to 15-20min post-BT using NIRS. Vital parameters and blood pressure were measured continuously. Mean BP increased significantly, and there was no significant change in vital parameters following BT. Pre-BT ACA TAMV was higher in Group 2 and 3 compared to Group 1 (pBlood transfusion increased cTOI and cTHI and decreased ACA TAMV in all groups. PDA had no impact on the baseline cerebral oximetry and blood flow as well as changes following blood transfusion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    Science.gov (United States)

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao

    2017-08-01

    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    Science.gov (United States)

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if ppreclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that blood vessels changes are most prominent in severe preeclampsia. Cerebral blood flow meassurements can be used as a clinical test for the prediction of eclampsia. Magnesium-sulfate (MgSO4) has a signifficant role in prophylaxis and treatment of eclampsia, and, therefore, positive influence on reduction of cerebral ishemic lesions can be expected. We can conclude that changes of the cerebral blood flow can be evaluated by evaluating blood flow velocities in the medial cerebral artery. Velocities tend

  3. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    Science.gov (United States)

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  4. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    Science.gov (United States)

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  5. Regional blood flow in the domestic fowl immediately following chronic acceleration

    International Nuclear Information System (INIS)

    Weidner, W.J.; Hoffman, L.F.; Clark, S.D.

    1982-01-01

    In order to examine the effects of chronic low G acceleration on blood flow distribution and cardiac output, chickens (N.10) were centrifuged at +2Gz for 30-61 d. Controls (N.12) were not centrifuged. The animals were anesthetized with sodium pentobarbital after removal from the centrifuge and surgically prepared in order to measure cardiac output and regional blood flows by the reference sample method with 85 Sr labeled microspheres (15 +/- 5 mum diam.). Both brachial arteries were cannulated to withdraw timed, paired blood samples at a known rate. The chest was opened and a cannula inserted into the left ventricle for administration of microspheres. Tissue samples were taken after completion of experimental procedures and their radioactivity was determined. The cardiac outputs in the two groups were not significantly different. Regional blood flows to the kidney, eyes, and skeletal muscle were significantly increased in the animals subjected to chronic +2Gz. While the mechanism by which these increases in blood flow occurred is not known, results indicate that chronic exposure to hyperdynamic gravitational fields can alter circulatory dynamics. We conclude that the cardiovascular system is directly involved in the process of adaptation to chronic positive acceleration

  6. Local regulation of blood flow evaluated simultaneously by 133-xenon washout and laser Doppler flowmetry

    International Nuclear Information System (INIS)

    Engelhart, M.; Petersen, L.J.; Kristensen, J.K.

    1988-01-01

    The laser Doppler flowmeter and the 133-Xenon washout techniques of measuring cutaneous blood flow were compared for measuring the vasoconstrictor response of the hand during orthostatic maneuvres. Important discrepancies were detected for the two methods. When the hand was lowered by 40 cm a 40% decrease in blood flow was detected by the 133-Xenon method, while a 60% decrease was seen by the laser Doppler technique. Lowering the hand by 50 cm resulted in no further blood flow decrease when using the 133-Xenon method, but an 80% blood flow decrease was recorded with the laser Doppler method. A marked decrease in blood flow was recorded by the laser Doppler technique in hands that were sympathectomized or a hand that was subjected to a nerve blockade, strategies which should eliminate the orthostatic vasoconstrictor response of superficial cutaneous vessels. The 133-Xenon technique did not detect any blood flow changes in hands without sympathetic tone. We found the laser Doppler flowmetry technique unsatisfactory for measurement of blood flow changes that occur in nutritional vessels as this method measures total skin blood flow including non-capillary vessels

  7. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    Science.gov (United States)

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  8. Skeletal blood flow measured with 18F in patients with osteomalacia and hyperparathyroidism

    International Nuclear Information System (INIS)

    Tellez, M.; Wootton, R.; Reeve, J.

    1983-01-01

    Blood flow to bone was measured using the 18 F clearance method described by Wootton et al. (1976) in osteomalacia (nine cases) and primary hyperparathyroidism (eight cases). Bone blood flow was elevated above normal in the osteomalacia group was normal in the hyperparathyroid group (range 3.6%-6.8% blood volume/min). It is suggested that bone blood flow is linked with the osteoblastic response of bone, and remains normal in cases of hyperparathyroidism when no clinical signs of bone involvement are present. (orig.)

  9. Influence of cold water immersion on limb and cutaneous blood flow at rest.

    Science.gov (United States)

    Gregson, Warren; Black, Mark A; Jones, Helen; Milson, Jordon; Morton, James; Dawson, Brian; Atkinson, Greg; Green, Daniel J

    2011-06-01

    Cold water immersion reduces exercise-induced muscle damage. Benefits may partly arise from a decline in limb blood flow; however, no study has comprehensively investigated the influence of different degrees of cooling undertaken via cold water immersion on limb blood flow responses. To determine the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow. Controlled laboratory study. Nine men were placed in a semireclined position and lowered into 8°C or 22°C water to the iliac crest for two 5-minute periods interspersed with 2 minutes of nonimmersion. Rectal and thigh skin temperature, deep and superficial muscle temperature, heart rate, mean arterial pressure, thigh cutaneous blood velocity (laser Doppler), and superficial femoral artery blood flow (duplex ultrasound) were measured during immersion and for 30 minutes after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). Reductions in rectal temperature (8°C, 0.2° ± 0.1°C; 22°C, 0.1° ± 0.1°C) and thigh skin temperature (8°C, 6.2° ± 0.5°C; 22°C, 3.2° ± 0.2°C) were greater in 8°C water than in 22°C (P water compared with 22°C (P = .01). These data suggest that immersion at both temperatures resulted in similar whole limb blood flow but, paradoxically, more blood was distributed to the skin in the colder water. This suggests that colder temperatures may be associated with reduced muscle blood flow, which could provide an explanation for the benefits of cold water immersion in alleviating exercise-induced muscle damage in sports and athletic contexts. Colder water temperatures may be more effective in the treatment of exercise-induced muscle damage and injury rehabilitation because of greater reductions in muscle blood flow.

  10. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    Science.gov (United States)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.

  11. Feeding alters blood flow patterns in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Findsen, Anders; Crossley, Dane A; Wang, Tobias

    2018-01-01

    The crocodilian cardiovascular design with a four-chambered heart and a left aorta that emerge from the right ventricle allows blood to be shunted away from the lungs, a right-to-left (R-L) shunt. The adaptive significance of this R-L shunt remains both poorly understood and controversial with particular debate on its putative role during digestion. Here we measure blood flow patterns in the right aorta (RAo), left aorta (LAo) and the coeliac artery (CoA) of undisturbed American alligators (Alligator mississippiensis) during fasting and throughout most of the digestive period. Digestion doubled blood flow in the RAo (10.1±0.9 to 20.7±1.5mlmin -1 kg -1 ), whereas LAo increased approximately 3-fold (3.8±0.6 to 12.2±2.1mlmin -1 kg -1 ). Blood flow in the CoA increased more than four-fold during digestion (3.0±0.6 to 13.3±1.6mlmin -1 kg -1 ). The rise in blood flows was achieved by a doubling of heart rate (18.5±3.3 to 37.8±3.6mlmin -1 kg -1 ). Maximal flows measured in all arteries and heart rate occurred in the first hour of the postprandial period and continued for the next 7h. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon.

    Science.gov (United States)

    Soylu, Korhan; Gulel, Okan; Yucel, Huriye; Yuksel, Serkan; Aksan, Gokhan; Soylu, Ayşegül İdil; Demircan, Sabri; Yılmaz, Ozcan; Sahin, Mahmut

    2014-09-01

    The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Patients' demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow.

  13. In silico particle margination in blood flow

    OpenAIRE

    Müller, Kathrin

    2015-01-01

    A profound knowledge of margination, the migration of blood components to the vessel wall in blood flow, is required in order to understand the genesis of various diseases, as e.g., cardiovascular diseases or bleeding disorders. Margination of particles is a pre-condition for potential adhesion. Adhesion to the vessel wall is required for platelets, the protein von Willebrand factor (VWF), but also for drug and imaging agent carriers in order to perform their particular tasks. In the haemosta...

  14. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non......Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting......-linearities in some of the compliance-pressure and resistance-pressure relationships. Futhermore, an acurate and physiologically based submodel, describing the dynamics of how gravity effects the blood distribution during suspine changes, is included. To justify the fidelity of our mathematical model and control...

  15. A numerical analysis on the curved bileaflet Mechanical Heart Valve (MHV) : leaflet motion and blood flow in an elastic blood vessel

    International Nuclear Information System (INIS)

    Bang, Jin Seok; Kim, Chang Nyung; Choi, Choeng Ryul

    2005-01-01

    In blood flow passing through the Mechanical Heart Valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved

  16. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  17. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  18. Regional myocardial blood flow distribution during intracoronary infusion of parathyroid hormone

    International Nuclear Information System (INIS)

    Crass, M.F. III; Lust, R.M.

    1986-01-01

    Although low doses of the biologically-active fragment of parathyroid hormone PTH-(1-34), have been shown to produce potent dilation of the coronary circulation specific regional and transmural (endo/epi) myocardial blood flow (MBF) responses to the hormone have not been described. Anesthetized open-chest mongrel dogs were instrumented to quantitate coronary blood flow and other cardiodynamic parameters. PTH-(1-34) was infused into the left circumflex artery (.008 nmol kg -1 min -1 ). Using the reference withdrawal method, radionuclide-labeled microspheres were injected before (basal flow), during (8 min after new steady-state flow), and after (restoration of basal flow) a 20 min infusion of PTH-(1-34). MFB increased from 76 +- 1.9 to 152 +- 3.5 ml min -1 100 g -1 (P < .001) during PTH-(1-34) infusion. No differences in endo/epi flow ratio or regional coronary blood flow within the left ventricle were detected. Thus, in anesthetized dogs, the increase in MBF observed secondary to the PTH-(1-34)-induced decrease in coronary resistance appeared to be uniform transmurally and regionally, and is probably not the result of a shunting or steal phenomenon

  19. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  20. Chronic intestinal ischemia and splanchnic blood-flow

    DEFF Research Database (Denmark)

    Zacho, Helle Damgaard; Henriksen, Jens Henrik; Abrahamsen, Jan

    2013-01-01

    AIM: To determine the splanchnic blood flow and oxygen uptake in healthy-subjects and patients and to relate the findings to body-composition. METHODS: The total splanchnic blood flow (SBF) and oxygen uptake (SO₂U) were measured in 20 healthy volunteers (10 women) and 29 patients with suspected...... arteries was performed during the same investigation. A whole-body dual-energy x-ray absorptiometry scan was performed in healthy volunteers to determine body composition. RESULTS: Angiography revealed no atherosclerotic lesions in the intestinal arteries. The mean baseline SBF was 1087 mL/min (731...... chronic intestinal ischemia (15 women), age 40-85 years, prior to and after a standard meal. The method is based on the Fick principle using the continuous infusion of an indicator (99mTechnetium-labelled mebrofenin) and catheterization of an artery and the hepatic vein. An angiography of the intestinal...

  1. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  2. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    Science.gov (United States)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  3. In-vivo brain blood flow imaging based on laser speckle contrast imaging and synchrotron radiation microangiography

    International Nuclear Information System (INIS)

    Miao, Peng; Feng, Shihan; Zhang, Qi; Lin, Xiaojie; Xie, Bohua; Liu, Chenwei; Yang, Guo-Yuan

    2014-01-01

    Abstract In-vivo imaging of blood flow in the cortex and sub-cortex is still a challenge in biological and pathological studies of cerebral vascular diseases. Laser speckle contrast imaging (LSCI) only provides cortex blood flow information. Traditional synchrotron radiation micro-angiography (SRA) provides sub-cortical vasculature information with high resolution. In this study, a bolus front-tracking method was developed to extract blood flow information based on SRA. Combining LSCI and SRA, arterial blood flow in the ipsilateral cortex and sub-cortex was monitored after experimental intracerebral hemorrhage of mice. At 72 h after injury, a significant blood flow increase was observed in the lenticulostriate artery along with blood flow decrease in cortical branches of the middle cerebral artery. This combined strategy provides a new approach for the investigation of brain vasculature and blood flow changes in preclinical studies. (paper)

  4. Study of intracardiac blood flow by MRI using gradient echo method

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato; Morita, Ruriko; Kusuoka, Hideo; Fujii, Kenshi; Kitabatake, Akira; Takizawa, Osamu.

    1988-06-01

    In order to investigate the possibility of MR imaging for the evaluation of intracardiac blood flow especially valvular regurgitant flow, we obtained MR images using a 1.5 tesla superconductive magnet system (Siemens Medical) in 3 healthy volunteers, 3 patients with hypertrophic cardiomyopathy and 8 patients with valvular heart disease. Rapid FLASH (Fast Low-Angle Shot) imaging technique was applied to collect 11 time frames per section throughout one cardiac cycle in axial, coronal, saggital and oblique sections. Then these sequential frames were displayed in a cine mode on CRT. (1) Intracardiac and intravascular blood flow were visualized with high signal intensity in each frame and cardiac structures such as atria, ventricles, and aorta were also identified in all subjects. (2) Ventricular ejection flow was easily visualized in coronal section as the signal loss in the ascending aorta. Ventricularfilling was visualized in axial and oblique sections as the high signal influx of atrial blood into the ventricle. (3) In 3 patients with aortic regurgitation, regurgitant flow was detected during diastole as the teardrop shaped signal loss originating from aortic valve cusps. (4) Both mitral and tricuspid regurgitant flow were detected during systole as the signal loss in atrium in axial and oblique sections in 2 patients with MR and 2 patients with TR. (5) Pulmonary regurgitant flow was observed in oblique section along the long axis of right ventricular outflow tract. These results indicate that intracardiac forward and regurgitant flow could be identified with rapid FLASH imaging in normal subjects and in patients with valvular heart diseases, and cine mode MR imaging is a useful tool for the evaluation of intracardiac blood flow.

  5. Mechanisms of recovery from aphasia: evidence from serial xenon 133 cerebral blood flow studies

    International Nuclear Information System (INIS)

    Knopman, D.S.; Rubens, A.B.; Selnes, O.A.; Klassen, A.C.; Meyer, M.W.

    1984-01-01

    In 21 patients who suffered aphasia resulting from left hemisphere ischemic infarction, the xenon 133 inhalation cerebral blood flow technique was used to measure cerebral blood flow within 3 months and 5 to 12 months after stroke. In addition to baseline measurements, cerebral blood flow measurements were also carried out while the patients were performing purposeful listening. In patients with incomplete recovery of comprehension and left posterior temporal-inferior parietal lesions, greater cerebral blood flow occurred with listening in the right inferior frontal region in the late studies than in the early studies. In patients with nearly complete recovery of comprehension and without left posterior temporal-inferior parietal lesions, early listening studies showed diffuse right hemisphere increases in cerebral blood flow. Later listening studies in this latter patient group showed greater cerebral blood flow in the left posterior temporal-inferior parietal region. The study provides evidence for participation of the right hemisphere in language comprehension in recovering aphasics, and for later return of function in left hemisphere regions that may have been functionally impaired early during recovery

  6. Effect of tropicamide on ocular blood flow in the rabbit

    International Nuclear Information System (INIS)

    Delgado, D.; Michel, P.; Jaanus, S.D.

    1982-01-01

    Intracardiac injection of 15 microspheres labeled with 85 Sr (strontium) and 141 Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed

  7. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.

    Science.gov (United States)

    Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A

    2017-06-06

    Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.

  8. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Green, Sara Marie Ehrenreich

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...

  9. [Prognostic Doppler ultrasound examination of fetal arteries blood flow].

    Science.gov (United States)

    Sieroszewski, Piotr; Sabatowska, Małgorzata; Karowicz-Bilińska, Agata; Suzin, Jacek

    2002-08-01

    Early detection of fetal risk is one of the main issues in today obstetrics. Ultrasound diagnostics plays a significant role, as the introduction of Doppler imaging method in the evaluation of blood flow has enabled non-invasive assessment of uteroplacental circulation. Therefore, we have analysed foetal three arteries: umbilical artery, middle cerebral artery and renal artery after determining the normal range for the analysed parameters. 1. Comparison of the obtained blood flow indices (S/D, RI, PI) in the umbilical artery, middle cerebral artery and renal artery of foetuses from normal and complicated full-term pregnancies. 2. Determination of indices: umbilical-cerebral and renal-cerebral in normal and pathological pregnancy. 3. Evaluation of feasibility of the analysed flow parameters for the detection of intrauterine foetal hypoxia. We have examined 151 women, who were divided into control group--101 pregnant women with normal pregnancy and study group--50 pregnant women with complicated pregnancy. All pregnant women underwent ultrasound examination using the Hitachi EUB 515 C (Japan) scanner with 3.5 MHz convex probe, connected to the colour pulsed Doppler. The study consisted of the biometric measurements and evaluation of the spectrum of blood flow in the umbilical artery, middle cerebral artery and renal artery. We have determined following indices: a) systolic-diastolic ratio S/D, resistance index RI, pulsatility index PI, b) umbilical-cerebral ratio P/M. (PI ua/PI mca), renal--cerebral ratio N/M (PI ra/PI mca). Statistically significant difference was found between the study and control groups for all the flow indices assessed (S/D, RI, PI) for the middle cerebral artery, for the indices P/M and N/M. (p < 0.001) and pulsatility index in the renal artery (p < 0.01). Similar, although slightly smaller difference (p < 0.05) was seen for the values of flow parameters in the umbilical artery. 1) Evaluation of blood flow in the middle cerebral artery, and in

  10. Electromechanical Model of Blood Flow in Vessels

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2008-01-01

    Full Text Available The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical circuit has been designed

  11. Blood pressure and mesenteric blood flow in the rat during infusion of biogenic amines. Influence of a supralethal irradiation

    International Nuclear Information System (INIS)

    Timmermans, R.; Gerber, G.B.

    1979-01-01

    The action of biogenic amines (noradrenaline, dopamine), infused at different concentration into the aorta of the urethane anesthetized control and irradiated rats for 2 min., was followed on the basis of systemic blood pressure and mesenteric blood flow. The mesenteric blood flow was measured by means of an electromagnetic flow meter. The changes observed i.e. after dopamine an increase in pressure and flow, after noradrenaline an increase in pressure and a decrease in flow with an increase after infusion had been stopped, correspond to those obtained in larger animals. In many, but not in all cases, the response is proportional to the log of the concentration of the amine infused. Irradiation with 2 kR, i.e. a dose which causes the animals to die from the gastrointestinal syndrome after 3 days modified the response to dopamine and noradrenaline. The changes are, for noradrenaline, a greater pressure and a lower flow responses and for dopamine a greater pressure response at low and middle doses [fr

  12. Blood pressure and mesenteric blood flow in the rat during infusion of biogenic amines. Influence of a supralethal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, R; Gerber, G B [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1978-01-01

    The action of biogenic amines (noradrenaline, dopamine), infused at different concentration into the aorta of the urethane anesthetized control and irradiated rats for 2 min., was followed on the basis of systemic blood pressure and mesenteric blood flow. The mesenteric blood flow was measured by means of an electromagnetic flow meter. The changes observed i.e. after dopamine an increase in pressure and flow, after noradrenaline an increase in pressure and a decrease in flow with an increase after infusion had been stopped, correspond to those obtained in larger animals. In many, but not in all cases, the response is proportional to the log of the concentration of the amine infused. Irradiation with 2 kR, i.e. a dose which causes the animals to die from the gastrointestinal syndrome after 3 days, modified the response to dopamine and noradrenaline. The changes are, for noradrenaline, a greater pressure and a lower flow responses and for dopamine a greater pressure response at low and middle doses.

  13. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  14. Cerebral blood flow measurement in cerebrovascular occlusive diseases

    International Nuclear Information System (INIS)

    Yanagihara, T.; Wahner, H.W.

    1984-01-01

    In order to evaluate cerebral blood flow (CBF) patterns among individual patients with increased statistical confidence, CBF measurements were carried out using the 133Xe-inhalation method and external head detectors. F1 values representing gray matter flow from 3 to 6 head detectors were averaged to form 16 different regions for each cerebral hemisphere. Normative values were obtained from 46 healthy volunteers, and data from individual regions were analyzed for absolute blood flow rates (ml/100g/min), for concordance between right and left hemispheres and as percent of mean hemispheric flow. CBF measurements were then carried out among 37 patients with cerebrovascular occlusive diseases, and results were compared with normative values. A high incidence of abnormal flows were detected among symptomatic patients with intracranial arterial stenosis or occlusion and those with extracranial internal carotid artery occlusion. By using the above method for data analysis, it was possible to delineate hypoperfused areas among these patients. Even though the 133Xe-inhalation method has inherent limitations, this is a practical and safe method for measurement of CBF which can provide reliable information useful for management of patients with cerebrovascular occlusive diseases, particularly when the results are presented with statistical confidence

  15. Effect of Body Temperature on the Radionuclide Evaluation of Cerebral Blood Flow

    International Nuclear Information System (INIS)

    Mustafa, S. . E- mail: seham@hsc.edu.kw; Elgazzar, A.H.; Gopinath, S.; Mathew, M.; Khalil, M.

    2006-01-01

    Changes in regional cerebral blood flow (rCBF) may reflect physiological correlates of the disease state. In neuro-imaging studies, some diseases have frequently been reported to be associated with reduced or increased rCBF. In a previous study we had shown evidence of heat induced vasoconstriction of the carotid artery, which is the main vessel supplying blood to the brain. This vasoconstriction may lead to a decrease in cerebral blood flow in hyperthermic patients. Most radionuclide studies used to assess cerebral blood flow are routinely performed without taking into consideration patients' body temperature. In this regard it may be noted that results of radionuclide cerebral perfusion studies may be affected by hyperthermia, which could lead to false positive studies or misinterpretation of results when they are performed on patients suffering from various cerebrovascular diseases. The objective of the present study was to investigate the importance of body temperature and its effect on the results of radionuclide cerebral perfusion studies. Cerebral blood flow was assessed using Tc-99m hexamethylpropyleneamineoxime (Tc-99m HMPAO) imaging. Baseline scintigraphic images of the brain were obtained in 10 rabbits using a gamma camera equipped with a low energy parallel hole and high resolution collimator interfaced with a computer. Repeat brain studies were performed on the same rabbits at 3 and 6 days after raising the body temperature by 2 deg. C and 4 deg. C respectively using the same imaging protocol. The counts per pixel were determined on control and hyperthermia images. The uptake of Tc-99m HMPAO in the brain was found to be significantly reduced following hyperthermia implying reduction in blood flow. This decrease in cerebral perfusion appears to be variable from region to region, being more in the cerebral hemispheres, frontal areas (olfactory lobes) than in the cerebellum. Based on the results, the authors conclude that a rise in body temperature might

  16. PKA, novel PKC isoforms, and ERK is mediating PACAP auto-regulation via PAC1R in human neuroblastoma NB-1 cells

    DEFF Research Database (Denmark)

    Georg, Birgitte; Falktoft, Birgitte; Fahrenkrug, Jan

    2016-01-01

    The neuropeptide PACAP is expressed throughout the central and peripheral nervous system where it modulates diverse physiological functions including neuropeptide gene expression. We here report that in human neuroblastoma NB-1 cells PACAP transiently induces its own expression. Maximal PACAP m...... induction. Experiments using siRNA against EGR1 to lower the expression did however not affect the PACAP auto-regulation indicating that this immediate early gene product is not part of PACAP auto-regulation in NB-1 cells. We here reveal that in NB-1 neuroblastoma cells, PACAP induces its own expression...

  17. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  18. pO2 and regional blood flow in a rabbit model of limb ischemia.

    Science.gov (United States)

    Grinberg, Oleg Y; Hou, Huagang; Grinberg, Stalina A; Moodie, Karen L; Demidenko, Eugene; Friedman, Bruce J; Post, Mark J; Swartz, Harold M

    2004-06-01

    Oxygen tension (pO2) in muscles and regional blood flow were measured in a rabbit model of limb ischemia. pO2 was measured repetitively by EPR oximetry with EMS char in four different muscle groups in the same animals. Blood flow in the same muscles at several time points was measured using microspheres. A linear mixed effects model was developed to analyze the data on pO2 and blood flow. The results suggest that while under normal conditions pO2 in muscles does not depend significantly on blood flow, immediately after arterial occlusion pO2 correlates linearly with blood flow. Within two weeks of occlusion the pO2 is recovered to 45% of baseline. This study demonstrates, for the first time, the applicability of EPR oximetry in animals larger than rodents.

  19. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  20. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.