Egorova, Irina A
2016-01-01
New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...
Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei
International Nuclear Information System (INIS)
The self-consistent relativistic quasiparticle random-phase approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the quasiparticle time blocking approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A=100,106,114,116,120, and 130 and in the chain of isotones with (N=50) 88Sr, 90Zr, 92Mo is performed within this framework. The RQRPA extended by the coupling to collective vibrations generates spectra with a multitude of 2q x phonon (two quasiparticles plus phonon) states providing a noticeable fragmentation of the giant dipole resonance as well as of the soft dipole mode (pygmy resonance) in the nuclei under investigation. The results obtained for the photo absorption cross sections and for the integrated contributions of the low-lying strength to the calculated dipole spectra agree very well with the available experimental data
Relativistic quasiparticle time blocking approximation. Dipole response of open-shell nuclei
Litvinova, E; Tselyaev, V
2008-01-01
The self-consistent Relativistic Quasiparticle Random Phase Approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the Quasiparticle Time Blocking Approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A = 100, 106, 114, 116, 120, and 130 and in the ...
Palade, D. I.; Baran, V.
2016-09-01
We generalize the schematic model based on the Random Phase Approximation (RPA) with separable interaction, to a collection of subspaces of ph excitations which interact with different coupling constants. This ansatz notably lowers the numerical effort involved, by reducing the RPA eigenvalue problem to a finite small dimensional system of equation. We derive the associated dispersion relation and the normalization condition for the newly defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit, giving also access to the nature of the resonance. The theoretical framework is tested investigating the dipolar oscillations in various neutral and singly charged sodium clusters and C 60 fullerene with results in good agreement with full RPA calculations and experimental data. It is proven that the 40 eV resonance present in photoabsorption spectra of C 60 is a localized surface plasmon.
Photoelectron spectroscopy and the dipole approximation
Energy Technology Data Exchange (ETDEWEB)
Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others
1997-04-01
Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.
On Approximability of Block Sorting
Narayanaswamy, N S
2011-01-01
Block Sorting is a well studied problem, motivated by its applications in Optical Character Recognition (OCR), and Computational Biology. Block Sorting has been shown to be NP-Hard, and two separate polynomial time 2-approximation algorithms have been designed for the problem. But questions like whether a better approximation algorithm can be designed, and whether the problem is APX-Hard have been open for quite a while now. In this work we answer the latter question by proving Block Sorting to be Max-SNP-Hard (APX-Hard). The APX-Hardness result is based on a linear reduction of Max-3SAT to Block Sorting. We also provide a new lower bound for the problem via a new parametrized problem k-Block Merging.
M.A. Yurkin; M. Min; A.G. Hoekstra
2008-01-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m = 10 + 10i, 0.1 + i, and 1.6 + 0.01i. These formulations include filtered coupled dipoles (FCD), lattice dispersion relation (LDR) and radiative reactio
M.A. Yurkin; M. Min; A.G. Hoekstra
2010-01-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m = 10+10i, 0.1+i, and 1.6+0.01i. These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative r
Toroidal dipole resonances in the relativistic random phase approximation
Vretenar, D; Ring, P
2002-01-01
The isoscalar toroidal dipole strength distributions in spherical nuclei are calculated in the framework of a fully consistent relativistic random phase approximation, based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. It is suggested that the recently observed "low-lying component of the isoscalar dipole mode" might in fact correspond to the toroidal giant dipole resonance. Although predicted by several theoretical models, the existence of toroidal resonances has not yet been confirmed in experiment. In the present analysis the vortex dynamics of these states is displayed by the corresponding velocity fields.
Envelope induced ionization dynamics beyond the dipole approximation
Simonsen, Aleksander Skjerlie; Førre, Morten; Lindroth, Eva; Selstø, Sølve
2015-01-01
When atoms and molecules are ionized by laser pulses of finite duration and increasingly high intensities, the validity of the much used dipole approximation, in which the spatial dependence and magnetic component of the external field are neglected, eventually breaks down. We report that when going beyond the dipole approximation for the description of atoms exposed to ultraviolet light, the spatial dependence of the pulse shape, the envelope, provides the dominant correction, while the spatial dependence of the carrier may safely be neglected in the general case. We present a first order beyond-dipole correction to the Hamiltonian which accounts exclusively for effects stemming from the carrier-envelope of the pulse. This much simpler form of the correction is further discussed in connection with various descriptions of the light-matter interaction. We demonstrate by ab initio calculations that this approximation, which we will refer to as the envelope approximation, reproduces the full interaction beyond t...
Yurkin, M.A.; Min, M.; Hoekstra, A.G.
2010-01-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m = 10+10i, 0.1+i, and 1.6+0.01i. These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative reaction correction. We compared the number of iterations required for the convergence of the iterative solver (proportional to simulation time) and the accuracy of final results. We showed that the...
Landau-Dykhne approximation for multiphoton dipole-forbidden transitions
International Nuclear Information System (INIS)
A two-level system in a monochromatic laser field is considered in the Landau-Dykhne approximation under the violation of dipole selection rules. An analytic expression is obtained for the rate of transitions. The multiphoton and tunneling limits are found
Fast far-field calculation in the discrete dipole approximation
International Nuclear Information System (INIS)
The discrete dipole approximation is an efficient technique for simulating the field radiated by a particle of any shape. In this approach, the object is viewed as a collection of radiating electric dipoles. The field scattered by the particle is obtained by summing the fields radiated by each dipole. When the particle size is much larger than the wavelength, this technique is time consuming. We propose a Fourier based method which permits a significant reduction of the computation time. - Highlights: • We have dramatically accelerated the computation of scattered far-field in DDA. • We use Fast Fourier Transforms to compute far-field in DDA. • Efficient computation of differential cross-section with DDA
Nanoscale capacitance: A classical charge-dipole approximation
Jun-Qiang Lu; Jonathan Gonzalez; Carlos Sierra; Yang Li
2013-01-01
Modeling nanoscale capacitance presents particular challenge because of dynamic contribution from electrodes, which can usually be neglected in modeling macroscopic capacitance and nanoscale conductance. We present a model to calculate capacitances of nano-gap configurations and define effective capacitances of nanoscale structures. The model is implemented by using a classical atomic charge-dipole approximation and applied to calculate capacitance of a carbon nanotube nano-gap and effective ...
Light scattering by hexagonal columns in the discrete dipole approximation
Flatau, P J
2014-01-01
Scattering by infinite hexagonal ice prisms is calculated using Maxwell's equations in the discrete dipole approximation for size parameters up to x=400. Birefringence is included in the calculations. Applicability of the geometric optics approximation is investigated. Excellent agreement between wave optics and geometric optics is observed for large size parameter in the outer part of the 22 degree halo feature. For smaller ice crystals halo broadening is predicted, and there is appreciable "spillover" of the halo into shadow scattering angles <22 degrees. Ways to retrieve ice crystal sizes are suggested based on the full width at half-maximum of the halo, the power at <22 deg, and the halo polarization.
Convergence of the discrete dipole approximation. I. Theoretical analysis
Yurkin, Maxim A; Hoekstra, Alfons G
2006-01-01
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in the range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
The discrete dipole approximation: an overview and recent developments
Yurkin, Maxim A
2007-01-01
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a general framework based on the integral equations for the electric field. We review both the theory of the DDA and its numerical aspects, the latter being of critical importance for any practical application of the method. Finally, the position of the DDA among other methods of light scattering simulation is shown and possible future developments are discussed.
Breakdown of the Dipole Approximation in Strong-Field Ionization
Ludwig, A.; J. Maurer; MAYER, B.W.; Phillips, C. R.; Gallmann, L; Keller, U.
2014-01-01
We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a c...
Breakdown of the dipole approximation in strong-field ionization.
Ludwig, A; Maurer, J; Mayer, B W; Phillips, C R; Gallmann, L; Keller, U
2014-12-12
We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10¹³ W/cm². Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semiclassical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as the origin of our observations. PMID:25541770
Discrete Dipole Approximation Aided Design Method for Nanostructure Arrays
Institute of Scientific and Technical Information of China (English)
ZHU Shao-Li; LUO Xian-Gang; DU Chun-Lei
2007-01-01
A discrete dipole approximation (DDA) aided design method is proposed to determine the parameters of nanostructure arrays. The relationship between the thickness, period and extinction efficiency of nanostructure arrays for the given shape can be calculated using the DDA. Based on the calculated curves, the main parameters of the nanostructure arrays such as thickness and period can be determined. Using this aided method, a rhombic sliver nanostructure array is designed with the determinant parameters of thickness (40 nm) and period (440 nm).We further fabricate the rhombic sliver nanostructure arrays and testify the character of the extinction spectra.The obtained extinction spectra is within the visible range and the full width at half maximum is 99nm, as is expected.
Fretting about FRET: failure of the ideal dipole approximation.
Muñoz-Losa, Aurora; Curutchet, Carles; Krueger, Brent P; Hartsell, Lydia R; Mennucci, Benedetta
2009-06-17
With recent growth in the use of fluorescence-detected resonance energy transfer (FRET), it is being applied to complex systems in modern and diverse ways where it is not always clear that the common approximations required for analysis are applicable. For instance, the ideal dipole approximation (IDA), which is implicit in the Förster equation, is known to break down when molecules get "too close" to each other. Yet, no clear definition exists of what is meant by "too close". Here we examine several common fluorescent probe molecules to determine boundaries for use of the IDA. We compare the Coulombic coupling determined essentially exactly with a linear response approach with the IDA coupling to find the distance regimes over which the IDA begins to fail. We find that the IDA performs well down to roughly 20 A separation, provided the molecules sample an isotropic set of relative orientations. However, if molecular motions are restricted, the IDA performs poorly at separations beyond 50 A. Thus, isotropic probe motions help mask poor performance of the IDA through cancellation of error. Therefore, if fluorescent probe motions are restricted, FRET practitioners should be concerned with not only the well-known kappa2 approximation, but also possible failure of the IDA. PMID:19527638
Yurkin, Maxim A; Min, Michiel; Hoekstra, Alfons G
2010-09-01
We compared three formulations of the discrete dipole approximation (DDA) for simulation of light scattering by particles with refractive indices m=10+10i , 0.1+i , and 1.6+0.01i . These formulations include the filtered coupled dipoles (FCD), the lattice dispersion relation (LDR) and the radiative reaction correction. We compared the number of iterations required for the convergence of the iterative solver (proportional to simulation time) and the accuracy of final results. We showed that the LDR performance for m=10+10i is especially bad, while the FCD is a good option for all cases studied. Moreover, we analyzed the detailed structure of DDA errors and the spectrum of the DDA interaction matrix to understand the performance of the FCD. In particular, this spectrum, obtained with the FCD for particles smaller than the wavelength, falls into the bounds, physically implied for the spectrum of the infinite-dimensional integral scattering operator, contrary to two other DDA formulations. Finally, such extreme refractive indices can now be routinely simulated using modern desktop computers using the publicly available ADDA code, which includes an efficient implementation of the FCD. PMID:21230209
Phenomenological implications of a perturbative pomeron beyond the dipole approximation
International Nuclear Information System (INIS)
By assuming that the bare pomeron is a 'perturbative' series of Regge multipoles, phenomenological consequences of an extension of the dipole pomeron model by including corrections from a tripole are investigated. Reasonable fits to the pp and p-barp-scattering data are obtained. The improvement over similar fits based on a dipole model are visible in the dip region and at large /t/. The knowledge of the fitted parameters is important for the reconstruction of the assumed perturbative series of multipole pomerons
Institute of Scientific and Technical Information of China (English)
曹李刚; 马中玉
2003-01-01
A fully consistent relativistic random-phase approximation is applied to study the systematic behaviour of the isovector giant dipole resonance of nuclei along the β-stability line in order to test the effective Lagrangians recently developed. The centroid energies of response functions of the isovector giant dipole resonance for stable nuclei are compared with the corresponding experimental data and the good agreement is obtained. It is found that the effective Lagrangian with an appropriate nuclear symmetry energy, which can well describe the ground state properties of nuclei, could also reproduce the isovector giant dipole resonance of nuclei along the β-stability line.
Applicability of point-dipoles approximation to all-dielectric metamaterials
DEFF Research Database (Denmark)
Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei
2015-01-01
All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide...
Moteki, N.
2015-12-01
Black carbon (BC) is a light-absorbing carbonaceous aerosol emitted from combustions of fossil fuels and biomasses and is estimated as the second most important contributor to positive climate forcing after the carbon dioxide. In the atmosphere, the fractal aggregate of BC-spherules may be mixed with non-absorbing (or weakly absorbing) compounds that forms morphologically complex "BC-containing particle". A reliable scattering code for BC-containing particles is necessary for predicting mass absorption efficiency of BC and designing/evaluating optical techniques for estimating microphysical properties (i.e., size distribution, mixing state, shape, refractive index) of BC-containing particles. The computational methods that derived from the volume-integral form of the Maxwell equation, such as discrete dipole approximation (DDA), are method of choice for morphologically complex object like BC-containing particles. In ordinary DDA, the entire particle volume is approximated as a collection of tiny cubical dipoles (with side length d) placed on a 3D cubic lattice. For several model BC-containing particles, the comparisons with numerically exact T-matrix method reveals that the ordinary DDA suffered from persistent positive systematic error (up to +30%) in absorption even under d DDA error is identified to be the shape error in BC-spherules. To eliminate the shape error in BC-spherules, we propose a new DDA methodology which may be called hybrid DDA (h-DDA): each primary BC sphere is assumed as a spherical dipole, while remaining particle volume of coating material is approximated by a collection of tiny cubical dipoles on a 3D cubic lattice. Positive absorption bias up to +30% in ordinary DDA is suppressed to within 3% in h-DDA. In h-DDA code, an efficient FFT-based algorithm for solving the matrix equation has been implemented, by utilizing the multilevel block-Toeplitz property of the submatrix corresponding to inter-dipole interaction within coating material.
Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation
International Nuclear Information System (INIS)
It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/20 transition. For the later case, only the length gauge give a false results, but the velocity gauge give the same result as the exact one, for the final value of the transition probability
Ionization dynamics beyond the dipole approximation induced by the pulse envelope
Simonsen, Aleksander Skjerlie; Kjellsson, Tor; Førre, Morten; Lindroth, Eva; Selstø, Sølve
2016-05-01
When atoms and molecules are ionized by laser pulses of finite duration and increasingly high intensities, the validity of the much-used dipole approximation, in which the spatial dependence and magnetic component of the external field are neglected, eventually breaks down. We report that, when going beyond the dipole approximation for the description of atoms exposed to ultraviolet light, the spatial dependence of the pulse shape, the envelope, provides the dominant correction, while the spatial dependence of the carrier is negligible. We present a first-order beyond-dipole correction to the Hamiltonian which accounts exclusively for nondipole effects stemming from the carrier envelope of the pulse. We demonstrate by ab initio calculations for hydrogen that this approximation, which we refer to as the envelope approximation, reproduces the full interaction beyond the dipole approximation for absolute and differential observables and proves to be valid for a broad range of high-frequency fields. This is done both for the Schrödinger and the Dirac equation. Moreover, it is demonstrated that the envelope approximation provides an interaction-term which gives rise to faster numerical convergence in terms of partial waves compared to its exact counterpart.
Derivation of the dipole approximation from the exact transition probabilities for hydrogen atoms
International Nuclear Information System (INIS)
The usual dipole approximation for the transition probabilities for hydrogen atoms is derived from the exact transition probabilities by considering j = 1 photons only, neglecting retardation, and using an identity derived from the wave equation for the radial wave function for the atom
Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation
Aldarmaa, Ch.; Khenmedekh, L.; Lkhagva, O.
2014-03-01
It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (-τ/2
Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation
Energy Technology Data Exchange (ETDEWEB)
Aldarmaa, Ch., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com; Khenmedekh, L., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com [Theoretical Physics and Simulation Group, School of Materials Technology, MUST (Mongolia); Lkhagva, O. [School of Physics and Electronics, NUM (Mongolia)
2014-03-24
It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/2
Directory of Open Access Journals (Sweden)
M. P. Menguc
2011-09-01
Full Text Available We embark on this preliminary study of the suitability of the discrete dipole approximation with surface interaction (DDA-SI method to model electric field scattering from noble metal nano-structures on dielectric substrates. The refractive index of noble metals, particularly due to their high imaginary components, require smaller lattice spacings and are especially sensitive to the shape integrity and the volume of the dipole model. The results of DDA-SI method are validated against those of the well-established finite element method (FEM and the finite difference time domain (FDTD method.
Scaling for Mixtures of Hard Ions and Dipoles in the Mean Spherical Approximation
Blum, L.
2001-01-01
Using new scaling parameters $\\beta_i$, we derive simple expressions for the excess thermodynamic properties of the Mean Spherical Approximation (MSA) for the ion-dipole mixture. For the MSA and its extensions we have shown that the thermodynamic excess functions are a function of a reduced set of scaling matrices ${\\mathbf\\Gamma}_\\chi$. We show now that for factorizable interactions like the hard ion-dipole mixture there is a further reduction to a diagonal matrices ${\\mathbf\\beta}_\\chi$. Th...
International Nuclear Information System (INIS)
Widespread numerous applications of electric field enhancement on the surface of nanoparticles are of interest, either in physics, chemistry, or biology. The Lorentz–Mie–Debye rigorous model of the scattering of light by spherical nanoparticles has been known for over a century but is often simplified to its dipole approximation for small particles. Indeed, approximated models are of interest to identify the phenomena involved in the electric field enhancement that is used to improve the signal of surface enhanced raman spectroscopy (SERS) in particular. Using the series expansion of the electric field given by the Lorentz–Mie–Debye theory, we show that an order higher than the dipole approximation is necessary to evaluate the field enhancement, even for small radii. (invited article)
Yurkin, Maxim A.; de Kanter, David; Hoekstra, Alfons G.
2010-02-01
We studied the accuracy of the discrete dipole approximation (DDA) for simulations of absorption and scattering spectra by gold nanoparticles (spheres, cubes, and rods ranging in size from 10 to 100 nm). We varied the dipole resolution and applied two DDA formulations, employing the standard lattice dispersion relation (LDR) and the relatively new filtered coupled dipoles (FCD) approach. The DDA with moderate dipole resolutions is sufficiently accurate for scattering efficiencies or positions of spectral peaks, but very inaccurate for e.g. values of absorption efficiencies in the near-IR. To keep relative errors of the latter within 10% about 107 dipoles per sphere are required. Surprisingly, errors for cubes are about 10 times smaller than that for spheres or rods, which we explain in terms of shape errors. The FCD is generally more accurate and leads to up to 2 times faster computations than the LDR. Therefore, we recommend FCD as the DDA formulation of choice for gold and other metallic nanoparticles.
International Nuclear Information System (INIS)
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities
Energy Technology Data Exchange (ETDEWEB)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Response and normal modes of a system in the electric and magnetic-dipole approximation
International Nuclear Information System (INIS)
The effect of making the interaction fields evolve from a finite time of a system of molecules is studied in the electric- and magnetic-dipole approximation. Features due to the breaking up of the infinite evolution time are discussed. The resulting equations are analyzed for the response of the system. The analysis of the equations for the propagation of normal modes is manifested. The conditions under which normal modes propagate are stated. (author)
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul; Khvedelidze, Arsen
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wav...
Verschl, M
2005-01-01
An analytical approach to quantum mechanical wave packet dynamics of laser-driven particles is presented. The time-dependent Schroedinger equation is solved for an electron exposed to a linearly polarized plane wave of arbitrary shape. The calculation goes beyond the dipole approximation, such that magnetic field effects like wave packet shearing are included. Analytical expressions for the time-dependent widths of the wave packet and its orientation are established. These allow for a simple understanding of the wave packet dynamics.
Opendda: a Novel High-Performance Computational Framework for the Discrete Dipole Approximation
Donald, James Mc; Golden, Aaron; Jennings, S. Gerard
2009-01-01
This work presents a highly optimized computational framework for the Discrete Dipole Approximation, a numerical method for calculating the optical properties associated with a target of arbitrary geometry that is widely used in atmospheric, astrophysical and industrial simulations. Core optimizations include the bit-fielding of integer data and iterative methods that complement a new Discrete Fourier Transform (DFT) kernel, which efficiently calculates the matrix vector products required by ...
RCS estimation of linear and planar dipole phased arrays approximate model
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...
International Nuclear Information System (INIS)
We introduce the stochastic geometry of a Gaussian random ellipsoid (GE) and, with the discrete-dipole approximation, carry out preliminary computations for light scattering by wavelength-scale GE particles. In the GE geometry, we describe the base ellipsoid by the three semiaxes a≥b≥c. The axial ratios b:a and c:a appear as two shape parameters additional to those of the Gaussian random sphere geometry (GS). We compare the scattering characteristics of GE particles to those of ellipsoids. Introducing irregularities on ellipsoids smoothens the angular scattering characteristics, in a way analogous to the smoothening of spherical particle characteristics in the case of GS particles.
The discrete dipole approximation code DDscat.C++: features, limitations and plans
Choliy, V. Ya.
2013-08-01
We present a new freely available open-source C++ software for numerical solution of the electromagnetic waves absorption and scattering problems within the Discrete Dipole Approximation paradigm. The code is based upon the famous and free Fortan-90 code DDSCAT by B. Draine and P. Flatau. Started as a teaching project, the presented code DDscat.C++ differs from the parent code DDSCAT with a number of features, essential for C++ but quite seldom in Fortran. This article introduces the new code, explains its features, presents timing information and some plans for further development.
Evolution of Dipole-Type Blocking Life Cycles: Analytical Diagnoses and Observations
Huang, Fei; Tang, Xiao-yan; Lou, S. Y.; LU, CUI-HUA
2008-01-01
A variable coefficient Korteweg de Vries (VCKdV) system is derived by considering the time-dependent basic flow and boundary conditions from a nonlinear, inviscid, nondissipative, and equivalent barotropic vorticity equation in a beta-plane. One analytical solution obtained from the VCKdV equation can be successfully used to explain the evolution of atmospheric dipole-type blocking (DB) life cycles. Analytical diagnoses show that background mean westerlies have great influence on evolution of...
User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10)
Draine, B T; Flatau, Piotr J.
2000-01-01
DDSCAT.5a is a freely available software package which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT.5a10 allows accurate calculations of electromagnetic scattering from targets with "size parameters" 2 pi a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into the code, and relatively straightforward to add new target ...
Førre, Morten; Simonsen, Aleksander Skjerlie
2016-01-01
The exact velocity-gauge minimal-coupling Hamiltonian describing the laser-matter interaction is transformed into another form by means of a series of gauge transformations. The Hamiltonian corresponding to this point of view is valid for an arbitrary time- and space-dependent laser field, also known as a nondipole field. In effect, the Hamiltonian represents a generalization of the original velocity-gauge minimal-coupling Hamiltonian in the sense that the particle's (classical) velocity in the laser propagation direction is also explicitly accounted for by a new operator term. Imposing the so-called long-wavelength approximation (LWA) on the field, i.e., assuming the laser wavelength being much larger than the extent of the atomic system, the spatial dependence of the field can be neglected and the interaction Hamiltonian reduces to a simpler form. Nevertheless, the resulting LWA Hamiltonian includes the effect of the magnetic-field component of the laser, which is in clear contrast with the usual dipole approximation Hamiltonian derived by imposing the LWA directly on the initial velocity-gauge minimal-coupling Hamiltonian. As such, the weak-field condition necessary to justify neglecting the magnetic field, and the LWA condition, can be considered independently in this formalism, making it an attractive alternative for a broad range of applications in strong-field physics. We demonstrate that, from a numerical perspective, this form of the light-matter interaction is advantageous compared to its standard velocity-gauge counterpart as it gives rise to faster convergence properties when describing ionization dynamics in superintense fields beyond the dipole approximation.
Yurkin, Maxim A; Hoekstra, Alfons G
2007-01-01
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA computer program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are...
Alcaraz de la Osa, Rodrigo
2013-01-01
The discrete dipole approximation (DDA) has been successfully applied to many light scattering problems. Simply stated, the DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to thelocal fields. The dipoles of course interact with one another via their electric and magnetic fields, so the DDA is also sometimes referred to as the coupled dipole approximation. As of today, the method has established itself as on...
Alcaraz de la Osa, Rodrigo
2013-01-01
ABSTRACT: The discrete dipole approximation (DDA) has been successfully applied to many light scattering problems. Simply stated, the DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local fields. The dipoles of course interact with one another via their electric and magnetic fields, so the DDA is also sometimes referred to as the coupled dipole approximation. As of today, the method has established i...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3
Draine, B T
2013-01-01
DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCA...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1
Draine, B T
2010-01-01
DDSCAT 7.1 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.1 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul
2008-01-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the non-relativistic Hamilton-Jacobi theory. The exact parametric representation for a particle's orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wave the particle's trajectory, as an explicit function of the laboratory frame's time, is given in terms of the Jacobian elliptic functions, whose modulus is proportional to the laser's intensity and depends on the polarization of radiation. It is shown that the system exposes the ``intensity duality'', correspondence between the motion in the backgrounds with various intensities. In virtue of the modular properties of the Jacobian functions, by starting with the representative ``fundamental solution'' and applying a certai...
International Nuclear Information System (INIS)
In this paper we study the spectral behaviour of indium tin oxide (ITO) nanoparticle clusters using different sinter neck models for the connections between the primary particles. The investigations include light scattering calculations based on the Discrete Dipole Approximation (DDA). The corresponding clusters are generated using the Cluster–Cluster algorithm proposed by Filippov et al. Different sintering neck models led to significantly different spectral features. A spectral neck factor that reveals the thickness of the necks connecting the primary particles with a simple measurement method is introduced. - Highlights: • We investigate the necking phenomenon in ITO fractal-like aggregates. • Extinction diagrams are sensitive to changes of the neck size. • We propose a simple procedure for measuring the neck size in ITO aggregates
Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation
DEFF Research Database (Denmark)
Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed;
2014-01-01
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of...... QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using...... distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate...
Opendda: a Novel High-Performance Computational Framework for the Discrete Dipole Approximation
Donald, James Mc; Jennings, S Gerard
2009-01-01
This work presents a highly optimized computational framework for the Discrete Dipole Approximation, a numerical method for calculating the optical properties associated with a target of arbitrary geometry that is widely used in atmospheric, astrophysical and industrial simulations. Core optimizations include the bit-fielding of integer data and iterative methods that complement a new Discrete Fourier Transform (DFT) kernel, which efficiently calculates the matrix vector products required by these iterative solution schemes. The new kernel performs the requisite 3-D DFTs as ensembles of 1-D transforms, and by doing so, is able to reduce the number of constituent 1-D transforms by 60% and the memory by over 80%. The optimizations also facilitate the use of parallel techniques to further enhance the performance. Complete OpenMP-based shared-memory and MPI-based distributed-memory implementations have been created to take full advantage of the various architectures. Several benchmarks of the new framework indica...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0
Draine, B T
2008-01-01
DDSCAT 7.0 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2009). DDSCAT 7.0 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...
User Guide for the Discrete Dipole Approximation Code DDSCAT.6.0
Draine, B T
2003-01-01
DDSCAT.6.0 is a freely available software package (http://www.astro.princeton.edu/~draine/DDSCAT.6.0.html) which applies the "discrete dipole approximation" (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT.6.0 allows accurate calculations of electromagnetic scattering from targets with ``size parameters'' 2*pi*a/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 1). DDSCAT.6.0 includes the option of using the FFTW (Fastest Fourier Transform in the West) package. DDSCAT.6.0 also includes MPI support, permitting parallel calculations on multiprocessor systems. DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the use...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2
Draine, Bruce T
2012-01-01
DDSCAT 7.2 is a freely available open-source Fortran-90 software package applying the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", which can be used to study absorption, scattering, and electric fields around arrays of nanostructures. The DDA approximates the target by an array of polarizable points. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008). Efficient near-field calculations are enabled following Flatau & Draine (2012). DDSCAT 7.2 allows accurate calculations of electromagnetic scattering from targets with size parameters 2*pi*aeff/lambda < 25 provided the refractive index m is not large compared to unity (|m-1| ...
Test Results of a Nb3Sn Wind/React ''Stress-Managed'' Block Dipole
International Nuclear Information System (INIS)
A second phase of a highfield dipole technology development has been tested. A Nb3Sn block-coil model dipole was fabricated, using magnetic mirror geometry and wind/react coil technology. The primary objective of this phase was to make a first experimental test of the stress-management strategy pioneered at Texas A and M. In this strategy a high-strength support matrix is integrated with the windings to intercept Lorentz stress from the inner winding so that it does not accumulate in the outer winding. The magnet attained a field that was consistent with short sample limit on the first quench; there was no training. The decoupling of Lorentz stress between inner and outer windings was validated. In ramp rate studies the magnet exhibited a remarkable robustness in rapid ramping operation. It reached 85 percent of short sample(ss) current even while ramping 2-3 T/s. This robustness is attributed to the orientation of the Rutherford cables parallel to the field in the windings, instead of the transverse orientation that characterizes common dipole designs. Test results are presented and the next development phase plans are discussed
Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit; Ahmed, Musahid
2011-09-22
This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.
Classical dynamics of a charged particle in a laser field beyond the dipole approximation
Jameson, Paul; Khvedelidze, Arsen
2008-05-01
The classical dynamics of a charged particle traveling in a laser field modeled by an elliptically polarized monochromatic electromagnetic plane wave is discussed within the time reparametrization invariant form of the nonrelativistic Hamilton-Jacobi theory. The exact parametric representation for a particle’s orbit in an arbitrary plane wave background beyond the dipole approximation and including effect of the magnetic field is derived. For an elliptically polarized monochromatic plane wave the particle’s trajectory, as an explicit function of the laboratory frame’s time, is given in terms of the Jacobian elliptic functions, whose modulus is proportional to the laser’s intensity and depends on the polarization of radiation. It is shown that the system exposes the intensity duality, correspondence between the motion in the backgrounds with various intensities. In virtue of the modular properties of the Jacobian functions, by starting with the representative “fundamental solution” and applying a certain modular transformation one can obtain the particle’s orbit in the monochromatic plane wave background with arbitrarily prescribed characteristics.
The discrete-dipole-approximation code ADDA: Capabilities and known limitations
International Nuclear Information System (INIS)
The open-source code ADDA is described, which implements the discrete dipole approximation (DDA), a method to simulate light scattering by finite 3D objects of arbitrary shape and composition. Besides standard sequential execution, ADDA can run on a multiprocessor distributed-memory system, parallelizing a single DDA calculation. Hence the size parameter of the scatterer is in principle limited only by total available memory and computational speed. ADDA is written in C99 and is highly portable. It provides full control over the scattering geometry (particle morphology and orientation, and incident beam) and allows one to calculate a wide variety of integral and angle-resolved scattering quantities (cross sections, the Mueller matrix, etc.). Moreover, ADDA incorporates a range of state-of-the-art DDA improvements, aimed at increasing the accuracy and computational speed of the method. We discuss both physical and computational aspects of the DDA simulations and provide a practical introduction into performing such simulations with the ADDA code. We also present several simulation results, in particular, for a sphere with size parameter 320 (100-wavelength diameter) and refractive index 1.05.
Daoutidis, I
2012-01-01
Large-scale calculations of the E1 strength are performed within the random phase approximation (RPA) based on the relativistic point-coupling mean field approach in order to derive the radiative neutron capture cross sections for all nuclei of astrophysical interest. While the coupling to the single-particle continuum is taken into account in an explicit and self-consistent way, additional corrections like the coupling to complex configurations and the temperature and deformation effects are included in a phenomenological way to account for a complete description of the nuclear dynamical problem. It is shown that the resulting E1-strength function based on the PCF1 force is in close agreement with photoabsorption data as well as the available experimental E1 strength data at low energies. For neutron-rich nuclei, as well as light neutron-deficient nuclei, a low-lying so-called pygmy resonance is found systematically in the 5-10 MeV region. The corresponding strength can reach 10% of the giant dipole strength...
Discrete dipole approximation for low-energy photoelectron emission from NaCl nanoparticles
International Nuclear Information System (INIS)
This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4 to 10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle's geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which are closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the modeled emission asymmetry for these low-energy electrons is more sensitive to the interaction with the particle-surface than to the specific particle shape, i.e., a sphere or cube.
Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.
Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng
2016-12-01
Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823
Resonance fluorescence beyond the dipole approximation of a quantum dot in a plasmonic nanostructure
Yang, Chun-Jie; An, Jun-Hong
2016-05-01
The mesoscopic characteristics of a quantum dot (QD), which make the dipole approximation (DA) break down, provide a new dimension to manipulate light-matter interaction [M. L. Andersen et al., Nat. Phys. 7, 215 (2011)], 10.1038/nphys1870. Here we investigate the power spectrum and the second-order correlation property of the fluorescence from a resonantly driven QD placed on a planar metal. It is revealed that due to the pronounced QD spatial extension and the dramatic variation of the triggered surface plasmon near the metal, the fluorescence has a notable contribution from the quadrupole moment. The π -rotation symmetry of the fluorescence to the QD orientation under the DA is broken. By manipulating the QD orientation and quadrupole moment, the spectrum can be switched between the Mollow triplet and a single peak, and the fluorescence characterized by the antibunching in the second-order correlation function can be changed from the weak to the strong radiation regime. Our result is instructive for utilizing the unique mesoscopic effects to develop nanophotonic devices.
User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1
Draine, B T; Draine, Bruce T.; Flatau, Piotr J.
2004-01-01
DDSCAT 6.1 is a software package which applies the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. DDSCAT 6.1 allows accurate calculations of electromagnetic scattering from targets with size parameters 2 pi a_eff/lambda < 15 provided the refractive index m is not large compared to unity (|m-1| < 2). DDSCAT 6.1 includes support for MPI and FFTW. We also make available a "plain" distribution of DDSCAT 6.1 that does not include support for MPI, FFTW, or netCDF, but is much simpler to install than the full distribution. The DDSCAT package is written in Fortran and is highly portable. The program supports calculations for a variety of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, finite cylinders, hexagonal prisms, etc.). Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to import arbitrary target geometries into th...
Complexes of block copolymers in solution: tree approximation
Geurts, Bernard J.; Damme, van Ruud
1989-01-01
We determine the statistical properties of block copolymer complexes in solution. These complexes are assumed to have the topological structure of (i) a tree or of (ii) a line-dressed tree. In case the structure is that of a tree, the system is shown to undergo a gelation transition at sufficiently
Block pulse approximation of fractional stochastic integro-differential equation
M Asgari
2014-01-01
The aim of the presented paper is to apply block pulse operational matrices for solving fractional stochastic integro differential equations. By using this approach, the fractional stochastic integro-differential equation reduces to a linear system of algebraic equations which can be solved by iterative method. Accuracy and efficiency of the method are shown with an example.
International Nuclear Information System (INIS)
We compute the absorption efficiency (Qabs) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 μm wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical polyhedral grain shapes with aeff = 0.1 μm. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 μm, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 μm) shifts the 10 and 11 μm features systematically toward longer wavelengths and relative to the 11 μm feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 μm spectra provides a potential means to probe the temperatures at which forsterite formed.
Moteki, Nobuhiro
2016-07-01
An accurate and efficient simulation of light scattering by an atmospheric black carbon (BC)-containing aerosol-a fractal-like cluster of hundreds of carbon monomers that is internally mixed with other aerosol compounds such as sulfates, organics, and water-remains challenging owing to the enormous diversities of such aerosols' size, shape, and mixing state. Although the discrete dipole approximation (DDA) is theoretically an exact numerical method that is applicable to arbitrary non-spherical inhomogeneous targets, in practice, it suffers from severe granularity-induced error and degradation of computational efficiency for such extremely complex targets. To solve this drawback, we propose herein a hybrid DDA method designed for arbitrary BC-containing aerosols: the monomer-dipole assumption is applied to a cluster of carbon monomers, whereas the efficient cubic-lattice discretization is applied to the remaining particle volume consisting of other materials. The hybrid DDA is free from the error induced by the surface granularity of carbon monomers that occurs in conventional cubic-lattice DDA. In the hybrid DDA, we successfully mitigate the artifact of neglecting the higher-order multipoles in the monomer-dipole assumption by incorporating the magnetic dipole in addition to the electric dipole into our DDA formulations. Our numerical experiments show that the hybrid DDA method is an efficient light-scattering solver for BC-containing aerosols in arbitrary mixing states. The hybrid DDA could be also useful for a cluster of metallic nanospheres associated with other dielectric materials.
Atoms and molecules in intense attosecond fields: beyond the dipole approximation
Førre, M.; Hansen, J. P.; Kocbach, L.; Selstø, S.; Kjeldsen, T. K.; Madsen, L. B.
2007-11-01
The exact non-dipole minimal-coupling Hamiltonian for an atomic system interacting with an explicitly time- and space-dependent laser field is transformed into the rest frame of a classical free electron in the laser field, i.e., into the Kramers-Henneberger frame. The new form of the Hamiltonian has been used to study the non-dipole dynamics of atoms and molecules in intense XUV laser pulses. The time-dependent Schrödinger equation is solved without any simplifications.
International Nuclear Information System (INIS)
Assuming that the bare Pomeron is a open-quotes perturbativeclose quotes series of Regge multipoles, the author investigates phenomenological consequences of an extension of the dipole Pomeron model by including corrections from a tripole. Reasonable fits to the pp and bar pp scattering data are obtained. The improvement over similar fits based on a dipole model are visible in the dip region and at large |t|. The knowledge of the fitted parameters is important for the reconstruction of the assumed perturbative series of multipole Pomerons. 14 refs., 6 figs., 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Kameli, P.; Salamati, H. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-02-14
Superparamagnetic manganese ferrite nanoparticles with mean size of 〈D〉 = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (H{sub c}) increased and squareness (M{sub r}/M{sub s}) decreased. The obtained effective anisotropy constant (K{sub eff}), by susceptibility measurements, was from 1.72 × 10{sup 6} to 2.36 × 10{sup 6 }ergs/cm{sup 3} for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 10{sup 6} to 0.34 × 10{sup 6 }erg/cm{sup 3}). Also, the K{sub eff} was two orders of magnitude greater than that of bulk MnFe{sub 2}O{sub 4}. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.
Aslibeiki, B.; Kameli, P.; Salamati, H.
2016-02-01
Superparamagnetic manganese ferrite nanoparticles with mean size of = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (Hc) increased and squareness (Mr/Ms) decreased. The obtained effective anisotropy constant (Keff), by susceptibility measurements, was from 1.72 × 106 to 2.36 × 106 ergs/cm3 for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 106 to 0.34 × 106 erg/cm3). Also, the Keff was two orders of magnitude greater than that of bulk MnFe2O4. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.
On Computation of Approximate Joint Block-Diagonalization Using Ordinary AJD
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Yeredor, A.; Koldovský, Zbyněk
Heidelberg: Springer, 2012 - (Theis, F.), s. 163-171. (Lecture Notes on Computer Science . 7191). ISBN 978-3-642-28550-9. [Latent Variable Analysis and Signal Separation,10th International Conference, LVA/ICA 2012. Tel Aviv (IL), 12.03.2012-15.03.2012] R&D Projects: GA MŠk 1M0572; GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint block diagonalization * independent subspace analysis Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2012/SI/tichavsky-on computation of approximate joint block-diagonalization using ordinary ajd.pdf
Asymptotic behaviour and approximation of eigenvalues for unbounded block Jacobi matrices
Directory of Open Access Journals (Sweden)
Maria Malejki
2010-01-01
Full Text Available The research included in the paper concerns a class of symmetric block Jacobi matrices. The problem of the approximation of eigenvalues for a class of a self-adjoint unbounded operators is considered. We estimate the joint error of approximation for the eigenvalues, numbered from \\(1\\ to \\(N\\, for a Jacobi matrix \\(J\\ by the eigenvalues of the finite submatrix \\(J_n\\ of order \\(pn \\times pn\\, where \\(N = \\max \\{k \\in \\mathbb{N}: k \\leq rpn\\}\\ and \\(r \\in (0,1\\ is suitably chosen. We apply this result to obtain the asymptotics of the eigenvalues of \\(J\\ in the case \\(p=3\\.
Wang, Anna; Fung, Jerome; Razavi, Sepideh; Kretzschmar, Ilona; Chaudhary, Kundan; Lewis, Jennifer A; Manoharan, Vinothan N
2013-01-01
We present a new, high-speed technique to track the three-dimensional translation and rotation of non-spherical colloidal particles. We capture digital holograms of micrometer-scale silica rods and sub-micrometer-scale Janus particles freely diffusing in water, and then fit numerical scattering models based on the discrete dipole approximation to the measured holograms. This inverse-scattering approach allows us to extract the the position and orientation of the particles as a function of time, along with static parameters including the size, shape, and refractive index. The best-fit sizes and refractive indices of both particles agree well with expected values. The technique is able to track the center of mass of the rod to a precision of 35 nm and its orientation to a precision of 1.5$^\\circ$, comparable to or better than the precision of other 3D diffusion measurements on non-spherical particles. Furthermore, the measured translational and rotational diffusion coefficients for the silica rods agree with hy...
International Nuclear Information System (INIS)
Present knowledge of QCD n-point functions of Wilson lines at high energies is rather limited. In practical applications, it is therefore customary to factorize higher n-point functions into products of two-point functions (dipoles) which satisfy the Balitsky-Kovchegov-evolution equation. We employ the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner formalism to derive explicit evolution equations for the 4- and 6-point functions of fundamental Wilson lines and show that if the Gaussian approximation is carried out before the rapidity evolution step is taken, then many leading order Nc contributions are missed. Our evolution equations could specifically be used to improve calculations of forward dijet angular correlations, recently measured by the STAR Collaboration in deuteron-gold collisions at the RHIC collider. Forward dijets in proton-proton collisions at the LHC probe QCD evolution at even smaller light-cone momentum fractions. Such correlations may provide insight into genuine differences between the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner and Balitsky-Kovchegov approaches.
Approximants of Al–Cr–Fe–Si decagonal quasicrystals described by single structural block
Energy Technology Data Exchange (ETDEWEB)
He, Zhanbing, E-mail: hezhanbing@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Wei, Dongxia [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Shen, Xi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Yuan; Ma, Haikun; Wang, Leilei [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Du, Kui [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yao, Yuan; Yu, Richeng [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-10-25
The orthorhombic (3/2, 2/1) approximant with a = 3.06 nm, b = 1.23 nm, c = 2.24 nm, and the coexisting (2/1, 3/2) approximant of decagonal quasicrystals with a = 1.90 nm, c = 3.64 nm, and β ≅ 90° are found in Al–Cr–Fe–Si alloys by aberration-corrected transmission electron microscope. The structural relationships of these two approximants are analyzed and discussed based on the high-angle annular dark-field scanning transmission electron microscopy images at atomic resolution. We find that both of their structural tiling along the [010] direction can be described by one shield-like tile, with the superiority over the previous HBS tiling model due to the clarity. Combining the shield-like tile and HBS tiling model, the domains of approximants are clearly demonstrated. - Highlights: • We discover one new approximant by STEM image. • Single structural block is adopted to describe three approximants. • Shield-like tiling has advantage in concision over the HBS tiling model. • The shield-like tiling and HBS model can be combined.
Sogabe, Yusuke; Sakashita, Masaki; Nakamura, Taketsune; Ogitsu, Toru; Amemiya, Naoyuki
2016-04-01
We carried out electromagnetic field analyses on the cross sections of two dipole magnets wound with coated conductors. One was a cosine-theta magnet, and the other was a block design magnet. The electric field-current density characteristics of the coated conductors were formulated using a percolation depinning model based on the measured voltage-current characteristics. We calculated the temporal evolutions of the current-density distributions in all the turns of each magnet and used these evolutions to calculate the multipole components of the magnetic field. We compared the two magnets, which differed in coated-conductor orientations, regarding the influence of coated-conductor magnetization on the field qualities.
Directory of Open Access Journals (Sweden)
B. Scarnato
2012-10-01
Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation. When BC is internally mixed with NaCl (100–300 nm in radius, strong depolarization features for near-VIS incident radiation are evident
Directory of Open Access Journals (Sweden)
B. V. Scarnato
2013-05-01
Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200–1000 nm range is amplified when internally mixed with NaCl (100–300 nm in radius by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have
Zhang, Wen-Zhuo
2012-01-01
We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.
Approximate formulae for the thermalization of two blocks in an insulated system
International Nuclear Information System (INIS)
When two blocks are put in thermal contact, heat flows from the hotter block to the cooler until thermal equilibrium is reached. On thinking about the evolution of this system towards equilibrium, some interesting questions arise. Could we establish a good criterion for identifying the end of the heat transfer? If so, typically how long does it take for thermal equilibrium to be reached? What is the typical outline of the temperature distribution during the heat transfer? Although heat conduction is an important topic in science and engineering courses, only the last question is addressed in textbooks for undergraduates and it is answered based upon the Fourier series solution of the heat equation. In this work, I begin by showing that the first term of the exact Fourier series solution is itself an accurate approximation for the temperature profile for t>0.7τd, where τd is the diffusive time constant for heat conduction in this system. I then introduce a ‘practical’ thermalization time which depends upon the difference of initial temperatures and the instrumental error of the thermometer, which satisfactorily answers the above questions. (paper)
Edalatpour, Sheila
2013-01-01
A novel numerical method called the Thermal Discrete Dipole Approximation (T-DDA) is proposed for modeling near-field radiative heat transfer in three-dimensional arbitrary geometries. The T-DDA is conceptually similar to the Discrete Dipole Approximation, except that the incident field originates from thermal oscillations of dipoles. The T-DDA is described in details in the paper, and the method is tested against exact results of radiative conductance between two spheres separated by a sub-wavelength vacuum gap. For all cases considered, the results calculated from the T-DDA are in good agreement with those from the analytical solution. When considering frequency-independent dielectric functions, it is observed that the number of sub-volumes required for convergence increases as the sphere permittivity increases. Additionally, simulations performed for two silica spheres of 0.5 micrometer-diameter show that the resonant modes are predicted accurately via the T-DDA. For separation gaps of 0.5 micrometer and 0...
Guillaume, Stéphane-Olivier; de Abajo, F. Javier García; Henrard, Luc
2013-12-01
An efficient procedure is introduced for the calculation of the optical response of individual and coupled metallic nanoparticles in the framework of the discrete-dipole approximation (DDA). We introduce a modal expansion in the basis set of discrete dipoles and show that a few suitably selected modes are sufficient to compute optical spectra with reasonable accuracy, thus reducing the required numerical effort relative to other DDA approaches. Our method offers a natural framework for the study of localized plasmon modes, including plasmon hybridization. As a proof of concept, we investigate optical extinction and electron energy-loss spectra of monomers, dimers, and quadrumers formed by flat silver squares. This method should find application to the previously prohibited simulation of complex particle arrays.
Energy Technology Data Exchange (ETDEWEB)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
International Nuclear Information System (INIS)
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore
Energy Technology Data Exchange (ETDEWEB)
O’Brien, Daniel B.; Massari, Aaron M., E-mail: massari@umn.edu [Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States)
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
Martini, M; Dupuis, M
2011-01-01
Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones 24O, 26Ne, 28Mg, and 30Si are characterized by a similar behavior. The occupation of the 2s_1/2 neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of 28Ne and 30Ne, characterized by transitions involving the neutron 1d_3/2 state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is id...
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore. PMID:26133414
Approximate regenerative-block bootstrap for Markov chains: some simulation studies
Bertail, Patrice; Clémençon, Stéphan
2007-01-01
Abstract : In Bertail & Clémençon (2005a) a novel methodology for bootstrappinggeneral Harris Markov chains has been proposed, which crucially exploits their renewalproperties (when eventually extended via the Nummelin splitting technique) and has theoreticalproperties that surpass other existing methods within the Markovian framework(bmoving block bootstrap, sieve bootstrap etc...). This paper is devoted to discuss practicalissues related to the implementation of this specific resampling met...
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Yeredor, A.; Nielsen, Jan
Bryan: Conference Management Services, 2008, s. 3321-3324. ISBN 978-1-4244-1483-3; ISBN 1-4244-1484-9. [ICASSP 2008, IEEE International Conference on Acoustics, Speech adn Signal Processing. Las Vegas (US), 30.03.2008-04.04.2008] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : approximate joint diagonalization * blind source separation * autoregressive processes Subject RIV: BB - Applied Statistics, Operational Research
Skorupski, Krzysztof
2015-05-01
Black carbon (BC) particles are a product of incomplete combustion of carbon-based fuels. One of the possibilities of studying the optical properties of BC structures is to use the DDA (Discrete Dipole Approximation) method. The main goal of this work was to investigate its accuracy and to approximate the most reliable simulation parameters. For the light scattering simulations the ADDA code was used and for the reference program the superposition T-Matrix code by Mackowski was selected. The study was divided into three parts. First, DDA simulations for a single particle (sphere) were performed. The results proved that the meshing algorithm can significantly affect the particle shape, and therefore, the extinction diagrams. The volume correction procedure is recommended for sparse or asymmetrical meshes. In the next step large fractal-like aggregates were investigated. When sparse meshes are used, the impact of the volume correction procedure cannot be easily predicted. In some cases it can even lead to more erroneous results. Finally, the optical properties of fractal-like aggregates composed of spheres in point contact were compared to much more realistic structures made up of connected, non-spherical primary particles.
Gu, Yamei; You, Shanhong
2016-07-01
With the rapid growth of data rate, the optical network is evolving from fixed-grid to flexible-grid to provide spectrum-efficient and scalable transport of 100 Gb/s services and beyond. Also, the deployment of wavelength converter in the existing network can increase the flexibility of routing and wavelength allocation (RWA) and improve blocking performance of the optical networks. In this paper, we present a methodology for computing approximate blocking probabilities of the provision of multiclass services in the flexible-grid optical networks with sub-band spectrum conversion and inverse multiplexing respectively. Numerical calculation results based on the model are compared to the simulation results for the different cases. It is shown that the calculation results match well with the simulation results for the flexible-grid optical networks at different scenarios.
N-Block Separable Random Phase Approximation: Application to metal clusters and C60 fullerene
Palade, D I
2015-01-01
Starting from the Random Phase Approximation (RPA), we generalize the schematic model of separable interaction defning subspaces of ph excitations with different coupling constants between them. This ansatz simplifies the RPA eigenvalue problem to a finite, small dimensional system of equations which reduces the numerical effort. Associated dispersion relation and the normalization condition are derived for the new defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit. The theoretical framework is applied to neutral and singly charged spherical sodium clusters and C60 fullerene with results in good agreement with full RPA calculations and experimental data.
Short, Mitchell R.
Nanotechnology has become so widely used it can be found in every aspect of life, from cell-phones and computers, to cars, and even athletic socks. As it permeates so many markets, the need for supplemental technologies has also increased. One such needed technology is in the area of nanoscale characterization. Current imaging methods are advanced; however, they do not have the capabilities to characterize the size, shape, composition, and arrangement of nanostructures and nanoparticles in a real-time, unobtrusive manner. The Polarized-Surface-Wave-Scattering system (PSWSS) is a method being researched at the University of Utah that can provide such characterization, although in order for the PSWSS to function accurately through inversion techniques, a predictive forward model must be developed and validated. This work explores the discrete dipole approximation with surface interaction (DDA-SI), an open source MATLAB toolbox, as a predictive model to calculate electromagnetic scattering by objects on a surface illuminated by an evanescent wave generated by total internal reflection (TIR). Far-field scattering predictions via DDA-SI are validated against scaled microwave experimental results for two objects on a surface: a sphere with a diameter of lambda/1.92 and a cube with a side length of lambda/1.785, where lambda refers to the wavelength. A good agreement between experiments and simulations is observed, especially when modified Fresnel reflection coefficients are employed by DDA-SI. Programs to calculate the amplitude scattering matrix and Mueller matrix elements have been also been created. Additionally, the sensitivity of four Mueller matrix elements (M11, M12, M21, and M22) to the particle size, material (gold and silver), shape (sphere and cube), and interparticle spacing, is analyzed. It is found that these four elements are sensitive to changes in shape and interparticle spacing, whereas prove insufficient to difference in material and sizes smaller than
Institute of Scientific and Technical Information of China (English)
王光辉; 郭正东; 王超; 高盛峰
2016-01-01
A method to analyze range condition of magnetic dipole approximation for a magnet magne-tism is developed based on the correlation of the magnet′s field distribution and magnetic dipole mo-del.By utilizing this method,the magnetic dipole approximation degree of a type longitudinal uniform magnetic ellipsoid is calculated at the different CPA distance path of different altitude horizontal plane.Analysis results show that the range condition of magnetic dipole approximation is nearly twice of that of ellipsoid′s long axis.The method may be used to all magnet when the magnetism material distribution is known by use of the finite element analysis (FEA)software,such as ANSYS,Ansoft Maxwell and so on.%针对磁体磁偶极子近似的距离条件问题，提出了基于磁体磁场分布与磁偶极子模型相关性的判定方法。解析计算了不同高度平面内、不同CPA距离直线路径上典型纵向均匀磁化旋转椭球的磁场。相关性分析表明：磁偶极子近似的距离接近两倍的长轴长度。若借助 ANSYS、Ansoft Maxwell等有限元分析软件，该方法可推广于一切已知磁性材料分布的磁体。
Okita, Taishi; Takagi, Toshiyuki
2010-01-01
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.
Pygmy dipole resonance and dipole polarizability in {sup 90}Zr
Energy Technology Data Exchange (ETDEWEB)
Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Nakada, H. [Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Shimbara, Y.; Nagashima, M. [Department of Physics, Niigata University, Niigata 950-21-2 (Japan); Sakuda, M.; Mori, T. [Department of Physics, Okayama University, Okayama 900-0082 (Japan); and others
2014-05-02
Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.
A Good Approximate Solution for Li´enard Equation in a Large Interval Using Block Pulse Functions
Directory of Open Access Journals (Sweden)
M. H. Heydari∗
2013-03-01
Full Text Available In this paper, the Block pulse functions (BPFs and their operational matrices of integration and differentiation are used to solve Li´enard equation in a large interval. This method converts the equation to a system of nonlinear algebraic equations whose solution is the coeffi- cients of Block pulse expansion of the solution of the Li´enard equation. Moreover, this method is examined by comparing the results with the results obtained by the Adomian decomposition method (ADM and the Variational iteration method (VIM
International Nuclear Information System (INIS)
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P1) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
International Nuclear Information System (INIS)
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P1) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
Isospin Character of the Pygmy Dipole Resonance in 124Sn
Endres, J; Savran, D; Butler, P A; Harakeh, M N; Harissopulos, S; Herzberg, R -D; Krücken, R; Lagoyannis, A; Pietralla, N; Ponomarev, V Yu; Popescu, L; Ring, P; Scheck, M; Sonnabend, K; Stoica, V I; Wörtche, H J; Zilges, A; 10.1103/PhysRevLett.105.212503
2010-01-01
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,a'g) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structure: one group of states which is excited in (a,a'g) as well as in (g,g') reactions and a group of states at higher energies which is only excited in (g,g') reactions. Calculations with the self-consistent relativistic quasiparticle time-blocking approximation and the quasiparticle phonon model are in qualitative agreement with the experimental results and predict a low-lying isoscalar component dominated by neutron-skin oscillations and a higher-lying more isovector component on the tail of the giant dipole resonance.
Dipole-Dipole coupled double Rydberg molecules
Kiffner, Martin; Park, Hyunwook; Li, Wenhui; Gallagher, Tom F.
2012-01-01
We show that the dipole-dipole interaction between two Rydberg atoms can give rise to long range molecules. The binding potential arises from two states that converge to different separated atom asymptotes. These states interact weakly at large distances, but start to repel each other strongly as the van der Waals interaction turns into a resonant dipole-dipole interaction with decreasing separation between the atoms. This mechanism leads to the formation of an attractive well for one of the ...
Solvents level dipole moments.
Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E
2011-11-01
The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185
Big Bounce in Dipole Cosmology
Battisti, Marco Valerio; Marciano, Antonino
2010-01-01
We derive the cosmological Big Bounce scenario from the dipole approximation of Loop Quantum Gravity. We show that a non-singular evolution takes place for any matter field and that, by considering a massless scalar field as a relational clock for the dynamics, the semi-classical proprieties of an initial state are preserved on the other side of the bounce. This model thus enhances the relation between Loop Quantum Cosmology and the full theory.
Color dipole cross section and inelastic structure function
Jeong, Yu Seon; Reno, Mary Hall
2014-01-01
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the Donnachie-Landshoff parametrization of $F_2(x,Q^2)$, we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way works quite well in the massive case, reproducing the original Donnachie-Landshoff structure function for $0.1$ GeV$^2\\leq Q^2\\leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.
Dipole-Dipole coupled double Rydberg molecules
Kiffner, Martin; Li, Wenhui; Gallagher, Tom F
2012-01-01
We show that the dipole-dipole interaction between two Rydberg atoms can give rise to long range molecules. The binding potential arises from two states that converge to different separated atom asymptotes. These states interact weakly at large distances, but start to repel each other strongly as the van der Waals interaction turns into a resonant dipole-dipole interaction with decreasing separation between the atoms. This mechanism leads to the formation of an attractive well for one of the potentials. If the two separated atom asymptotes come from the small Stark splitting of an atomic Rydberg level, which lifts the Zeeman degeneracy, the depth of the well and the location of its minimum are controlled by the external electric field. We discuss two different geometries that result in a localized and a donut shaped potential, respectively.
Efficient treatment of induced dipoles.
Simmonett, Andrew C; Pickard, Frank C; Shao, Yihan; Cheatham, Thomas E; Brooks, Bernard R
2015-08-21
Most existing treatments of induced dipoles in polarizable molecular mechanics force field calculations use either the self-consistent variational method, which is solved iteratively, or the "direct" approximation that is non-iterative as a result of neglecting coupling between induced dipoles. The variational method is usually implemented using assumptions that are only strictly valid under tight convergence of the induced dipoles, which can be computationally demanding to enforce. In this work, we discuss the nature of the errors that result from insufficient convergence and suggest a strategy that avoids such problems. Using perturbation theory to reintroduce the mutual coupling into the direct algorithm, we present a computationally efficient method that combines the precision of the direct approach with the accuracy of the variational approach. By analyzing the convergence of this perturbation series, we derive a simple extrapolation formula that delivers a very accurate approximation to the infinite order solution at the cost of only a few iterations. We refer to the new method as extrapolated perturbation theory. Finally, we draw connections to our previously published permanent multipole algorithm to develop an efficient implementation of the electric field and Thole terms and also derive some necessary, but not sufficient, criteria that force field parameters must obey. PMID:26298123
West, Adam
2016-01-01
From the famous experiments of Stern and Gerlach to the present, measurements of magnetic dipole moments, and searches for electric dipole moments of ``elementary'' particles have played a major role in our understanding of sub-atomic physics. In this talk I discuss the progress on measurements and theory of the magnetic dipole moments of the electron and muon. I also discuss a new proposal to search for a permanent electric dipole moment (EDM) of the muon and put it into the more general con...
NLO evolution of color dipoles
Energy Technology Data Exchange (ETDEWEB)
Ian Balitsky; Giovanni Chirilli
2008-01-01
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leaing order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities. We calculate the gluon contribution to small-x evolution of Wilson lines (the quark part was obtained earlier).
Olson, Peter; Amit, Hagay
2006-11-01
The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more. PMID:16915369
Low-energy dipole strength in 112,120Sn
Özel-Tashenov, B; Lenske, H; Krumbholz, A M; Litvinova, E; von Neumann-Cosel, P; Poltoratska, I; Richter, A; Rusev, G; Savran, D; Tsoneva, N
2014-01-01
The 112,120Sn(gamma,gamma') reactions below the neutron separation energies have been studied at the superconducting Darmstadt electron linear accelerator S-DALINAC for different endpoint energies of the incident bremsstrahlung spectrum. Dipole strength distributions are extracted for 112Sn up to 9.5 MeV and for 120Sn up to 9.1 MeV. A concentration of dipole excitations is observed between 5 and 8 MeV in both nuclei. Missing strength due to unobserved decays to excited states is estimated in a statistical model. A fluctuation analysis is applied to the photon scattering spectra to extract the amount of the unresolved strength hidden in background due to fragmentation. The strength distributions are discussed within different model approaches such as the quasiparticle-phonon model and the relativistic time blocking approximation allowing for an inclusion of complex configurations beyond the initial particle-hole states. While a satisfactory description of the fragmentation can be achieved for sufficently large...
Reduction of iron saturation in cosine theta dipoles
International Nuclear Information System (INIS)
It is possible to reduce or eliminate iron saturation effects in high field cosine theta dipoles by putting a large gap between the coil and the iron, but part or most of the field added by the iron will be lost. With a small gap between coil and iron and with sufficient iron on the midplane, iron saturation always occurs first at the poles. Thus to delay saturation onset, it may be sufficient to remove iron near the poles. The RHIC dipole as presently designed is an ideal candidate for a study of possible improvement, since it attains a quench field greater than 4.5 T and has a small gap, about 5 mm, between coil and iron. The coil designed for it, which has 4 blocks of 16, 9, 6 and 3 turns, respectively, is close to perfect at low field. The iron contributes substantial sextupole and decapole at both intermediate and high fields. The moderately large b2 at 3.44 T can be nulled to first approximation by external trim sextupoles, and the b4 and b6 terms add algebraically to 0.1 at 5 = 32 mm. The possible benefits of a shaped iron aperture may arise at higher fields, where b4 and b6 don't cancel and b2 requires substantial correction
Bubnov, I. N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.
2015-01-01
Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.
EuCARD-HFM dipole model design options
Bruchon, Mélanie; Durante, Maria; Karppinen, Mikko; Kircher, François; Manil, Pierre; Milanese, Attilio; Oberli, Luc; Perez, Juan Carlos; Rifflet, Jean-Michel; Rondeaux, Françoise; Todesco, Ezio
2010-01-01
The EuCARD-HFM task aims at realizing a 13 T dipole magnet with an aperture of 100 mm, which is a challenging step towards very high field accelerator magnets. This dipole, utilizing Nb3Sn superconductor, will be used in the Fresca test facility at CERN. A preliminary design study has compared two possible design layouts for the EuCARD-HFM magnet: the cos-θ and the block. This report summarizes the conclusions of this study and justifies, on the base of quantitative and qualitative arguments, our decision to pursue the detailed design with the block layout.
2004-01-01
The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.
Basilakos, Spyros; Plionis, Manolis
2006-01-01
We re-examine the gravitational acceleration (dipole) induced on the Local Group of galaxies by the Infrared Astronomical Satellite (IRAS) galaxy distribution of the Point Source Catalogue redshift survey (PSCz). We treat the cirrus-affected low galactic latitudes by utilizing a spherical harmonic expansion of the galaxy surface density field up to the octapole order. We find strong indications for significant contributions to the Local Group motion from depths up to $\\sim 185$ $h^{-1}$ Mpc a...
Pierce, Aaron
2014-01-01
We consider models where a hidden U(1)' interacts with the Standard Model via kinetic mixing. We assume the dark matter is neutral under this U(1)', but interacts with it via higher dimension operators. In particular, we consider a hidden dipole operator for fermionic dark matter, and charge radius and Rayleigh operators for scalar dark matter. These models naturally explain the absence of direct detection signals, but allow for a thermal cosmology. LHC searches for the Z' represent a powerful probe.
Niven, Ivan
2008-01-01
This self-contained treatment originated as a series of lectures delivered to the Mathematical Association of America. It covers basic results on homogeneous approximation of real numbers; the analogue for complex numbers; basic results for nonhomogeneous approximation in the real case; the analogue for complex numbers; and fundamental properties of the multiples of an irrational number, for both the fractional and integral parts.The author refrains from the use of continuous fractions and includes basic results in the complex case, a feature often neglected in favor of the real number discuss
Analytic description of dipole-bound anion photodetachment
International Nuclear Information System (INIS)
An analytical model for a dipole-bound anion (DBA) is proposed based on the exactly solvable three-dimensional Schroedinger equation for the excess electron bound by dipole potential of the parent neutral molecule (NM) in the Born-Oppenheimer approximation. The model gives reasonable analytical approximation for the dependence of the DBA binding energy on the NM dipole moment previously found numerically by many authors. The cross section of one-photon photodetachment of DBA is calculated in explicit analytical form. In the limit of high photon frequency, ω, the calculated cross-section displays ∼ω-2 behavior, which agrees perfectly with the experimental data [Bailey et al., J. Chem. Phys 104, 6976 (1996)]. At the threshold, the cross section demonstrates Gailitis-Damburg oscillations. Numerical dependence is provided for the maximal value of the cross section as a function of the NM dipole moment and the binding energy of the excess electron
Dipole emission and coherent transport in random media I
Donaire, M.
2008-01-01
This is the first of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce general expressions for the decay rate of spontaneous emitters and the power emission of induced dipoles embedded in homogenous dielectric media. We derive formulae which apply generically to virtual cavities and, in the continuum approximation, to small real cavities.
The AGL equation from the dipole picture
International Nuclear Information System (INIS)
The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher; Russell, Alexander
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities i...
Quantum emitter dipole-dipole interactions in nanoplasmonic systems
Nečada, Marek; Törmä, Päivi
2016-01-01
We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.
Dipole-Dipole Correlations for the sine-Gordon Model
Zhao, Guowei
2011-01-01
We consider the dipole-dipole correlations for the two-dimensional Coulomb gas/sine-Gordon model for $\\beta> 8\\pi$ by a renormalization group method. First we re-establish the renormalization group analysis for the partition function using finite range decomposition of the covariance. Then we extend the analysis to the correlation functions. Finally, we show a power-law decay characteristic of the dipole gas.
AutoDipole - Automated generation of dipole subtraction terms
International Nuclear Information System (INIS)
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)
AutoDipole - Automated generation of dipole subtraction terms
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2009-11-15
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)
Anion-dipole interactions make the homopolymers self-assemble into multiple nanostructures.
Wang, Long-Hai; Zhang, Zi-Dan; Hong, Chun-Yan; He, Xue-Hao; You, Wei; You, Ye-Zi
2015-05-27
Anion-dipole interactions can make homopolymers self-assemble like an amphiphilic block copolymer. Generally, common homopolymers cannot self-assemble into multiple nanostructures. Here, it is reported that anion-dipole interactions can enable a number of homopolymers to achieve a variety of self-assembly behaviors in aqueous solution. Such interactions and self-assembly features have been exclusively reserved for amphiphilic (block) polymers until now. PMID:25873566
International Nuclear Information System (INIS)
To mark the one hundredth anniversary of the discovery of the electron by J.J. Thomson, this article, part of a series, looks at low energy electron experiments which show promise of developing our understanding of elementary particle physics beyond the standard model and quantum electrodynamics. Study of electric dipole moments, time-reversal and supersymmetry at the Sussex centre for optical and atomic physics is described. Calculations to determine electron spin in YbF have been undertaken at 30Gvm sup - sup 1. 4 figs
Weisskopf--Wigner approximation in atomic physics
International Nuclear Information System (INIS)
Several approximations involved in the usual Weisskopf-Wigner treatment of the emission of light by an atom are investigated. The system considered is a recoilless, nonrelativistic hydrogen atom interacting with a quantized electromagnetic field, in dipole approximation (with a nonrelativistic cutoff in momentum space). Since only electric dipole waves interact with the atom, the Hamiltonian can be expressed in a simple one-dimensional form. The time evolution of the system is determined by resolvent operator techniques. The method goes beyond the analysis by Van Hove and Hugenholtz, allowing one to treat also fields of finite intensity in the infinite-volume limit. A comparison between this and other techniques is made
Todesco, E; De Rijk, G; Rossi, L
2014-01-01
For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 20 T operational field are needed. In this paper we first review the conceptual design based on block coil proposed in the Malta workshop, addressing the issues related to coil fabrication and assembly. We then propose successive simplifications of this design, associating a cost estimate of the conductor. We then analyse a block layout for a 15 T magnet. Finally, we consider two layouts based on the D20 and HD2 short models built by LBL. A first analysis of the aspects related to protection of these challenging magnets is given.
Future Muon Dipole Moment Measurements
Roberts, B. Lee
2004-01-01
From the famous experiments of Stern and Gerlach to the present, measurements of magnetic dipole moments, and searches for electric dipole moments of ``elementary'' particles have played a major role in our understanding of sub-atomic physics. In this talk I discuss the progress on measurements and theory of the magnetic dipole moment of the muon. I also discuss a new proposal to search for a permanent electric dipole moment (EDM) of the muon and put it into the more general context of other ...
Interaction between two magnetic dipoles in a uniform magnetic field
Directory of Open Access Journals (Sweden)
J. G. Ku
2016-02-01
Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Schmidt, Wolfgang M
1980-01-01
"In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)
International Nuclear Information System (INIS)
The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow
Highly Automated Dipole EStimation (HADES).
Campi, C; Pascarella, A; Sorrentino, A; Piana, M
2011-01-01
Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface, which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset. PMID:21437232
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
... the signal causes the heart to contract and pump blood. Heart block occurs if the electrical signal is ... degree heart block limits the heart's ability to pump blood to the rest of the body. This type ...
Controlling atom motion through the dipole-dipole force
International Nuclear Information System (INIS)
We describe simulations that illustrate the possibility for manipulating the position correlation of atoms in a magneto-optical trap (MOT) using the dipole-dipole interaction. The control scheme utilizes a narrow band laser that is detuned to the high-frequency side of a single-photon Rydberg transition in an isolated atom. As two atoms move near each other, they can be laser excited to repelling diatomic Rydberg-Rydberg potential energy curves which halt their approach. By chirping the laser from large to small detunings, atoms in a MOT can be pushed apart by dipole-dipole forces, thereby controlling nearest-neighbor interactions. Alternatively, by holding the frequency of the Rydberg excitation laser fixed as the MOT is loaded, it should be possible to limit the minimum distance between atoms to a prescribed value
2001-01-01
Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...
Smith, Martin H.
1992-01-01
Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…
Interacting boson approximation
International Nuclear Information System (INIS)
Lectures notes on the Interacting Boson Approximation are given. Topics include: angular momentum tensors; properties of T/sub i//sup (n)/ matrices; T/sub i//sup (n)/ matrices as Clebsch-Gordan coefficients; construction of higher rank tensors; normalization: trace of products of two s-rank tensors; completeness relation; algebra of U(N); eigenvalue of the quadratic Casimir operator for U(3); general result for U(N); angular momentum content of U(3) representation; p-Boson model; Hamiltonian; quadrupole transitions; S,P Boson model; expectation value of dipole operator; S-D model: U(6); quadratic Casimir operator; an O(5) subgroup; an O(6) subgroup; properties of O(5) representations; quadratic Casimir operator; quadratic Casimir operator for U(6); decomposition via SU(5) chain; a special O(3) decomposition of SU(3); useful identities; a useful property of D/sub αβγ/(α,β,γ = 4-8) as coupling coefficients; explicit construction of T/sub x//sup (2)/ and d/sub αβγ/; D-coefficients; eigenstates of T3; and summary of T = 2 states
Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to Z
Screening of nucleon electric dipole moments in nuclei
Inoue, Satoru; Gudkov, Vladimir; Schindler, Matthias R.; Song, Young-Ho
2016-05-01
A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by about 1% in a zero-range approximation calculation.
Screening of Nucleon Electric Dipole Moments in Nuclei
Inoue, Satoru; Schindler, Matthias R; Song, Young-Ho
2015-01-01
A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by almost 50% in a zero-range approximation calculation.
Electrodynamics acceleration of electrical dipoles
Dolya, S N
2013-01-01
This article considers the acceleration of electric dipoles consisting of thin metal plates and dielectric (barium titanate). The dipoles are of a cylindrical shape with a diameter of the cylinder two centimeters and length one centimeter. Capacity of the parallel-plate capacitor is three hundred picofarads and it is charged up to the voltage of two hundred eighty kilovolts. Pre-acceleration of the electric dipoles till velocity one kilometer per second is reached by the gas-dynamic method. The finite acceleration is produced in a spiral waveguide, where the pulse is travelling with voltage amplitude seven hundreds kilovolts and power one hundred twenty-five megawatts. This pulse travels via the spiral waveguide and accelerates the injected electric dipoles in the longitudinal direction till the finite velocity eight and a half kilometers per second over length seven hundred and seventy meters.
Dipoles, unintentional antennas and EMC
Directory of Open Access Journals (Sweden)
Berend Danker
2008-01-01
Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.
Possible displacement of mercury's dipole
International Nuclear Information System (INIS)
Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/3 and a dipole tilt angle lambda of only 1.20 away from the sun. All other parameters are essentially unchanged
Backfire antennas with dipole elements
DEFF Research Database (Denmark)
Nielsen, Erik Dragø; Pontoppidan, Knud
1970-01-01
A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...... the surface current distribution on the reflector plate. Numerical results obtained for Yagi backfire antennas and short-backfire antennas using this theory are compared with experimental results....
International Nuclear Information System (INIS)
High spin states in 196Hg have been populated in the 198Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.
Highly Automated Dipole EStimation (HADES)
Campi, C.; Pascarella, A.; Sorrentino, A.; M. Piana
2011-01-01
Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach, particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many ...
Moss, David; Kitchatinov, Leonid L.; Sokoloff, Dmitri
2012-01-01
During a solar magnetic field reversal the magnetic dipole moment does not vanish, but migrates between poles, in contradiction to the predictions of mean-field dynamo theory. We try to explain this as a consequence of magnetic fluctuations. We exploit the statistics of fluctuations to estimate observable signatures. Simple statistical estimates, taken with results from mean-field dynamo theory, suggest that a non-zero dipole moment may persist through a global field reversal. Fluctuations in...
A path integral approach to the full Dicke model with dipole-dipole interaction
Energy Technology Data Exchange (ETDEWEB)
Alcalde, M Aparicio [Instituto de Fisica Teorica, UNESP, Sao Paulo State University, Caixa Postal 70532-2, 01156-970 Sao Paulo, SP (Brazil); Stephany, J [Departamento de Fisica, Seccion de Fenomenos Opticos, Universidad Simon Bolivar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Svaiter, N F, E-mail: aparicio@ift.unesp.br, E-mail: stephany@usb.ve, E-mail: nfuxsvai@cbpf.br [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2011-12-16
We consider the full Dicke spin-boson model composed by a single bosonic mode and an ensemble of N identical two-level atoms with different couplings for the resonant and anti-resonant interaction terms, and incorporate a dipole-dipole interaction between the atoms. Assuming that the system is in thermal equilibrium with a reservoir at temperature {beta}{sup -1}, we compute the free energy in the thermodynamic limit N {yields} {infinity} in the saddle-point approximation to the path integral and determine the critical temperature for the super-radiant phase transition. In the zero temperature limit, we recover the critical coupling of the quantum phase transition, presented in the literature. (paper)
Visualizing coherent intermolecular dipole-dipole coupling in real space.
Zhang, Yang; Luo, Yang; Zhang, Yao; Yu, Yun-Jie; Kuang, Yan-Min; Zhang, Li; Meng, Qiu-Shi; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J G
2016-03-31
Many important energy-transfer and optical processes, in both biological and artificial systems, depend crucially on excitonic coupling that spans several chromophores. Such coupling can in principle be described in a straightforward manner by considering the coherent intermolecular dipole-dipole interactions involved. However, in practice, it is challenging to directly observe in real space the coherent dipole coupling and the related exciton delocalizations, owing to the diffraction limit in conventional optics. Here we demonstrate that the highly localized excitations that are produced by electrons tunnelling from the tip of a scanning tunnelling microscope, in conjunction with imaging of the resultant luminescence, can be used to map the spatial distribution of the excitonic coupling in well-defined arrangements of a few zinc-phthalocyanine molecules. The luminescence patterns obtained for excitons in a dimer, which are recorded for different energy states and found to resemble σ and π molecular orbitals, reveal the local optical response of the system and the dependence of the local optical response on the relative orientation and phase of the transition dipoles of the individual molecules in the dimer. We generate an in-line arrangement up to four zinc-phthalocyanine molecules, with a larger total transition dipole, and show that this results in enhanced 'single-molecule' superradiance from the oligomer upon site-selective excitation. These findings demonstrate that our experimental approach provides detailed spatial information about coherent dipole-dipole coupling in molecular systems, which should enable a greater understanding and rational engineering of light-harvesting structures and quantum light sources. PMID:27029277
Measuring the Forces between Magnetic Dipoles
Gayetsky, Lisa E.; Caylor, Craig L.
2007-01-01
We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.
Measurement of Reproducibility for CSRm Dipoles
Institute of Scientific and Technical Information of China (English)
SuYalong; HeYuan; YuanPing; MaLizhen; LiuWeijun; HanShaofei; ZhangSiling
2003-01-01
The reproducibility of CSRm dipoles is an important factor to be considered in CSR project. There have seventeen dipoles in the cooling storage main ring (CSRm). The reproducibility of seventeen dipoles should be better than 2×10-4 at the optimum magnetic held. The longest in the seventeen dipoles is chosen as the reference magnet;. The reproducibility is derived as
Dispersion dipoles for coupled Drude oscillators
Odbadrakh, Tuguldur T.; Jordan, Kenneth D.
2016-01-01
We present the dispersion-induced dipole moments of coupled Drude oscillators obtained from two approaches. The first approach evaluates the dipole moment using the second-order Rayleigh-Schrödinger perturbation theory wave function allowing for dipole-dipole and dipole-quadrupole coupling. The second approach, based on response theory, employs an integral of the dipole-dipole polarizability of one oscillator and the dipole-dipole-quadrupole hyperpolarizability of the other oscillator over imaginary frequencies. The resulting dispersion dipoles exhibit an R-7 dependence on the separation between the two oscillators and are connected to the leading-order C6/R6 dispersion energy through the electrostatic Hellmann-Feynman theorem.
Design, manufacture and measurements of permanent dipole magnets for DIRAC
Vorozhtsov, A; Kasaei, S; Solodko, E; Thonet, P A; Tommasini, D
2013-01-01
The one of the aim of the DIRAC experiment is the observation of the long-lived π+π- atoms, using the proton beam of the CERN Proton Synchrotron [1]. Two dipole magnets are needed for the for the DIRAC experiment as high resolution spectrometers. The dipole magnet will be used to identify the long-lived atoms on the high level background of π+π- pairs produced simultaneously with π+π- atoms. The proposed design is a permanent magnet dipole with a mechanical aperture of 60 mm. The magnet, of a total physical length of 66 mm, is based on Sm2Co17 blocks and provides an integrated field strength of 24·10-3 T×m. The Sm2Co17 was chosen as a material for the permanent magnet blocks due to its radiation hardness and weaker temperature dependence. The magnetic field quality is determined by 2 ferromagnetic poles, aligned together with the permanent magnets blocks. The paper describes the design, manufacture and magnetic measurements of the magnets.
On the collectivity of Pygmy Dipole Resonance within schematic TDA and RPA models
Baran, V; Colonna, M; Di Toro, M; Croitoru, A; Nicolin, A I
2014-01-01
Within schematic models based on the Tamm-Dancoff Approximation and the Random-Phase Approximation with separable interactions, we investigate the physical conditions which determine the emergence of the Pygmy Dipole Resonance in the E1 response of atomic nuclei. We find that if some particle-hole excitation manifests a different, weaker residual interaction, an additional mode will appear, with an energy centroid closer to the distance between two major shells and therefore well below the Giant Dipole Resonance. This state, together with Giant Dipole Resonance, exhausts all the transition strength in the Tamm-Dancoff Approximation and all the Energy Weighted Sum Rule in the Random-Phase Approximation. These features suggest a collective nature for this mode which we identify with the Pygmy Dipole Resonance.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
Electromagnetic Pulse of a Vertical Electric Dipole in the Presence of Three-Layered Region
Cheng, D.; Gu, T. T.; Cao, P; He, T; Li, K
2015-01-01
Approximate formulas are obtained for the electromagnetic pulses due to a delta-function current in a vertical electric dipole on the planar surface of a perfect conductor coated by a dielectric layer. The new approximated formulas for the electromagnetic field in time domain are retreated analytically and some new results are obtained. Computations and discussions are carried out for the time-domain field components radiated by a vertical electric dipole in the presence of three-layered regi...
Splitting of the Dipole and Spin-Dipole Resonances
Austin, S M; Galonsky, A; Nees, T; Sterrenburg, W A; Bainum, D E; Rapaport, J; Sugarbaker, E R; Foster, C C; Goodman, C D; Horen, D J; Goulding, C A; Greenfield, M B; Austin, Sam M.
2001-01-01
Cross sections for the 90,92,94Zr(p,n) reactions were measured at energies of 79.2 and 119.4 MeV. A phenomenological model was developed to describe the variation with bombarding energy of the position of the L=1 peak observed in these and other (p,n) reactions. The model yields the splitting between the giant dipole and giant spin dipole resonances. Values of these splittings are obtained for isotopes of Zr and Sn and for 208Pb.
International Nuclear Information System (INIS)
Data are presented on the various cosine theta type magnet models constructed at BNL in the development of ring magnets for ISABELLE, a pair of intersecting 200 GeV proton accelerating storage rings. The rings are to be filled with 30 GeV protons from the AGS and then accelerated to 200 GeV. The acceleration period is a 120 sec ramp from approximately 0.5 T to 4 T. The effect of mechanical precompression on training was studied by varying the interference fit between the coil (ISA IV) and its iron shield. The results were used to optimize the mechanical design of the full-size magnet models
Atom-Pair Kinetics with Strong Electric-Dipole Interactions
Thaicharoen, N.; Gonçalves, L. F.; Raithel, G.
2016-05-01
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C3 coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
Atom-pair kinetics with strong electric-dipole interactions
Thaicharoen, N; Raithel, G
2016-01-01
Rydberg-atom ensembles are switched from a weakly- into a strongly-interacting regime via adiabatic transformation of the atoms from an approximately non-polar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar $C_3$ coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
1974-01-01
Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.
Radiation from an off-centred rotating dipole in vacuum
Pétri, J
2016-01-01
When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter $\\epsilon = d/R$, where $d$ is the displacement of the dipole from the stellar centre and $R$ the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in~$\\epsilon$. Results are compared to ...
Holocene geocentric dipole tilt model constrained by sedimentary paleomagnetic data
Nilsson, Andreas; Snowball, Ian; Muscheler, Raimund; Uvo, Cintia Bertacchi
2010-08-01
Paleomagnetic data, although undeniably limited, have been used to constrain complex time-varying geomagnetic field models. Here we present four different versions of a time varying geocentric dipole model for the past approximately 9000 years based on a limited selection of sedimentary paleomagnetic data with good spatial coverage. The robustness of the modeling approach is evaluated using modern magnetic observation station data provided by the World Data Centre for Geomagnetism in Edinburgh and we discuss the magnitude of the error introduced by insufficient data coverage. The prediction in terms of directional variations is tested against paleomagnetic data from 63 different sedimentary sites and compared to results from recently published spherical harmonic geomagnetic field models. We find that the dipole estimate can explain the paleomagnetic data almost as well as the more complicated spherical harmonic models. Specific areas and records are identified where there are significant differences between the performance of the dipole estimate and the spherical harmonic models. Our results suggest that many of the differences between the dipole model predictions and the paleomagnetic data can be related to poor paleomagnetic quality and/or the lack of accurate and precise time control inherent to some of the records. These results agree with Valet et al. (2008) who suggested that the CALS7K.2 model probably underestimates the dipole contribution in order to reduce the misfit between the inversion and the data. We conclude that better paleomagnetic data and associated time control are needed to improve global geomagnetic field models.
Radiation from an off-centred rotating dipole in vacuum
Pétri, J.
2016-08-01
When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter ɛ = d/R, where d is the displacement of the dipole from the stellar centre and R the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in ɛ. Results are compared to earlier works and a discussion on repercussions on pulsar braking index and multi-wavelength light curves is proposed.
Geometrical simplification of the dipole-dipole interaction formula
Kocbach, Ladislav
2009-01-01
Many students meet quite early this dipole-dipole potential energy when they are taught electrostatics or magnetostatics, and it is also a very popular formula, featured in the encyclopedias. We show that by a simple rewriting of the formula it becomes apparent that for example, by reorienting the two dipoles, their attraction can become exactly twice as large. The physical facts are naturally known, but the presented transformation seems to underline the geometrical features in a rather unexpected way. The consequence of the discussed features is the so called magic angle which appears in many applications. The present discussion also contributes to an easier introduction of this feature. We also discuss a possibility for designing educational toys and try to suggest why this formula has not been written down frequently before this work. Similar transformation is possible for the field of a single dipole, there it seems to be observed earlier, but also in this case we could not find any published detailed di...
Coherent and incoherent dipole-dipole interactions between atoms
Robicheaux, Francis
2016-05-01
Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.
On the Bethe approximation to the reactance matrix
International Nuclear Information System (INIS)
The Bethe approximation to the reactance matrix is considered for electron-neutral-atom collisions. Analytic expressions are given for the matrix elements. For the special case of electron-neutral-atom scattering the sum rules of Burgess are simplified. Particular consideration is given to the problem of calculating cross sections for dipole transitions. Partial cross sections are presented for all non-exact resonance dipole transitions between hydrogen atom states, with n, n' = 11, 31, 51, 71, 91. (author)
Nonrelativistic atom-photon interaction beyond the multipole approximation
Boers, D.J.; Wijers, C.M.J.
2003-01-01
We investigate the interaction between the hydrogen atomic orbitals and the quantized modes of the electromagnetic field within the domain of nonrelativistic quantum electrodynamics in the Coulomb gauge. Contrary to the conventional dipole approximation and higher-order multipole approximations, whi
Dipole scattering amplitude in momentum space: investigating fluctuations at HERA
International Nuclear Information System (INIS)
We extend a recently proposed dipole model which relates the virtual photon-proton cross section to the dipole-proton forward scattering amplitude in momentum space investigating the effects of the gluon number fluctuations. The model interpolates between well known asymptotic behaviours predicted by perturbative QCD from the Balitsky-Kovchegov equation, which describes the rapidity evolution of the dipole-proton scattering amplitude in the mean field approximation. The model was shown to be successful in describing the last HERA data for the case where the strong coupling constant alphas is fixed, showing also some important advantages when compared with other dipole models - all of them in coordinate space - in the literature. Based on the fact that the fluctuations may be important in the small-x evolution and on recent results obtained in coordinate space beyond the mean field approximation, we use this model to parametrize the proton structure function and confront it to HERA data using the average (physical) amplitude - then including fluctuations - within the momentum space framework. (author)
Induced dipole-dipole interactions in light diffusion from point dipoles
Cherroret, Nicolas; van Tiggelen, Bart A
2016-01-01
We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order two in the atomic density and accounts for the vector character of light. It is applied to the calculation of the electromagnetic energy stored in the atomic cloud - which modifies the energy transport velocity - and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.
Induced dipole-dipole interactions in light diffusion from point dipoles
Cherroret, Nicolas; Delande, Dominique; van Tiggelen, Bart A.
2016-07-01
We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean free paths. Results are compared to those obtained from a purely scalar model for light.
DEFF Research Database (Denmark)
Andersen, Jørgen Bach
2006-01-01
A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...
The dipole model structure functions
International Nuclear Information System (INIS)
We present an approach to the evolution of the valence structure functions based on the Colour Dipole Cascade Model for deep inelastic lepto-production. We show that this approach leads to an evolution equation similar to the DGLAP equation. In our approach the dependence on Q2 is however much weaker and the evolution levels out at high Q2. (orig.)
The Collider dipole magnet program
International Nuclear Information System (INIS)
The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
Field shape of the accumulator LDA dipoles
Energy Technology Data Exchange (ETDEWEB)
Brown, B.C.
1996-05-01
Large Aperture Dipoles (LDA) are used in the Fermilab Antiproton Accumulator to provide one half of the bending required for that storage ring. The production measurement data for those magnets are analyzed and the integrated field shape on the median plane at the design operating current (1,180 A) is reported. When linear (quadrupole) and parabolic (sextupole) terms are subtracted, the remaining field errors are only {approximately}10{sup {minus}4} over a {+-}4 inch aperture. Polynomial fits to that data can be interpreted in terms of normal harmonics of the magnetic field. However the polynomial fits are not unique. When the polynomial coefficients are expressed as harmonics with a reference radius of 1 inch, the nonlinear portions of this field (harmonics higher than quadrupole) are typically 10{sup {minus}5} to 10{sup {minus}6}. Both individual magnet results and statistical profiles are reported along with studies of the fitting limitations.
Effects of dipole-dipole interaction on entanglement transfer
Institute of Scientific and Technical Information of China (English)
Guo Hong; Xiong Heng-Na
2008-01-01
A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered.The effects of dipole-dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled.
Vortex dipole resonance in the giant dipole resonance energy region
International Nuclear Information System (INIS)
The velocity fields associated with isovector excitations of spherical nuclei in the giant dipole resonance (GDR) energy region have been studied within a semiclassical approach based on the solution of the Vlasov kinetic equation for finite two-component Fermi systems with a moving surface. The neutron-proton asymmetry and dynamical surface effects lead to the fragmentation of the isovector dipole strength in the energy region of the GDR on two resonances. It was found that the velocity field has a potential character in the energy range near the main (low-energy) maximum of the GDR. However, the velocity field reveals a vortex character in the surface region at the energy of the high-energy maximum of the GDR
Light scattering by large clusters of dipoles as an analog for cometary dust aggregates
International Nuclear Information System (INIS)
This paper addresses the question as to whether the characteristics of solar radiation scattered by cometary dust can be intrinsically attributed to light scattering by a number of interacting electric dipoles. We calculate light scattering by an ensemble of dipoles having the polarizability of an isolated sphere using the discrete dipole approximation. Our results are consistent with the recent successful model that describes cometary dust as large aggregate particles consisting of optically dark submicrometer-size monomers. We show that by calculating electric dipole-dipole interactions the overall trend of the optical properties can be studied. Calculating higher scattering orders is currently limited by computer capabilities, but is required for a better quantitative description of light scattering by cometary dust. We finally discuss the different model parameters considered for investigating the optical properties of cometary dust
Noncommutative Dipole Field Theories And Unitarity
Energy Technology Data Exchange (ETDEWEB)
Chiou, Dah-Wei; Ganor, Ori J.
2003-10-24
We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.
Electron-scattering form factors for the giant dipole resonance
International Nuclear Information System (INIS)
Using a previously developed formalism based on the generator coordinate method, the longitudinal- and transverse-excitation form factors for the giant dipole resonance are obtained. Although microscopically established, that approach can provide analytic and compact expressions for some selected closed-shell nuclei. Our calculations are then compared with the phenomenological Goldhaber-Teller isospin-mode result and the experimental data. From our method, we derive restricted RPA-results (quadratic approximation) which are analysed. (author)
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Webb, Neil
2011-01-01
Filmed on the English south coast 'Ghost Block' depicts the uncanny and eerie atmosphere at the site of a WW2 coastal defence line. The concrete cubes were used as an anti-invasion blockade against potential landing forces. This protection line now slowly decaying and becoming enmeshed into the environment still acts as a defence to repel unwanted visitors. The area is a natural reserve to nesting birds that often lay eggs directly onto the beach surface. The blocks act as a final barrier ...
International Nuclear Information System (INIS)
We consider a bilayer setup with two parallel planes of cold fermionic polar molecules when the dipole moments are oriented perpendicular to the planes. The binding energy of two-body states with one polar molecule in each layer is determined and compared to various analytic approximation schemes in both coordinate- and momentum-space. The effective interaction of two bound dimers is obtained by integrating out the internal dimer bound state wave function and its robustness under analytical approximations is studied. Furthermore, we consider the effect of the background of other fermions on the dimer state through Pauli blocking, and discuss implications for the zero-temperature many-body phase diagram of this experimentally realizable system. (author)
Technology of superconducting accelerator dipoles
International Nuclear Information System (INIS)
We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value
Dipole relaxation losses in DNA
Briman, M.; N. P. Armitage; Helgren, E.; Gruner, G.
2003-01-01
The electrodynamic response of DNA in the millimeter wave range is investigated. By performing measurements under a wide range of humidity conditions and comparing the response of single strand DNA and double strand DNA, we show that the appreciable AC conductivity of DNA is not due to photon activated hopping between localized states, but instead due to dissipation from dipole motion in the surrounding water helix. Such a result, where the conductivity is due to the constrained motion of ove...
Energy Technology Data Exchange (ETDEWEB)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de [Institut für Physikalische Chemie, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Institute for Molecules and Materials, Radboud University, NL-6525 AS Nijmegen (Netherlands)
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
International Nuclear Information System (INIS)
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54∘ showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed
... Drugs & Supplements Videos & Tools Español You Are Here: Home ... It numbs or causes a loss of feeling in the lower half your body. This lessens the pain of contractions during childbirth. An epidural block may also be used to ...
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M
2015-01-01
We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.
Collectivity of dipole bands in {sup 196}Pb
Energy Technology Data Exchange (ETDEWEB)
Carpenter, M.P.; Liang, Y.; Janssens, R.V.F. [and others
1995-08-01
The region of nuclei with mass {approximately} 190 was studied extensively over the last few years following the discovery of superdeformation in {sup 190}Hg. More recently, considerable interest in the neutron-deficient Pb isotopes developed with the discover of a number of bands at high spin connected by dipole transitions in both even {sup 192-200}Pb and odd {sup 197-201}Pb nuclei. The majority of the dipole bands are regular in character (i.e. transition energies increase smoothly with spin) while the remaining bands are referred to as irregular in character, due to the fact that the transition energies do not increase smoothly with spin. The properties of the dipole bands were interpreted in terms of high-K, moderately-deformed oblate states built on configurations involving high-J, shape-driving quasiproton excitations coupled to rotation-aligned quasineutrons. It was suggested that the difference between the regular and irregular dipole sequences is related to the deformation where the irregular sequences are thought to be less collective than their regular counterparts.
The secular variation of pulsar magnetic dipole moments
International Nuclear Information System (INIS)
The time dependences of the inertia tensor and of a dissipative torque caused by the nonleptonic weak interaction have been investigated for a certain class of pulsars with no solid core. Early in the life of the pulsar, the angular velocity vector is predicted to move with respect to fixed body axes in such a way that it becomes perpendicular to the magnetic dipole moment. During this motion, the solid outer shell suffers plastic deformation so that the dipole moment becomes approximately collinear with a principal axis. After 104 or 105 yr, the dissipative torque is negligibly small compared with the electromagnetic torque, the Euler equations are those for a simple rigid body, and alignment of spin and dipole moment occurs. If the dipole moment discussed by Lyne et al. (1975) is interpreted as being equal to the component perpendicular to the spin, its secular decay is a natural property of this model and is not a consequence of field decay through electrical resistivity. (Auth.)
Symmetry Energy and Isovector Giant Dipole Resonance in Finite Nuclei
Institute of Scientific and Technical Information of China (English)
CAO Li-Gang; MA Zhong-Yu
2008-01-01
We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian.A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found.This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0 MeV ≤ S(ρo)≤37.0 MeV.The comparison to the present experimental data in the soft dipole mode of 132 Sn constrains approximately the symmetry energy at ρ = 0.1 fm-3 at the interval 21.2MeV～ 22.5 MeV.It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
Holographic Description of Glueball and Baryon in Noncommutative Dipole Gauge Theory
Huang, Wung-Hong
2008-01-01
We study the glueball spectrum in the supersymmetric and non-supersymmetric 4D non-commutative dipole gauge theory from the holographic description. We adopt the semiclassical WKB approximation to solve the dilaton and antisymmetric tensor field equations on the dual supergravity backgrounds to find the analytic formula of the spectrum of $0^{++}$ and $1^{--}$ glueballs, respectively. In the supersymmetric theory we see that the dipole length plays the intrinsic scale which reflects the discr...
Sparse Approximate Inverses in Preconditioning Distributed Linear Systems
1997-01-01
Using a direct approximation of sparse matrix inverse in preconditioning is viewed as a good alternative to the preconditioning techniques that require a matrix factorization. A sparse approximate inverse is easy to compute and apply, and it is suitable for parallel implementations. For distributed linear systems of varying difficulty, approximate block LU preconditioning using sparse approximate inverse techniques and an incomplete LU factorization used in Block-Jacobi preconditioning are ...
Collective Dipole-Dipole Interactions in an Atomic Array
Sutherland, R T
2016-01-01
The coherent dipole-dipole interactions of atoms in an atomic array are studied. It is found that the excitation probability of an atom in an array parallel to the direction of laser propagation ($\\boldsymbol{\\hat{k}}$) will either grow or decay logarithmically along $\\boldsymbol{\\hat{k}}$, depending on the detuning of the laser. The symmetry of the system for atomic separations of $\\delta r = j\\lambda/2$, where $j$ is an integer, causes the excitation distribution and scattered radiation to abruptly become symmetric about the center of the array. For atomic separations of $\\delta r < \\lambda/2$, the appearance of a collection of extremely subradiant states ($\\Gamma\\sim 0$), disrupts the described trend. In order to interpret the results from a finite array of atoms, a band structure calculation in the $N\\rightarrow \\infty$ limit is conducted where the decay rates and the Collective Lamb Shifts of the eigenmodes along the Brillouin zone are shown. Finally, the band structure of an array strongly affects it...
Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides
DEFF Research Database (Denmark)
Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W
1993-01-01
arrangement were performed in two ways: (1) by the use of a Poisson-Boltzmann approach which allows for an estimate of the screening effect, and (2) by the use of a uniform dielectric model (Coulomb's law). It is found that the alpha-helix is stabilized by approximately 5-10 kcal/mol due to electrostatic...... directed from the beta-turn region toward the receptor-binding region. This overall dipole moment is antiparallel to the dipole moment of the alpha-helix caused by alignment of the peptide dipoles parallel to the helix. Calculations of the stabilization energy for this antiparallel dipole moment...... forces alone when the screening effect is considered. This energy is of the same order of magnitude as the enthalpy change for the unfolding of avian PP (approximately 30 kcal/mol), strongly indicating that the charge-dipole interactions are of significant importance for the stability of the three...
AutoDipole - Automated generation of dipole subtraction terms -
Hasegawa, K.; Moch, S.; Uwer, P.
2010-10-01
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for both massless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. Program summaryProgram title: AutoDipole Catalogue identifier: AEGO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 138 042 No. of bytes in distributed program, including test data, etc.: 1 117 665 Distribution format: tar.gz Programming language: Mathematica and Fortran Computer: Computers running Mathematica (version 7.0) Operating system: The package should work on every Linux system supported by Mathematica. Detailed tests have been performed on Scientific Linux as supported by DESY and CERN and on openSUSE and Debian. RAM: Depending on the complexity of the problem, recommended at least 128 MB RAM Classification: 11.5 External routines: MadGraph (including HELAS library) available under http://madgraph.hep.uiuc.edu/ or http://madgraph.phys.ucl.ac.be/ or http://madgraph.roma2.infn.it/. A copy of the tar file, MG_ME_SA_V4.4.30, is included in the AutoDipole distribution package. Nature of problem: Computation of next-to-leading order QCD corrections to scattering cross sections, regularization of real emission contributions. Solution method: Catani-Seymour subtraction method for massless and massive partons [1,2]; Numerical evaluation of subtracted matrix elements interfaced to MadGraph [3-5] (stand-alone version) using
Electromagnetic dipole moments of fermions
Fael, Matteo
2014-01-01
The electric (EDM) and magnetic (g-2) dipole moments are static properties sensitive to quantum corrections induced by the virtual particles that populate the vacuum. Indeed, they are well suited to test the Standard Model of Elementary of particle physics and to unveil unknown New Physics (NP) hidden at high energy. The electron and muon g-2 have been measured with the wonderful precision of 0.24 ppb and 0.54 ppm, respectively, and thus they represent one of the strongest confirmation ...
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
Electric dipole radiation near a mirror
International Nuclear Information System (INIS)
The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.
Electric dipole polarizability from first principles calculations
Miorelli, M; Barnea, N; Hagen, G; Jansen, G R; Orlandini, G; Papenbrock, T
2016-01-01
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In this paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. We find good agreement with data for the 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.
Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb3Sn model dipole
Holik, Eddie Frank, III; Benson, Chris; Blackburn, Raymond; Diaczenko, Nick; Elliott, Timothy; Jaisle, Andrew; McInturff, A.; McIntyre, P.; Sattarov, Akhdiyor
2012-06-01
We report the construction and testing of components of TAMU3, a 14 Tesla Nb3Sn block-coil dipole. A primary goal in developing this model dipole is to test a method of stress management in which Lorentz stress is intercepted within the coil assembly and bypassed so that it cannot accumulate to a level that would cause strain degradation in the superconducting windings. Details of the fabrication, tooling, and results of construction and magnet component testing will be presented.
Stochastic resonance in a surface dipole
International Nuclear Information System (INIS)
The dynamics of a neutral dipole diffusing on a one-dimensional symmetric periodic substrate is numerically investigated in the presence of an ac electric field. It is observed that the amplitude of the forced oscillations of the dipole can be enhanced by tuning the noise strength, i.e., the substrate temperature. Such a manifestation of stochastic resonance turns out to be extremely sensitive to the mechanical properties of the dipole. This phenomenon has immediate applications in surface physics and nanodevice technology.
4π dipole detector for the SSC
International Nuclear Information System (INIS)
A 4π dipole detector is considered for the study of intermediate and high Pt physics at the SSC. Dipole detectors emphasize physics over a large rapidity interval, and are typically superior to solenoid detectors for the measurement of forward charged particles. The strengths of solenoid and dipole detectors are largely orthogonal, and suggest that these detectors form a complimentary pair for the study of high Pt phenomena at the SSC
Janik, R A
2004-01-01
In this paper we study the description of saturation in Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (B-JIMWLK) picture when restricted to observables made up only from dipole operators. We derive a functional form of the evolution equation for the dipole probability distribution and find a one-parameter family of exact solutions to the dipole evolution equations.
Stable divergence angles of a magnetic dipole spiral array
Energy Technology Data Exchange (ETDEWEB)
Fan, X.D.; Bursill, L.A.
1996-03-01
An analytical model is introduced for Douady and Couder`s [1992] experiment, where phyllotactic patterns appear as a dynamical result of the interaction between magnetic dipoles. The difference equation for the divergence angle (i.e. the angle between successive radial vectors) is obtained by solving the equations of motion with a second nearest neighbour (SNN) approximation. A one dimensional map analysis as well as a comprehensive analytical proof shows that the divergence angle always converges to a single attractor regardless of the initial conditions. This attractor is approximately the Fibonacci angle ({approx} 138 deg) within variations due to a growth factor {mu} of the pattern. The system is proved to be stable with the SNN approximation. Further analysis with a third nearest neighbour approximation (TNN) shows extra linearly stable attractors may appear around the Lucas angle at {approx} 99.5 deg. 7 refs., 5 figs.
Electromagnetic way of accelerating the magnetic dipoles
Dolya, S N
2013-01-01
The article considers an opportunity of electrodynamics accelerating the magnetic dipoles at initial velocity six hundred meters per second, which is the magnetic dipole gain after pre-gas-dynamic acceleration to finite velocity eight and half kilometers per second. The acceleration length is more than two kilometers. When selecting the drag coefficient and the lift coefficient equal to one hundredth, the dipoles rise to height ten kilometers during a period of time fourteen seconds, thus reaching the vertical velocity one kilometer per second and reducing the forward velocity till seven and a half kilometer per second. The magnetic dipoles reach flight range twelve thousand three hundred kilometers.
The Inverse Problem for the Dipole Field
Epp, V
2015-01-01
The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.
Short term dynamic aperture with AC dipoles
Mönig, Saskia; Persson, Tobias Hakan Bjorn; Coello De Portugal, Jaime; Langner, Andy; Tomas, Rogelio; CERN. Geneva. ATS Department
2015-01-01
The dynamic aperture of an accelerator is determined by its non-linear components and errors. Control of the dynamic aperture is important for a good understanding and operation of the accelerator. The AC dipole, installed in the LHC for the diagnostic of linear and non-linear optics, could serve as a tool for the determination of the dynamic aperture. However, since the AC dipole itself modifies the non-linear dynamics, the dynamic aperture with and without AC dipole are expected to differ. The effect of the AC dipole on the dynamic aperture is studied within this note.
Dipole interactions in doubly-periodic domains
Tsang, Alan Cheng Hou
2013-01-01
We consider the interactions of finite dipoles in a doubly-periodic domain. A finite dipole is a pair of equal and opposite strength point vortices separated by a finite distance. The dynamics of multiple finite dipoles in an unbounded inviscid uid was first proposed by Tchieu, Kanso & Newton in [1] as a model that captures the "far- field" hydrodynamic interactions in fish schools. In this paper, we formulate the equations of motion governing the dynamics of finite-dipoles in a doubly-periodic domain. We show that a single dipole in a doubly-periodic domain exhibits periodic and aperiodic behavior, in contrast to a single dipole in an unbounded domain. In the case of two dipoles in doubly-periodic domain, we identify a number of interesting trajectories including collision, collision avoidance, and passive synchronization of the dipoles. We then examine two types of dipole lattices: rectangular and diamond. We verify that these lattices are in a state of relative equilibrium and show that the rectangular...
International Nuclear Information System (INIS)
Thermal insulation was the cause of the blockages that shut down five BWRs in Sweden. The main culprit was mineral wool installed when the plants started up. Physical degradation of the wool over the lifetime of the plant meant it could easily be washed out of place during a loss of coolant accident and could quickly block strainers in the emergency core cooling systems. The five BWRs are almost all back on line, equipped with larger strainers and faster backwashing capability. But the incident prompted more detailed investigation into how materials in the containment would behave during an accident. One material that caused particular concern is Caposil, a material often used to insulate the reactor vessel. Composed of natural calcium, aluminium silicates and cellulose fibres, in the event of a LOCA Caposil becomes particularly hazardous. Under high pressure, or when brought into contact with high pressure water and steam, Caposil fragments into 1 cm clumps, free fibres, and ''fines''. It is these fines which cause major problems and can block a strainer extremely quickly. The successful testing of a high performance water filter which can handle Caposil is described. (4 figures) (Author)
International Nuclear Information System (INIS)
We consider collision between a dipole-bound molecular anion and a neutral polar molecule and show that the excess electron can bind two neutral molecules into a dimer. Using a variational approach similar to the Heitler-London model of H''+2 ion we obtain the energy terms of such a dimer. Their difference determines the cross-section of electron transfer from the anion to the neutral molecule in quasiclassical near-resonant Born-Oppenheimer approximation. We obtain for the cross-section an analytic expression containing the weak (logarythmic) factor depending on the molecular dipole moment, and collision velocity. Our analytic calculations are in a good accordance with the results of a recent experiment.
Quantum–classical correspondence and the role of the dipole function in molecular dissociation
International Nuclear Information System (INIS)
We consider the quantum and classical dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses. The field–molecule interaction is given by the product of the time-dependent electric field and the molecule permanent dipole. We investigate the influence of the dipole function in molecular dissociation. We show that the dissociation can be suppressed at certain external field frequencies for a nonlinear and finite-range dipole function. The correspondence between quantum and classical results is established by relating classical Fourier amplitudes to discrete–continuum quantum matrix elements. - Highlights: • A finite-range dipole can prevent laser-induced dissociation for particular external frequencies. • Quantum and classical calculations show good agreement when the system is initially in excited levels. • An approximation of discrete–continuum matrix elements by Fourier components is obtained
Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren
2016-05-01
We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.
A dipole model of generating electric pulses in relaxation processes in the Earth's crust
Loseva, T. V.; Spivak, A. A.; Kuz'micheva, M. Yu.
2012-01-01
A new numerical model of generating electric pulses in the Earth's crust with use of a system of electric dipoles that are located uniformly over an active surface of the structural block relaxing after its constrained turn is developed. Electric moments of dipoles change with time according to the amplitude of differential movements. It is shown that the amplitude of electric pulses and the degree of their attenuation with distance to the source are in agreement with the data of results of instrumental observations.
Stability of high field superconducting dipole magnets
International Nuclear Information System (INIS)
Superconducting dipole magnets of the window-frame type were constructed and operated successfully at Brookhaven National Laboratory. Examples of this type of magnet are the 6 T ''Model T'' magnet, and the 4 T 80 superconducting bending magnet. The latter magnet operated reliably since October 1973 as part of the proton beam transport to the north experimental area at the BNL AGS with intensities of typically 8 x 1012 protons at 28.5 GeV/c passing through the magnet in a curved trajectory with the proton beam center only 2.0 cm from the beam pipe at both ends and the middle of each of the two units comprising the magnet. The energy in the beam is approximately 40 kJ per 3 μsec pulse. Targets were inserted in the beam at locations 2 m and 5.6 m upstream of the first magnet unit to observe the effects of radiation heating. The 80 magnet demonstrated ultrastability, surviving 3 μsec thermal pulses delivering up to 1 kJ into the cold magnet at repetition periods as short as 1.3 sec
Giant dipole resonance by many levels theory
International Nuclear Information System (INIS)
The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.)
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
The calculation of the electric dipole moment of diatomic molecules by the Variational Cellular Method is presented, discussed and compared with the semiempirical CNDO/2 method. The molecule HF is taken as example. It is also shown that the value of the electric dipole moment by the VCM improves considerably when the electronegativity of the atoms of the molecule is taken into account. (Author)
Gribov inelastic shadowing in the dipole representation
Kopeliovich, B Z
2016-01-01
The dipole phenomenology, which has been quite successful applied to various hard reactions, especially on nuclear targets, is applied for calculation of Gribov inelastic shadowing. This approach does not include ad hoc procedures, which are unavoidable in calculations done in hadronic representation. Several examples of Gribov corrections evaluated within the dipole description are presented.
Electric dipoles on the Bloch sphere
Vutha, Amar C
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2015-03-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics.
Dipole Relaxation in an Electric Field.
Neumann, Richard M.
1980-01-01
Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)
Dynamics of a nonlinear dipole vortex
DEFF Research Database (Denmark)
Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.;
1995-01-01
itself into a new nonlinear dipole, which is found to be stable. This new structure has a functional relationship given as omega=alpha psi+beta psi(3)-gamma psi(5). Such dipoles are stable to head-on collisions and they are capable of creating tripolar structures when colliding off axis. The effects of...
Integral Measurement of Dipole Prototype of CSR
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The dipole prototype is C type used as bending magnet of the injection beam line in CSR, and acts as a model of the dipoles in the CSR main ring simultaneously. The designed relative uniformity of good field is 0.001 in 100 mm width. The results of the local distribution and transfunction at transverse profile measured
How to Introduce the Magnetic Dipole Moment
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Bin Qin
2014-01-01
Relationships between fuzzy relations and fuzzy topologies are deeply researched. The concept of fuzzy approximating spaces is introduced and decision conditions that a fuzzy topological space is a fuzzy approximating space are obtained.
Stochastic approximation: invited paper
Lai, Tze Leung
2003-01-01
Stochastic approximation, introduced by Robbins and Monro in 1951, has become an important and vibrant subject in optimization, control and signal processing. This paper reviews Robbins' contributions to stochastic approximation and gives an overview of several related developments.
Rasin, A
1994-01-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
High-field dipoles for future accelerators
International Nuclear Information System (INIS)
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators
Approximate iterative algorithms
Almudevar, Anthony Louis
2014-01-01
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a
Approximation of distributed delays
Lu, Hao; Eberard, Damien; Simon, Jean-Pierre
2010-01-01
We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Electric dipole moment of the neutron in a gauge theory
International Nuclear Information System (INIS)
The problem of calculation of the electric dipole moment (EDM) of the neutron in a gauge theory is discussed. The consideration is carried out in the Kobayashi and Maskawa model of complex couplings, models with spontaneous CP violation and in the framework of quantum chromodynamics. The EDM of the neutron induced by the theta term of quantum chromodynamics is of order of (10-15-10-16) | theta | e cm. The mechanism of the spontaneous CP violation predicts the value of EDM coinciding practically with experimental data. The mechanism of CP violation due to complex couplings predicts the value of EDM of approximately 10-32 e cm
Electric dipole polarizabilities of Rydberg states of alkali atoms
Yerokhin, V A; Fritzsche, S; Surzhykov, A
2016-01-01
Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali atoms, Rb and Cs, for the $nS$, $nP_{1/2, 3/2}$, and $nD_{3/2, 5/2}$ states with large principal quantum numbers up to $n = 50$. The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semi-empirical core-polarization potential. The obtained results are compared with those from a simpler semi-empirical approach and with available experimental data.
Comparative study between toroidal coordinates and the magnetic dipole field
Chávez-Alarcón, Esteban
2012-01-01
There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.
Dipole-dipole resonance line shapes in a cold Rydberg gas
Richards, B. G.; Jones, R. R.
2016-04-01
We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.
Nonlinear approximation with dictionaries,.. II: Inverse estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...
Nonlinear approximation with dictionaries. II. Inverse Estimates
DEFF Research Database (Denmark)
Gribonval, Rémi; Nielsen, Morten
2006-01-01
In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block...