Sample records for blascon devices

  1. Photovoltaic device

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.


    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  2. Photovoltaic device

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.


    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  3. Concentration device


    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  4. Microfluidic Device

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)


    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  5. Thermonuclear device

    Purpose: To provide a thermonuclear device which causes the thermal expansion of a vacuum vessel to freely escape without refraining and is provided with a vacuum vessel having an excellently large rigidity against an electromagnetic force transiently acting whils retaining a predetermined position. Constitution: The device for supporting the vacuum vessel comprises piston cylinder means in which a pressurized fluid is sealed in cylinder chambers at both sides of a piston and with which these cylinder chambers are liquidly communicated through throttling means, and means for fixing any of the piston and the cylinder of said piston cylinder means to a bed-plate retaining the support device and another to the vacuum vessel. The vacuum vessel is retained through a connecting rod or the like connected to the cylinder of the support device. (Aizawa, K.)

  6. Ferroelectric devices

    Uchino, Kenji


    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  7. Superconducting device

    The present invention provides a superconducting device to be used in a thermonuclear device and capable of unifying a current distribution in a parallel superconducting main line without consumption of liquid helium caused by Joule loss. That is, the device has a paired coils comprising a coil comprising one of plurality of superconducting wires and another coil comprising the other of plurality of superconducting wires and having a reverse winding or negative mutual inductance relative to the coil. A circuit comprising a portion of a main line is disposed to the one coil of the paired coils, and a circuit comprising the remainder of the main line is connected to the other coil each in series. The circuit has a parallel constitution. Such a constitution can provide an effect of unifying the current distribution in the main line without consumption of liquid helium due to Joule loss. (I.S.)

  8. Stratification devices

    Andersen, Elsa; Furbo, Simon


    results in longer operation periods and improved utilization of the solar collector. Thermal stratification can be achieved, for example by using inlet stratification devices at all inlets to the storage tank. This paper presents how thermal stratification is established and utilized by means of inlet...

  9. Thermonuclear device

    Purpose: To absorb fabrication errors in radial toroidal coils and a spacer and completely fill the gap between them by the provision of an expansion device between the coils and the supporting spacer by injecting fillers of a predetermined composition. Constitution: An expansion device comprising an expansion plate, packings inserted into grooves formed in the outer circumference of the expansion plate and a recessed pressure receiving plate is inserted between the wall surface of radial toroidal coils and a spacer for maintaining the gap between the toroidal coils. Then, filler comprising polyester resin and glass beads incorporated therein is injected from an injection aperture of the recessed pressure receiving plate having an exhaust aperture at the upper part. The filler is solidified and enables the fabrication error in the coils and the spacer to be absorbed. Since the gap between the coils and the spacer is completely filled, the tumbling force of the coils can surely be transmitted by way of the spacer to upper and lower racks. (Moriyama, K.)

  10. Scalable devices

    Krüger, Jens J.


    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  11. Practical microwave electron devices

    Meurant, Gerard


    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.


    Baker, W.R.


    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  13. Laser device

    Scott, Jill R.; Tremblay, Paul L.


    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  14. Laser device

    Scott, Jill R.; Tremblay, Paul L.


    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  15. Medical Device Safety

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They range ... may need one in a hospital. To use medical devices safely Know how your device works. Keep instructions ...

  16. Infrared criminalistic devices

    Gibin, Igor S.; Savkov, E. V.; Popov, Pavel G.


    We are presenting the devices of near-IR spectral range in this report. The devices may be used in criminalistics, in bank business, in restoration works, etc. the action principle of these devices is describing briefly.

  17. Intrauterine devices (IUD)

    ... Intrauterine devices (IUD) To use the sharing features on this page, please enable JavaScript. An intrauterine device (IUD) is a small plastic T-shaped device used ...

  18. Implantable electronic medical devices

    Fitzpatrick, Dennis


    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  19. Ultraefficient Themoelectric Devices Project

    National Aeronautics and Space Administration — Thermoelectric (TE) devices already found a wide range of commercial, military and aerospace applications. However, at present commercially available TE devices...

  20. Hip supporting device


    The present invention relates to a device for limiting movements in one or more anatomical joints, such as a device for limiting movement in the human hip joint after hip replacement surgery. This is provided by a device for limiting movement in the human hip joint, said device comprising: at least...

  1. Implantable CMOS Biomedical Devices

    Toshihiko Noda


    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  2. Rhetorical Devices in English Advertisements



    In order to achieve persuasive and convincing effects,rhetorical devices are frequently applied in English advertisements.The paper classifies rhetorical devices into four basic categories: phonetic devices,lexical devices,syntactic devices and figures of

  3. Alerts and Notices (Devices)

    ... powered, Hand-held Lasers Used for Pointing or Entertainment 12/16/10 Medical Device Safety Archive The ... About FDA Contact FDA Browse by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting ...

  4. Superlens as matching device

    Veselago, V. G.


    The question is considered about possibility of overcoming diffraction limit at device, named superlens. This device is a flat slab, executed from material with index of refraction n,equal n=-1. It is shown, what this device really can focus the radiation to the spot, smaller than wavelength, but herewith superlens works not as optical instrument, based on the laws of geometric optics, but as certain matching device, for which does not exist diffraction limit. This is possible if thickness of...

  5. Development of Medical Devices

    Limaye, Dnyanesh


    The medical devices sector helps save lives by providing innovative health care solutions regarding diagnosis, prevention, monitoring, treatment, and alleviation. Medical devices are classified into 1 of 3 categories in the order of increasing risk: Class I, Class II, and Class III.1 Medical devices are distinguished from drugs for regulatory purposes based on mechanism of action. Unlike drugs, medical devices operate via physical or mechanical means and are not dependent on metabolism to acc...

  6. Heterostructures and quantum devices

    Einspruch, Norman G


    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  7. Photovoltaic device and method

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L


    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  8. Radiation emitting devices act

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  9. Inspection device in liquid

    The present invention provides an inspection device in PWR reactor core in which inspection operations are made efficient by stabilizing a posture of the device in front-to-back, vertical and left-to-right directions by a simple structure. When the device conducts inspection while running in liquid, the front and the back directions of the device main body are inspected using a visual device while changing the posture by operating a front-to-back direction propulsion device and a right-to-left direction propulsion device, and a vertical direction propulsion device against to rolling, pitching and yawing of the device main body. In this case, a spherical magnet moves freely in the gravitational direction in a vibration-damping fluid in a non-magnetic spherical shell following the change of the posture of the device main body, in which the vibrations due to the movement of the spherical magnet is settled by the vibration-damping fluid thereby stabilizing the posture of the device main body. At a typical inspection posture, the settling effect is enhanced by the attraction force between the spherical magnets in the spherical shell and each of magnetic force-attracted magnetic members disposed to the outer circumference of the shell, and the posture of the device main body can be confirmed in front-to-back, right-to-left and vertical directions by each of the posture confirming magnetic sensors. (N.H.)

  10. 76 FR 8637 - Medical Devices; Medical Device Data Systems


    ... Devices; Medical Device Data Systems AGENCY: Food and Drug Administration, HHS. ACTION: Final rule... device are not medical devices. (Response) FDA agrees that the term ``medical device data'' could be... medical devices. (Response) An MDDS is intended to be a communication conduit for medical device data.......

  11. Thermography of electronic devices

    Panfilova S. P.


    Full Text Available The possibility of application of thermography to diagnose the electronic devices is analyzed in the article. Typical faults of electronic devices which can be found by means of thermography are given. Advantages of noncontact thermal inspection in comparison with the contact one are described. Some features of thermography of electronic devices are considered. Thermography apparatus is viewed and some pieces of advice about choosing it for electronic devices diagnosis are given. An example of the thermographic method for checking the electronic devices is provided. The main features of software used in thermography and its significance are described.

  12. Optical plasma microelectronic devices

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan


    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  13. Radiation emitting devices regulations

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  14. Smart portable rehabilitation devices

    Leahey Matt


    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices



    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is...... adapted to receive one or more replaceable solid support(s) (40) onto which chemical entities (41) are attached, said device comprising a base (1, 60, 80, 300, 400, 10, 70, 140, 20, 90, 120, 150, 30, 100), one or more inlet(s) (5), one or more outlet(s) (6). The base and the solid support (40) defines......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  16. Mechanical CPR devices

    Halperin, Henry; Carver, David J.


    It is recognized that the quality of cardiopulmonary resuscitation (CPR) is an important predictor of outcome from cardiac arrest. Mechanical chest-compression devices provide an alternative to manual CPR. Physiological and animal data suggest that mechanical chest-compression devices are more effective than manual CPR. Consequently, there has been much interest in the development of new techniques and devices to improve the efficacy of CPR. This review will consider the evidence ...

  17. Optical fibre nanowire devices

    Xu, Fei


    The Optical Fibre Nanowire (OFN) is a potential building block in future micro- and nano-photonic device since it offers a number of unique optical and mechanical properties. In this thesis, the background and fundamental features of nanowires are introduced; the theory, design and demonstration of novel nanowire devices are discussed. At first, a short adiabatic taper tip is manufactured, and it is used as optical tweezers for trapping 1?m microspheres. Then, the most important devic...

  18. Improvements in compliant devices

    A compliant device for insertion between an end of a manipulator arm and a tool, the device comprising a plurality of pairs of helicoil assemblies secured at their opposite ends in respective rigid coupling means attachable to the end of the manipulator arm and the tool, adjacent assemblies of neighbouring pairs being inclined such that the axes of the adjacent assemblies meet at points on a circle with the centre of the circle defining the centre of compliance of the device. (author)

  19. Pyrotechnic device reliability

    Ozkil, Altan


    The Naval Weapons Support Center is planning to implement a bonus system to improve the reliability of pyrotechnic devices. The measure of effectiveness that they wish to use to determine how to award bonuses is the reliability of pyrotechnic devices. The data available to estimate this reliability is based on the current sampling inspection plan in which devices are tested in different environments. The models which include both dependence and independence assumptions between the outcomes of...

  20. Sensor sentinel computing device

    Damico, Joseph P.


    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  1. Establishment Registration & Device Listing

    U.S. Department of Health & Human Services — This searchable database contains establishments (engaged in the manufacture, preparation, propagation, compounding, assembly, or processing of medical devices...

  2. New Medical Device Evaluation.

    Ikeda, Koji


    In this presentation, as a member of the Harmonization by Doing (HBD) project, I discuss the significance of regulatory science in global medical device development and our experience in the international collaboration process for medical devices. In Japan, most innovative medical therapeutic devices were previously developed and exported by foreign-based companies. Due to this device lag, Japanese had minimal opportunities for receiving treatment with innovative medical devices. To address this issue, the Japanese government has actively accepted foreign clinical trial results and promoted global clinical trials in projects such as HBD. HBD is a project with stakeholders from academia, regulatory authorities, and industry in the US and Japan to promote global clinical trials and reduce device lags. When the project started, medical device clinical trials were not actively conducted in Japan at not just hospitals but also at medical device companies. We started to identify issues under the concept of HBD. After 10 years, we have now become key members in global clinical trials and able to obtain approvals without delay. Recently, HBD has started promoting international convergence. Physicians and regulatory authorities play central roles in compiling guidelines for the clinical evaluation of medical device development, which will be a more active field in the near future. The guidelines compiled will be confirmed with members of academia and regulatory authorities in the United Sates. PMID:27040333

  3. Interconnected semiconductor devices

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.


    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  4. Ion trap device

    Ibrahim, Yehia M.; Smith, Richard D.


    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  5. Virtual Training Devices Laboratory

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  6. Cataphoric Devices in Spoken Discourse

    Gernsbacher, Morton Ann; Jescheniak, Jörg D.


    We propose that speakers mark key words with cataphoric devices. Cataphoric devices are counterparts to anaphoric devices: Just as anaphoric devices enable backward reference, cataphoric devices enable forward reference. And just as anaphoric devices mark concepts that have been mentioned before, cataphoric devices mark concepts that are likely to be mentioned again. We investigated two cataphoric devices: spoken stress and the indefinite this. Our experiments demonstrated three ways that con...

  7. Radioactive liquid waste processing device

    The present invention provides a device for processing radioactive liquid wastes generated in a facility of a nuclear power plant, especially suitable to liquid wastes at relatively high electroconductivity and solid content concentration. Namely, the device comprises a vessel for receiving radioactive liquid wastes, a device for concentrating the radioactive liquid wastes and a device for solidifying the liquid wastes. The concentrated liquid wastes can be charged from the concentration device to the receiving container. The concentration device has a precipitation separation function and comprises a supernatant withdrawing section and a solid content withdrawing section. In addition, the concentration device is connected with the receiving device for transferring the supernatant in the concentration device. Further, the receiving device is connected to the solidification device by way of a solid content transferring line, and the precipitated and separated solid content is transferred to a cement solidification device, plastic solidification device, asphalt solidification device, a glass solidification device etc. (I.S.)

  8. Microfabricated particle focusing device

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June


    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  9. Unconventional Quantum Computing Devices

    Lloyd, Seth


    This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.

  10. Vaginal mechanical contraceptive devices.

    Smith, M.; Barwin, B. N.


    The alleged adverse effects of oral contraceptives and intrauterine devices have led to increased consumer and physician demand for vaginal contraceptive devices. The efficacy and the advantages and disadvantages of vaginal sponges, cervical caps and diaphragms are discussed and compared in this article.

  11. Device for removing blackheads

    Berkovich, Tamara (116 N. Wetherly Dr., Suite 115, Los Angeles, CA)


    A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

  12. Compound semiconductor device modelling

    Miles, Robert


    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  13. Positioning devices for patients

    It has been suggested that it is very important to position patients reproducibly at different stages of radiotherapy treatment planning and treatment, or similar procedures. Devices have been described for positioning a patient's upper and lower thorax. This invention provides reproducible positioning for a female patient's breasts, for example in planning treatment of and treating breast tumours. The patient is placed prone, using for example an upper thorax device. A support device is placed central to and beneath her breasts to partially displace them outwards. The device may be triangular in section with one apex contacting the chest wall at the sternum. Restraining straps may be provided to hold the breasts against the support device. Means may be provided to take a healthy breast from the path of radiation through the tumour. (author)

  14. Metallic spintronic devices

    Wang, Xiaobin


    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  15. Plant monitoring device

    The device of the present invention gives optimum information to operators with simple procedures in accordance with aspects and the states of operation in a nuclear power plant or a chemical plant. That is, pattern matching, etc. are deduced by a plant status judging device based on on-line data for process amount collected by a process input/output device and previously contained status judging intelligence data. Then, the plant status is judged to determine a priority and the states of the plant are collected and integrated in the order of important information of higher superiority. Further, the on-line data described above are arranged and edited by a display driving information providing device based on the result of the judgment in the plant status judging device. The plant information judged to have a high priority and to be important in the plant status judging device is displayed on a display device. With such procedures, complicated and various monitorings and operations of the process plant can be conducted without requiring skills. (I.S.)

  16. Powering biomedical devices

    Romero, Edwar


    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  17. Electronic devices and circuits

    Pridham, Gordon John


    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  18. Compound semiconductor device physics

    Tiwari, Sandip


    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  19. Physics of photonic devices

    Chuang, Shun Lien


    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  20. Smart devices are different

    Stisen, Allan; Blunck, Henrik; Bhattacharya, Sourav;


    research results. This is due to variations in training and test device hardware and their operating system characteristics among others. In this paper, we systematically investigate sensor-, device- and workload-specific heterogeneities using 36 smartphones and smartwatches, consisting of 13 different....... Moreover, the impairments vary significantly across devices and depends on the type of recognition technique used. We systematically evaluate the effect of mobile sensing heterogeneities on HAR and propose a novel clustering-based mitigation technique suitable for large-scale deployment of HAR, where...

  1. Radiations from display devices

    45 display devices have been analyzed for X-ray emmission and for electrostatic - and low-frequency magnetic fields. 3 have been further analyzed for UV and visible light emmission. No emmissions above established risk levels have been found. For low-frequency magnetic fields very little is known of risks, so the levels have been compared with other commonly used devices. The measured levels correspond roughly to that which occur in the use of an electrical egg-beater, or a small hand electrical drill. Data are presented for the tested devices.(author)

  2. Nanoelectronic device applications handbook

    Morris, James E


    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  3. Output hardcopy devices

    Durbeck, Robert


    Output Hardcopy Devices provides a technical summary of computer output hardcopy devices such as plotters, computer output printers, and CRT generated hardcopy. Important related technical areas such as papers, ribbons and inks, color techniques, controllers, and character fonts are also covered. Emphasis is on techniques primarily associated with printing, as well as the plotting capabilities of printing devices that can be effectively used for computer graphics in addition to their various printing functions. Comprised of 19 chapters, this volume begins with an introduction to vector and ras

  4. Microreactor Array Device

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua


    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  5. Digital communication device


    The invention concerns a digital communication device like a hearing aid or a headset. The hearing aid or headset has a power supply, a signal processing device, means for receiving a wireless signal and a receiver or loudspeaker, which produces an audio signal based on a modulated pulsed signal...... with high frequency shifting rate produced by the signal processing device. Further the receiver has a first and a second connection point for receiving the pulsed modulated signal wherein the sound producing parts of the receiver are at least partially enclosed by a metal box, whereby a third...... connection point is provided which is in electrical contact with the metal of the metal box and whereby this third connection point is connected to the electric circuitry of the communication device at a point having a stable and well defined electrical potential. In this way the electro-and magnetic...

  6. Medical Device Safety

    ... Communication Date Mycobacterium chimaera Infections Associated with Sorin Group Deutschland GmbH Stӧckert 3T Heater-Cooler System: FDA Safety Communication 06/01/16 More Medical Device Safety Communications ...

  7. MDR (Medical Device Reporting)

    U.S. Department of Health & Human Services — This database allows you to search the CDRH's database information on medical devices which may have malfunctioned or caused a death or serious injury during the...

  8. Advanced underwater lift device

    Flanagan, David T.; Hopkins, Robert C.


    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  9. Burst-Disk Device Simulates Effect Of Pyrotechnic Device

    Rogers, James P.; Sexton, James H.


    Expendable disks substituted for costly pyrotechnic devices for testing actuators. Burst-disk device produces rush of pressurized gas similar to pyrotechnic device. Designed to reduce cost of testing pyrotechnically driven emergency actuators (parachute-deploying mechanisms in original application).

  10. Resources: Handheld Computing Devices

    Denson, Cameron


    The article features a valuable resource to aid teachers in their effort to satisfy the need to implement modern instructional technology and their students' need to access green technology. It states that handheld computing devices are currently being widely used in many classrooms and technology savvy educators can manifest to the benefits of these data-collection systems. It believes that handheld units can offer students with an all-inclusive technological device that caters to all learners.

  11. Holographic liquid crystal devices

    Pavani, Kotakonda, (Thesis)


    Liquid crystals have become natural candidates for use in electro-optic devices for their ability to change the orientation of the director with the application of an electric field, and exhibiting large range of refractive index. The aim of the work presented in this thesis is to fabricate liquid crystal optoelectronic devices such as electrically switchable liquid crystal diffraction gratings and polarization rotators by exploiting the holographic surface relief effect in photopolymer and b...

  12. Digital Devices: Nine Theses

    Law, John; Ruppert, Evelyn; Savage, Mike


    The aim of the paper is to intervene in debates about the digital and in particular three kinds of framings: those that imagine the digital in terms of epochal shifts, or as representing a new era of mobility and flow, or as redefining life. Instead, we explore the lively, productive and performative qualities of the digital by attending to the specificities of digital devices and how they interact, and sometimes compete, with older devices and their capacity to mobilise and materialise socia...

  13. Nanoplasmonics advanced device applications

    Chon, James W M


    Focusing on control and manipulation of plasmons at nanometer dimensions, nanoplasmonics combines the strength of electronics and photonics, and is predicted to replace existing integrated circuits and photonic devices. It is one of the fastest growing fields of science, with applications in telecommunication, consumer electronics, data storage, medical diagnostics, and energy.Nanoplasmonics: Advanced Device Applications provides a scientific and technological background of a particular nanoplasmonic application and outlines the progress and challenges of the application. It reviews the latest

  14. Inverted organic photosensitive device

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo


    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  15. Projection and registration device

    Verlinden, J.C.


    A projection and recording device, provided with a processing and control unit, a memory for recording images and other data, an input/output interface, a controllable camera, a touch screen for the input and display of data and images, a position determining system for determining the position of at least one object in relation to the projection and recording device, with images recorded by the camera being storable in the memory and displayable on the touch screen, and a projector for proje...

  16. Electronic security device

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs

  17. Organic 'Plastic' Optoelectronic Devices

    Recent developments on conjugated polymer based photovoltaic diodes and photoactive organic field effect transistors (photOFETs) are discussed. The photophysics of such devices is based on the photoinduced charge transfer from donor type semiconducting conjugated polymers onto acceptor type conjugated polymers or acceptor molecules such as Buckminsterfullerene, C60. Potentially interesting applications include sensitization of the photoconductivity and photovoltaic phenomena as well as photoresponsive organic field effect transistors (photOFETs). Furthermore, organic polymeric/inorganic nanoparticle based 'hybrid' solar cells will be discussed. This talk gives an overview of materials' aspect, charge-transport, and device physics of organic diodes and field-effect transistors. Furthermore, due to the compatibility of carbon/hydrogen based organic semiconductors with organic biomolecules and living cells there can be a great opportunity to integrate such organic semiconductor devices (biOFETs) with the living organisms. In general the largely independent bio/lifesciences and information technology of today, can be thus bridged in an advanced cybernetic approach using organic semiconductor devices embedded in bio-lifesciences. This field of bio-organic electronic devices is proposed to be an important mission of organic semiconductor devices

  18. Reactor power control device

    The present invention provides a control device which can conduct scram and avoid lowering of the power of a nuclear power plant upon occurrence of earthquakes. Namely, the device of the present invention comprises, in addition to an existent power control device, (1) an earthquake detector for detecting occurrence and annihilation of earthquakes and (2) a reactor control device for outputting control rod operation signals and reactor core flow rate control signals depending on the earthquake detection signals from the detector, and reactor and plant information. With such a constitution, although the reactor is vibrated by earthquakes, the detector detects slight oscillations of the reactor by initial fine vibration waves as premonitory symptoms of serious earthquakes. The earthquake occurrence signals are outputted to the reactor control device. The reactor control device, receiving the signals, changes the position of control rods by way of control rod driving mechanisms to make the axial power distribution in the reactor core to a top peak type. As a result, even if the void amount in the reactor core is reduced by the subsequent actual earthquakes, since the void amount is moved, effects on the increase of neutron fluxes by the actual earthquakes is small. (I.S.)

  19. Alternative Devices for Taking Insulin

    ... KB). Alternate Language URL Alternative Devices for Taking Insulin Page Content On this page: What alternative devices ... the skin. [ Top ] What alternative devices for taking insulin are available? Insulin pens provide a convenient, easy- ...

  20. Cataphoric devices in spoken discourse.

    Gernsbacher, M A; Jescheniak, J D


    We propose that speakers mark key words with cataphoric devices. Cataphoric devices are counterparts to anaphoric devices: Just as anaphoric devices enable backward reference, cataphoric devices enable forward reference. And just as anaphoric devices mark concepts that have been mentioned before, cataphoric devices mark concepts that are likely to be mentioned again. We investigated two cataphoric devices: spoken stress and the indefinite this. Our experiments demonstrated three ways that concepts marked by cataphoric devices gain a privileged status in listeners' mental representations: Cataphoric devices enhance the activation of the concepts that they mark; cataphoric devices suppress the activation of previously mentioned concepts; and cataphoric devices protect the concepts that they mark from being suppressed by subsequently mentioned concepts. PMID:7641525

  1. Diamond Electronic Devices

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175 deg.n C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (∼1 nm) doped layers in order to achieve high RT activation.

  2. Diamond Electronic Devices

    Isberg, J.


    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  3. Semiconductor device physics and simulation

    Yuan, J S


    This volume provides thorough coverage of modern semiconductor devices -including hetero- and homo-junction devices-using a two-dimensional simulator (MEDICI) to perform the analysis and generate simulation results Each device is examined in terms of dc, ac, and transient simulator results; relevant device physics; and implications for design and analysis Two hundred forty-four useful figures illustrate the physical mechanisms and characteristics of the devices simulated Comprehensive and carefully organized, Semiconductor Device Physics and Simulation is the ideal bridge from device physics to practical device design

  4. Condensate filtering device

    In a condensate filtering device of a nuclear power plant, a water collecting pipe is disposed over the entire length, an end of a hollow thread is in communication with the water collecting pipe and secured. If the length of the water collecting pipe is extended, a filtering device of an optional length can be obtained irrespective of the length of the hollow thread. Therefore, since there is no need to connect units upon constituting a module, flow of cleaning gases is not restricted at connection portions. Accordingly, even if the volume of the device is increased by the extension of the module, the working life of the module is not degraded. (T.M.)

  5. Endoscopic Devices for Obesity.

    Sampath, Kartik; Dinani, Amreen M; Rothstein, Richard I


    The obesity epidemic, recognized by the World Health Organization in 1997, refers to the rising incidence of obesity worldwide. Lifestyle modification and pharmacotherapy are often ineffective long-term solutions; bariatric surgery remains the gold standard for long-term obesity weight loss. Despite the reported benefits, it has been estimated that only 1% of obese patients will undergo surgery. Endoscopic treatment for obesity represents a potential cost-effective, accessible, minimally invasive procedure that can function as a bridge or alternative intervention to bariatric surgery. We review the current endoscopic bariatric devices including space occupying devices, endoscopic gastroplasty, aspiration technology, post-bariatric surgery endoscopic revision, and obesity-related NOTES procedures. Given the diverse devices already FDA approved and in development, we discuss the future directions of endoscopic therapies for obesity. PMID:27115879

  6. Pendulum detector testing device

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs

  7. ALS insertion devices

    The Advanced Light Source (ALS), the first US third generation synchrotron radiation source, is currently under construction at the Lawrence Berkeley Laboratory. The low-emittance, 1.5 GeV electron storage ring and the insertion devices are specifically designed to produce high brightness beams in the UV to soft X-Ray range. The planned initial complement of insertion devices includes four 4.6 m long undulators, with period lengths of 3.9 cm, 5.0 cm (2) and 8.0 cm, and a 2.9 m long wiggler of 16 cm period length. Undulator design is well advanced and fabrication has begun on the 5.0 cm and 8.0 cm period length undulators. This paper discusses ALS insertion device requirements; general design philosophy; and design of the magnetic structure, support structure/drive systems, control system and vacuum system. 18 refs., 9 figs., 5 tabs

  8. Control rod operation device

    Purpose: To reduce operator's operation burdens in the low power state, while moderate his mental burdens upon high power state for the operation of control rod operation device. Constitution: Coordinate of main control rods to be operated, aimed insertion and withdrawal positions and velocity are calculated by the control rod operation sequence and the control rod worth table, to output a control rod selection signal and a control rod operation signal. The control rod operation device conducts extraction or insertion of control rods by these signals. In this way, the operator can automatically operate the control rods by merely manipulating the control rod operation device, by which the operator's operation burden can be reduced in low power state. Further, since the selection of the control rods, the operation speed, etc. are judged by an electronic computer also upon high reactor power state, operator's metal burdens can be moderated. (Kamimura, M.)

  9. Evolution of Growth Hormone Devices: Matching Devices with Patients.

    Raimer-Hall, Dawn; Shea, Heidi Chamberlain


    Self-injection of growth hormone (GH) by children with GH deficiency can be problematic. They may have difficulty manipulating injection devices or preparing medication, and injections can be painful and create anxiety. Adherence to daily GH injections optimizes treatment benefit. Studies indicate that injection pens or needle-free devices enable easy self-injection by children, minimize medication reconstitution and storage requirements, and reduce injection pain. Newer GH delivery devices potentially encourage improved patient adherence. Reviewing features of GH devices will help nurses decide which GH device best fits the needs and abilities of pediatric patients. We searched recent medical literature about GH device development, about device-associated patient preferences and treatment adherence, and comparisons among GH devices. We concluded that improved awareness of the strengths and limitations of GH devices will enable nurses to guide families in selecting and using GH devices, improving adherence and outcomes, and helping children reach full growth potential. PMID:26292454

  10. Nanoelectromechanics of shuttle devices

    Shekhter, R. I.; Gorelik, L. Y.; Krive, I. V.; Kiselev, M. N.; Parafilo, A. V.; Jonson, M.


    A single-electron tunneling (SET) device with a nanoscale central island that can move with respect to the bulk sourceand drain electrodes allows for a nanoelectromechanical (NEM) coupling between the electrical current through the device and the mechanical vibrations of the island. Although the electromechanical "shuttle" instability and the associated phenomenon of single-electron shuttling were predicted more than 15 years ago, both theoretical and experimental studies of NEM-SET structures are still carried out. New functionalities based on quantum coherence, Coulomb correlations and coherent electron-spin dynamics are still of particular interest. In this article we present a short review of recent activities in this area.

  11. Electronic control devices

    The translation of data from particle detectors into computercomprehensible form is reviewed. Following a brief account of the electronics of particle-detectors, the author describes the types of data-acquisition systems now or soon-to-be available. THe CAMAC system, a currently available computer aided control device, is discussed first. The possibility of a design-it-yourself system is dealt with next, with design parameters and practical pointers given that are drawn from the authors personal experience. Finally, the trigger systems of these devices are described and the prospects of a new system still in development, called FASTBUS, are given

  12. Electronic devices and circuits

    Pridham, Gordon John


    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  13. Asphaltene based photovoltaic devices

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.


    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.



    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  15. Inlet stratification device


    An inlet stratification (5) is adapted to be arranged vertically in a tank (1) during operation. The stratification device (5) comprises an inlet pipe (6) formed of a flexible porous material and having a lower and upper end. The lower end of the inlet pipe (6) is connected to a bottom cap (10......) with an inlet passage way (16). The upper end of the inlet pipe (6) is connected with a top cap (9). The top cap (9) and the bottom cap (10) are mutually connected by means of a wire (8) and the top cap (9) is configured as a floating device providing a buoyancy force larger than the downwardly...

  16. Microwave Magnetoelectric Devices

    Tatarenko, A. S.; Bichurin, M. I.


    Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at fre...

  17. Graphene field emission devices



    PUBLISHED Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm−1 at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under...

  18. Preventing medical device recalls

    Raheja, Dev


    Introduction to Medical Device RequirementsIntroductionThe ChallengesSources of ErrorsUnderstanding the Science of Safety     Overview of FDA Quality System Regulation     Overview of Risk Management Standard ISO 14971     Overview of FDA Device Approval Process     Overview of Regulatory Requirements for Clinical TrialsSummaryReferencesPreventing Recalls during Specification WritingIntroductionConduct Requirements Analysis to Identify Missing RequirementsSpecifications for Safety, Durability, and

  19. Nanoscale memory devices

    This article reviews the current status and future prospects for the use of nanomaterials and devices in memory technology. First, the status and continuing scaling trends of the flash memory are discussed. Then, a detailed discussion on technologies trying to replace flash in the near-term is provided. This includes phase change random access memory, Fe random access memory and magnetic random access memory. The long-term nanotechnology prospects for memory devices include carbon-nanotube-based memory, molecular electronics and memristors based on resistive materials such as TiO2. (topical review)

  20. Phononic crystal devices

    El-Kady, Ihab F.; Olsson, Roy H.


    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  1. Microfluidic Cell Culture Device

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)


    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  2. Underwater running device

    An underwater running device for an underwater inspection device for detecting inner surfaces of a reactor or a water vessel has an outer frame and an inner frame, and both of them are connected slidably by an air cylinder and connected rotatably by a shaft. The outer frame has four outer frame legs, and each of the outer frame legs is equipped with a sucker at the top end. The inner frame has four inner frame legs each equipped with a sucker at the top end. The outer frame legs and the inner frame legs are each connected with the outer frame and the inner frame by the air cylinder. The outer and the inner frame legs can be elevated or lowered (or extended or contracted) by the air cylinder. The sucker is connected with a jet pump-type negative pressure generator. The device can run and move by repeating attraction and releasing of the outer frame legs and the inner frame legs alternately while maintaining the posture of the inspection device stably. (I.N.)

  3. Neutron measuring device

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  4. Road-Cleaning Device

    Roman, Harry T.


    Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…

  5. Device Oriented Project Controller

    Dalesio, Leo; Kraimer, Martin


    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  6. Radiation flux measuring device

    A radiation flux measuring device is described which employs an attenuator circuit, the output of which is maintained constant, connected to a radiation detector. Means connected to the attenuator circuit produce an output representing the log of the a-c component of the radiation detector, thereby providing a true root mean square logarithmic output

  7. Radiation flux measuring device

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  8. A Medical Delivery Device


    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared by...

  9. Wavelength conversion devices

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten;


    Summary form only given. Wavelength converters will be essential devices to exploit the full potential of the wavelength dimension in wavelength-division multiplexed (WDM) networks. Based on experiments, we discuss different candidates for efficient wavelength converters with attention to expected...

  10. Spark ablation device

    Schmidt-Ott, A.; Pfeiffer, T.V.


    A spark ablation device for generating nanoparticles comprising a spark generator; the spark generator comprising first and second electrodes, wherein the spark generator further comprises at least one power source which is arranged to be operative at a first energy level for maintaining a discharge

  11. Emergency core cooling device

    The present invention provides an emergency core cooling device without using a reactor core spray device, in which the reactor core of a BWR type reactor is cooled effectively and certainly by flooding of the reactor core. That is, the emergency core cooling device comprises a high pressure core water injection system as an emergency core cooling system (ECCS) for cooling the inside of the reactor core upon loss of coolants accident (LOCA). By means of the high pressure core water injection system, water is injected from a condensate storage vessel or a suppression pool to the inside of the reactor core shroud upon LOCA. Accordingly, the reactor core is cooled effectively by reactor core flooding. In this device, cooling water can be injected to the inside of the reactor core shroud by means of the high pressure core injection system upon LOCA in which the coolants are discharged from the outside of the reactor core shroud. On the other hand, upon LOCA in which the coolants are discharged from the inside of the reactor core shroud, the cooling water can be supplied to the reactor core by means of a cooling system upon reactor isolation which injects water to the outside of the reactor core or a low pressure water injection system. (I.S.)

  12. Tritium removing device

    Tritium-containing gases in a reactor container are discharged to a gas pressurizer and the gases pressurized there are sent to the primary side of a tritium separation device under a high or low pressure. Polyimide polymer separation membranes having selective permeability to elemental tritium and tritium vapor are coated in the tritium separation device. The separation device is divided into primary and secondary sides by the separation membranes and the pressure in the secondary side is lowered by a vacuum pump, etc. Tritium contained in the tritium-containing gases passes through the separation membranes selectively to be moved into the secondary side. Accordingly, tritium is treated in the elemental form and equipments for regeneration such as an adsorption column, etc. are no more necessary and the space can be saved due to minimization of the removing device. Further, since tritium can be removed continuously without storing a great amount of tritium, it is preferable in view of safety. (T.M.)

  13. Air Stable Photovoltaic Device


    A method of forming a conducting polymer based photovoltaic device comprising the steps of : (a) providing a transparent first electrode; (b) providing the transparent first electrode with a layer of metal oxide nanoparticles, wherein the metal oxide is selected from the group consisting of : TiO...

  14. Devic's Disease (Neuromyelitis optical)

    We present a case report about a young woman initially treated as having multiple sclerosis, who relapsed with serious visual impairment. Devic's disease is a demyelinating disorder that presents as transverse myelitis associated with optic neuritis, typically bilateral. Multiple sclerosis is in fact the main differential diagnosis

  15. Device configuration-management system

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  16. Cybersecurity for Connected Diabetes Devices

    Klonoff, David C.


    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to...

  17. Radioactive waste processing device

    Liquid wastes are supplied to a ceramic filter to conduct filtration. In this case, a device for adding a powdery inorganic ion exchanger is disposed to the upstream of the ceramic filter. When the powdery inorganic ion exchanger is charged to the addition device, it is precoated to the surface of the ceramic filter, to conduct separation of suspended matters and separation of ionic nuclides simultaneously. Liquid wastes returned to a collecting tank are condensed while being circulated between the ceramic filter and the tank and then contained in a condensation liquid waste tank. With such a constitution, both of radioactive nuclides accompanied by suspended matters in the radioactive liquid wastes and ionic nuclides can be captured efficiently. (T.M.)

  18. Organic photosensitive devices

    Peumans, Peter; Forrest, Stephen R.


    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  19. Integrated elastic microscope device

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi


    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  20. Microelectromechanical reprogrammable logic device

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.


    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  1. Internal pump monitoring device

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  2. Anti-gravity device

    Palsingh, S. (Inventor)


    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  3. Microelectromechanical safe arm device

    Roesler, Alexander W. (Tijeras, NM)


    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  4. Microelectromechanical reprogrammable logic device

    Hafiz, M. A. A.


    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  5. Thin film device applications

    Kaur, Inderjeet


    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  6. Particle capture device

    Jayne, John T.; Worsnop, Douglas R.


    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  7. Incore inspection device

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  8. Electronic devices and circuits

    Kishore, K Lal


    This book is written in a simple lucid Language along with derivation of equations and supported by numerous solved problems to help the student to understand the concepts clearly.Advances in Miniaturization of Electronic Systems by ever increasing packaging densities on Integrated Circuits has made it very essential for thorough Knowledge of the concepts, phenomenon, characteristics and behaviour of semiconductor Devices for students and professionals.

  9. Novel Fouling Measurement Device

    Sinčić, D.; Ribić, B.; Caharija, A.


    The novel device for measuring characteristics of the process that takes place when hydrocarbon liquids are subjected to elevated temperatures is described. The measuring cell has the form of a loop in which circulation is induced by a turbine stirrer. The stirrer contains magnets built into its blades, enabling mixing by a magnetic mixer positioned below the cell. No moving part protrudes from the cell. The fouling process takes place at the hot-wire probe positioned at the centre of the liq...

  10. Spintronics in nanoscale devices

    Hedin, Eric R


    By exploiting the novel properties of quantum dots and nanoscale Aharonov-Bohm rings together with the electronic and magnetic properties of various semiconductor materials and graphene, researchers have conducted numerous theoretical and computational modeling studies and experimental tests that show promising behavior for spintronics applications. Spin polarization and spin-filtering capabilities and the ability to manipulate the electron spin state through external magnetic or electric fields have demonstrated the promise of workable nanoscale devices for computing and memory applications.

  11. Fluctuations in quantum devices



    Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.

  12. Fluctuations in quantum devices

    Haken, H.


    Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of c...

  13. Hybrid electroluminescent devices

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl


    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  14. Designing sustainable medical devices

    Marshall, J-L; Hinton, M; Wrobel, L; Troisi, G


    Stakeholders in the medical device manufacturing industry are becoming more concerned about the environmental impact of their products and processes. The consumers are also becoming more aware of the negative impact that manufacturers can have on the environment. Government initiatives continue to increase environmental awareness through the development of new policy and legislation, encouraging industry to become more accountable for the environmental impact of their products and operations....

  15. Memristor: the illusive device

    Salama, Khaled N.


    The memristor (M) is considered to be the fourth two-terminal passive element in electronics, alongside the resistor (R), the capacitor (C), and the inductor (L). Its existence was postulated in 1971 but its first implementation was reported in 2008. Where was it hiding all that time and what can we do with it? Come and learn how the memristor completes the roster of electronic devices much like a missing particle that physicists seek to complete their tableaus.

  16. Fiber optic monitoring device

    Samborsky, James K.


    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  17. Mechanical Circulatory Assist Devices

    Park, Sang B.; Magovern, George J.; Christlieb, Ignacio Y.; Kao, Race L.


    Cardiogenic shock occurs in about 10% of the 1.5 million patients who suffer myocardial infarction and in approximately 1% of the 200,000 patients who undergo open-heart surgery each year. The ventricular assist device decreases the workload of the failing ventricles and increases the blood flow through the coronary system. Recovery of failing myocardium after mechanical circulatory assistance has been well documented; however, the mechanisms that contribute to the recovery of a failing heart...

  18. A power measuring device

    As a part of the klystron test facility of the Dutch NIKHEF-K accelerator, a sensitive power measuring device has been built. The high-frequency power of a klystron is stored in a water-cooled dummy load. Using a microcomputer, the increase of the water temperature and the water flow rate are transformed to a digital indication of the klystron power. (Auth.)

  19. Electronic portal imaging devices

    The topics discussed include, among others, the following: Role of portal imaging; Port films vs. EPID; Image guidance: Elekta volume view; Delivery verification; Automation tasks of portal imaging; Types of portal imaging (Fluorescent screen, mirror, and CCD camera-based imaging; Liquid ion chamber imaging; Amorpho-silicon portal imagers; Fluoroscopic portal imaging; Kodak CR reader; and Other types of portal imaging devices); QA of EPID; and Portal dosimetry (P.A.)

  20. Incore instrument device

    An incore instrument device has an integrally disposed touch panel having a function of displaying an operation indication method such as for setting of conditions for incore measurement and information processing and results of the incore measurement and a function capable of conducting operation indication such as for setting conditions and information processing for incore measurement relative to a control section upon touching an information position on a displayed information. In addition, an information processing section comprising a man-machine function program formed so as to recognize the content of the operation indication for the incore measurement by touching and let the control section to conduct it is disposed to the outside by way of a communication interface. In addition, a programming device is disposed for forming and rewriting the program of the man-machine function relative to the information processing section. Then, when various indication operations are conducted upon performing incore measurement, a view point can be concentrated to one predetermined point thereby enabling to improve the operationability without danger. In addition, the programming of the man-machine function does not apply unnecessary load to the control section in the incore instrumentation device. (N.H.)

  1. Submarine inspection device

    The device of the present invention can confirm the assembly number of a fuel assembly in a pool and detect the head of an inserted material by a screen an image. That is, a submarine object is caused to swim by remote control by using a control device. A float which is floating on the water is disposed above the submarine object. A winch is disposed to the float for winding a rope such as a wire. The rope of the winch is connected to the submarine object. A TV camera is disposed to the float for photographing the submarine object. With such a constitution, the length of the rope can be controlled by the winch to restrict the moving range of the submarine object. This can prevent the submarine object from colliding against a fuel assembly or dropping. In addition, the position of the submarine object, which has been confirmed so far by a compass, a depth-sounding device and an image of TV camera appended to the submarine object, can be detected by the television images of the float extremely simply. (I.S.)

  2. Reactor water sampling device

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  3. Concrete peeling off device

    The present invention concerns a device for peeling off activated concretes in processing for discarding a reactor of a nuclear reactor facility. The device comprises a gyrotron for generation microwaves, an irradiator for irradiating output microwaves, a reflection mirror for reflecting and converging the microwaves and irradiating them to a material to be irradiated and a first rotating means for rotating the irradiator and the reflection mirror in parallel with the axis of the gyrotron while maintaining the positional relation between the irradiator and the reflection mirror. When the position of the microwaves irradiated on concrete walls are moved in a circumferential direction and the central axes of the rotational axis and the material to be irradiated are aligned, then the intensity of the irradiation of the microwaves at each of the irradiation points can be maintained constant without changing the focal distance of the reflected microwaves thereby enabling to peel off concretes efficiently. If operation conditions are controlled based on information such as temperature at the periphery of the microwave irradiation positions, the shape and the color of the material to be irradiated and the distance to the material to be irradiated, a concrete peeling off device of high reliability can be obtained. (N.H.)

  4. Rubber glove wearing device

    Rubber groves are attached each to an upper end of a glove putting vessel having an air-sucking hole on the bottom by enlarging an opening end of the rubber glove and turning back the inside to the outside. When the sucking device is operated, air in the glove putting device is sucked and the rubber glove is expanded by an atmospheric pressure. After expansion of the rubber glove to some extent, the sucking device is stopped, and presence or absence of failures of the rubber glove is confirmed by shrinkage of the rubber glove and by an indication value of a pressure gauge for detecting the pressure change in the vessel. Then, a hand is inserted to the expanded rubber glove, and a detaching switch in the vessel is pushed by a finger tip. A detaching piece at the upper end of the vessel is protruded outwardly to enlarge the turned-back portion of the rubber glove to easily release the rubber glove from the putting vessel, and the rubber glove is put on. This enables to wear the rubber glove and conduct failure test simultaneously. Further, a user can put on the rubber glove without touching the outside of the rubber glove. (I.N.)

  5. Electric dialysis device

    The device of the present invention can regenerate liquid salt wastes generated from a nuclear power plant into acid and alkali by electrolysis. Namely, the device has anion exchange membranes disposed in a cell. The inside of the cell is divided into an anode chamber and a cathode chamber. The anode chamber has an anode disposed therein. The cathode chamber has an impurity separating vessel and an cathode disposed therein. Liquid wastes flow into the impurity separating vessel, acid contents flow out of the anode chamber, and alkaline contents flow out of the cathode chamber. The device of the present invention has following advantages. (1) Since impurity separation for the liquid wastes and electric dialysis (acid and alkali separation) can be performed simultaneously, the process is simplified. (2) The amount of wastes generated can be reduced due to precipitation separation by hydrolysis separation of the impurities themselves. (3) Removal of the impurities can be performed only by exchange/disposal of the impurity separating vessel. (4) Since the impurities can be removed by back-wash of recovered acid, no secondary wastes are formed. (I.S.)

  6. Pruning devices in 1995

    This bulletin describes the market situation in April 1995 in Finland concerning devices suitable for silvicultural pruning in forestry. The review is based on the responses to a questionnaire sent to manufacturers and importers. Manually operated pruning devices, relying entirely on muscle power, were manufactured by six companies. There were four models each of branch saws and branch cutters and two models of branch blades. Motorised pruning devices, with the branch-severing power supplied by a combustion engine, battery or a power unit were manufactured by five companies. There were twelve models in all. The amount of pruning done in Finland has diminished year by year from the peak years of 1988-1989 when ca. 13000 hectares were pruned. In 1993 the corresponding figure was 5290 hectares of which 3930 hectares applied to private, non-industrial forestry. One contributing factor to this fall may be seen in the changes that have occurred in forest improvement regulations. The annual target set in the Forest 2000 program is for 20000 hectares to be pruned. (author)

  7. Reactor power measuring device

    The device of the present invention efficiently calibrates a fixed type gamma ray thermometer of a reactor power measuring device of a BWR type reactor. Namely, the device of the present invention calculates peripheral fuel rod power distribution by calibrating the reactor power distribution by heat generation amount, the reactor power distribution being obtained by a calculation based on a reactor model for converting the signals of a plurality of the gamma ray thermometers in the reactor core based on a conversion formula. In this case, the conversion formula is a relational formula between the power of a thermocouple of the gamma ray thermometer, gamma ray heat generation amount, thermocouple zero power sensitivity relative to a temperature coefficient. A conversion efficient calculation means makes a calibration heater to generate heat at a predetermined power, and the thermocouple zero power sensitivity and the temperature coefficient are obtained based on the output of the gamma ray thermometer in this case. The calibration means updates to conversion type thermocouple zero power sensitivity and temperature coefficient. A calibration execution means executes the operations described above successively, and when the thermocouple zero power sensitivity and the temperature coefficient are out of an allowable range, the means informs it and eliminates the corresponding gamma ray thermometer from the measuring meters. (I.S.)

  8. An introduction to electrooptic devices

    Kaminow, Ivan P


    An Introduction to Electrooptic Devices aims to present an introduction to the electrooptic effect and to summarize work on devices employing the electrooptic effect. The book provides the necessary background in classical crystal optics. The text then discusses topics including crystal symmetry, the tensor description of linear dielectric properties, propagation in anisotropic media, and passive crystal optic devices. The book also describes the phenomenological description of tensor nonlinear dielectric properties of crystals, with emphasis on the electrooptic effect; device design and appli

  9. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...


    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media... United States after importation of certain electronic devices, including wireless communication devices... importation of certain electronic devices, including wireless communication devices, tablet computers,...

  10. Electromechanical motion devices

    Krause, Paul C; Pekarek, Steven D


    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  11. Radiorespirometic assay device

    A radiorespirometic assay device is described in which the presence of microorganisms in a sample is determined by placing the sample in contact with a metabolisable radioactive labelled substrate, collecting any gas evolved, exposing a photosensitive material to the gas and determining if a spot is produced on the material. A spot indicates the presence of radioactivity showing that the substrate has been metabolized by a microorganism. Bacteria may be detected in body fluids, hospital operating rooms, water, food, cosmetics and drugs. (U.K.)




    Full Text Available Communication represents a complex process of transmitting messages, owing to which the emitter encodes the information transmitted through a specific channel towards a receiver that will decode it. Owing to communication, organizations transmit to their customers the fact that they are capable of meeting one of their needs, of settling a problem or of offering a profit. Non-verbal and para-verbal communications usually accompany verbal communication. The importance of assimilating the forms of communication is, at an organizational level, a complex device that determines the mastering of certain techniques, procedures, and algorithms of encoding and decoding intricate messages transmitted through various channels.

  13. Nanotube resonator devices

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A


    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  14. Hybrid silicon evanescent devices

    Alexander W. Fang


    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  15. Anisotropic metamaterial devices

    Wei Xiang Jiang


    Full Text Available In the last few years, a rapid development has been achieved in a subject area, so called optical transformation, which is based on the property of metric invariance in Maxwell's equations. Optical transformation, also known as transformation optics, allows metamaterials to be tailor-made according to practical needs. In this paper, we have reviewed the recent progress on the parametric design of transformation devices, such as invisibility cloaks, electromagnetic (EM concentrator, EM-wave converter, etc. The technique of optical transformation can also be applied when the sources are included in the transformed space.

  16. Computed tomography device

    A computed tomography device comprising a subtraction unit which obtains differential data strings representing the difference between each time-serial projection data string of a group of projection data strings corresponding to a prospective reconstruction image generated by projection data strings acquired by a data acquisition system, a convolution unit which convolves each time-serial projection data string of the group of projection data strings corresponding to the prospective reconstruction image, and a back-projection unit which back-projects the convolved data strings

  17. Data mining mobile devices

    Mena, Jesus


    With today's consumers spending more time on their mobiles than on their PCs, new methods of empirical stochastic modeling have emerged that can provide marketers with detailed information about the products, content, and services their customers desire.Data Mining Mobile Devices defines the collection of machine-sensed environmental data pertaining to human social behavior. It explains how the integration of data mining and machine learning can enable the modeling of conversation context, proximity sensing, and geospatial location throughout large communities of mobile users

  18. Radiation effects in optoelectronic devices

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  19. Modeling of graphene nanoribbon devices.

    Guo, Jing


    Recent advances in graphene nanoribbon (GNR) electronic devices provide a concrete context for developing simulation methods, comparing theories to experiments, and using simulations to explore device physics. We present a review on modeling of graphene nanoribbon devices, with an emphasis on electronic and magnetoresistive devices. Device modeling is reviewed in a synergistic perspective with GNR material properties, device characteristics, and circuit requirements. Similarity with and difference to carbon nanotube devices are discussed. Device modeling and simulation results are compared to experimental data, which underlines the importance of theory-experiment collaborations in this field. Importance of the GNR edges, which have a negative impact on the carrier mobility due to edge roughness but offer new possibilities of spintronic devices and edge doping, is emphasized. Advanced device modeling of GNRs needs to have the capability to describe GNR device physics, including three-dimensional electrostatics, quantum and atomistic scale effects, elastic and inelastic scattering processes, electron-electron interaction, edge chemistry, magnetic field modulation, and spintronic and thermoelectric device phenomena. PMID:22875475

  20. Mechanical device for tissue regeneration

    Herder, J.L.; Maij, E.


    The invention relates to a mechanical device for tissue- regeneration inside a patient, comprising means (2, 3) to place a scaffold for the tissue under mechanical stress. Said means comprise a first device-part (2) and a second device-part (3) which parts are arranged to be movable with respect to

  1. Superconducting quantum-interference devices

    Peters, P. N.; Holdeman, L. B.


    Published document discusses devices which are based on weak-link Josephson elements that join superconductors. Links can take numerous forms, and circuitry utilizing links can perform many varied functions with unprecedented sensitivity. Theoretical review of Josephson's junctions include tunneling junctions, point contact devices, microbridges, and proximity-effect devices.

  2. Webshop Optimization for Mobile Devices

    Mei, Long


    This thesis deals with the programming technology which can be used to optimize the webshop design for mobile devices. The purpose of this thesis is to demonstrate several possible solutions when doing implementation of webshop applications for mobile devices. web application developers and companies who wants to optimize their products for mobile devices could also benefit from this study.

  3. Fundamentals of power semiconductor devices

    Baliga, BJayant


    Offers an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. This book shows analytical models for explaining the operation of various power semiconductor devices. It is suitable for practicing engineers in the power semiconductor device community.

  4. Modeling of graphene nanoribbon devices

    Guo, Jing


    Recent advances in graphene nanoribbon (GNR) electronic devices provide a concrete context for developing simulation methods, comparing theories to experiments, and using simulations to explore device physics. We present a review on modeling of graphene nanoribbon devices, with an emphasis on electronic and magnetoresistive devices. Device modeling is reviewed in a synergistic perspective with GNR material properties, device characteristics, and circuit requirements. Similarity with and difference to carbon nanotube devices are discussed. Device modeling and simulation results are compared to experimental data, which underlines the importance of theory-experiment collaborations in this field. Importance of the GNR edges, which have a negative impact on the carrier mobility due to edge roughness but offer new possibilities of spintronic devices and edge doping, is emphasized. Advanced device modeling of GNRs needs to have the capability to describe GNR device physics, including three-dimensional electrostatics, quantum and atomistic scale effects, elastic and inelastic scattering processes, electron-electron interaction, edge chemistry, magnetic field modulation, and spintronic and thermoelectric device phenomena.

  5. A microfluidic device with pillars


    The invention provides a microfluidic device for mixing liquid reagents, the device comprises, a chip forming at least one reaction chamber between a bottom and a top and extending between an inlet and an outlet. To enable manufacturing from less rigid materials, the device comprises pillars...

  6. Graphene device and method of using graphene device

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.


    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  7. Heterostructure terahertz devices.

    Ryzhii, Victor


    The terahertz (THz) range of frequencies is borderline between microwave electronics and photonics. It corresponds to the frequency bands of molecular and lattice vibrations in gases, fluids, and solids. The importance of the THz range is in part due to numerous potential and emerging applications which include imaging and characterization, detection of hazardous substances, environmental monitoring, radio astronomy, covert inter-satellite communications, as well as biological and medical applications. During the last decades marked progress has been achieved in the development, fabrication, and practical implementation of THz devices and systems. This is primarily owing to the utilization of gaseous and free electron lasers and frequency converters using nonlinear optical phenomena as sources of THz radiation. However, such devices and hence the systems based on them are fairly cumbersome. This continuously stimulates an extensive search for new compact and efficient THz sources based on semiconductor heterostructures. Despite tremendous efforts lasting several decades, the so-called THz gap unbridged by semiconductor heterostructure electron and optoelectron devices still exists providing appropriate levels of power of the generated THz radiation. The invention and realization of quantum cascade lasers made of multiple quantum-well heterostructures already resulted in the partial solution of the problem in question, namely, in the successful coverage of the high-frequency portion of the THz gap (2-3 THz and higher). Further advancement to lower frequencies meets, perhaps, fundamental difficulties. All this necessitates further extensive theoretical and experimental studies of more or less traditional and novel semiconductor heterostructures as a basis for sources of THz radiation. This special issue includes 11 excellent original papers submitted by several research teams representing 14 institutions in Europe, America, and Asia. Several device concepts which

  8. Carbon based prosthetic devices

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine


    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  9. Carbon for sensing devices

    Tagliaferro, Alberto


    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  10. Next generation toroidal devices

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  11. Control rod blocking device

    Purpose: To increase the degree of freedom for the reactor operation by control rod blocking by monitoring the critical power ratio (CPR) with real time. Constitution: There has been a problem that the withdrawal of control rods may occasionally be inhibited with all the margin in view of CPR. The present invention dissolves this problem. That is, the control rod withdrawal device periodically calculates CPR, and calculated CPR upon generation of a control rod withdrawing signal by conpensating the result of calculation with a LPRM signal and a reactor core flow rate signal. The CPR at real time is compared with a predetermined setting value to output a control rod withdrawing inhibition signal depending on the result of the comparison. In the device as described above, since CPR is monitored at real time, the control rod can be withdrawn without causing fuel damages, as well as the inhibition of withdrawal irrespective of the presence of margin in view of CPR can be avoided. Accordingly, degree of freedom in the reactor operation can be increased. (Kamimura, M.)

  12. Reactor power measuring device

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  13. Power distribution measuring device

    The present invention concerns a device for measuring power distribution of neutrons in a nuclear reactor. That is, a gamma thermometer used so far has drawbacks of slow time response and low sensitivity although it is not always necessary to use a movable incore detector for calibration. However, the device of the present invention compensates the drawback by incorporating a gamma thermometer and an another incore detector of a different type in an identical detector assembly. The gamma thermometer is calibrated by an electric heater. With such a constitution, the sensitivity calibration of the detector of different type incorporated in the identical detector assembly can be conducted without relying on a movable detector when the reactor is stable. Further, if the detector of the different type having rapid response, such as a fission ionization chamber or a self-powered type detector is used as a detector, a reactor core power distribution monitoring system of rapid time response can be attained. (I.S.)

  14. Stretchable and foldable electronic devices

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong


    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  15. Stretchable and foldable electronic devices

    Rogers, John A; Huang, Yonggang; Ko, Heung Cho; Stoykovich, Mark; Choi, Won Mook; Song, Jizhou; Ahn, Jong Hyun; Kim, Dae Hyeong


    Disclosed herein are stretchable, foldable and optionally printable, processes for making devices and devices such as semiconductors, electronic circuits and components thereof that are capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Strain isolation layers provide good strain isolation to functional device layers. Multilayer devices are constructed to position a neutral mechanical surface coincident or proximate to a functional layer having a material that is susceptible to strain-induced failure. Neutral mechanical surfaces are positioned by one or more layers having a property that is spatially inhomogeneous, such as by patterning any of the layers of the multilayer device.

  16. Human Factors and Medical Devices

    Medical device hardware- and software-driven user interfaces should be designed to minimize the likelihood of use-related errors and their consequences. The role of design-induced errors in medical device incidents is attracting widespread attention. The U.S. Food and Drug Administration (FDA) is fully cognizant that human factors engineering is critical to the design of safe medical devices, and user interface design is receiving substantial attention by the agency. Companies are paying more attention to the impact of device design, including user instructions, upon the performance of those health professionals and lay users who operate medical devices. Concurrently, the FDA is monitoring human factors issues in its site inspections, premarket device approvals, and postmarket incident evaluations. Overall, the outlook for improved designs and safer device operation is bright

  17. Cybersecurity for Connected Diabetes Devices.

    Klonoff, David C


    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. PMID:25883162

  18. Firewood preparation devices in 1994

    A review of the market situation regarding firewood preparation devices is presented. The information was collected from the answers to a mail questionnaire. The review is assumed to include all the leading manufacturers and importers. Firewood production devices were available from 26 manufacturers. The range of models amounted to over 70. These may be divided into three categories: 1. cutting devices: the most common solution being a cross-cutting circular saw. There were only a few of these on sale as it is quite easy to include a splitting device on the same frame. 2. Splitting devices: e.g. screw splitter and hydraulically powered splitter. About 20 models are available on the markets. Cross cutting and splitting devices: these are the most popular devices. A cross-cutting circular saw with screw or hydraulic splitter is the most common type. There are about 50 models available on the markets. Cross-cutting and splitting devices are often equipped with conveyor for transferring the split wood e.g. into a trailer. Chopping devices are delivered as tractor powered devices, as electric motor powered devices or as combustion engine powered devices. Some of them are equipped with a time saving feeding device enabling the next stem to be lifted into position while the previous one is being chopped. The Finnish Work Efficiency Institute's studies show that when cross-cutting and splitting of stems into pieces of 35-50 cm in length, productivity for one operator varies in between 0.8 - 3.2 m3/h, depending on the device and work method used. (6 refs., 1 fig., 2 tabs.)

  19. Electronic control devices

    The subject of these lectures is the translation of information from particle detectors to computers. Large solid angle general purpose detectors at the intersection regions of high energy e+e- storage rings and pp and pp storage rings are discussed. Three choices for data acquisition are reviewed: use CAMAC (Computer Aided Measurement and Control), start from scratch and design a system, or wait for the final version of the proposed FASTBUS to be developed. The do-it-yourself procedure includes designs of drift chamber discriminator, time to amplitude converter, and data card block diagram. Trigger systems, the fast decision making systems judging an event interesting enough for a read-out cycle to be initiated, are discussed. Finally, a FASTBUS system layout, with its goals of minimum bus speed, general system topologies, and support multiple smart devices is given

  20. Bring Your Own Device

    Muñoz, Rodrigo; Adami, Fovad


    Detta examensarbete har genomförts i samarbete med Sourcecom Svenska AB. Sourcecom Svenska AB arbetar med kommunikationslösningar inom IT-kommunikation, IT-säkerhet och telefoni. Examensarbetet går ut på att undersöka konceptet Bring Your Own Device (BYOD) och föreslå olika lösningar beroende på företagets informationssäkerhetskrav. För att förstå konceptet BYOD behövs först en inblick i hur ett policybaserat system fungerar. Rapporten undersöker och förklarar tre olika Network Access Control...

  1. Monitored separation device

    Jackson, George William (Inventor); Willson, Richard Coale (Inventor); Fox, George Edward (Inventor)


    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  2. Nuclear reactor inspection device

    A typical embodiment of the invention combines a novel cellular end fitting for a nuclear reactor fuel assembly with a new design for a fuel rod end cap and a radiation sensing device probe to provide a means for swiftly and accurately distinguishing sound fuel rods from those rods that have developed leaks. For example, a somewhat thinner than usual fuel rod end cap is accessible through the open cellular structure of the end fitting to permit a hollow metal probe to contact the fuel rod end cap. This direct contact excludes most of the water, metal and other shielding materials from the volume between the interior of the fuel rod and the radiation detector, thereby improving the quality of the fuel rod examination. A bridge and trolley structure for accurately positioning the probe also is described

  3. Nuclear fusion device

    Grooves are formed on the wall surface disposed at the inner side of a vacuum vessel for confining plasmas, to thereby divide the flow channel of induced eddy current. During unsteady state of the plasmas, the flow channel of the eddy current induced on the wall surface is divided into a great number of small loops to inhibit the spacial extension of the induced eddy current, and the value of the induced eddy current is decreased. Therefore, electromagnetic forces formed on the wall surface due to interaction with steady magnetic fields are decreased to reduce the moment of the force exerted on the wall surface. The integrity and the reliability in view of the structure of the thermonuclear device can be improved. (N.H.)

  4. Plant control device

    A plant control device comprises an intellectual instrumentation group for measuring a predetermined process amount, an intellectual equipment group operating in accordance with a self-countermeasure, a system information space for outputting system information, a system level monitoring and diagnosing information generalization section for outputting system information, a system level maintenance information generalization section for outputting information concerning maintenance, a plant level information space and a plant level information generalization section. Each of them determines a state of the plant autonomously, and when abnormality is detected, each of the intellectual instrumentation, equipments and systems exchange information with each other, to conduct required operations including operations of intellectual robots, as required. Appropriate countermeasures for gauges, equipments and systems can be conducted autonomously at a place where operators can not access to improve reliability of complicate operations in the working site, as well as improve plant safety and reliability. (N.H.)

  5. Ceramics for fusion devices

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  6. Laser beam steering device

    Motamedi, M. E.; Andrews, A. P.; Gunning, W. J.


    Agile beam steering is a critical requirement for airborne and space based LIDAR and optical communication systems. Design and test results are presented for a compact beam steering device with low inertia which functions by dithering two complementary (positive and negative) binary optic microlens arrays relative to each other in directions orthogonal to the direction of light propagation. The miniaturized system has been demonstrated at scan frequencies as high as 300 Hz, generating a 13 x 13 spot array with a total field of view of 2.4 degrees. The design is readily extendable to a 9.5 degree field of view and a 52 x 52 scan pattern. The system is compact - less than 2 in. on a side. Further size reductions are anticipated.

  7. Light emitting ceramic device

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard


    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  8. Surface Acoustic Wave Devices

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model of a...... output waveguide and the MZI can thus be used as an optical switch. It is explained how the mechanical model of the SAW is coupled to a model of the optical waves such that the change in effective refractive index introduced in the MZI arms by the SAW can be calculated. Results of a parameter study of...

  9. False color viewing device

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs

  10. Millimeter wave nonreciprocal devices

    Morgenthaler, F. R.


    The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.

  11. Optically Reconfigurable Photonic Devices

    Wang, Qian; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I


    Optoelectronic components with adjustable parameters, from variable-focal-length lenses to spectral filters that can change functionality upon stimulation, have enormous technological importance. Tuning of such components is conventionally achieved by either micro- or nano-mechanical actuation of their consitutive parts, stretching or application of thermal stimuli. Here we report a new dielectric metasurface platform for reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and re-written as two-dimensional binary or grey-scale patterns into a nanoscale film of phase change material by inducing a refractive-index-changing phase-transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films optimized for high-optical-contrast ovonic switching with a sub-wavelength-resolution optical writing process to demonstrate technologically relevant devices: visible-range reconfigurable bi-chr...

  12. Semiconductor device. Handotai sochi

    Ebe, K.


    The wavelength area of the solar cell ranges widely from 0.3[mu]m short wavelength light to 2.4[mu]m long wavelength light, and semiconductor devices are desired to be developed which can absorb those wide range wavelength lights effectively for photoelectrical transfer. This invention is concerned with provision of a wide energy gap superlattice layer, which can absorb short wave light energy of the sunlight, and a narrow energy gap superlattice layer which can absorb long wavelength light energy of the sunlight, by stacking or by interposing the substrate. The energy gap of the formed superlattice layer is varied by gradual or continuous changing of the thickness of the barrier layer and the well layer of the narrow energy gap superlattice layer. As a result, high efficient solar cell is structured which can efficiently absorb the light of the sunlight ranging from short wavelength to long wavelength. 6 figs., 2 tabs.

  13. Reactor core monitoring device

    The device of the present invention reliably and conveniently detects an event of rapid increase of a coolant void coefficient at a portion of a channel by flow channel clogging event in a PWR-type reactor. Namely, upon flow channel clogging event, the coolant void coefficient is increased, an effective density is lowered, and a coolant shielding effect is lowered. Therefore, fast neutron fluxes at the periphery of a pressure tube are increased. The increase of the fast neutron fluxes is detected by a fast neutron flux detector disposed in a guide tube of an existent neutron flux detector. Based on the result, increase of coolant void coefficient can be detected. When an average void coefficient reaches from 30% to 100%, for example, the fast neutron fluxes are increased by about twice at a neutron permeation distance of coolants of about 10cm, thereby enabling to perform effective detection. (I.S.)

  14. Liquid wastes processing device

    Purpose: To enable safety and easy evaporation of liquid components in contaminated radioactive liquid wastes, as well as to recover the cleaned-up vapors by way of distillation into liquid components. Constitution: After supplying neutralized radioactive liquid wastes into an evaporator, a vertical moving rack is adjusted so as to suck the contaminated airs in a glove box. The liquid wastes are evaporated by a heater and the vapors are cleaned up in an inclined filter element. Further, the cleaned up vapors are formed into liquid in a water cooled cooling cylinder and then introduced to a gas phase separation and liquid collection device. While on the other hand, gases are sent from a gas outlet through a vent pipe to a suction pump and discharged therefrom into a simple glove box. (Horiuchi, T.)

  15. Analytic device including nanostructures

    Di, Fabrizio, E.


    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  16. Position display device

    Object: To provide a device capable of easily and quickly reading mutual mounting relations of control bodies such as control rods mounted on a nuclear reactor and positions to which the control bodies are driven. Structure: A scanning circuit is provided to scan positions of controllably mounted control bodies such as control rods. Values detected by scanning the positions are converted into character signals according to the values and converted into preranked color signals. The character signals and color signals are stored in a memory circuit by synchronous signals in synchronism with the scanning in the scanning circuit. Outputs of the memory circuit are displayed by a display unit such as a color Braun tube in accordance with the synchronous signals to provide color representations according to positions to which control bodies are driven in the same positional relation as the mounting of the control bodies. (Kamimura, M.)

  17. Elongated toroid fusion device

    A device for achieving ignition of a plasma with ohmic heating is described comprising: means for defining a toroidal plasma chamber,a and confining gas therein, and means including electrically conductive coils for generating plasma within the chamber and for confining and shaping such plasma substantially into and filling a predetermined single region of the chamber without an axisymmetric internal separatix and ohmically heating the confined plasma to ignition. The predetermined region is toroidal with a major axis defining an axial direction parallel thereto and a transaxial direction perpendicular to the axis and having an axial cross section with an elongation, k, greater than 4, where k is the ratio of the maximum axial dimension of the cross section to the maximum transaxial dimension of the cross section

  18. QoE-Aware Device-to-Device Multimedia Communications

    Liang ZHOU


    Full Text Available Multimedia services over mobile device-to-device (D2D networks has recently received considerable attention. In this scenario, each device is equipped with a cellular communication interface, as well as a D2D interface over a shared medium. In this work, we study the performance properties of the mobile D2D communications in the framework of user satisfaction, and develop a fully distributed QoE-aware multimedia communication scheme (QAMCS. Specifically, we translate the opportunistic multimedia communications issue into a stochastic optimization problem, which opens up a new degree of performance to exploit. Moreover, QAMCS is designed for a heterogeneous and dynamic environment, in which user demand, device mobility, and transmission fashion may vary across different devices and applications. Importantly, QAMCS is able to maximize the user satisfaction and only needs each device to implement its own scheme individually in the absence of a central controller.

  19. Radioactive gaseous waste processing device

    The present invention provides a device for continuously removing a moisture content in radioactive gaseous wastes (off gas) generated from a BWR type power generation plant. Namely, in a dehumidification device by utilizing hollow thread membranes of an off gas processing device, thermometers are disposed for measuring each of the temperature of off gases and the temperature of entrance of the off gas dehumidification device. A heater is disposed for heating the inside of the dehumidification device to a state corresponding to the temperature of off gases. A control device for controlling the heater by comparing the temperate of inflown gases and the temperature of the body of the dehumidification device. The inside of the dehumidifying device is heated to a temperature at or higher than the temperature of inflown off gases. Then, condensation of the moisture content contained in off gases in the dehumidification device can be prevented. In addition, if demister is disposed to an entrance nozzle portion of an off gas entrance chamber of the dehumidification device, mist of inflown off gases can be removed thereby enabling to improve steam permeation property of a hollow thread module. (I.S.)

  20. Hydrogen in portable devices

    Fuel cells were originally intended for use in power plants and vehicles. More recently, developers realised the possibility for building much smaller units and for lower prices per kilowatt than their larger relatives. This has led to a strong interest in developing small fuel cells. Small fuel cells could replace batteries in portable electronic equipment and internal combustion engines in portable generators. The upper limit for portable generators is about 5kW, mainly because of the weight of the fuel cell. The main applications for low-power fuel cells are mobile phones, personal digital assistants, laptop and notebook computers, cameras, medical equipment, military applications and other portable electronic devices. In comparison to batteries, fuel cells can supply much more power per unit volume or weight, though they have lower output voltages and are slower to respond to transients. Fuel cell types that are suitable for portable applications include: proton exchange membrane fuel cells (PEMFCs) using pure hydrogen, PEMFCs using hydrogen-rich gases from hydrocarbon or alcohol reforming, direct methanol fuel cells and, high-temperature fuel cells such as solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs) using hydrocarbons directly. Fuel cells for portable devices is becoming a niche, high-value market area which has good opportunities for a fast introduction of fuel cell technology and for the first consumer products in the electronic market can be expected within the coming year and is believed to grow rapidly thereafter. Danish industry is involved in the development of SOFC, PEMFC and DMFC fuel cells and the industry has in particular a strong position in system components and complete systems. An important area for Danish industry is system integration, where fuel cells and hydrogen technologies are implemented in electrical powered products. This is an area that is particular suited for small and medium sized enterprises and for

  1. Nanofabrication of Hybrid Optoelectronic Devices

    Dibos, Alan


    The material requirements for optoelectronic devices can vary dramatically depending on the application. Often disparate material systems need to be combined to allow for full device functionality. At the nanometer scale, this can often be challenging because of the inherent chemical and structural incompatibilities of nanofabrication. This dissertation concerns the integration of seemingly dissimilar materials into hybrid optoelectronic devices for photovoltaic, plasmonic, and photonic appli...

  2. Optoelectronic devices toward monolithic integration

    Ghergia, V.


    Starting from the present state of tl art of discrete devices up to the on going realization of monolithic semicorxtuctor integrated prototypes an overview ofoptoelectronic devices for telecom applications is given inchiding a short classification of the different kind of integrated devices. On the future perspective of IBCN distribution network some economica of hybrid and monolithic forms of integration are attempted. lnaflyashoitpresentationoftheactivitiesperformedintbefieldofmonolithic integration by EEC ESPR1T and RACE projects is reported. 1.

  3. Current devices of respiratory physiotherapy

    Hristara-Papadopoulou, A; Tsanakas, J; Diomou, G; Papadopoulou, O.


    In recent years patients with respiratory diseases use various devices, which help the removal of mucus from the airways and the improvement of pulmonary function. The aim of the present study is to determine the effectiveness of the current devices of respiratory physiotherapy, as it comes from the review of literature. The current devices of physiotherapy for patients with respiratory diseases, are presented as an alternative therapy method or a supplemental therapy and they can motivate pa...

  4. Life cycle of mobile devices

    T.V. Rohal; S.I. Naumenko; G.О Peresadko


    Article is devoted features of life cycle of mobile devices. The article highlighted a number of disadvantages associated with managing the life cycle of the product. Disadvantages include the orientation is not on the quality of mobile devices and their design, the obsolescence of digital products. The article drew attention to the need for process improvement life cycle management of mobile devices. For since this type of product is now the most popular among the population, consumers are i...

  5. Safe-haven locking device

    Williams, J.V.


    Disclosed is a locking device for eliminating external control of a secured space formed by fixed and movable barriers. The locking device uses externally and internally controlled locksets and a movable strike, operable from the secured side of the movable barrier, to selectively engage either lockset. A disengagement device, for preventing forces from being applied to the lock bolts is also disclosed. In this manner, a secured space can be controlled from the secured side as a safe-haven. 4 figures.

  6. Notes on Conformal Invisibility Devices

    Leonhardt, Ulf


    As a consequence of the wave nature of light, invisibility devices based on isotropic media cannot be perfect. The principal distortions of invisibility are due to reflections and time delays. Reflections can be made exponentially small for devices that are large in comparison with the wavelength of light. Time delays are unavoidable and will result in wave-front dislocations. This paper considers invisibility devices based on optical conformal mapping. The paper shows that the time delays do...

  7. Building Evacuation with Mobile Devices

    Merkel, Sabrina


    The rapidly growing world population and increasingly dense settlements demand ever-larger and more complex buildings from today's engineers. In comparison to this technological progress, a building's equipment for emergency evacuation has been hardly developed further. This work presents a concept for a building evacuation system based on mobile devices. Furthermore, various algorithms for route planning with mobile devices and for indoor localization of mobile devices are addressed.

  8. Barriers to medical device innovation



    Full Text Available Jacob Bergsland, Ole Jakob Elle, Erik Fosse The Intervention Centre, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway Abstract: The US Food and Drug Administration (FDA has defined a medical device as a health care product that does not achieve it's purpose by chemical action or by being metabolized. This means that a vast number of products are considered medical devices. Such devices play an essential role in the practice of medicine. The FDA classifies medical devices in three classes, depending on the risk of the device. Since Class I and II devices have relatively simple requirements for getting to the market, this review will focus on “implantable devices”, which, in general, belong to Class III. The European Union and Canada use a slightly different classification system. While early generations of medical devices were introduced without much testing, either technical or clinical, the process of introducing a Class III medical device from concept to clinical practice has become strongly regulated and requires extensive technological and clinical testing. The modern era of implantable medical devices may be considered to have started in the 1920s with development of artificial hips. The implantable pacemaker was another milestone and pacemakers and cardioverters/defibrillators have since saved millions of lives and created commercial giants in the medical device industry. This review will include some examples of cardiovascular devices. Similar considerations apply to the total implantable device market, although clinical and technological applications obviously vary considerably. Keyword: implantable, FDA, regulation, CE-mark, innovation

  9. Fibre Optic Communication Key Devices

    Grote, Norbert


    The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.

  10. Mobile device security for dummies

    Campagna, Rich; Krishnan, Ashwin


    The information you need to avoid security threats on corporate mobile devices Mobile devices have essentially replaced computers for corporate users who are on the go and there are millions of networks that have little to no security. This essential guide walks you through the steps for securing a network and building a bulletproof framework that will protect and support mobile devices in the enterprise. Featuring real-world case scenarios, this straightforward guide shares invaluable advice for protecting mobile devices from the loss of sensitive and confidential corporate informati

  11. Digital forensics for handheld devices

    Doherty, Eamon P


    Approximately 80 percent of the world's population now owns a cell phone, which can hold evidence or contain logs about communications concerning a crime. Cameras, PDAs, and GPS devices can also contain information related to corporate policy infractions and crimes. Aimed to prepare investigators in the public and private sectors, Digital Forensics for Handheld Devices examines both the theoretical and practical aspects of investigating handheld digital devices. This book touches on all areas of mobile device forensics, including topics from the legal, technical, academic, and social aspects o

  12. Simulation of semiconductor devices

    Oriato, D


    cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system. In chapter 6 an extensive simulation of the dependence of the optical band gap of a single InGaN quantum well on the piezoelectric and spontaneous polarization is reported. Quantum Confined Stark Effect and screening mechanisms are found to play a major role. The simulation of a novel InGaN/GaN double quantum well LED is presented. A wide well is used to capture electrons that tunnels in a narrow well where they recombine with holes. Resonant asymmetric tunneling of electron and holes is used to increase the efficie...

  13. Liquid waste processing device

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  14. Reactor container spray device

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  15. Radioactive iodine removing device

    In a radioactive iodine removing device of an off-gas processing step in a spent fuel reprocessing facility, spiral structures having an inclination of more than about 20deg is disposed at the inside of an iodine adsorbent packing portion, and dampers are disposed at a packing inlet and a discharging exit for iodine adsorbents respectively. After completion of discharge of the iodine adsorbents, a damper disposed in the midway of a adsorbent packing pipeline is opened for packing the iodine absorbents. The iodine adsorbents used have a spherical shape of 10 to 20 mesh (1 to 2mm), and the adsorbents are packed uniformly both radially and vertically to the packing portion upon injection of the adsorbents and, as a result, the packing portion can be made compact. Further, since the discharged iodine adsorbents can be contained in a vessel directly or in a different vessel having an excellent containing performance by taking the dimension of the vessel into consideration, it is possible to reduce the generation amount of wastes than that in a conventional case. (N.H.)

  16. ITER tokamak device

    Doggett, J.; Salpietro, E.; Shatalov, G.


    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  17. Plant monitoring device

    The device of the present invention comprises a data collecting section for periodically collecting processed data sent from plant equipments, a top node induction and processing section for an important plant function model for inducing the plant function to be noted particularly by an operator from important plant function models by using process data and a window screen selection section for selecting a window screen to be displayed based on the result of the evaluation for each of function nodes based on the processing described above and determining the layout and automatically forming the display screen. It is constituted so that the kind and the layout of the window under display are checked if they are the same as those one cycle before or not and, if they are different, the screen is automatically switched to a new screen display. Then, operator's psychological burdens such as selection of information and judgement for the operation upon occurrence of plant abnormality and accident can be mitigated, to provide a safe operation circumstance having reinforced monitoring of the function of the whole plant can be provided. (N.H.)

  18. Radioactive gas solidifying device

    The device of the present invention, a sputtering electrode comprises a cylindrical electrode main body made of a transition metal, electrode caps each made of a transition metal and connected by welding to the upper and the lower portions of the main body and a plurality of annular grooves formed to the outer surface of the electrode main body. The electrode main body and the electrode cap are connected by welding at the portions of the annular grooves, and rare earth elements are filled in the annular grooves. Then, when operation is conducted for a long period of time, the thickness of the electrode is gradually reduced by sputtering. When the rare earth element in the annular grooves are completely eliminated by the reduction of the thickness, radioactive gases are no more injected into the accumulated metal layers of sputtered metal formed at the surface of the ion injection electrode, to reduce the processing efficiency. By detecting the reduction and interrupting the operation directly, the reduction of the wall thickness in the welded portion between the main body and the electrode cap is prevented. In this way, it is possible to prevent the leakage of cooling water therefrom and abnormal electric discharge caused thereby, to enable stable operation for a long period of time. (T.M.)

  19. Ultrasonic wave inspection device

    The device of the present invention inspects incore structural components by visualizing them by scanning an ultrasonic transducer in an opaque liquid metal sodium in a pressure vessel of an FBR type reactor. Namely, a piezoelectric vibrator for transmitting/receiving ultrasonic waves is formed into a protruded shape. A portion at the center of the protruded piezoelectric vibrator is coaxially separated. Upon transmitting ultrasonic waves, a large opening of the entire piezoelectric vibrator is used. A small opening at the center of the piezoelectric vibrator is used upon receiving ultrasonic waves. With such a constitution, an object to be inspected is visualized based on the waveform of the received ultrasonic wave signals defining the center of a curvature of the protruded piezoelectric vibrator as a position of transmitting ultrasonic waves and defining the center of the opening at the center of the piezoelectric vibrator as a position of receiving ultrasonic waves. As a result, the energy of the ultrasonic waves can be enhanced to improve sensitivity upon transmitting ultrasonic waves. Since the distance between an optional position of the receiving surface and the reflecting surface of the object is minimized upon receiving ultrasonic waves, there is no distortion in the waveforms of the received signals thereby enabling to obtain images at high accuracy. (I.S.)

  20. Emergency gas processing device

    The present invention provides an emergency gas processing device which discharged contaminated air in a reactor building to the outside. Namely, a suction port of an emergency gas processing pipeline is disposed in the inside of the reactor building. The exit of the pipeline is connected to an exhaustion pipe of the building. On the side of the inlet of the pipeline, there are disposed an inlet valve, an air dryer, a blower, a filter unit and an exit valve from the suction port to the downstream. A heater is disposed to the air dryer. A recycling pipeline equipped with an automatic closing valve for connecting the inlet side of the inlet valve and the inlet side of the exit valve is disposed. Then, the moisture in an emergency gas flown from the inlet valve is removed, heated by the heater, and the temperature of the emergency gas is elevated. Impurities are removed by the filter unit. The automatic closing valve of the recycling pipeline is opened and the blower and the heater are operated to keep the temperature and humidity in the filter unit to a predetermined value during stand-by time. Upon occurrence of an accident, the automatic closing valve is closed, and the aimed system operation is preformed. (I.S.)

  1. Reactor power measuring device

    The device of the present invention comprises a γ-thermometer disposed in a BWR type reactor, a first amplifier for amplifying the output thereof, a fission ionization chamber disposed in the reactor separately from the γ-thermometer, a second amplifier for amplifying the output thereof, a differential circuit for differentiating the output signal of the second amplifier and a first adding circuit for adding an output signal of the differential circuit and an output signal of the first amplifier. Alternatively, a γ-ray self-powered neutron detector may be disposed instead of the fission ionization chamber. A second adding circuit is also disposed for adding the output signals of plurality of differentiation circuits and inputting the result to the first adding circuit. A sensitivity controller is disposed upstream of the first adder for controlling the sensitivity of the fission ionization chamber. Then, even if time delay should be caused in the γ-thermometer, output signals with good time response characteristic can be obtained by using signals of LPRM or SPND, and currently changing output of the reactor can be measured accurately to provide an effect on the improvement of the safety and operation controllability of the reactor. (N.H.)

  2. Hot gas handling device and motorized vehicle comprising the device

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.


    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  3. 77 FR 58576 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...


    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and... importation of certain wireless communication devices, portable music and data processing devices, computers... after importation of certain wireless communication devices, portable music and data processing...

  4. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...


    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and.... International Trade Commission has received a complaint entitled Wireless Communication Devices, Portable Music... communication devices, portable music and data processing devices, computers, and components thereof....

  5. 21 CFR 882.5050 - Biofeedback device.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Biofeedback device. 882.5050 Section 882.5050 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5050 Biofeedback device. (a) Identification. A biofeedback device is an instrument that provides a visual or auditory signal corresponding...

  6. Metal hydride actuation device

    A self-recocking actuation device is disclosed. One possible use for it is in conjunction with a pneumatic fire protection system. This invention employs the process known as occlusion to store large amounts of gas in a small volume. Metal hydrides in a chamber are used to store hydrogen in the disclosed preferred embodiment. Upon the application of heat-from a heat source like a resistance heater-the charged metal hydride releases its hydrogen (H2) in a chamber having only one exit opening which empties into a sealed bellows. This bellows contacts a piston located in another chamber wherein a biased resetting spring is provided to normally maintain the piston in contact with the bellows. As the pressure from the H2 gas builds up, it overcomes the biased spring to move it and the piston along with an associated pin or other actuator. If used to actuate a pneumatic fire protection system, the pin or actuator at the downward side of its stroke in turn, may puncture a shearable diaphragm or in some other way releases the contents of a container containing a second gas, like nitrogen (N2), which is then released from a second exit port in a different chamber to charge the fire protection system. Recocking of the piston begins as the heating of the metal hydride ceases. As cooling takes place the hydrogen is absorbed to reenter the hydride to decrease the gas pressure supplied. The piston's biased resetting spring then recocks the piston to its original position

  7. Plugging device for nuclear pipes

    The plugging device assembled near an access opening is used for plugging the primary pipes. This plugging device comprises a rim flexible joint put in mechanical pressure by the displacement of mechanical pieces. This joint has a central compartment pressurizable. This joint is fixed by a stirrup-piece and a shaft in support on the tube plate

  8. Polymer Thermoelectric Generators: Device Considerations

    Yee, Shannon


    Recent control of the transport properties in polymers has encouraged the development of polymer thermoelectric (TE) devices. Polymer TEs are thought to be less expensive and more scalable than their inorganic counterparts. The cost of the raw material is less and polymer TEs can leverage the large areal manufacturing technique established by the plastics industry. Additionally, while the overall ZT of polymer TEs appears attractive, individual polymer properties have a very different scale than their inorganic counterparts (i.e., the thermal conductivity and electrical conductivity are approximately one and two orders of magnitude smaller, respectively). Furthermore, the majority of TE measurements on polymers have been limited to thin-films where traditional TE materials are measured in bulk. So why should it be expected that polymer TE devices resemble traditional TE devices? Given the uniqueness of polymers, different device architectures are proposed that can leverage the unique strengths of polymer films. It will be shown that by logically considering device requirements, new polymer TE devices have non-linear features that are more attractive than linear inorganic TE devices. This leads to very different device optimizations that favor polymer TEs.

  9. Insertion device vacuum system designs

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented

  10. Semiconductor Switching Devices. .Future Trends

    S. Ahmad


    Full Text Available A variety of semiconductor devices and circuits have been successfully developed usingconduction properties of electrons and holes in a number of elemental and compound semiconductors.Carriers confinement in a potential well, formed out of a thin layer of lower band gap materialsandwitched between two layers of a higher band gap material, has been extended from one to two andthree dimensions. Resultant of two-dimensional carrier sheet, quantum wire and quantum dot havingdiscrete energy levels arising out of quantisation are being presently explored for possible device applications. A number of devices have been fabricated using resonant tunneling across a thin potentialbarrier. This has opened up several newer possibilities of using such structures for various electronicand optoelectronic devices and circuits applications as tunneling is relatively faster than conductionprocess. While looking into the interband tunneling between two quantum dots, possibility of a singleelectron switching has also been examined carefully. The idea of a single electron switching isconceptually being extended from quantl,lm dots to molecules and atoms ultimately. Simulations basedon transmission of electrons through a chain of molecules and atoms have shown that tens of THz speed and functional device density 1012 devices/mm2 are possible with such schemes. Devices basedon atom relay transistor (ART will be ultimate in its performance of switching speed. A brief onpresent-day situation followed by future proposals of fast switching devices for informationelectronics has been discussed.

  11. Wound Healing Devices Brief Vignettes

    Anderson, Caesar A.; Hare, Marc A.; Perdrizet, George A.


    Significance: The demand for wound care therapies is increasing. New wound care products and devices are marketed at a dizzying rate. Practitioners must make informed decisions about the use of medical devices for wound healing therapy. This paper provides updated evidence and recommendations based on a review of recent publications.

  12. A Device with Learning Capability.

    Sotina, N. M.; Burlai, Yu. P.

    The invention involves a device with learning capacity which contains input, storage, arithmetic and output units. In order to increase the number of recognizable patterns, facilitate replacement of one pattern by another, and also increase the speed of the device, the memory unit for the input field is connected to memory units for storage of…

  13. Sample processing device and method


    A sample processing device is disclosed, which sample processing device comprises a first substrate and a second substrate, where the first substrate has a first surface comprising two area types, a first area type with a first contact angle with water and a second area type with a second contact...

  14. Speech Recognition on Mobile Devices

    Tan, Zheng-Hua; Lindberg, Børge


    The enthusiasm of deploying automatic speech recognition (ASR) on mobile devices is driven both by remarkable advances in ASR technology and by the demand for efficient user interfaces on such devices as mobile phones and personal digital assistants (PDAs). This chapter presents an overview of ASR...

  15. Satellite and acoustic tracking device

    Berumen, Michael L.


    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.

  16. Personalized Adaptation to Device Characteristics

    Herder, E.; Dijk, van E.M.A.G.; de Bra, P.; Brusilovsky, P.; Conejo, R.


    Device characteristics, such as screen size and means of interaction, and the context in which a device is used, seriously affect the user’s mental representation of an information environment and its intended use. We hypothesize that user characteristics are valuable resources for determining which

  17. Electrical nanogap devices for biosensing

    Xing Chen


    Full Text Available For detecting substances that are invisible to the human eye or nose, and particularly those biomolecules, the devices must have very small feature sizes, be compact and provide a sufficient level of sensitivity, often to a small number of biomolecules that are just a few nanometres in size. Electrical nanogap devices for biosensing have emerged as a powerful technique for detecting very small quantities of biomolecules. The most charming feature of the devices is to directly transduce events of biomolecules specific binding into useful electrical signals such as resistance/impedance, capacitance/dielectric, or field-effect. Nanogap devices in electrical biosensing have become a busy area of research which is continually expanding. A wealth of research is available discussing planar and vertical nanogap devices for biosensing. Planar nanogap devices including label-free, gold nanoparticle-labeled, nanoparticles-enhanced, nanogapped gold particle film, and carbon nanotube nanogap devices as well as vertical nanogap devices with two and three terminals for biosensing are carefully reviewed. The aim of this paper is to provide an updated overview of the work in this field. In each part, we discuss the principles of operation of electrical biosensing and consider major strategies for enhancing their performance and/or key challenges and opportunities in current stages, and in their further development.

  18. Selection of Air Terminal Device

    Nielsen, Peter V.

    This paper discusses the selection of the air terminal device for the experiments and numerical prediction in the International Energy Agency Annex 20 work: Air Flow Pattern within Buildings,......This paper discusses the selection of the air terminal device for the experiments and numerical prediction in the International Energy Agency Annex 20 work: Air Flow Pattern within Buildings,...

  19. SAW-Modulated Image Device

    Benz, H. F.


    Imaging device uses surface-acoustic-wave (SAW) charge transfer for image readout. Spatial resolution of image changed electronically by changing frequency of applied signal. Surface acoustic waves create traveling longitudinal electric fields. These fields create potential wells that carry along stored charges. Charges injected into wells by photoelectric conversion when light strikes device.

  20. Mixing in a Microfluid Device

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  1. Nuclear technical or chemical device

    The handling element and the tool are provided in a complementary way with a marking and a sensor for detecting the marking. The sensor is connected to a switching device, which controls the remote control depending on travel and/or time. The sensor controls a positioning device, which causes the tool to engage with the handling element. (orig./HP)

  2. Content Sharing for Mobile Devices

    Ball, Rudi


    The miniaturisation of computing devices has seen computing devices become increasingly pervasive in society. With this increased pervasiveness, the technologies of small computing devices have also improved. Mobile devices are now capable of capturing various forms of multimedia and able to communicate wirelessly using increasing numbers of communication techniques. The owners and creators of local content are motivated to share this content in ever increasing volume; the conclusion has been that social networks sites are seeing a revolution in the sharing of information between communities of people. As load on centralised systems increases, we present a novel decentralised peer-to-peer approach dubbed the Market Contact Protocol (MCP) to achieve cost effective, scalable and efficient content sharing using opportunistic networking (pocket switched networking), incentive, context-awareness, social contact and mobile devices. Within the report we describe how the MCP is simulated with a superimposed geographi...

  3. Pressurized waterproof case electronic device

    Berumen, Michael L.


    A pressurized waterproof case for an electronic device is particularly adapted for fluid-tight containment and operation of a touch-screen electronic device or the like therein at some appreciable water depth. In one example, the case may be formed as an enclosure having an open top panel or face covered by a flexible, transparent membrane or the like for the operation of the touchscreen device within the case. A pressurizing system is provided for the case to pressurize the case and the electronic device therein to slightly greater than ambient in order to prevent the external water pressure from bearing against the transparent membrane and pressing it against the touch screen, thereby precluding operation of the touch screen device within the case. The pressurizing system may include a small gas cartridge or may be provided from an external source.

  4. Surgical tools and medical devices

    Jackson, Mark


    This new edition presents information and knowledge on the field of biomedical devices and surgical tools. The authors look at the interactions between nanotechnology, nanomaterials, design, modeling, and tools for surgical and dental applications, as well as how nanostructured surfaces can be created for the purposes of improving cell adhesion between medical devices and the human body. Each original chapter is revised in this second edition and describes developments in coatings for heart valves, stents, hip and knee joints, cardiovascular devices, orthodontic applications, and regenerative materials such as bone substitutes. There are also 8 new chapters that address: Microvascular anastomoses Inhaler devices used for pulmonary delivery of medical aerosols Surface modification of interference screws Biomechanics of the mandible (a detailed case study) Safety and medical devices The synthesis of nanostructured material Delivery of anticancer molecules using carbon nanotubes Nano and micro coatings for medic...

  5. Optical device for straightness measurement

    Vekteris, Vladas; Jurevicius, Mindaugas; Turla, Vytautas


    The present paper describes the research of the optical device for two-dimensional straightness measurement of technological machines. Mathematical study of an optical device, operating on the phase principle and measuring transversal displacements of machine parts in two directions ( X and Y) during their linear longitudinal motion in a machine (alongside the Z axis), is presented. How to estimate the range of travel along the Z axis is analytically shown. At this range, the measurer gives correct measurements of transverse displacement. The necessary distance from the objective focus to the image plane was defined mathematically. The sample results of measuring the displacement of the table of a technological machine by using the optical device are presented in the paper. This optical device for non-contact straightness measurement can be used for measurement straightness in turning, milling, drilling, grinding machines and other technological machines, also in geodesy and cartography, and for moving accuracy testing of mechatronic devices, robotics and others.

  6. Pyrotechnic devices and their applications

    Himelblau, Harry


    Pyroshock is mechanical shock transmitted through structures from explosive devices, sometimes accompanied by structural impact. These devices are designed to cause the intentional separation of structures, or to cause the deployment of various mechanisms or subsystems required for mission operation. Separation devices usually fall into two categories: (a) line sources, such as linear shaped charges, and (b) point sources, such as explosive bolts, pin puller and pushers, and gas generators. The advantages of these devices are high reliability (especially when redundantly activated), low cost and weight, high activation speed, and low structural deformation a short distance from the source. The major limitation is pyroshock, a severe high-frequency transient capable of causing failure or malfunction to small nearby elements, especially electronic and optical components located close to the source. This pyroshock tutorial, which is intended to summarize recent improvements to the technology, is initiated with a review of explosive and companion devices.

  7. Device Applications of Nonlinear Dynamics

    Baglio, Salvatore


    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  8. Turi device for radioactive source transport in the MUK device

    The TURI radioactive source transport device for on-line studies with a mass spectrometer in a proton beam is described. This device is a part of the multidetector MUK-device the aim of which is the measurement of the angular correlations and lifetimes observed in radioactive decay of short-lived nuclei (T1/2>0.1 s). The TURY system ensures the velocity of the radioactive target movement 1 cm per 0.25 s, and microcomputer control of experiment the accuracy of the tape stop is 0.15 mm

  9. Multilayer polymer light emitting devices

    Barcikowski, Zachary; Thomas, Adam; Tzolov, Marian


    The interplay of device layers and their interfaces is a major area of study in Polymer Light Emitting Devices (PLEDs). Many factors such as the degradation, efficiency, and overall performance depend on how these layers interact with each other. A fundamental understanding of the interfaces of these layers can lend to better performing devices using a multitude of organic polymers deposited in conjunction with each other in several ways. We have studied basic PLED devices in which we vary the emissive layer used, along with final bake temperatures. Devices include a glass substrate with Indium Tin Oxide anode, Aluminum cathode, and Plexcore Hole Injection layer. The active polymer films were spin casted from solution of MEH-PPV and PFO. Single layer and dual layers of several polymers are studied by examining current-voltage characteristics, film densities, impedance measurements, light emission, and efficiency calculations. We have found that not only do dual layers positively alter the performance of the device in the majority of cases, but the solvents in which each layer is originally in when deposited affects the formation of the interface, thereby altering the device mechanisms.

  10. High voltage MOSFET devices and methods of making the devices

    Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran


    A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.