A Compact Supermassive Binary Black Hole System
Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W
2006-01-01
We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...
STU Black Holes as Four Qubit Systems
Lévay, Péter
2010-01-01
In this paper we describe the structure of extremal stationary spherically symmetric black hole solutions in the STU model of D=4, N=2 supergravity in terms of four-qubit systems. Our analysis extends the results of previous investigations based on three qubits. The basic idea facilitating this four-qubit interpretation is the fact that stationary solutions in D=4 supergravity can be described by dimensional reduction along the time direction. In this D=3 picture the global symmetry group $SL...
STU Black Holes as Four Qubit Systems
Lévay, Péter
2010-01-01
In this paper we describe the structure of extremal stationary spherically symmetric black hole solutions in the STU model of D=4, N=2 supergravity in terms of four-qubit systems. Our analysis extends the results of previous investigations based on three qubits. The basic idea facilitating this four-qubit interpretation is the fact that stationary solutions in D=4 supergravity can be described by dimensional reduction along the time direction. In this D=3 picture the global symmetry group $SL(2,R)^{\\times 3}$ of the model is extended by the Ehlers SL(2,R) accounting for the fourth qubit. We introduce a four qubit state depending on the charges (electric, magnetic and NUT) the moduli and the warp factor. We relate the entanglement properties of this state to different classes of black hole solutions in the STU model. In the terminology of four qubit entanglement extremal black hole solutions correspond to nilpotent, and nonextremal ones to semisimple states. In arriving at this entanglement based scenario the ...
Black holes in binary stellar systems and galactic nuclei
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Transformation optics that mimics the system outside a Schwarzschild black hole
Chen, Huanyang; Miao, Rong-Xin; Li, Miao
2009-01-01
We applied the transformation optics to mimic a black hole of Schwarzschild form. Similar properties of photon sphere were also found numerically for the metamaterial black hole. Several reduced versions of the black hole systems were proposed for easier implementations.
Can mixed star-plus-wormhole systems mimic black holes?
Dzhunushaliev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta
2016-01-01
We consider mixed strongly gravitating configurations consisting of a wormhole threaded by two types of ordinary matter. For such systems, the possibility of obtaining static spherically symmetric solutions describing compact massive central objects enclosed by high-redshift surfaces (black-hole-like configurations) is studied. Using the standard thin accretion disk model, we exhibit potentially observable differences allowing to distinguish the mixed systems from ordinary black holes with the same masses.
On the dynamics of tilted black hole-torus systems
Mewes, V.; Galeazzi, F.; Font, J; Montero, P.; Stergioulas, N.
2016-01-01
We present results from three-dimensional, numerical relativity simulations of a tilted black hole-thick accretion disc system. The simulations are analysed using tracer particles in the disc which are advected with the flow. Such tracers, which we employ in these new simulations for the first time, provide a powerful means to analyse in detail the complex dynamics of tilted black hole-torus systems. We show how its use helps to gain insight in the overall dynamics of the system, discussing t...
Taking the Pulse of a Black Hole System
2011-01-01
Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black hole in GRS 1915 has been estimated to rotate at the maximum possible rate, allowing material in the inner disk to orbit very close to the black hole, at a radius only 20% larger than the event horizon, where the material travels at 50% the speed of light. Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE), researchers monitored this black hole system over a period of eight hours. As they watched, GRS 1915 gave off a short, bright pulse of X-ray light approximately every 50 seconds, varying in brightness by a factor of about three. This type of rhythmic cycle closely resembles an electrocardiogram of a human heart -- though at a slower pace. "Trying to understand the physics of this 'heartbeat state' is a little like trying to understand how a person's heart beats by watching changes in the blood flow through their veins," said Joey Neilsen, a graduate student at Harvard University, who presented these results from his dissertation at the American Astronomical Society (AAS) meeting in Seattle, Wash. It was previously known that GRS 1915 can develop such heartbeats when its mass consumption rate is very high. After monitoring it with the special combination of Chandra and RXTE, Neilsen and his collaborators realized that they could use the pulses to figure out what controls how much material the black hole consumes. "With each beat, the black hole pumps an enormous
Multiple supermassive black hole systems: SKA's future leading role
Deane, Roger; Paragi, Zsolt; Jarvis, Matt; Coriat, Mickäel; Bernardi, Gianni; Frey, Sandor; Heywood, Ian; Klöckner, Hans-Rainer
2015-01-01
Galaxies and supermassive black holes (SMBHs) are believed to evolve through a process of hierarchical merging and accretion. Through this paradigm, multiple SMBH systems are expected to be relatively common in the Universe. However, to date there are poor observational constraints on multiple SMBHs systems with separations comparable to a SMBH gravitational sphere of influence (
On the dynamics of tilted black hole-torus systems
Mewes, Vassilios; Galeazzi, Filippo; Font, José A.; Montero, Pedro J.; Stergioulas, Nikolaos
2016-09-01
We present results from three-dimensional, numerical relativity simulations of a tilted black hole-thick accretion disc system. The simulations are analysed using tracer particles in the disc which are advected with the flow. Such tracers, which we employ in these new simulations for the first time, provide a powerful means to analyse in detail the complex dynamics of tilted black hole-torus systems. We show how its use helps to gain insight into the overall dynamics of the system, discussing the origin of the observed black hole precession and the development of a global non-axisymmetric m = 1 mode in the disc. Our three-dimensional simulations show the presence of quasi-periodic oscillations (QPOs) in the instantaneous accretion rate, with frequencies in a range compatible with those observed in low-mass X-ray binaries with either a black hole or a neutron star component. The frequency ratio of the dominant low-frequency peak and the first overtone is o1/f ˜ 1.9, a frequency ratio not attainable when modelling the QPOs as p-mode oscillations in axisymmetric tori.
On the dynamics of tilted black hole-torus systems
Mewes, Vassilios; Font, José A; Montero, Pedro J; Stergioulas, Nikolaos
2016-01-01
We present results from three-dimensional, numerical relativity simulations of a tilted black hole-thick accretion disc system. The simulations are analysed using tracer particles in the disc which are advected with the flow. Such tracers, which we employ in these new simulations for the first time, provide a powerful means to analyse in detail the complex dynamics of tilted black hole-torus systems. We show how its use helps to gain insight in the overall dynamics of the system, discussing the origin of the observed black hole precession and the development of a global non-axisymmetric $m=1$ mode in the disc. Our three-dimensional simulations show the presence of quasi-periodic oscillations (QPOs) in the instantaneous accretion rate, with frequencies in a range compatible with those observed in low mass X-ray binaries with either a black hole or a neutron star component. The frequency ratio of the dominant low frequency peak and the first overtone is $o_1/f \\sim 1.9$, a frequency ratio not attainable when mo...
Multiple supermassive black hole systems: SKA's future leading role
Deane, Roger; Jarvis, Matt; Coriat, Mickäel; Bernardi, Gianni; Frey, Sandor; Heywood, Ian; Klöckner, Hans-Rainer
2015-01-01
Galaxies and supermassive black holes (SMBHs) are believed to evolve through a process of hierarchical merging and accretion. Through this paradigm, multiple SMBH systems are expected to be relatively common in the Universe. However, to date there are poor observational constraints on multiple SMBHs systems with separations comparable to a SMBH gravitational sphere of influence (<< 1 kpc). In this chapter, we discuss how deep continuum observations with the SKA will make leading contributions towards understanding how multiple black hole systems impact galaxy evolution. In addition, these observations will provide constraints on and an understanding of stochastic gravitational wave background detections in the pulsar timing array sensitivity band (nanoHz -microHz). We also discuss how targets for pointed gravitational wave experiments (that cannot be resolved by VLBI) could potentially be found using the large-scale radio-jet morphology, which can be modulated by the presence of a close-pair binary SMBH...
Prospects for experimental research on black holes in binary systems
Long, K. S.
1979-01-01
Cygnus X-1, the single widely accepted example of a black hole in a binary system, is characterized by unusual X-ray properties. The X-ray spectrum of Cygnus X-1 is not cut off above 20 keV, as in most strong X-ray sources. Recent scintillation counter measurements reveal a power law spectrum extending from 40 to 200 keV with a photon spectral index of approximately 2.2. However, it is not clear that these and other X-ray properties of the system are related to the black-hole nature of Cygnus X-1. It is suggested that without a direct test to show that the mass of the compact object in other systems similar to Cygnus X-1 (Circinus X-1 and GX339-4) exceeds the limit of the neutron star mass, a better understanding of the accretion disk phenomenon must be achieved to demonstrate how the properties peculiar to these systems are related to the black hole nature of the compact object. Current accretion disk models are examined, including the alpha-accretion disk and two-temperature accretion disk models.
General Relativistic Radiative Transfer: Applications to Black-Hole Systems
Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan
2007-01-01
We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
STU black holes as four-qubit systems
In this paper we describe the structure of extremal stationary spherically symmetric black-hole solutions in the STU model of D=4, N=2 supergravity in terms of four-qubit systems. Our analysis extends the results of previous investigations based on three qubits. The basic idea facilitating this four-qubit interpretation is the fact that stationary solutions in D=4 supergravity can be described by dimensional reduction along the time direction. In this D=3 picture the global symmetry group SL(2,R)x3 of the model is extended by the Ehlers SL(2,R) accounting for the fourth qubit. We introduce a four-qubit state depending on the charges (electric, magnetic, and Newman-Unti-Tamburino), the moduli, and the warp factor. We relate the entanglement properties of this state to different classes of black-hole solutions in the STU model. In the terminology of four-qubit entanglement extremal black-hole solutions correspond to nilpotent, and nonextremal ones to semisimple states. In arriving at this entanglement-based scenario the role of the four algebraically independent four-qubit SL(2,C) invariants is emphasized.
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)
The parameters of binary black hole system in PKS 1510-089
Li Juan; Fan Jun-Hui; Yuan Yu-Hai
2007-01-01
Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of ～35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole.The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole.Based on the observations of PKS 1510-089,we estimate the parameters of the binary black hole system.The masses for the primary and secondary black holes are 1.37×109M⊙(M⊙ is the solar mass) and 1.37×107M⊙,and the major axis for this pair being about 0.1 parsec(pc).
Failure of standard thermodynamics in planck scale black hole system
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry (NCG) and the generalized uncertainty principle (GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the need for a fractal non-extensive thermodynamics for Planck size black hole evaporation process.
Failure of standard thermodynamics in planck scale black hole system
Nozari, Kourosh [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-1467, Babolsar (Iran, Islamic Republic of)], E-mail: knozari@umz.ac.ir; Mehdipour, S. Hamid [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-1467, Babolsar (Iran, Islamic Republic of)
2009-01-30
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry (NCG) and the generalized uncertainty principle (GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the need for a fractal non-extensive thermodynamics for Planck size black hole evaporation process.
Are black holes totally black?
Grib, A A
2014-01-01
Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.
Statistical mechanics of black holes
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed
Failure of Standard Thermodynamics in Planck Scale Black Hole System
Nozari, Kourosh; Mehdipour, S. Hamid
2006-01-01
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry(NCG) and the generalized uncertainty principle(GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the nee...
Cosmological/Black-Hole Unified Theory as a Constrained System
Nieto, J A
2014-01-01
Using a Lagrangian formalism we unify the cosmology and black-hole concepts. Specifically, we identify these two physical scenarios as part of a 2-dimensional metric, which arises from a Lagrangian (with constraints) derived from the Einstein-Hilbert action. In particular, we show that the Friedman-Robertson-Walker cosmological model and the Schwarzschild black-hole solution are both a consequence of a such Lagrangian.
From horizon to torus: Uncovering supermassive black hole systems
Murphy, Kendrah
2009-06-01
The complexity of the structure and behavior of AGNs is often imprinted in the Fe K line emission in their X-ray spectra. We present a study of the Seyfert galaxy NGC 2992 with RXTE and Suzaku , which highlights this complexity, as we find evidence of both persistent emission from the accretion disk and from matter more distant from the central black hole (i.e., the putative obscuring torus), as well as short-term flaring emission from the accretion disk. Future X-ray instrumentation is expected to allow us to significantly improve the constraints derived from the Fe K lines in AGN, such as the black-hole angular momentum (spin) and the inclination angle of the putative accretion disk. However, significant model-dependence and degeneracy will persist with radially-integrated Fe K line profiles, so we have investigated the feasibility of utilizing Fe K line emission from localized orbiting flares ("hotspots") to provide a more robust measure of black-hole spin. In addition to affecting the persistent and transient Fe K line emission, the physical structure, geometry, and orientation of the central engine harboring the black hole furthermore effect the observed continuum in specific ways. It is therefore necessary to self-consistently model the continuum and emission lines in order to derive constraints on the physical parameters of the system. Improved X-ray spectral data quality has facilitated the ability to disentangle some of the spectral components, but the increased spectral complexity creates a need for more sophisticated models. Such a need has arisen with respect to the X-ray spectra of obscured AGN. To that end, we describe a new X-ray spectral model, based on Monte-Carlo simulations of the toroidal reprocessor, that will allow one to self-consistently fit for the line emission from distant matter as well as the associated Compton-scattered continuum. The model is valid for arbitrary incident spectra and can therefore be combined with models of
Evolution of an Accretion Disk in Binary Black Hole Systems
Kimura, Shigeo S; Toma, Kenji
2016-01-01
We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...
A close-pair binary in a distant triple supermassive black-hole system
Deane, R. P.; Paragi, Z.; Jarvis, M. J.; Coriat, M.; Bernardi, G; Fender, R. P.; S. Frey; Heywood, I.; Klöckner, H. -R.; Grainge, K.; Rumsey, C.
2014-01-01
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary...
Nonstationary analogue black holes
We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Strominger, Andrew
1993-01-01
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...
Gao, C. J.; Zhang, S. N.
2006-01-01
The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Horndeski black hole geodesics
Tretyakova, D A
2016-01-01
We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
Scalar clouds in charged stringy black hole-mirror system
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω = mΩH, where m is the azimuthal index and ΩH is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω = qΦH for a charged scalar field, where q is the charge of the scalar field, and ΦH is the horizon's electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm. It is shown that analytical results of the mirror location rm for the clouds perfectly coincide with numerical results in the qQ << 1 regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm for the scalar clouds in the qQ >> 1 regime. (orig.)
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Dragging of inertial frames in the composed black-hole-ring system
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)
2015-11-15
A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H}) = J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) = 2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R → R{sub H}{sup +}) → 2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})= J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new} = J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations
Dragging of inertial frames in the composed black-hole-ring system
A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity ΩHBH-ring of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum JH by the simple Kerr-like (vacuum) relation ΩHKerr(JH) = JH/2M2RH (here M and RH are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation ΩHBH-ring(JH = 0, JR, R) = 2JR/R3 for the angular velocity of a central black hole with zero angular momentum, where JR and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for ΩHBH-ring(JH = 0, JR, R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value ΩHBH-ring(JH = 0, JR, R → RH+) → 2JR/RH3 (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value ΩHKerr(JHnew)= JHnew/2Mnew2RHnew [that is, after the adiabatic assimilation of the ring by the central black hole. Here JHnew = JR, Mnew, and RHnew are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations in which the central black holes possess non-zero angular momenta. In particular, it is shown that the continuity argument (namely, the characteristic smooth evolution of the black-hole angular velocity during an adiabatic assimilation process of the ring into the
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Binary Systems with a Black Hole Component as Sources of Gravitational Waves
Koçak, D
2016-01-01
Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations
Neves, J C S
2015-01-01
In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.
White holes and eternal black holes
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
White holes and eternal black holes
Stephen D. H. Hsu
2010-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK
Fluorescent iron lines as a probe of astrophysical black hole systems
Reynolds, C S; Reynolds, Christopher S.; Nowak, Michael A.
2003-01-01
(abridged) With most physicists and astrophysicists in agreement that black holes do indeed exist, the focus of astrophysical black hole research has shifted to the detailed properties of these systems. Nature has provided us with an extremely useful probe of the region very close to an accreting black hole - X-ray irradiation of relatively cold material in the vicinity of the black hole can imprint characteristic features into the X-ray spectra of black hole systems, most notably the Kalpha fluorescent line of iron. Detailed X-ray spectroscopy of these features can be used to study Doppler and gravitational redshifts, thereby providing key information on the location and kinematics of the cold material. This is a powerful tool that allows us to probe within a few gravitational radii, or less, of the event horizon. Here, we present a comprehensive review of relativistic iron line studies for both accreting stellar mass black holes (i.e., Galactic Black Hole Candidate systems; GBHCs), and accreting supermassiv...
Resource Letter BH-2: Black Holes
Gallo, Elena
2008-01-01
This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...
Black holes and branes in string theory
Skenderis, K
1999-01-01
This is a set of introductory lecture notes on black holes in string theory. After reviewing some aspects of string theory such as dualities, brane solutions, supersymmetric and non-extremal intersection rules, we analyze in detail extremal and non-extremal 5d black holes. We first present the D-brane counting for extremal black holes. Then we show that 4d and 5d non-extremal black holes can be mapped to the BTZ black hole (times a compact manifold) by means of dualities. The validity of these dualities is analyzed in detail. We present an analysis of the same system in the spirit of the adS/CFT correspondence. In the ``near-horizon'' limit (which is actually a near inner-horizon limit for non-extremal black holes) the black hole reduces again to the BTZ black hole. A state counting is presented in terms of the BTZ black hole.
Noncommutative Singular Black Holes
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Noncommutative Singular Black Holes
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Bousso, R.; Hawking, S. W.
1997-08-01
We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
Kuchiev, M Yu
2003-01-01
Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.
Evolution of massive black holes
Volonteri, Marta
2007-01-01
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...
Fluctuating Black Hole Horizons
Mei, Jianwei
2013-01-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
Ahn, Eun-Joo; Cavaglia, Marco
2003-01-01
Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...
A close-pair binary in a distant triple supermassive black hole system.
Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C
2014-07-01
Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments. PMID:24990745
Merging galaxies and black hole ejections
Valtonen, M. J.
1990-01-01
In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.
ULTRAMASSIVE BLACK HOLE COALESCENCE
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Sesana, A; Volonteri, M
2008-01-01
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Lee, Daeho; Lee, Youngone
2012-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Finite differencing second order systems describing black hole spacetimes
Calabrese, G
2005-01-01
Keeping Einstein's equations in second order form can be appealing for computational efficiency, because of the reduced number of variables and constraints. Stability issues emerge, however, which are not present in first order formulations. We show that a standard discretization of the second order ``shifted'' wave equation leads to an unstable semi-discrete scheme if the shift parameter is too large. This implies that discretizations obtained using integrators such as Runge-Kutta, Crank-Nicholson, leap-frog are unstable for any fixed value of the Courant factor. We argue that this situation arises in numerical relativity, particularly in simulations of spacetimes containing black holes, and discuss several ways of circumventing this problem. We find that the first order reduction in time based on ``ADM'' type variables is very effective.
On Noncommutative Black Holes Thermodynamics
Faizal, Mir; Ulhoa, S C
2015-01-01
In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.
The Thermodynamics of Black Holes
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
The Thermodynamics of Black Holes
Wald Robert M.
1999-01-01
We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio
2015-10-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Topics in black hole evaporation
Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...
Black hole critical phenomena without black holes
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Black hole thermodynamical entropy
Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)
2013-07-15
As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
Cosmic censorship inside black holes
Thorlacius, L
2006-01-01
A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.
Bekenstein, Jacob D.
1997-01-01
In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...
Tunnelling from black holes and tunnelling into white holes
Chatterjee, Bhramar; Ghosh, A.; Mitra, P.
2008-03-01
Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.
Casadio, Roberto; Micu, Octavian; Orlandi, Alessio
2015-01-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Black holes: the membrane paradigm
The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole
A close-pair binary in a distant triple supermassive black-hole system
Deane, R P; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H -R; Grainge, K; Rumsey, C
2014-01-01
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $\\sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs ar...
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Moving black holes via singularity excision
We present a singularity excision algorithm appropriate for numerical simulations of black holes moving throughout the computational domain. The method is an extension of the excision procedure previously used to obtain stable simulations of single, non-moving black holes. The excision procedure also shares elements used in recent work to study the dynamics of a scalar field in the background of a single, boosted black hole. The excision method is tested with single black-hole evolutions using a coordinate system in which the coordinate location of the black hole, and thus the excision boundary, moves throughout the computational domain
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.
2002-10-01
wavebands between 1.6 and 3.5 µm. The compact objects are stars and their colours indicate their temperature (blue = "hot", red = "cool"). There is also diffuse infrared emission from interstellar dust between the stars. The two yellow arrows mark the position of the black hole candidate "SgrA*" at the very centre of the Milky Way galaxy. The scale is indicated; the 1 light-year bar subtends an angle of 8 arcsec in the sky. The centre of our Milky Way galaxy is located in the southern constallation Sagittarius (The Archer) and is "only" 26,000 light-years away [5]. On high-resolution images, it is possible to discern thousands of individual stars within the central, one light-year wide region (this corresponds to about one-quarter of the distance to "Proxima Centauri", the star nearest to the solar system). Using the motions of these stars to probe the gravitational field, observations with the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile) (and subsequently at the 10-m Keck telescope , Hawaii, USA) over the last decade have shown that a mass of about 3 million times that of the Sun is concentrated within a radius of only 10 light-days [5] of the compact radio and X-ray source SgrA* ("Sagittarius A") at the center of the star cluster. This means that SgrA* is the most likely counterpart of the putative black hole and, at the same time, it makes the Galactic Center the best piece of evidence for the existence of such supermassive black holes . However, those earlier investigations could not exclude several other, non-black hole configurations. "We then needed even sharper images to settle the issue of whether any configuration other than a black hole is possible and we counted on the ESO VLT telescope to provide those" , explains Reinhard Genzel , Director at the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching near Munich (Germany) and member of the present team. "The new NAOS-CONICA (NACO) instrument, built in a close
Quantum black hole evaporation
Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman
1993-01-01
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...
Hawking, S. W.
1996-03-01
One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Black holes in stellar-mass binary systems: expiating original spin?
King, Andrew
2016-01-01
We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs) there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions we expect misalignment of the spin and orbital planes by ~1 radian for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries (HMXBs). A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers on a thermal timescale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of > ~10 systems. Recent observational wo...
Noncommutative black hole thermodynamics
We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Yang, Huan; Lehner, Luis
2014-01-01
We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Noncommutative solitonic black hole
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)
Noncommutative solitonic black hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Hawking, Stephen W.
1995-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
Visser, M
1999-01-01
Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Lidov-Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems
Silsbee, Kedron
2016-01-01
We show that a black-hole binary with a massive companion on an orbit with semi-major axis no more than $\\sim 10$ times the semi-major axis of the inner binary can undergo Lidov-Kozai cycles which bring the binary within a few times $10^{-4}$ AU at pericenter, causing it to rapidly merge due to gravitational-wave emission. The total predicted rate of these mergers is within the low end of the 90\\% credible interval for the total black-hole black-hole merger rate inferred from the current LIGO results. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).
A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems
Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.
2013-01-01
Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.
Black Hole Entropy and Superconformal Field Theories on Brane-Antibrane Systems
Halyo, E
2004-01-01
We obtain the enropy of Schwarzschild and charged black holes in D>4 from superconformal gases that live on p=10-D dimensional brane-antibrane systems wrapped on T^p. The preperties of the strongly coupled superconformal theories such as the appearance of hidden dimensions (for p=1,4) and fractional strings (for p=5) are crucial for our results. In all cases, the Schwarzschild radius is given by the transverse fluctuations of the branes and antibranes due to the finite temperature. We show that our results can be generalized to multicharged black holes.
Horowitz, Gary T.; Maldacena, Juan
2003-01-01
We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Exact solutions of higher dimensional black holes
Tomizawa, Shinya
2011-01-01
We review exact solutions of black holes in higher dimensions, focusing on asymptotically flat black hole solutions and Kaluza-Klein type black hole solutions. We also summarize some properties which such black hole solutions reveal.
Black Hole Evaporation. A Survey
Benachenhou, Farid
1994-01-01
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...
Towards noncommutative quantum black holes
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole
Towards Noncommutative Quantum Black Holes
Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.
2006-01-01
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
A simple estimate of gravitational wave memory in binary black hole systems
Garfinkle, David
2016-09-01
A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. Estimates of this sort might be helpful as a consistency check for numerical relativity memory waveforms.
A simple estimate of gravitational wave memory in binary black hole systems
Garfinkle, David
2016-01-01
A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.
We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Black Holes in Higher Dimensions
In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology
Scrambling with matrix black holes
Brady, Lucas; Sahakian, Vatche
2013-08-01
If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.
Disrupting Entanglement of Black Holes
Leichenauer, Stefan
2014-01-01
We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.
Warped products and black holes
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Warped products and black holes
Hong, S T
2005-01-01
We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.
Black Hole Statistics from Holography
Shepard, Peter G.
2005-01-01
We study the microstates of the ``small'' black hole in the $\\half$-BPS sector of AdS$_5\\times S^5$, the superstar of Myers and Tafjord, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry of Myer and Tafjord emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entrop...
Boosting jet power in black hole spacetimes
Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T
2010-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Rotating Brane World Black Holes
Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam
2001-01-01
A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.
On ADM quantities of multiple black holes
Rácz, István
2016-01-01
In [11] a proposal was made to construct initial data for binary black hole configurations. It was done by using the parabolic-hyperbolic form of the constraints and choosing the free data provided by superposed Kerr-Schild black holes. The proposal of [11] do also apply to multiple systems involving generic Kerr-Schild black holes. Notably, the specific choice made for the free data allows---without making detailed use of the to be solutions to the constraints---to determine explicitly, the ADM quantities of the multiple system in terms of the separations velocities and spins of the individual Kerr-Schild black holes.
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries. PMID:25014800
Big rip avoidance via black holes production
Fabris, Julio C.; Pavon, Diego
2008-01-01
We consider a cosmological scenario in which the expansion of the Universe is dominated by phantom dark energy and black holes which condense out of the latter component. The mass of black holes decreases via Hawking evaporation and by accretion of phantom fluid but new black holes arise continuously whence the overall evolution can be rather complex. We study the corresponding dynamical system to unravel this evolution and single out scenarios where the big rip singularity does not occur.
The thermodynamics in a dynamical black hole
Bo LIU; Wen-biao LIU
2009-01-01
Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.
Observational Evidence for Black Holes
Narayan, Ramesh; McClintock, Jeffrey E.
2013-01-01
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...
Weighing black holes in the universe
WU Xue-bing
2006-01-01
The determination of the mass of black holes in our universe is crucial to understand their physics nature but is a great challenge to scientists.In this paper Ⅰ briefly review some methods that are currently used to estimate the mass of black holes,especially those in X-ray binary systems and in galactic nuclei.Our recent progress in improving the mass estimates of supermasssive black holes in active galactic nuclei by involving some empirical relations is presented.Finally Ⅰ point out the similarities and common physics in Galactic black hole X-ray binaries and active galactic nuclei,and demonstrate that the black hole mass estimation is very much helpful to understand the accretion physics around black holes.
Reversible Carnot cycle outside a black hole
Deng Xi-Hao; Gao Si-Jie
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.
Microcanonical Description of (Micro Black Holes
Benjamin Harms
2011-02-01
Full Text Available The microcanonical ensemble is the proper ensemble to describe black holes which are not in thermodynamic equilibrium, such as radiating black holes. This choice of ensemble eliminates the problems, e.g., negative specific heat (not allowed in the canonical ensemble and loss of unitarity, encountered when the canonical ensemble is used. In this review we present an overview of the weaknesses of the standard thermodynamic description of black holes and show how the microcanonical approach can provide a consistent description of black holes and their Hawking radiation at all energy scales. Our approach is based on viewing the horizon area as yielding the ensemble density at fixed system energy. We then compare the decay rates of black holes in the two different pictures. Our description is particularly relevant for the analysis of micro-black holes whose existenceis predicted in models with extra-spatial dimensions.
Reversible Carnot cycle outside a black hole
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature TH. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – TH/T1. Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)
Prisons of light : black holes
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
The odd couple: quasars and black holes
Tremaine, Scott
2014-01-01
Quasars emit more energy than any other objects in the universe, yet are not much bigger than the solar system. We are almost certain that quasars are powered by giant black holes of up to $10^{10}$ times the mass of the Sun, and that black holes of between $10^6$ and $10^{10}$ solar masses---dead quasars---are present at the centers of most galaxies. Our own galaxy contains a black hole of $4.3\\times10^6$ solar masses. The mass of the central black hole appears to be closely related to other...
Chamblin, A; Reall, H S
2000-01-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Black Holes in Higher Dimensions
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Bena, Iosif; Vercnocke, Bert
2012-01-01
We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.
Clement, María E Gabach
2015-01-01
It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.
Bastos, C; Dias, N C; Prata, J N
2010-01-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2011-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...
Infinitely Coloured Black Holes
Mavromatos, Nick E.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
1999-01-01
We formulate the field equations for $SU(\\infty)$ Einstein-Yang-Mills theory, and find spherically symmetric black-hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The situation of an arbitrarily small gauge f...
This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)
Roberto Casadio(INFN, Bologna); Andrea Giugno; Octavian Micu; Alessio Orlandi
2015-01-01
We review some features of Bose–Einstein condensate (BEC) models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractiv...
Helfer, Adam D
2011-01-01
I review elements of the foundations of black-hole theory with attention to problematic issues, and describe some techniques which either seem to help with the difficulties or at least investigate their scope. The definition of black holes via event horizons has been problematic because it depends on knowing the global structure of space-time; often attempts to avoid this (e.g. apparent horizons) require knowledge of the interior geometry. I suggest studying instead the holonomy relating the exterior neighborhood of the incipient horizon to the regime of distant observers; at least in the spherically symmetric case, this holonomy will develop certain universal features, in principle observable from signals emitted from infalling objects. I discuss the theory of quantum fields in curved space-time, and the difficulties with Hawking's prediction of black-hole radiation. I then show that the usual, very natural, theory of quantum fields in curved space-time runs into difficulties when applied to measurement prob...
Lyutikov, Maxim
2011-01-01
The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...
A massive binary black-hole system in OJ 287 and a test of general relativity.
Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S
2008-04-17
Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later. PMID:18421348
Black Hole Based Tests of General Relativity
Yagi, Kent
2016-01-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some impor...
Stimulated emission and black holes
The probability of a black hole emitting m particles when n particles are incident on the black hole was first derived by Bekenstein and Meisels, and later, using a different method, by Panangaden and Wald. In another paper by Bekenstein, it was argued that black holes should have stimulated emission in all modes including the nonsuperradiant ones. In this paper, we use a model based on quantum field theory. We show that Bose-Einstein statistics enhances the probability for particles to scatter in the same direction. We also prove that a black hole is equivalent to a perfect blackbody surrounded by a mirror. In our model, the black hole does not exhibit stimulated emission in nonsuperradiant modes. We also compare the black hole to a gray body
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Black Hole Masses are Quantized
Dvali, Gia; Mukhanov, Slava
2011-01-01
We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers
Small black holes on cylinders
We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders
Black Hole Type Quantum Computing in Critical Bose-Einstein Systems
Dvali, Gia
2015-01-01
Recent ideas about understanding physics of black hole information-processing in terms of quantum criticality allow us to implement black hole mechanisms of quantum computing within critical Bose-Einstein systems. The generic feature, uncovered both by analytic and numeric studies, is the emergence at the critical point of gapless weakly-interacting modes, which act as qubits for information-storage at a very low energy cost. These modes can be effectively described in terms of either Bogoliubov or Goldstone degrees of freedom. The ground-state at the critical point is maximally entangled and far from being classical. We confirm this near-critical behavior by a new analytic method. We compute growth of entanglement and show its consistency with black hole type behavior. On the other hand, in the over-critical regime the system develops a Lyapunov exponent and scrambles quantum information very fast. By, manipulating the system parameters externally, we can put it in and out of various regimes and in this way ...
Information Storage in Black Holes
Maia, M. D.
2005-01-01
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.
Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems.
Kiuchi, Kenta; Shibata, Masaru; Montero, Pedro J; Font, José A
2011-06-24
Black hole (BH)-torus systems are promising candidates for the central engine of γ-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m = 1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a time scale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors. PMID:21770625
Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction
Racine, Etienne
2008-01-01
We analyze in detail the spin precession equations in binary black hole systems, when the tidal torque on a Kerr black hole is taken into account. We show that completing the precession equations with this term reveals the existence of a conserved quantity at 2PN order when restricting attention to orbits with negligible eccentricity and averaging over orbital motion. This quantity allows one to solve the (orbit-averaged) precession equations exactly in the case of equal masses and arbitrary spins, neglecting radiation reaction. For unequal masses, an exact solution does not exist in closed form, but we are still able to derive accurate approximate analytic solutions. We also show how to incorporate radiation reaction effects into our analytic solutions adiabatically, and compare the results to solutions obtained numerically. For various configurations of the binary, the relative difference in the accumulated orbital phase computed using our analytic solutions versus a full numerical solution vary from about ...
Superradiant instability of D-dimensional Reissner-Nordstr\\"{o}m black hole mirror system
Li, Ran
2014-01-01
We analytically study the superradiant instability of a charged massless scalar field in the background of D-dimensional Reissner-Nordstr\\"{o}m (RN) black hole caused by the mirror's boundary condition. By using the asymptotic matching method to solve the Klein-Gordon equation that govern the dynamics of the scalar field, we have derived the expressions of the complex parts of the boxed quasinormal frequencies, and shown they are positive in the regime of superradiance. This indicates the charged scalar field is unstable in D-dimensional Reissner-Nordstr\\"{o}m (RN) black hole surrounded by mirror. The numerical work to calculate the boxed quasinormal frequencies in this system is still required in the future.
Caged black holes: Black holes in compactified spacetimes. I. Theory
In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Statistical Hair on Black Holes
The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Thermodynamics of Accelerating Black Holes
Appels, Michael; Kubiznak, David
2016-01-01
We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.
Armen Yeranyan
2008-10-01
Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Holographic Black Hole Chemistry
Karch, Andreas
2015-01-01
Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.
Universal Behavior of X-ray Flares from Black Hole Systems
Wang, F Y; Yi, S X; Xi, S Q
2014-01-01
X-ray flares have been discovered in black hole systems, such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A$^*$ at the center of our Galaxy, and some active galactic nuclei. Their occurrences are always companied by relativistic jets. However, it is still unknown whether there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here we report the observed data of X-ray flares, and show that they have three statistical properties similar to solar flares, including power-law distributions of energies, durations, and waiting times, which both can be explained by a fractal-diffusive self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetica...
UNIVERSAL BEHAVIOR OF X-RAY FLARES FROM BLACK HOLE SYSTEMS
Wang, F. Y.; Dai, Z. G.; Yi, S. X. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Xi, S. Q., E-mail: fayinwang@nju.edu.cn, E-mail: dzg@nju.edu.cn [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China)
2015-01-01
X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.
Black hole statistics from holography
We study the microstates of the 'small' black hole in the 1/2-BPS sector of AdS5 x S5, the superstar, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry presented elsewhere emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entropy can be understood as a partition of N units of flux among 5-cycles, as required by flux quantization. While the system offers confirmation of the most controversial aspect of Mathur and Lunin's recent 'fuzzball' proposal, we see signs of a discrepancy in interpreting its details
Black hole and holographic dark energy
We discuss the connection between black hole and holographic dark energy. We examine the issue of the equation of state (EOS) for holographic energy density as a candidate for the dark energy carefully. This is closely related to the EOS for black hole, because the holographic dark energy comes from the black hole energy density. In order to derive the EOS of a black hole, we may use its dual (quantum) systems. Finally, a regular black hole without the singularity is introduced to describe an accelerating universe inside the cosmological horizon. Inspired by this, we show that the holographic energy density with the cosmological horizon as the IR cutoff leads to the dark energy-dominated universe with ωΛ=-1
Time domain analysis of superradiant instability for the charged stringy black hole-mirror system
Li, Ran; Zhang, Hongbao; Zhao, Junkun
2015-01-01
It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of charged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical method. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington-Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge-Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. T...
Thermal corpuscular black holes
Casadio, Roberto; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...
Hawking, Stephen William
1996-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S^2\\times S^2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S^2\\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix \\ that does not factorise into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the \\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The pic...
Entanglement Entropy of Black Holes
Sergey N. Solodukhin
2011-10-01
Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Geometrodynamics of Schwarzschild black holes
Kuchar, K V
1994-01-01
The curvature coordinates $T,R$ of a Schwarz\\-schild spacetime are turned into canonical coordinates $T(r), {\\sf R}(r)$ on the phase space of spherically symmetric black holes. The entire dynamical content of the Hamiltonian theory is reduced to the constraints requiring that the momenta $P_{T}(r), P_{\\sf R}(r)$ vanish. What remains is a conjugate pair of canonical variables $m$ and $p$ whose values are the same on every embedding. The coordinate $m$ is the Schwarzschild mass, and the momentum $p$ the difference of parametrization times at right and left infinities. The Dirac constraint quantization in the new representation leads to the state functional $\\Psi (m; T, {\\sf R}] = \\Psi (m)$ which describes an unchanging superposition of black holes with different masses. The new canonical variables may be employed in the study of collapsing matter systems.
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Spacetime Duality of BTZ Black Hole
Ho, Jeongwon; Kim, Won T.; Park, Young-Jai
1999-01-01
We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.
What, no black hole evaporation
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
Can Black Hole Relax Unitarily?
Solodukhin, S N
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Quantum black hole without singularity
Kiefer, Claus
2015-01-01
We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.
Supersymmetric black holes in string theory
Mohaupt, T.
2007-01-01
We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...
Prisons of Light - Black Holes
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Black Holes and Galaxy Metamorphosis
Holley-Bockelmann, K
2001-01-01
Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.
Black holes and the multiverse
Garriga, Jaume; Zhang, Jun
2015-01-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...
Quantum strings and black holes
Damour, Thibault Marie Alban Guillaume
2001-01-01
The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.
Quantum chaos and the black hole horizon
CERN. Geneva
2016-01-01
Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)
Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.
2015-04-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Bini, Donato; Geralico, Andrea; Jantzen, Robert T
2015-01-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
The fuzzball proposal for black holes
Skenderis, Kostas
2008-01-01
The fuzzball proposal states that associated with a black hole of entropy S there are exp S horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1-D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a ``stringy fuzzball''. We outline how the fuzzball proposal could resolve longstanding issues in black hole p...
The fuzzball proposal for black holes
The fuzzball proposal states that associated with a black hole of entropy S, there are expShorizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the black hole microstates, while the original black hole represents the average description of the system. The purpose of this report is to review current evidence for the fuzzball proposal, emphasizing the use of AdS/CFT methods in developing and testing the proposal. In particular, we discuss the status of the proposal for 2 and 3 charge black holes in the D1-D5 system, presenting new derivations and streamlining the discussion of their properties. Results to date support the fuzzball proposal, but further progress is likely to require going beyond the supergravity approximation and sharpening the definition of a 'stringy fuzzball'. We outline how the fuzzball proposal could resolve longstanding issues in black hole physics, such as Hawking radiation and information loss. Our emphasis throughout is on connecting different developments and identifying open problems and directions for future research
Quantum and thermodynamic aspects of Black Holes
The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author)
Stationary Black Holes: Uniqueness and Beyond
Heusler Markus
1998-01-01
Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Cassini states for black hole binaries
Correia, Alexandre C. M.
2015-01-01
Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems base...
Stationary Black Holes: Uniqueness and Beyond
Piotr T. Chruściel
2012-05-01
Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Primordial Black Holes as Heat Sources for Living Systems with Longest Possible Lifetimes
Sivaram, C; O, Kiren
2014-01-01
Just forty years ago, Hawking wrote his famous paper on primordial black holes (PBH). There have been since innumerable discussions on the consequences of the existence of such exotic objects and ramifications of their properties. Here we suggest that PBH's in an ever expanding universe (as implied by dark energy domination, especially of a cosmological constant) could be the ultimate repository for long lived living systems. PBH's having solar surface temperatures would last 10^32 years as a steady power source and should be considered in any discussion on exobiological life.
A Post-Newtonian approach to black hole-fluid systems
Barausse, Enrico
2013-01-01
This work devises a formalism to obtain the equations of motion for a black hole-fluid configuration. Our approach is based on a Post-Newtonian expansion and adapted to scenarios where obtaining the relevant dynamics requires long time-scale evolutions. These systems are typically studied with Newtonian approaches, which have the advantage that larger time-steps can be employed than in full general-relativistic simulations, but have the downside that important physical effects are not accounted for. The formalism presented here provides a relatively straightforward way to incorporate those effects in existing implementations, up to 2.5PN order, with lower computational costs than fully relativistic simulations.
Rotating black hole and quintessence
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2016-04-15
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)
Phase transition in black holes
Roychowdhury, Dibakar
2014-01-01
The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...
A nonsingular rotating black hole
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Acceleration of Black Hole Universe
Zhang, Tianxi
2012-05-01
An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.
2006-01-01
[figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.
A nonsingular rotating black hole
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Black holes and Higgs stability
Tetradis, Nikolaos
2016-01-01
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Black Hole Bound State Metamorphosis
Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke
2012-01-01
N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
The Black Hole Information Problem
Polchinski, Joseph
2016-01-01
The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.
Evaporation of primordial black holes
Hawking, S. W.
The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.
Thermodynamics of Lifshitz black holes
Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür
2011-06-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.
Entropy spectrum of BTZ black hole in massive gravity
Suresh, Jishnu
2016-01-01
We study the entropy spectrum of (2+1) BTZ black holes in massive gravity models. We use the formalism proposed by Jiang and Han where black hole property of adiabaticity and the oscillating velocity of the black hole horizon are used to investigate the quantization of the entropy of such systems. We find that the entropy of the BTZ black holes in massive gravity is quantized with equally spaced spectra.
Tunnelling from black holes in the Hamilton Jacobi approach
Chatterjee, Bhramar; Mitra, P
2007-01-01
It has recently been shown that it is possible to understand Hawking radiation as tunnelling across black hole horizons using appropriate Hamilton-Jacobi boundary conditions. The procedure is applied to the non-rotating black hole in different coordinate systems and to the rotating charged black hole. Differences with the earlier literature are pointed out.
Black hole solutions in Einstein-charged scalar field theory
Ponglertsakul, S.; Dolan, S.; Winstanley, E.
2015-01-01
We investigate possible end-points of the superradiant instability for a charged black hole with a reflecting mirror. By considering a fully coupled system of gravity and a charged scalar field, hairy black hole solutions are obtained. The linear stability of these black hole solutions is studied.
Universality of Black Hole Quantum Computing
Dvali, Gia; Gomez, Cesar; Lust, Dieter; Omar, Yasser; Richter, Benedikt
2016-01-01
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough i...
Black Hole Entropy and Exclusion Statistics
Kim, Hyeong-Chan; Kim, Yoonbai(Department of Physics, BK21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea); Oh, Phillial
1998-01-01
We compute the entropy of systems of quantum particles satisfying the fractional exclusion statistics in the space-time of 2+1 dimensional black hole by using the brick-wall method. We show that the entropy of each effective quantum field theory with a Planck scale ultraviolet cutoff obeys the area law, irrespective of the angular momentum of the black hole and the statistics interpolating between Bose-Einstein and Fermi-Dirac statistics.
Accretion, Primordial Black Holes and Standard Cosmology
Nayak, Bibekananda; Singh, Lambodar Prasad
2009-01-01
Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.
Black Hole Complementary Principle and Noncommutative Membrane
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Accretion, primordial black holes and standard cosmology
B Nayak; P Singh
2011-01-01
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.
Towards a Theory of Quantum Black Hole
Berezin, V.
2001-01-01
We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.
Locking information in black holes.
Smolin, John A; Oppenheim, Jonathan
2006-03-01
We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak. PMID:16606164
Black Hole Researchers in Schools
Doran, Rosa
2016-07-01
"Black Holes in my School" is a research project that aims to explore the impact of engaging students in real research experiences while learning new skills and topics addressed in the regular school curriculum. The project introduces teachers to innovative tools for science teaching, explore student centered methodologies such as inquiry based learning and provides a setting where students take the role of an astrophysicist researching the field of compact stellar mass objects in binary systems. Students will study already existing data and use the Faulkes Telescopes to acquire new data. In this presentation the main aim is to present the framework being built and the results achieved so far.