Scalar field radiation from dilatonic black holes
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
The thermal radiation from dynamic black holes
2008-01-01
Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.
Quantum Radiation of General Nonstationary Black Holes
Hua, Jia-Chen; Huang, Yong-chang
2006-01-01
This paper has been withdrawn by the authors. Quantum radiative characteristics of 4D semi-classical nonstationary black holes in the general case are investigated by using the method of generalized tortoise coordinate transformation. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we discover that there is a certain relationship that is ignored before between thermal radiation and...
Is Radiation of Quantized Black Holes Observable?
Khriplovich, I. B.; Produit, N.
2006-01-01
If primordial black holes (PBH) saturate the present upper limit on the dark matter density in our Solar system and if their radiation spectrum is discrete, the sensitivity of modern detectors is close to that necessary for detecting this radiation. This conclusion is not in conflict with the upper limits on the PBH evaporation rate.
Hawking radiation without black hole entropy
Visser, M
1998-01-01
In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws...
Black holes radiate mainly on the brane.
Emparan, R; Horowitz, G T; Myers, R C
2000-07-17
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions. PMID:10991325
Accretion radiation from nearby isolated black holes
Recent work attempting to establish the presence of dark matter in the solar neighbourhood has led to renewed interest in the search for the nature of this matter. Previous authors attempt to exclude large (>=2 solar mass) objects by considering their tidal effect on wide binaries. Here independent constraints on such dark massive objects, if they are black holes, are provided by the requirement that their radiation due to accretion from the ISM should not make the nearest ones directly observable as optical objects. The expected infrared brightness is also predicted. It is shown that halo holes must be less massive than about 103 solar masses, and that the dark matter in the galactic disc cannot be made up of black holes of mass more than 10solar masses. Even if black holes do not make up the dark matter, they are expected to be present in the disc as remnants of massive stars. (author)
Black hole formation by incoming electromagnetic radiation
I revisit a known solution of the Einstein field equations to show that it describes the formation of non-spherical black holes by the collapse of pure electromagnetic monochromatic radiation. Both positive and negative masses are feasible without ever violating the dominant energy condition. The solution can also be used to model the destruction of naked singularities and the evaporation of white holes by emission or reception of light. (note)
Quantum black hole and Hawking radiation at microscopic magnifying
Kiselev, V. V.
2005-01-01
We establish a state of stopping the Hawking radiation by quantum Schwarzschild black hole in the framework of quasi-classical thermal quantization for particles behind the horizon. The mechanism of absorption and radiation by the black hole is presented.
Canonical Ensemble Model for Black Hole Radiation
Jingyi Zhang
2014-09-01
In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.
Hawking radiation from rotating brane black holes
Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2007-01-01
We review recent work on the Hawking radiation of rotating brane black holes, as may be produced at the LHC. We outline the methodology for calculating the fluxes of particles, energy and angular momentum by spin-0, spin-1/2 and spin-1 quantum fields on the brane. We briefly review some of the key features of the emission, in particular the changes in the spectra as the number of extra dimensions or the angular velocity of the black hole increases. These quantities will be useful for accurate...
Gravitational radiation from dynamical black holes
Hayward, Sean A.
2005-01-01
An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and ...
Anomaly and Hawking radiation from regular black holes
Kim, Wontae; Shin, Hyeonjoon; Yoon, Myungseok
2008-01-01
We consider the Hawking radiation from two regular black holes, the minimal model and the noncommutative black hole. The flux of Hawking radiation is derived by applying the anomaly cancellation method proposed by Robinson and Wilczek. Two regular black holes have the same radiation pattern except for the detailed expression for the Hawking temperature. The resulting flux of the energy-momentum tensor is shown to be precisely the same with the thermal flux from each regular black hole at the ...
Cutoffs, Stretched Horizons and Black Hole Radiators
Kaloper, Nemanja
2012-01-01
We argue that if the UV cutoff of the IR theory is of the order, or below, the scale of the stretched horizon in a black hole background, which in turn is significantly lower than the Planck scale, the black hole radiance is controlled by the UV completion of the field theory. In particular, if the UV completion of the theory involves degrees of freedom which cannot be efficiently emitted by the black hole, the naive radiance rate estimated by the counting of the IR degrees of freedom may be dramatically reduced. If we apply this argument to the RS2 brane world, it implies that the emission rates of the low energy CFT modes will be dramatically suppressed: its UV completion is given by the bulk gravity on $AdS_5 \\times S^5$, and the only bulk modes that could be emitted by a black hole are the s-waves of bulk modes with small 4D masses. But their emission is suppressed by bulk warping. This lowers the radiation rate much below the IR estimate, by at least a factor of $N \\simeq M_{Pl}^2 L^2$, and follows direc...
Black Hole Entropy from Entropy of Hawking Radiation
Aghapour, Sajad
2016-01-01
We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.
Non-thermal Hawking radiation from the Kerr black hole
HAN Yi-Wen; HAO Jia-Bo
2009-01-01
We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method, as taking into account the self-gravitational interaction from the Kerr black hole. It is found that the radiation is not exactly thermal, and because the derivation obeys conservation laws, the non-thermal Hawking radiation can carry information from the black hole. So it can be used to explain the black hole information paradox, and the process satisfies unitary.
Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)
Cavaglia, Marco
2003-01-01
If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this paper we study some experimental signatures of black hole production in TeV-gravity theories. In contrast with the usual lore, we show that the black hole energy loss in the bulk during the Hawking evaporation phase may be of the same order of the energy radiated into the brane. We investigate in detail the multiplicity of the decay products of black hole evaporation. We fi...
Tunneling Radiation of Massive Vector Bosons from Dilaton Black Holes
Li, Ran; Zhao, Jun-Kun; Wu, Xing-Hua
2016-07-01
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza—Klein black hole, and the rotating Kerr—Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature. Supported by National Natural Science Foundation of China under Grant No. 11205048
Possible suppression of Hawking radiation from microscopic black holes
Ahn, Doyeol
2010-01-01
Microscopic black holes with mass in the TeV range to be produced in the Large Hadron Collider (LHC) should undergo the prompt and quasi-thermal evaporation by emitting Hawking radiation. If this Hawking decay is not universal, some black holes can live long enough to penetrate into the Earth and grow dangerously. At present, the effects of black hole internal quantum state evolution on the evaporation are not well understood. This study shows that Hawking decay could be suppressed when the black hole internal matter state is in the coherent state. In this case, black holes created in the LHC may live long enough to grow catastrophically. The condition to avoid this catastrophic situation is also discussed. Our results demonstrate that the black hole evaporation is strongly dependent on the black hole internal quantum state and its evolution.
Massive particle radiation from Gibbons-Maeda black hole
Fang Heng-Zhong
2010-01-01
This paper investigated the massive particle radiation from Gibbous-Maeda black hole by using a semi-classical method. The calculations showed that, if the self-gravitation of the radiated particle is taken into account, the radiation spectrum deviates from exact black body spectrum and the rate of tunneling equals precisely the exponent of the difference of the black hole entropies before and after emission. The conclusion supports the viewpoint of information conservation.
The fate of radiating black holes in noncommutative geometry
Piero NicoliniStefan I., Ljubljana & Turin Poly. & INFN, Trieste; Anais SmailagicINFN, Trieste; Euro SpallucciTrieste U. & INFN, Trieste
2014-01-01
We investigate the behavior of a radiating Schwarzschild black hole toy-model in a 2D noncommutative spacetime. It is shown that coordinate noncommutativity leads to: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing terminal pha...
A model of radiating black hole in noncommutative geometry
Nicolini, Piero
2005-01-01
The phenomenology of a radiating Schwarzschild black hole is analyzed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooli...
Radiation spectrum of a high-dimensional rotating black hole
无
2010-01-01
This study extends the classical Damour-Ruffini method and discusses Hawking radiation in a (n + 4)-dimensional rotating black hole. Under the condition that the total energy and angular momentum of spacetime are conservative, but angular momentum a = J/M of unit mass of the black hole is variable, taking into consideration the reaction of the radiation of the particle to the spacetime, a new Tortoise coordinate transformation and discuss the black hole radiation spectrum is discussed. The radiation spectrum that satisfies the unitary principle in the general case is derived.
Hawking radiation from a five-dimensional Lovelock black hole
Saleh, Mahamat; Crepin, Kofane Timoleon
2016-01-01
We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton-Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.
Hawking radiation from a five-dimensional Lovelock black hole
Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2015-10-01
We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton-Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.
A model of radiating black hole in noncommutative geometry
Nicolini, Piero [Dipartimento di Matematica e Informatica, Universita di Trieste, Trieste (Italy); Institut Jozef Stefan, Ljubljana (Slovenia); Dipartimento di Matematica, Politecnico di Torino, Turin (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy)
2005-09-30
The phenomenology of a radiating Schwarzschild black hole is analysed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus, we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: (i) the existence of a minimal nonzero mass to which black hole can shrink; (ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; (iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing the terminal phase of black hole evaporation. (letter to the editor)
A model of radiating black hole in noncommutative geometry
The phenomenology of a radiating Schwarzschild black hole is analysed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus, we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: (i) the existence of a minimal nonzero mass to which black hole can shrink; (ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; (iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing the terminal phase of black hole evaporation. (letter to the editor)
Density matrix of radiation of black hole with fluctuating horizon
Iofa, Mikhail Z
2016-01-01
The density matrix of Hawking radiation is calculated in the model of black hole with fluctuating horizon. Quantum fluctuations smear the classical horizon of black hole and modify the density matrix of radiation producing the off-diagonal elements. The off-diagonal elements may store information of correlations between radiation and black hole. The smeared density matrix was constructed by convolution of the density matrix calculated with the instantaneous horizon with the Gaussian distribution over the instantaneous horizons. The distribution has the extremum at the classical radius of the black hole and the width of order of the Planck length. Calculations were performed in the model of black hole formed by the thin collapsing shell which follows a trajectory which is a solution of the matching equations connecting the interior and exterior geometries.
W. X. Zhong
2014-09-01
In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is used to investigate the black hole tunnelling radiation spectrum.We also discuss the mechanism of information flowing from the black hole.
Hawking Radiation from Higher-Dimensional Black Holes
Kanti, Panagiota; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2014-01-01
We review the quantum field theory description of Hawking radiation from evaporating black holes and summarize what is known about Hawking radiation from black holes in more than four space-time dimensions. In the context of the Large Extra Dimensions scenario, we present the theoretical formalism for all types of emitted fields and a selection of results on the radiation spectra. A detailed analysis of the Hawking fluxes in this case is essential for modelling the evaporation of higher-dimen...
Hawking radiation from a five-dimensional Lovelock black hole
Saleh, Mahamat; Thomas, Bouetou Bouetou; Crepin, Kofane Timoleon
2016-01-01
We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton-Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological ...
Characteristics of Quantum Radiation of General Nonstationary Black Holes
Hua, J C; Hua, Jia-Chen; Huang, Yong-Chang
2006-01-01
Quantum radiative characteristics of general nonstationary black holes in the general case are investigated by using the method of generalized tortoise coordinate transformation. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we discover that there is a certain relationship that is ignored before between thermal radiation and non-thermal radiation of black holes, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for slowly varying nonstationary black holes. Also, we show that the deduced general results can be applied to different concrete conditions.
Dark Spinors Hawking Radiation in String Theory Black Holes
R. T. Cavalcanti
2016-01-01
Full Text Available The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.
Matter flows around black holes and gravitational radiation
Papadopoulos, Philippos; Font, Jose A.
1998-01-01
We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications...
Hawking Radiation of Grumiller Black Hole
Sakalli, I
2014-01-01
In this paper, we consider the relativistic Hamilton-Jacobi (HJ) equation and study the Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. GBH is also known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter a on the Hawking temperature ($T_{H}$), but to examine whether there is any discrepancy between the computed horizon temperature and the standard $T_{H}$ as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems which are Painleve-Gullstrand (PG), ingoing Eddington-Finkelstein (IEF) and Kruskal-Szekeres (KS) coordinates. In all coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional $T_{H}$ in all these coordinate system...
Hawking radiation from acoustic black holes in two space dimensions
Eskin, Gregory
2016-01-01
We study the Hawking radiation from rotating acoustic black hole. We follow the approach of T.Jacobson and W.Unruh, although our approach differs in details. We also treat the case of variable velocity of the background flow.
Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole
ZHANG Jing-Yi; ZHAO Zheng
2006-01-01
@@ We extend Parikh's study to the non-stationary black hole. As an example of the non-stationary black hole, we investigate the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. The Hawking radiation is considered as a tunnelling process across the event horizon and we calculate the tunnelling probability. It is found that the result is different from Parikh's study because drH/dv is the function of Bondi mass m(v).
Unthermal Hawking Radiation from a General Stationary Black Hole
ZHANG Gui-Qing; ZHANG Yong-Ping; YANG Qiu-Ying; DAI Qian; CHEN Tian-Lun; LIU Wen-Biao
2008-01-01
Using Damour-Ruffini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.
Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics
Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an ...
Quantum Radiation of Dirac Particles in General Nonstationary Black Holes
Hua, J C; Hua, Jia-Chen; Huang, Yong-Chang
2006-01-01
Quantum radiation of Dirac particles in general nonstationary black holes in the general case is investigated by using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first order and second order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in non-thermal radiation for general nonstationary black holes.
Quantum tunnelling for Hawking radiation from a dynamical Black Hole
Mazumder, Nairwita; Chakraborty, Subenoy
2011-01-01
The paper deals with Hawking radiation related to non-static spherically symmetric black hole. Quantum corrections are incorporated using Hamilton-Jacobi method beyond semi-classical approximation. It is found that different order correction terms satisfy identical differential equation as the semiclassical action and are solved by a typical technique. It has been shown that with proper choice of the proportionality factors, one loop back reaction effect in the space time can be obtained. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained considering modified Hawking temperature.
Inferring black hole charge from backscattered electromagnetic radiation
Crispino, Luís C B; Higuchi, Atsushi; de Oliveira, Ednilton S
2014-01-01
We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
GUP Assisted Hawking Radiation of Rotating Acoustic Black Holes
Sakalli, I; Jusufi, K
2016-01-01
Recent studies [J. Steinhauer, Nature Phys., $\\textbf{10}$, 864 (2014); Phys. Rev. D $\\textbf{92}$, 024043 (2015)] provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.
Applications of geometric algebra to black holes and Hawking radiation
Setiawan, S.
2004-01-01
We discuss the applications of Gauge Theory of Gravity (GTG) within the language of geometric algebra to black holes and Hawking radiation. Applications include the Unruh effect, the Dirac and Klein-Gordon equations in several backgrounds, such as the de Sitter and Rindler metrics as well as spherically and axially black hole backgrounds. The analysis is also generalised to allow the presence of magnetic monopoles. We rederive the Hawking temperature for all cases. The derivation of both the ...
Dark Spinors Hawking Radiation in String Theory Black Holes
Cavalcanti, R. T.; Roldão da Rocha
2016-01-01
The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard...
Hawking Radiation of a Charged Black Hole in Quantum Gravity
Oda, Ichiro
2015-01-01
We study black hole radiation of a Reissner-Nordstrom black hole with an electric charge in the framework of quantum gravity. Based on a canonical quantization for a spherically symmetric geometry, under physically plausible assumptions, we solve the Wheeler-De Witt equation in the regions not only between the outer apparent horizon and the spatial infinity but also between the spacetime singularity and the inner apparent horizon, and then show that the mass loss rate of an evaporating black hole due to thermal radiation agrees with the semiclassical result when we choose an integration constant properly by physical reasoning. Furthermore, we also solve the Wheeler-De Witt equation in the region between the inner Cauchy horizon and the outer apparent horizon, and show that the mass loss rate of an evaporating black hole has the same expression. The present study is the natural generalization of the case of a Schwarzschild black hole to that of a charged Reissner-Nordstrom black hole.
Dilaton Black Hole Tunneling Radiation in de Sitter Universe
LI Gu-Qiang
2009-01-01
The Hawking radiation via tunneling from the dilaton black hole in de Sitter universe is investigated using Parikh-Wilczek's method. We show that if the self-gravitational interaction and energy conservation are taken into account, the modified radiation spectrum deviates from exact thermal spectrum and satisfies the unitary theory.
Modeling gravitational radiation from coalescing binary black holes
Baker, J; Loustó, C O; Takahashi, R
2002-01-01
With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...
Stimulated emission and Hawking radiation in black hole analogues
Belgiorno, F
2016-01-01
Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which stimulated radiation is calculated too.
Thermal radiation and nonthermal radiation of the slowly changing dynamic Kerr-Newman black hole
Meng Qing-Miao; Wang Shuai; Jiang Ji-Jian; Deng De-Li
2008-01-01
Using the related formula of dynamic black hole, we have calculated the instantaneous radiation energy density of the slowly changing dynamic Kerr-Newman black hole. It is found that the instantaneous radiation energy density of a black hole is always proportional to the quartic of the temperature of the event horizon in the same direction. By using the Hamilton-Jacobin equation of scalar particles in the curved spacetime, the spontaneous radiation of the slowly changing dynamic Kerr-Newman black hole is studied. The energy condition for the occurrence of the spontaneous radiation is obtained.
On Hawking Radiation of 3D Rotating Hairy Black Holes
Belhaj, A.; Chabab, M.; Moumni, H. EL; Masmar, K.; Sedra, M. B.
2015-01-01
We study the Hawking radiation of 3D rotating hairy black holes. More concretely, we compute the transition probability of a bosonic and fermionic particle in such backgrounds. Thew, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hair B and the rotation parameter a control such a probability.
Hawking radiation via tunnelling from general stationary axisymmetric black holes
Zhang Jing-Yi; Fan Jun-Hui
2007-01-01
Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are calculated,separately. The emission spectra of these two different kinds of outgoing particles have the same functional form and both are consistent with an underlying unitary theory.
Hawking Radiation via Tunnelling from Arbitrarily Dimensional Schwarzschild Black Holes
REN Jun; ZHAO Zheng; GAO Chang-Jun
2005-01-01
@@ We extend Parikh's recent work to the arbitrarily dimensional Schwarzschild black holes whose Arnowitt-DeserMisner (ADM) mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The result consists with an underlying unitary theory.
Radiative Shocks in Rotating Accretion Flows around Black Holes
Okuda, T; Toscano, E; Molteni, D
2004-01-01
It is well known that the rotating accretion flows around black holes form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of the cooling and heating of gas and the radiation transport. The numerical results show that the shock location shifts outward compared with that in the adiabatic solutions and that the more rarefied ambient density leads to the more outward shock position. In the 2D-flow, we find an intermediate frequency QPO behavior of the shock location as is observed in the black hole candidate GRS 1915+105.
Quantum Tunneling Radiation of Kerr-NUT Black Hole
LI Hui-Ling; YANG Shu-Zheng; QI De-Jiang
2006-01-01
Based on particles in a dynamical geometry, extending the Parikh's method of quantum tunneling radiation,we deeply investigate the quantum tunneling radiation of Kerr-NUT black hole. When self-gravitating action, energyconservation, and angular momentum conservation are taken into account, the emission rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the emission spectrum is not precisely thermal, but is consistent with an underlying unitary theory.
Hawking radiation from AdS black holes
We investigate Hawking radiation from black holes in (d+1)-dimensional anti--de Sitter space. We focus on s waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probability. This approach uses an anti--de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semiclassical emission rate arising from back reaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer
Hydrodynamic and hydromagnetic stability of black holes with radiative transfer
Roger Blandford; Jonathan C Mckinney; Nadia Zakamska
2011-07-01
Subrahmanyan Chandrasekhar (Chandra) was just eight years old when the ﬁrst astrophysical jet was discovered in M87. Since then, jets have been uncovered with a wide variety of sources including accretion disks orbiting stellar and massive black holes, neutron stars, isolated pulsars, -ray bursts, protostars and planetary nebulae. This talk will be primarily concerned with collimated hydromagnetic outﬂows associated with spinning, massive black holes in active galactic nuclei. Jets exhibit physical processes central to three of the major research themes in Chandrasekhar’s research career – radiative transfer, magnetohydrodynamics and black holes. Relativistic jets can be thought of as `exhausts’ from both the hole and its orbiting accretion disk, carrying away the energy liberated by the rotating spacetime and the accreting gas that is not radiated. However, no aspect of jet formation, propagation and radiation can be regarded as understood in detail. The combination of new -ray, radio and optical observations together with impressive advances in numerical simulation make this a good time to settle some long-standing debates.
Quantum tunneling radiation from self-dual black holes
Silva, C.A.S., E-mail: calex@fisica.ufc.br [Instituto Federal de Educação Ciência e Tecnologia da Paraíba (IFPB), Campus Campina Grande, Rua Tranquilino Coelho Lemos, 671, Jardim Dinamérica I (Brazil); Brito, F.A., E-mail: fabrito@df.ufcg.edu.br [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil)
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
Quantum tunneling radiation from self-dual black holes
Silva, C. A. S.; Brito, F. A.
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton-Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
General Relativistic Radiative Transfer: Applications to Black-Hole Systems
Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan
2007-01-01
We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
Hawking Radiation as Quantum Tunneling from Noncommutative Schwarzschild Black Hole
Nozari, Kourosh; Mehdipour, S. Hamid
2008-01-01
We study tunneling process through quantum horizon of a Schwarzschild black hole in noncommutative spacetime. This is done by considering the effect of smearing of the particle mass as a Gaussian profile in flat spacetime. We show that even in this noncommutative setup there will be no correlation between the different modes of radiation which reflects the fact that information doesn't come out continuously during the evaporation process at least at late-time. However, due to spacetime noncom...
Ruling out stray thermal radiation in analogue black holes
Doukas, Jason; Adesso, Gerardo; Fuentes, Ivette
2014-01-01
Experimental searches for the thermal radiation from analogue black holes require the measurement of very low temperatures in regimes where other thermal noises may interfere or even mimic the sought-after effect. In this letter, we parameterize the family of bosonic thermal channels which give rise to such thermal effects and show that by use of coherent states and homodyne detection one can rule out the non-Hawking contributions and identify those candidate sources which arise from Hawking-...
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)
If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature
Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte
2016-01-01
Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.
White holes and eternal black holes
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
White holes and eternal black holes
Stephen D. H. Hsu
2010-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.
Radiatively Driven Winds from Effective Boundary Layer around Black Holes
Indranil Chattopadhyay; Sandip K. Chakrabarti
2002-03-01
Matter accreting onto black holes suffers a standing or oscillating shock wave in much of the parameter space. The post-shock region is hot, puffed up and reprocesses soft photons from a Keplerian disc to produce the characteristic hard tail of the spectrum of accretion discs. The post-shock torus is also the base of the bipolar jets. We study the interaction of these jets with the hard photons emitted from the disc. We show that radiative force can accelerate outflows but the drag can limit the terminal speed. We introduce an equilibrium speed eq as a function of distance, above which the flow will experience radiative deceleration.
Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole
HE Xiao-Kai; LIU Wen-Biao
2007-01-01
@@ Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour-Ruffini method is more concise and understandable.
Hawking Radiation of Vector Particles via Tunneling From 4-Dimensional And 5-Dimensional Black Holes
Feng, Zhongwen; Zu, Xiaotao
2016-01-01
Using Proca equation and WKB approximation, we investigate Hawking radiation of vector particles via tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole. The results show that the tunneling rates and Hawking temperatures are depended on the properties of spacetime (event horizon, mass and angular momentum). Besides, our results are the same as scalars and fermions tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole.
NON-THERMAL RADIATION FROM A NON-KERR-NEWMAN BLACK HOLE
谢实崇; 杨雪特; 杨树政; 林理彬
2001-01-01
In the spacetime of a charged spinning black hole, the distribution of particle energy levels has been studied. Near the event horizon of such a black hole a crossing of the particle energy levels exists, which leads to the occurrence of non-thermal radiation of the black hole. This quantum effect is non-thermal and also different from those of the Kerr and Kerr-Newman black holes.
Quantum Geometry and Thermal Radiation from Black Holes
Krasnov, Kirill
1997-01-01
A quantum mechanical description of black hole states proposed recently within non-perturbative quantum gravity is used to study the emission and absorption spectra of quantum black holes. We assume that the probability distribution of states of the quantum black hole is given by the ``area'' canonical ensemble, in which the horizon area is used instead of energy, and use Fermi's golden rule to find the line intensities. For a non-rotating black hole, we study the absorption and emission of s...
Spherically Symmetric Static Solution for a Schwarzschild Black Hole with Its Hawking Radiation
HUANG Chao-Guang
2000-01-01
A black hole and its Hawking radiation may be in stable thermal equilibrium. In this letter, the static spherically symmetric numerical solution for a Schwarzschild black hole with its Hawking radiation are obtained. In the calculation, the equilibrium system is supposed to consist of a black hole, thermal radiation and a two-dimensional surface layer. The solutions obtained are compared with the York's back-reaction approach and the Zhao-Liu thermodynamic approach.
Saleh, Mahamat; Thomas, Bouetou Bouetou; Crepin, Kofane Timoleon
2016-01-01
We investigate quasinormal modes (QNMs) and Hawking radiation of a Reissner-Nordstr\\"om black hole sur-rounded by quintessence. The Wentzel-Kramers-Brillouin (WKB) method is used to evaluate the QNMs and the rate of radiation. The results show that due to the interaction of the quintessence with the background metric, the QNMs of the black hole damp more slowly when increasing the density of quintessence and the black hole radiates at slower rate.
On the origin of black hole evaporation radiation
The physical basis underlying the black hole evaporation process is clarified by a calculation of the expectation value of the energy-momentum tensor for a massless scalar field in a completely general two dimensional collapse scenario. It is found that radiation is produced inside the collapsing matter which propagates both inwards and outwards. The ingoing component eventually emerges from the star after travelling through the centre. The outgoing energy flux appears at infinity as the evaporation radiation discovered by Hawking (Comm. Math. Phys.; 43: 199 (1975)). At late times, outside the star, the former component fades out exponentially, and the latter component approaches a value which is independent of the details of the collapse process. In the special case of a collapsing hollow, thin shell of matter, all the radiation is produced at the shell. These results are independent of regularization ambiguities, which enter only the static vacuum polarization terms in the energy-momentum tensor. The significance of an earlier remark about black hole explosions is discussed in the light of these results. (author)
Accretion of radiation and rotating primordial black holes
Mahapatra, S.; Nayak, B.
2016-02-01
We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.
Oscillations of radiation pressure supported tori near black holes
Mazur, Grzegorz P; Sądowski, Aleksander; Mishra, Bhupendra; Kluźniak, Włodek
2015-01-01
We study the dynamics of radiation pressure supported tori around Schwarzschild black holes, focusing on their oscillatory response to an external perturbation. Using KORAL, a general relativistic radiation hydrodynamics code capable of modeling all radiative regimes from the optically thick to the optically thin, we monitor a sample of models at different initial temperatures and opacities, evolving them in two spatial dimensions for $\\sim 165$ orbital periods. The dynamics of models with high opacity is very similar to that of purely hydrodynamics models, and it is characterized by regular oscillations which are visible also in the light curves. As the opacity is decreased, the tori quickly and violently migrate towards the gas-pressure dominated regime, collapsing towards the equatorial plane. When the spectra of the $L_2$ norm of the mass density are considered, high frequency inertial-acoustic modes of oscillations are detected (with the fundamental mode at a frequency $68 M_{\\rm BH}^{-1}\\,\\rm Hz$), in c...
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
Hawking radiation from z=3 and z=1-Lifshitz black holes
Lepe, Samuel
2014-01-01
The Hawking radiation considered as a tunneling process, by using a Hamilton-Jacobi prescription, is discussed for both z=3 and z=1-Lifshitz black holes. We have found that the tunneling rate (which is not thermal but related to the change of entropy) for the z=3-Lifshitz black hole (which does not satisfy the Area/4-law) does not yield (give us) the ecpected tunneling rate: $\\Gamma\\simeq exp(\\Delta S)$, where $\\Delta S$ is the change of black hole entropy, if we compare with the z=1-Lifshitz black hole (BTZ black hole, which satisfies the Area/4-law).
Hawking radiation from z = 3 and z = 1-Lifshitz black holes
Lepe, Samuel; Merello, Bruno
2014-10-01
The Hawking radiation considered as a tunneling process, by using a Hamilton-Jacobi prescription, is discussed for both z = 3 and z = 1-Lifshitz black holes. We have found that the tunneling rate (which is not thermal but related to the change of entropy) for the z = 3-Lifshitz black hole (which does not satisfy the Area/4-law) does not yield (give us) the expected tunneling rate: Γ exp(ΔS), where ΔS is the change of black hole entropy, if we compare with the z = 1-Lifshitz black hole (BTZ black hole, which satisfies the Area/4-law).
Hawking radiation of massive vector particles from the linear dilaton black holes
Li, Ran; Zhao, Junkun
2016-07-01
By using the tunneling formalism, we calculated the massive vector particles' Hawking radiation from the non-rotating and rotating linear dilaton black holes. By applying the WKB approximation to the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector particles from the linear dilaton black holes. The Hawking temperatures of the linear dilaton black holes have been recovered, which are consistent with the previous results in the literature. This means that the vector particles' tunneling method can also be used in studying the Hawking radiation of asymptotically non-flat and non-AdS black holes.
Information-carrying Hawking radiation and the number of microstate for a black hole
Qing-yu Cai; Chang-pu Sun; Li You
2016-01-01
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the...
Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries
Kelly, Barnard
2008-01-01
"We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source. applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the $\\ell = m$ modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model."
Gravitational radiation characteristics of nonspinning black-hole binaries
Kelly, B J; Baker, J G; Boggs, W D; Centrella, J M; Meter, J R van; McWilliams, S T, E-mail: bernard.j.kelly@nasa.go, E-mail: john.g.baker@nasa.go, E-mail: william.d.boggs@nasa.go, E-mail: joan.m.centrella@nasa.go, E-mail: james.r.vanmeter@nasa.go, E-mail: sean.t.mcwilliams@nasa.go [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2009-03-01
We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Gravitational radiation characteristics of nonspinning black-hole binaries
We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Energetic Gamma Radiation from Rapidly Rotating Black Holes
Hirotani, Kouichi
2015-01-01
Supermassive black holes are believed to be the central power house of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to black-hole magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating black hole. In this particle accelerator (or a gap), electrons and positrons are created by photon-photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole's rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive black hole, we show that such a gap reproduces the significant very-...
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Nanopoulos, Dimitri V
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...
Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity
A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined
Radiation of charged black holes and modified dispersion relation
Kamali, A. D.; Pedram, P.
2016-05-01
We investigate the effects of a modified dispersion relation proposed by Majhi and Vagenas on the Reissner-Nordström black hole thermodynamics in a universe with large extra dimensions. It is shown that entropy, temperature and heat capacity receive new corrections and charged black holes in this framework have less degrees of freedom and decay faster compared to black holes in the Hawking picture. We also study the emission rate of black hole and compare our results with other quantum gravity approaches. In this regard, the existence of the logarithmic prefactor and the relation between dimensions and charge are discussed. This procedure is not only valid for a single horizon spacetime but it is also valid for the spacetimes with inner and outer horizons.
Radiation of Charged Black Holes and Modified Dispersion Relation
Kamali, A D
2016-01-01
We investigate the effects of a modified dispersion relation proposed by Majhi and Vagenas on the Reissner-Nordstr\\"{o}m black hole thermodynamics in a universe with large extra dimensions. It is shown that entropy, temperature and heat capacity receive new corrections and charged black holes in this framework have less degrees of freedom and decay faster compared to black holes in the Hawking picture. We also study the emission rate of black hole and compare our results with other quantum gravity approaches. In this regard, the existence of the logarithmic prefactor and the relation between dimensions and charge are discussed. This procedure is not only valid for a single horizon spacetime but it is also valid for the spacetimes with inner and outer horizons.
Information-carrying Hawking radiation and the number of microstate for a black hole
Cai, Qing-yu; You, Li
2016-01-01
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawking entropies for Schwarzschild black holes and Reissner-Nordstr\\"om black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordstr\\"om black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.
The Thermodynamics of Black Holes
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
The Thermodynamics of Black Holes
Wald Robert M.
1999-01-01
We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Hawking radiation from a spherical loop quantum gravity black hole
Gambini, Rodolfo
2013-01-01
We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step towards studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress energy tensor. Apart from this, the Boulware, Hartle--Hawking and Unruh vacua differ little from the treatment on a classical...
Oscillations of radiation pressure supported tori near black holes
Mazur, Grzegorz P.; Zanotti, Olindo; Sądowski, Aleksander; Mishra, Bhupendra; Kluźniak, Wlodek
2016-03-01
We study the dynamics of radiation pressure supported tori around Schwarzschild black holes, focusing on their oscillatory response to an external perturbation. Using KORAL, a general relativistic radiation-hydrodynamics code capable of modelling all radiative regimes from the optically thick to the optically thin, we monitor a sample of models at different initial temperatures and opacities, evolving them in two spatial dimensions for ˜165 orbital periods. The dynamics of models with high opacity is very similar to that of purely hydrodynamics models, and it is characterized by regular oscillations which are visible also in the light curves. As the opacity is decreased, the tori quickly and violently migrate towards the gas-pressure dominated regime, collapsing towards the equatorial plane. When the spectra of the L2 norm of the mass density are considered, high-frequency inertial-acoustic modes of oscillations are detected (with the fundamental mode at a frequency 68 M_BH^{-1} Hz), in close analogy to the phenomenology of purely hydrodynamic models. An additional mode of oscillation, at a frequency 129 M_BH^{-1} Hz, is also found, which can be unambiguously attributed to the radiation. The spectra extracted from the light curves are typically noisier, indicating that in a real observation such modes may not be easily detected.
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole ...
Quantum radiation of non-stationary Kerr-Newman-de Sitter black hole
Jiang Qing-Quan; Yang Shu-Zheng; Li Hui-Ling
2005-01-01
By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr-Newman black hole, the non-stationary Kerr black hole, the stationary Kerr-Newman-de Sitter black hole, and the static Schwarzshild black hole.
Characteristics of Quantum Radiation of Slowly Varying Nonstationary Kerr-Newman Black Holes
Hua, Jia-Chen; Huang, Yong-chang
2006-01-01
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of this kind of black holes depend on the time and the angle. Further, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation, which is that the chemical potential in thermal radiation spectrum is equal to ...
Radiation from collapsing shells, semiclassical backreaction, and black hole formation
We provide a detailed analysis of quantum field theory around a collapsing shell and discuss several conceptual issues related to the emission of radiation flux and formation of black holes. Explicit calculations are performed using a model for a collapsing shell, which turns out to be analytically solvable. We use the insights gained in this model to draw reliable conclusions regarding more realistic models. We first show that any shell of mass M, which collapses to a radius close to r=2M, will emit approximately thermal radiation for a period of time. In particular, a shell that collapses from some initial radius to a final radius 2M(1-ε2)-1 (where ε2). Later on (t>>Mln(1/ε2)), the flux from such a shell will decay to zero exponentially. We next study the effect of backreaction computed using the vacuum expectation value of the stress tensor on the collapse. We find that, in any realistic collapse scenario, the backreaction effects do not prevent the formation of the event horizon. The time at which the event horizon is formed is, of course, delayed due to the radiated flux--which decreases the mass of the shell--but this effect is not sufficient to prevent horizon formation. We also clarify several conceptual issues and provide pedagogical details of the calculations in the Appendices to the paper.
Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation
Gagik Ter-Kazarian
2015-01-01
Full Text Available In the framework of microscopic theory of black hole (MTBH, which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs to the present time and examine the observable signatures today. Given the redshifts, masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and masses of the corresponding seed black holes. For the present masses MBH/M⊙≃1.1×106 to 1.3×1010 of 377 black holes, the computed intermediate seed masses are ranging from MBHSeed/M⊙≃26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy (UHE neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (θ≪1.
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
Quantum Tunnelling for Hawking Radiation from Both Static and Dynamic Black Holes
Subenoy Chakraborty
2014-01-01
Full Text Available The paper deals with Hawking radiation from both a general static black hole and a nonstatic spherically symmetric black hole. In case of static black hole, tunnelling of nonzero mass particles is considered and due to complicated calculations, quantum corrections are calculated only up to the first order. The results are compared with those for massless particles near the horizon. On the other hand, for dynamical black hole, quantum corrections are incorporated using the Hamilton-Jacobi method beyond semiclassical approximation. It is found that different order correction terms satisfy identical differential equation and are solved by a typical technique. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained considering modified Hawking temperature.
Thermodynamic analysis of a Schwarzschild black hole fed by cosmic microwave background radiation
The analysis of black holes fed by the omnipresent Cosmic Microwave Background Radiation (CMBR) constitutes benchmark cases. The rate of energy and entropy variation of a Schwarzschild black hole fed by CMBR is analytically obtained. The entropy analysis revealed that there is a higher value of black hole's critical mass than that obtained from an energy analysis, which is needed for its existence with high probability. At this minimum value of mass of the Schwarzschild black hole, the entropy generated due to its existence becomes positive. The black hole's negentropy and the difference between its exit and inlet specific entropies are shown to more importantly correlate with its event horizon area than the black hole's entropy. (orig.)
Thermodynamic analysis of a Schwarzschild black hole fed by cosmic microwave background radiation
Mahulikar, Shripad P.; Herwig, Heinz
2013-01-01
The analysis of black holes fed by the omnipresent Cosmic Microwave Background Radiation (CMBR) constitutes benchmark cases. The rate of energy and entropy variation of a Schwarzschild black hole fed by CMBR is analytically obtained. The entropy analysis revealed that there is a higher value of black hole's critical mass than that obtained from an energy analysis, which is needed for its existence with high probability. At this minimum value of mass of the Schwarzschild black hole, the entropy generated due to its existence becomes positive. The black hole's negentropy and the difference between its exit and inlet specific entropies are shown to more importantly correlate with its event horizon area than the black hole's entropy.
Thermodynamic analysis of a Schwarzschild black hole fed by cosmic microwave background radiation
Mahulikar, Shripad P. [Hamburg University of Technology, Institut fuer Thermofluiddynamik (M-21), Hamburg (Germany); Indian Institute of Technology Bombay, Department of Aerospace Engineering, P.O. IIT Powai, Mumbai (India); Herwig, Heinz [Hamburg University of Technology, Institut fuer Thermofluiddynamik (M-21), Hamburg (Germany)
2013-01-15
The analysis of black holes fed by the omnipresent Cosmic Microwave Background Radiation (CMBR) constitutes benchmark cases. The rate of energy and entropy variation of a Schwarzschild black hole fed by CMBR is analytically obtained. The entropy analysis revealed that there is a higher value of black hole's critical mass than that obtained from an energy analysis, which is needed for its existence with high probability. At this minimum value of mass of the Schwarzschild black hole, the entropy generated due to its existence becomes positive. The black hole's negentropy and the difference between its exit and inlet specific entropies are shown to more importantly correlate with its event horizon area than the black hole's entropy. (orig.)
Quantum Tunnelling for Hawking Radiation from Both Static and Dynamic Black Holes
The paper deals with Hawking radiation from both a general static black hole and a nonstatic spherically symmetric black hole. In case of static black hole, tunnelling of nonzero mass particles is considered and due to complicated calculations, quantum corrections are calculated only up to the first order. The results are compared with those for massless particles near the horizon. On the other hand, for dynamical black hole, quantum corrections are incorporated using the Hamilton-Jacobi method beyond semiclassical approximation. It is found that different order correction terms satisfy identical differential equation and are solved by a typical technique. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained considering modified Hawking temperature
Radiating black holes in Einstein-Maxwell-dilaton theory
Aniceto, Pedro; Rocha, Jorge V
2015-01-01
We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null dust and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, we prove that an electrically charged black hole in this theory cannot be overcharged by bombarding it with a stream of electrically charged null dust. This provides an example of cosmic censorship observance in a string theory setting.
Hawking radiation from a spherical loop quantum gravity black hole
We introduce quantum field theory on quantum space-times techniques to characterize the quantum vacua as a first step toward studying black hole evaporation in spherical symmetry in loop quantum gravity and compute the Hawking radiation. We use as quantum space-time the recently introduced exact solution of the quantum Einstein equations in vacuum with spherical symmetry and consider a spherically symmetric test scalar field propagating on it. The use of loop quantum gravity techniques in the background space-time naturally regularizes the matter content, solving one of the main obstacles to back-reaction calculations in more traditional treatments. The discreteness of area leads to modifications of the quantum vacua, eliminating the trans-Planckian modes close to the horizon, which in turn eliminates all singularities from physical quantities, like the expectation value of the stress–energy tensor. Apart from this, the Boulware, Hartle–Hawking and Unruh vacua differ little from the treatment on a classical space-time. The asymptotic modes near scri are reproduced very well. We show that the Hawking radiation can be computed, leading to an expression similar to the conventional one but with a high frequency cutoff. Since many of the conclusions concern asymptotic behavior, where the spherical mode of the field behaves in a similar way as higher multipole modes do, the results can be readily generalized to non spherically symmetric fields. (paper)
Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes
李瑾; 仲元红; 潘宇
2012-01-01
This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes （about 30 times of the solar mass）. We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth. By comparing two simulation waveforms （effective one body numerical relativity waveform （EOBNR）, phenomenological waveform）, we discuss the relationship between the effective distance and frequency; and through analyzing large amounts of data in event, we find that the phenomenological waveform is much smoother than EOBNR waveform, and has higher accuracy at the same effective distance.
Hamilton-Jacobi Ansatz to Study the Hawking Radiation of Kerr-Newman Black Holes
Chen, Deyou; Yang, Shuzheng
Taking the self-gravitation interaction and unfixed background space-time into account, we study the Hawking radiation of Kerr-Newman-Kasuya black holes using Hamilton-Jacobi method. The result shows that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the radiation spectrum deviates from the purely thermal one, which is accordant with that obtained using Parikh and Wilczek's method and gives a correction to the Hawking radiation of the black hole.
Corrected Hawking Radiation of Dirac Particles from a General Static Riemann Black Hole
Ge-Rui Chen
2013-01-01
Full Text Available Considering energy conservation and the back reaction of radiating particles to the spacetime, we investigate the massive Dirac particles' Hawking radiation from a general static Riemann black hole using improved Damour-Ruffini method. A direct consequence is that the radiation spectrum is not strictly thermal. The correction to the thermal spectrum is consistent with an underlying unitary quantum theory and this may have profound implications for the black hole information loss paradox.
Correction to Hawking Radiation Characteristics of Stationary Demianski-Newman Black Hole
JIANG Qing-Quan; YANG Shu-Zheng
2006-01-01
The pure thermal spectrum in dragging coordinate system and the tunneling radiation characteristics across the event horizon for stationary Demianski-Newman black hole are researched. The result shows that the tunneling rate of the particle is relevant to Bekenstein-Hawking entropy, and the derived radiate spectrum is not strictly pure thermal,but is consistent with underlying unitary theory. Finally, we use the obtained results to reduce to stationary Kerr black hole and static Schwarzschild black hole, and find that only when ignoring the spectrum at higher energies is the tunneling radiation spectrum consistent with Hawking pure thermal one.
's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)
W∞ algebras, Hawking radiation, and information retention by stringy black holes
Ellis, John; Mavromatos, Nick E.; Nanopoulos, D. V.
2016-07-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (the singular regions of which are represented by appropriate Wess-Zumino-Witten models) is retained by quantum W symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from W∞ generators in its vertex function. The latter correspond to delocalized, nonpropagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (stringy black hole) + infalling matter → (stringy black hole)⋆ , where the black hole is viewed as a stringy state with a specific configuration of W∞ charges that are conserved. Hawking radiation is then the reverse process, with conservation of the W∞ charges retaining information. The Hawking radiation spectrum near the horizon of a Schwarzschild or Kerr black hole is specified by matrix elements of higher-order currents that form a phase-space W1 +∞ algebra. We show that an appropriate gauging of this algebra preserves the horizon two-dimensional area classically, as expected because the latter is a conserved Noether charge.
Characteristics of Quantum Radiation of Slowly Varying Nonstationary Kerr-Newman Black Holes
Hua, J C; Hua, Jia-Chen; Huang, Yong-Chang
2006-01-01
Quantum radiative characteristics of slowly varying nonstationary Kerr-Newman black holes are investigated by using the method of generalized tortoise coordinate transformation. It is shown that the temperature and the shape of the event horizon of this kind of black holes depend on the time and the angle. Further, we reveal a relationship that is ignored before between thermal radiation and non-thermal radiation, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of particles in non-thermal radiation for slowly varying nonstationary Kerr-Newman black holes. Also, we show that the deduced general results can be degenerated to the known conclusion of stationary Kerr-Newman black holes.
Direct detection of Black Holes via electromagnetic radiation
Sobrinho, J L G
2014-01-01
Many black hole (BH) candidates exist, ranging from supermassive ($\\sim10^{6}$--$10^{10}$ M$_{\\odot}$) to stellar masses ($\\sim 1$--$100$ M$_{\\odot}$), all of them identified by indirect processes. Although there are no known candidate BHs with sub-stellar masses, these might have been produced in the primordial Universe. BHs emit radiation composed of photons, gravitons and, later in their lifes, massive particles. We explored the detection of such BHs with present day masses from $10^{-22}$ M$_{\\odot}$ to $10^{-11}$ M$_{\\odot}$. We determined the maximum distances ($d$) at which the current best detectors should be placed in order to identify such isolated BHs. Broadly, we conclude that in the visible and ultraviolet BHs can be directly detected at $d\\lesssim 10^7$ m while in the X-ray band the distances might reach $\\sim10^8$ m (of the order of the Earth-Moon distance) and in the $\\gamma$-ray band BHs might even be detected from as far as $\\sim 0.1$ pc. Since these results give us realistic hopes of direct...
Kuchiev, M Yu
2003-01-01
Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe
Hawking Radiation Energy and Entropy from a Bianchi-Smerlak Semiclassical Black Hole
Abdolrahimi, Shohreh
2015-01-01
Eugenio Bianchi and Matteo Smerlak have found a relationship between the Hawking radiation energy and von Neumann entropy in a conformal field emitted by a semiclassical two-dimensional black hole. We compare this relationship with what might be expected for unitary evolution of a quantum black hole in four and higher dimensions. If one neglects the expected increase in the radiation entropy over the decrease in the black hole Bekenstein-Hawking A/4 entropy that arises from the scattering of the radiation by the barrier near the black hole, the relation works very well, except near the peak of the radiation von Neumann entropy and near the final evaporation. These discrepancies are calculated and discussed as tiny differences between a semiclassical treatment and a quantum gravity treatment.
Low-energy electromagnetic radiation as an indirect probe of black-hole evaporation
Emelyanov, Slava
2016-01-01
We study the influence of black-hole evaporation on light propagation. The framework employed is based on the non-linear QED effective action at one-loop level. We show that the light-cone condition is modified for low-energy radiation due to black-hole evaporation. We discuss conditions under which the phase velocity of this low-energy radiation is greater than $c$. We also compute the modified light-deflection angle, which turns out to be significantly different from the standard GR value for black-hole masses in the range $M_\\text{Pl} \\ll M \\lesssim 10^{19}\\;M_\\text{Pl}$.
Hawking Radiation of Dirac Particles in an Arbitrarily Accelerating Kinnersley Black Hole
Wu, S Q
2002-01-01
Quantum thermal effect of Dirac particles in an arbitrarily accelerating Kinnersley black hole is investigated by using the method of generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the advanced time and the angles. The Hawking thermal radiation spectrum of Dirac particles contains a new term which represents the interaction between particles with spin and black holes with acceleration. This spin-acceleration coupling effect is absent from the thermal radiation spectrum of scalar particles.
Yuan, Ye-Fei; Cao, Xinwu; Huang, Lei; Shen, Zhi-Qiang
2009-01-01
In fully general relativity, we calculate the images of the radiatively inefficient accretion flow (RIAF) surrounding a Kerr black hole with arbitrary spins, inclination angles, and observational wavelengths. For the same initial conditions, such as the fixed accretion rate, it is found that the intrinsic size and radiation intensity of the images become larger, but the images become more compact in the inner region, while the size of the black hole shadow decreases with the increase of the b...
Hawking radiation of asymptotically non-flat dyonic black holes in Einstein-Maxwell-dilaton gravity
Slavov, Peter I.; Yazadjiev, Stoytcho S.
2012-01-01
In the present paper we investigate the Hawking radiation of asymptotically non-flat dyonic black holes in 4D Einstein-Maxwell-dilaton gravity in semi-classical approximation. We show that the problem allows an exact analytical treatment and we compute exactly the semi-classical radiation spectrum of both non-extremal and extremal black holes under consideration. In the high frequency regime we find that the Hawking temperature does not agree with the surface gravity when the magnetic charge ...
Jiang Qing-Quan; Yang Shu-Zheng; Wu Shuang-Qing
2006-01-01
This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstr(o)m black holes, to that of arbitrarily dimensional Reissner-Nordstr(o)m de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.
Hawking radiation of Reissner-Nordstrom-de Sitter black hole by Hamilton-Jacobi method
Hossain, M Ilias
2013-01-01
In Refs. (M. Atiqur Rahman, M. Ilias Hossain (2012) Phys. Lett. B {\\bf 712} 1), we have developed Hamilton-Jacobi method for dynamical spacetime and discussed Hawking radiation of Schwarzschild-de Sitter black hole by massive particle tunneling method. In this letter, we have investigated the hawking purely thermal and nonthermal radiations of Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole. We have considered energy and angular momentum as conserved and shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results we have obtained for RNdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and recovered the new result for Hawking radiation of RNdS black hole.
Black Hole Evaporation. A Survey
Benachenhou, Farid
1994-01-01
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped. PMID:27367380
Information Loss and Tunneling Radiation of the Non-Stationary Dilaton-Maxwell Black Hole
Chen, Deyou; Yang, Shuzheng
Taking the self-gravitational interaction and unfixed background space-time into account, we discuss the tunneling radiation of the Dilaton-Maxwell black hole by the Hamilton-Jacobi method. The result shows that the tunneling rate is related not only to the change of Bekenstein-Hawking entropy, but also to a subtle integral about the black hole mass, which does not satisfy the unitary theory and is different from Parikh and Wilczek's result. This implies that information loss in black hole evaporation is possible.
On neutral scalar radiation by a massive orbiting star in extremal Kerr-Newman black hole
Xu, Xiao-Bao; Bai, Nan; Gao, Yi-Hong [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)
2015-06-15
We extend the work of 1401.3746 about gravitational waves by a massive orbiting star in an extremal Kerr black hole to an extremal Kerr-Newman black hole for the scalar radiation, and we still find that it has a CFT interpretation from Kerr-Newman/CFT, because our scalar is neutral although the black hole is a charged one. When the charge of black hole is zero, we can get the result of 1401.3746, so we give a new evidence on Kerr-Newman/CFT. In addition, we investigate on electromagnetic radiation with Kerr/CFT in detail which isn't given by 1401.3746. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Information-carrying Hawking radiation and the number of microstate for a black hole
Qing-yu Cai
2016-04-01
Full Text Available We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.
Information-carrying Hawking radiation and the number of microstate for a black hole
Cai, Qing-yu; Sun, Chang-pu; You, Li
2016-04-01
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawking entropies for Schwarzschild black holes and Reissner-Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.
On neutral scalar radiation by a massive orbiting star in extremal Kerr-Newman black hole
We extend the work of 1401.3746 about gravitational waves by a massive orbiting star in an extremal Kerr black hole to an extremal Kerr-Newman black hole for the scalar radiation, and we still find that it has a CFT interpretation from Kerr-Newman/CFT, because our scalar is neutral although the black hole is a charged one. When the charge of black hole is zero, we can get the result of 1401.3746, so we give a new evidence on Kerr-Newman/CFT. In addition, we investigate on electromagnetic radiation with Kerr/CFT in detail which isn't given by 1401.3746. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The existence of the Hawking radiation of the black hole surely affected the space-time. In this paper, using the result which is obtained by the thermodynamics method and applying the semiclassical Einstein equation when the radiation field is existent, it was obtained the static spherically symmetric metric of a Schwarzschild black hole (SBH) surrounded by the radiation field. Using this metric, it was found that the relation between the radiation energy density and the radius pressure is in accordance with the relation of the space-time
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...
General radiation via tunneling in Kerr and Kerr-Newman black holes
2008-01-01
Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum L≠ω a tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angular momentum per unit mass a should be changed. The emission rate of the massless particles under this general case is calculated, and the result is consistent with an underlying unitary theory.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)
2015-09-15
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
Sakalli, I.; Ovgun, A.
2015-09-01
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton-Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair
Hawking radiation from a BTZ black hole viewed as Landauer transport
Zhou, Shi-Wei; Zeng, Xiao-Xiong; Liu, Wen-Biao
2011-01-01
Viewing Hawking radiation as a 1D single quantum channel Landauer transport process, Nation et al calculated the energy flux and entropy flux from a Schwarzschild black hole without chemical potential. To generalize the method to the case with chemical potential, a rotating charged and non-charged BTZ black hole is investigated. Energy flux and entropy flux obtained are consistent with that from anomaly theory. The maximum energy flux and entropy flux are independent on the statistics of boso...
On Hawking Radiation from a Charged Black Hole of Heterotic String Theory
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein–Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole
General radiation via tunneling in Kerr and Kerr-Newman black holes
GAO Li; LIU WenBiao
2008-01-01
Hawking radiation can be viewed as a process of quantum tunneling near the black hole horizon. When a particle with angular momentum L≠ωa tunnels across the event horizon of Kerr or Kerr-Newman black hole, the angular momentum per unit mass a should be changed. The emission rate of the massless particles under this general case is calculated, and the result is consistent with an underlying unitary theory.
Hawking radiation from an acoustic black hole on an ion ring.
Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I
2010-06-25
In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it. PMID:20867352
Hawking Radiation of Dirac Particles in an Arbitrarily Accelerating Kinnersley Black Hole
Wu, S Q; Cai, X.
2002-01-01
Quantum thermal effect of Dirac particles in an arbitrarily accelerating Kinnersley black hole is investigated by using the method of generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the advanced time and the angles. The Hawking thermal radiation spectrum of Dirac particles contains a new term which represents the interaction between particles with spin and black holes with acceleration. This spin-acceleration coupling effect...
Hawking radiation from covariant anomalies in (2+1)-dimensional black holes
In an insightful approach, Robinson and Wilczek proposed that Hawking radiation can be obtained as the compensation of a breakdown of general covariance and gauge invariance and the radiation is a black body radiation at Hawking temperature. We apply this method to two types of black holes in three-dimensional spacetime, both of which have the form of a metric such that the tt component of the metric is not inverse of the rr component of the metric. The first one is the warped AdS3 black hole in three-dimensional topologically massive gravity with the negative cosmological constant, and the second one is the charged rotating black hole in three dimensions.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
a Method to Study the Hawking Radiation of the Kerr Black Hole
Chen, Deyou; Yang, Shuzheng
Using the Hamilton-Jacobi method, we discuss the Hawking radiation of the Kerr black hole. The result shows when the self-gravitational interaction as well as the conservation of energy and angular momentum are taken into account, the radiation spectrum deviates from the purely thermal one and the tunneling probability is related to the change of Bekenstein-Hawking entropy, which is in accordance with Parikh and Wilczek's result and gives a method to study the Hawking radiation of the black hole.
Accretion, Primordial Black Holes and Standard Cosmology
Nayak, Bibekananda; Singh, Lambodar Prasad
2009-01-01
Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.
Accretion, primordial black holes and standard cosmology
B Nayak; P Singh
2011-01-01
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.
Hawking Radiation of Topological Massive Warped-AdS3 Black Holes via Particles Tunnelling
Gecim, Ganim
2014-01-01
We investigate the Dirac and scalar particles tunnelling as a radiation of Warped AdS3 black holes in Topological Massive Gravity. Using Hamilton-Jacobi method, we discuss tunnelling probability and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. We observe the tunnelling probability and Hawking temperature to be same for the spin-1/2 and spin-0. We also examined the same procedure for the extremal case of the Warped AdS3 black holes, and thus, we show that the tunnelling process may occur, for both Dirac and scalar particles. Furthermore, in the extremal case, we find that the extremal case of the black hole has the Hawking Temperature in the Planck scale and thus it has a surface gravity although it has no surface gravity according to the classical method.
Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame
Wang, Peng; Yang, Haitang; Ying, Shuxuan
2016-01-01
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass mp. The corrections to the Hawking temperature are calculated for massive and charged particles to {O}( mp^{-2}) and neutral and massless particles with λ =0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation.
Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame
Wang, Peng; Yang, Haitang; Ying, Shuxuan [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)
2016-01-15
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass m{sub p}. The corrections to the Hawking temperature are calculated for massive and charged particles to O(m{sub p}{sup -2}) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)
Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass mp. The corrections to the Hawking temperature are calculated for massive and charged particles to O(mp-2) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)
Acoustic black holes horizons, ergospheres, and Hawking radiation
Visser, M
1998-01-01
It is a deceptively simple question to ask how acoustic disturbances propagate in a non-homogeneous flowing fluid. This question can be answered by invoking the language of Lorentzian differential geometry: If the fluid is barotropic and inviscid, and the flow is irrotational (though possibly time dependent), then the equation of motion for the velocity potential describing a sound wave is identical to that for a minimally coupled massless scalar field propagating in a (3+1)-dimensional Lorentzian geometry. The acoustic metric governing the propagation of sound depends algebraically on the density, flow velocity, and local speed of sound. This rather simple physical system is the basis underlying a deep and fruitful analogy between the black holes of Einstein gravity and supersonic fluid flows. Many results and definitions can be carried over directly from one system to another. For example, I will show how to define the ergosphere, trapped regions, acoustic apparent horizon, and acoustic event horizon for a ...
Hawking radiation as tunneling of vector particles from Kerr-Newman black hole
Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.
2016-03-01
In this paper, by applying the WKB approximation and Hamilton-Jacobi ansatz to the Proca equation, we investigate the tunneling of vector bosons across the event horizon of Kerr-Newman black hole and also the resulting vector particles' Hawking radiation. Universality of the properties of the emitted spectra of different types of particles is established for Kerr-Newman black hole. The coordinate problem for Hawking radiation of the vector particles is also investigated using three coordinate systems. The thermal spectrum of the radiated vector bosons determined using a direct computation corresponds to a temperature which is twice the Hawking temperature of Kerr-Newman black hole for scalar particles. If the well behaved Eddington coordinate system and Painleve coordinate system are used, the correct result of Hawking temperature is obtained. The reason for the discrepancy in the results of naive coordinate and well behaved coordinates is also discussed.
Sadowski, A; Narayan, R; Abarca, D; McKinney, J C
2016-01-01
We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation, and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric spacetime of the black hole. Numerical results are presented for five models of low luminosity black hole accretion. ...
Visser, M
1999-01-01
Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.
Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method
Rahman, M. Atiqur, E-mail: atirubd@yahoo.com [Department of Applied Mathematics, Rajshahi University (Bangladesh); Hossain, M. Ilias, E-mail: ilias_math@yahoo.com [Department of Mathematics, Rajshahi University, Rajshahi, 6205 (Bangladesh)
2012-05-30
We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.
Hawking radiation of Reissner-Nordstrom-de Sitter black hole by Hamilton-Jacobi method
Hossain, M. Ilias; Rahman, M. Atiqur
2013-01-01
In Refs. (M. Atiqur Rahman, M. Ilias Hossain (2012) Phys. Lett. B {\\bf 712} 1), we have developed Hamilton-Jacobi method for dynamical spacetime and discussed Hawking radiation of Schwarzschild-de Sitter black hole by massive particle tunneling method. In this letter, we have investigated the hawking purely thermal and nonthermal radiations of Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole. We have considered energy and angular momentum as conserved and shown that the tunneling rate is re...
Hawking Radiation of Schwarzschild-de Sitter Black Hole by Hamilton-Jacobi method
Rahman, M Atiqur; 10.1016/j.physletb.2012.04.049
2012-01-01
We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SdS black hole.
A New Method to Study the Hawking Radiation from the Kerr-NUT Black Hole
Liu, Hong-Lin; Liu, Zi-Xiang; Hou, Jian-Song; Yang, Shu-Zheng
2008-11-01
Developing Hamilton-Jacobi method, we discuss the Hawking radiation of Kerr-NUT black hole by considering the self-gravitation interaction as well as the energy conservation and angular momentum conservation. The result shows that the factual spectrum deviates from the precisely thermal one and the tunneling rate is related to the change of Bekenstein-Hawking entropy, which is accordant with that obtained by Parikh and Wilczek’s method and gives an interesting correction to the Hawking radiation of the black hole.
Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method
Rahman, M. Atiqur; Hossain, M. Ilias
2012-05-01
We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.
Sakalli, I
2016-01-01
Hawking radiation of charged massive spin-0 particles are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein--Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking radiation spectrum via the Damour--Ruffini--Sannan method.
Landauer transport model for Hawking radiation from a Reissner-Nordstrom black hole
Zeng, Xiao-Xiong; Zhou, Shi-Wei; Liu, Wen-Biao
2011-01-01
The recent work of Nation et al in which Hawking radiation energy and entropy flow from a black hole can be regarded as a one-dimensional (1D) Landauer transport process is extended to the case of a Reissner-Nordstrom (RN) black hole. It is found that the flow of charge current can also be transported via a 1D quantum channel except the current of Hawking radiation. The maximum entropy current, which is shown to be particle statistics independence, is also obtained.
Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method
We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.
Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes
Chuan-Yi Bai
2013-02-01
In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.
NONE
2002-02-01
instance, the UK's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
Hawking radiation as tunneling from charged black holes in 0A string theory
Kim, Hongbin, E-mail: hongbin@yonsei.ac.kr [Department of Physics, College of Science, Yonsei University, Seoul 120-749 (Korea, Republic of)
2011-09-01
There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.
Hawking radiation as tunneling from charged black holes in 0A string theory
Kim, Hongbin
2011-01-01
There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitional picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.
Hawking radiation as tunneling from charged black holes in 0A string theory
There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.
Asymmetry of Hawking Radiation of Dirac Particles in a Charged Vaidya - de Sitter Black Hole
Wu, S Q
2001-01-01
The Hawking radiation of Dirac particles in a charged Vaidya - de Sitter black hole is investigated by using the method of generalized tortoise coordinate transformation. It is shown that the Hawking radiation of Dirac particles does not exist for $P_1, Q_2$ components, but for $P_2, Q_1$ components it does. Both the location and the temperature of the event horizon change with time. The thermal radiation spectrum of Dirac particles is the same as that of Klein-Gordon particles.
Sakalli, I.
2016-01-01
Hawking radiation of charged massive spin-0 particles are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein--Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black h...
Are black holes totally black?
Grib, A A
2014-01-01
Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.
Hawking Radiation from a Vaidya Black Hole: A Semi-Classical Approach and Beyond
Siahaan, Haryanto M
2008-01-01
We derive the Hawking radiation for Vaidya black hole in the tunneling picture from the corresponding single particle action by the use of the radial null geodesic and the Hamilton-Jacobi method (beyond semi-classical approximation). Both results are then analyzed and compared.
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.
Hawking radiation screening and Penrose process shielding in the Kerr black hole
Mc Caughey, Eamon
2016-04-01
The radial motion of massive particles in the equatorial plane of a Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both inside and outside the ergosphere) and their effect on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient determined.
Hawking radiation screening and Penrose process shielding in the Kerr black hole
Caughey, Eamon Mc
2016-01-01
The radial motion of massive particles in the equatorial plane of the Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both insides and outside the ergosphere) and their effects on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient is determined.
Hawking radiation as quantum tunneling from a noncommutative Schwarzschild black hole
We study the tunneling process through the quantum horizon of a Schwarzschild black hole in noncommutative spacetime. This is done by considering the effect of smearing of the particle mass as a Gaussian profile in flat spacetime. We show that even in this noncommutative setup there will be no correlation between the different modes of radiation, which reflects the fact that information does not come out continuously during the evaporation process at least at late time. However, due to spacetime noncommutativity, information might be preserved by a stable black hole remnant
Hawking radiation as quantum tunneling from a noncommutative Schwarzschild black hole
Nozari, Kourosh; Mehdipour, S Hamid [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, PO Box 47416-1467, Babolsar (Iran, Islamic Republic of)], E-mail: knozari@umz.ac.ir, E-mail: h.mehdipour@umz.ac.ir
2008-09-07
We study the tunneling process through the quantum horizon of a Schwarzschild black hole in noncommutative spacetime. This is done by considering the effect of smearing of the particle mass as a Gaussian profile in flat spacetime. We show that even in this noncommutative setup there will be no correlation between the different modes of radiation, which reflects the fact that information does not come out continuously during the evaporation process at least at late time. However, due to spacetime noncommutativity, information might be preserved by a stable black hole remnant.
Hawking radiation screening and Penrose process shielding in the Kerr black hole
Mc Caughey, Eamon [Dublin Institute of Technology, School of Mathematical Sciences, Dublin 8 (Ireland)
2016-04-15
The radial motion of massive particles in the equatorial plane of a Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both inside and outside the ergosphere) and their effect on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient determined. (orig.)
Yang, Shu-Zheng; Chen, De-You
2007-01-01
Taking the self-gravitation interaction and energy conservation, charge conservation and angular momentum conservation into account, we discuss the tunnelling characteristics of the charged particle from Sen black hole by the Hamilton-Jacobi method. The result shows that the tunnelling probability is related to the change of Bekenstein-Hawking entropy, and the actual radiation spectrum deviates from the pure thermal one, which is consistent with the result of Parikh and Wilczek and gives a new method to correct the Hawking pure thermal spectrum of Sen black hole.
Hawking radiation of the Vaidya-Bonner-de Sitter black hole
Chen Deyou; Yang Shuzheng [Institute of Theoretical Physics, China West Normal University, Nanchong, Sichuan 637002 (China)
2007-08-15
Considering the unfixed background space-time and the self-gravitational interaction, we view the Hawking radiation of the Vaidya-Bonner- de Sitter black hole by the Hamilton-Jacobi method and the radial geodesic method. The result shows the tunneling rate is related not only to the change of Bekenstein-Hawking entropy but also to the integral of the black hole mass and charge, which does not satisfy the unitary theory and is not in accordance with the known result.
YANG Shu-Zheng; CHEN De-You
2007-01-01
@@ Taking the self-gravitation interaction and energy conservation, charge conservation and angular momentum conservation into account, we discuss the tunnelling characteristics of the charged particle from Sen black hole by the Hamilton-Jacobi method. The result shows that the tunnelling probability is related to the change of Bekenstein-Hawking entropy, and the actual radiation spectrum deviates from the pure thermal one, which is consistent with the result of Parikh and Wilczek and gives a new method to correct the Hawking pure thermal spectrum of Sen black hole.
A Novel Parametric Bound for Information Retrieval from Black Hole Radiation
Roy, Avik; Alvi, Mishkat Al; Majumdar, Mahbub; Matin, Md Abdul
2013-01-01
Hawking's argument about non-unitary evolution of black holes is often questioned on the ground that it doesn't acknowledge the quantum correlations in radiation process. However, recently it has been shown that adding `small' correction to leading order Hawking analysis, accounting for the correlations, doesn't help to restore unitarity. This paper generalizes the bound on entanglement entropy by relaxing the `smallness' condition and configures the parameters for possible recovery of information from an evaporating black hole. The new bound effectively puts an upper limit on increase in entanglement entropy. It also facilitates to relate the change in entanglement entropy to the amount of correction to Hawking state.
Higher dimensional Robinson-Trautman spacetimes sourced by p-forms: static and radiating black holes
Ortaggio, Marcello; Podolsky, Jiri; Zofka, Martin
2016-01-01
We summarize results about Robinson-Trautman spacetimes in the presence of an aligned $p$-form Maxwell field and an arbitrary cosmological constant in $n\\ge 4$ dimensions. While in odd dimensions the solutions reduce to static black holes dressed with an electric and a magnetic field (with an Einstein space horizon), in even dimensions $2p=n$ they may also describe black holes gaining (or losing) mass by receiving (or emitting) electromagnetic radiation. The Weyl type of the spacetimes is als...
Feng, Zhongwen; Zhu, Xiaodan; Li, Guoping; Fang, Weijing; Zu, Xiaotao
2016-01-01
Incorporating the generalized uncertainty principle (GUP) into the tunneling mechanism, we have studied the tunneling radiation of the scalar particles and fermions from the five-dimensional Schwarzschild-Tangherlini black hole. The results showed that the GUP corrected temperatures do not only depend on the mass of ST black hole, but are also affected by the gravity effects correction β. Besides, the β slows down the Hawking temperature increasing and causes the existence of remnants in black hole evaporation.
Noncommutative black hole thermodynamics
We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one
Cardoso, V; Cardoso, Vitor; Lemos, Jos\\'e P. S.
2003-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy gets converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amp...
Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer
Meliani, Zakaria; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri
2016-01-01
(Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding ...
Hawking Radiation of Mass Generating Particles from Dyonic Reissner-Nordström Black Hole
Sakalli, I.; Övgün, A.
2016-09-01
The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton-Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyse the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton-Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner-Nordström black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed in reading the standard Hawking temperature of the dyonic Reissner-Nordström black hole.
Hawking Radiation of Mass Generating Particles From Dyonic Reissner Nordstrom Black Hole
Sakalli, I
2016-01-01
The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton-Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyze the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton-Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner-Nordstr\\"{o}m black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed to read the standard Hawking temperature of the dyonic Reissner-Nordstr\\"{o}m black hole.
Gravitational-wave energy and radiation reaction on quasi-spherical black holes
Hayward, S A
2000-01-01
Gravitational waves are given a local definition in a quasi-spherical approximation, describing roughly spherical but otherwise dynamical astrophysical objects, such as a black hole forming by binary black-hole coalescence. A local effective energy tensor is defined for the gravitational waves, satisfying standard energy conditions. Radiation reaction, such as the back-reaction of the gravitational waves on the black hole, may then be described by including the gravitational-wave energy tensor as a source in the truncated Einstein equations. This can be formulated as a second quasi-spherical approximation, which retains non-linear terms in the fields encoding the gravitational waves. The energy-momentum in a canonical frame is covariantly conserved. The strain to be measured by a distant detector is simply defined.
Following on after two previous papers discussing the formation of primordial black holes in the early universe, we present here results from an in-depth investigation of the extent to which primordial black hole formation in the radiative era can be considered as an example of the critical collapse phenomenon. We focus on initial supra-horizon-scale perturbations of a type which could have come from inflation, with only a growing component and no decaying component. In order to study perturbations with amplitudes extremely close to the supposed critical limit, we have modified our previous computer code with the introduction of an adaptive mesh refinement scheme. This has allowed us to follow black hole formation from perturbations whose amplitudes are up to eight orders of magnitude closer to the threshold than we could do before. We find that scaling-law behaviour continues down to the smallest black hole masses that we are able to follow and we see no evidence of shock production such as has been reported in some previous studies and which led there to a breaking of the scaling-law behaviour at small black hole masses. We attribute this difference to the different initial conditions used. In addition to the scaling law, we also present other features of the results which are characteristic of critical collapse in this context.
Quantum Radiation Properties of Dirac Particles in General Nonstationary Black Holes
Jia-Chen Hua
2014-01-01
Full Text Available Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case are investigated by both using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first-order and second-order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and nonthermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in nonthermal radiation for general nonstationary black holes.
Hawking Radiation of a Quantum Black Hole in an Inflationary Universe
Huang, W H
1992-01-01
The quantum stress-energy tensor of a massless scalar field propagating in the two-dimensional Vaidya-de Sitter metric, which describes a classical model spacetime for a dynamical evaporating black hole in an inflationary universe, is analyzed. We present a possible way to obtain the Hawking radiation terms for the model with arbitrary functions of mass. It is used to see how the expansion of universe will affect the dynamical process of black hole evaporation. The results show that the cosmological inflation has an inclination to depress the black hole evaporation. However, if the cosmological constant is sufficiently large then the back-reaction effect has the inclination to increase the black hole evaporation. We also present a simple method to show that it will always produce a divergent flux of outgoing radiation along the Cauchy horizon where the curvature is a finite value. This means that the Hawking radiation will be very large in there and shall modify the classical spacetime drastically. Therefore ...
Hod, Shahar
2016-06-01
It has recently been suggested (S.B. Giddings (2016) [2]) that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere' which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a (3 + 1)-dimensional Schwarzschild black hole of horizon radius rH with the familiar Stefan-Boltzmann radiation power of a (3 + 1)-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius rA is characterized by the relation Δr ≡rA -rH ∼rH. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of (D + 1)-dimensional Schwarzschild black holes. We find that the dimensionless radii rA /rH which characterize the black-hole quantum atmospheres, as determined from the Hawking black-hole radiation power and the (D + 1)-dimensional Stefan-Boltzmann radiation law, are a decreasing function of the number D + 1 of spacetime dimensions. In particular, it is shown that radiating (D + 1)-dimensional Schwarzschild black holes are characterized by the relation (rA -rH) /rH ≪ 1 in the large D ≫ 1 regime. Our results therefore suggest that, at least in some physical cases, the Hawking emission spectrum originates from quantum excitations very near the black-hole horizon.
Shuang-Qing, W; Shuang-Qing, Wu; Mu-Lin, Yan
2003-01-01
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.
吴双清; 闫沐霖
2003-01-01
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.
Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid
Gerace, Dario; Carusotto, Iacopo
2012-01-01
We theoretically study Hawking radiation processes from an analog acoustic black hole in a flowing superfluid of exciton-polaritons in a one-dimensional semiconductor microcavity. Polaritons are coherently injected into the microcavity by a laser pump with a suitably tailored spot profile. An event horizon with a large analog surface gravity is created by inserting a defect in the polariton flow along the cavity plane. Experimentally observable signatures of the analog Hawking radiation are i...
Cardoso, Vitor(CENTRA, Departamento de F´ısica, Instituto Superior Técnico, Universidade de Lisboa — UL, Av. Rovisco Pais 1, 1049, Lisboa, Portugal); Lemos, José P. S.
2002-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these ...
Tunneling Radiation of Vector Particles in Four and Five Dimensional Black Holes
Chen, Bingbing
2016-07-01
Recent research shows that the WKB approximation and the Hamilton-Jacobi method has been succeed in studying the tunneling radiation of vector particles. In view of this, our main aim in this letter is to study the Proca equation and the vector particles tunneling radiation in the 4-dimensional and 5-dimensional black holes. And finally, the results here show that the temperature of vector particle is the same as Dirac particle's and other particle's.
Sadowski, A.; Wielgus, M.; Narayan, R.; Abarca, D.; McKinney, J.C.
2016-01-01
We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription f...
Hawking radiation from the dilaton-(anti) de Sitter black hole via covariant anomaly
Han Yi-Wen; Bao Zhi-Qing; Hong Yun
2009-01-01
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.
Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)
A public code for general relativistic, polarised radiative transfer around spinning black holes
Dexter, Jason
2016-01-01
Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several te...
Thermodynamics of Accelerating Black Holes
Appels, Michael; Kubiznak, David
2016-01-01
We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers
Yuan, Ye-Fei; Huang, Lei; Shen, Zhi-Qiang
2009-01-01
In fully general relativity, we calculate the images of the radiatively inefficient accretion flow (RIAF) surrounding a Kerr black hole with arbitrary spins, inclination angles, and observational wavelengths. For the same initial conditions, such as the fixed accretion rate, it is found that the intrinsic size and radiation intensity of the images become larger, but the images become more compact in the inner region, while the size of the black hole shadow decreases with the increase of the black hole spin. With the increase of the inclination angles, the shapes of the black hole shadows change and become smaller, even disappear at all due to the obscuration by the thick disks. For median inclination angles, the radial velocity observed at infinity is larger because of both the rotation and radial motion of the fluid in the disk, which results in the luminous part of the images is much brighter. For larger inclination angles, such as the disk is edge on, the emission becomes dimmer at longer observational wav...
Radiative efficiency and thermal spectrum of accretion onto Schwarzschild black holes
Noble, Scott C; Schnittman, Jeremy D; Hawley, John F
2011-01-01
Recent general relativistic magneto-hydrodynamic (MHD) simulations of accretion onto black holes have shown that, contrary to the basic assumptions of the Novikov-Thorne model, there can be substantial magnetic stress throughout the plunging region. Additional dissipation and radiation can therefore be expected. We use data from a particularly well-resolved simulation of accretion onto a non-spinning black hole to compute both the radiative efficiency of such a flow and its spectrum if all emitted light is radiated with a thermal spectrum whose temperature matches the local effective temperature. This disk is geometrically thin enough (H/r ~= 0.06) that little heat is retained in the flow. In terms of light reaching infinity (i.e., after allowance for all relativistic effects and for photon capture by the black hole), we find that the radiative efficiency is at least ~=6-10% greater than predicted by the Novikov-Thorne model (complete radiation of all heat might yield another ~6%). We also find that the spect...
Yang, Shuzheng; Chen, Deyou
2007-07-01
The tunneling radiation of Ressiner-Nordström black hole is studied by developing Hamilton-Jacobi method. The result shows the actual radiation spectrum deviates from the pure thermal one and the tunneling probability are related to the change of Bekenstein-Hawking entropy, which is accordant with Parikh and Wilczek's and gives a new method to correct Hawking pure thermal radiation of Ressiner-Nordström black hole.
Hod, Shahar
2016-01-01
It has recently been suggested (S.B. Giddings (2016) [2] ) that the Hawking black-hole radiation spectrum originates from an effective quantum “atmosphere' which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a (3+1) -dimensional Schwarzschild black hole of horizon radius rH with the familiar Stefan–Boltzmann radiation power of a (3+1) -dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi...
Nonstationary analogue black holes
We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Strominger, Andrew
1993-01-01
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...
Gao, C. J.; Zhang, S. N.
2006-01-01
The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...
Kong, Brian; Yoon, Youngsub
2016-03-01
By pointing out an error in the previous derivation of the area spectrum based on Ashtekar's variables, we suggest a new area spectrum; instead of the norm of Ashtekar's gravitational electric field, we show that the norm of our "new" gravitational electric field based on our "newer" variables, which we construct in this paper for this purpose, gives the correct area spectrum. In particular, our "newer" variables are mathematically consistent; the constraint algebra is closed. Moreover, by using our new area spectrum, we "almost correctly" predict the Bekenstein-Hawking entropy without having to adjust the Immirzi parameter; we show that a numerical formula actually yielded 0.997 · · ·, which is very close to 1, the expected value with the black hole entropy given as A/4. We conjecture that the difference, 0.003, is due to the extra dimensions that may modify the area spectrum. Then, we derive a formula for the degeneracy for a single-partition black hole, i.e., a black hole made of a single unit area, and explicitly show that our area spectrum correctly reproduces the degeneracy. Furthermore, by using two totally different methods, we obtain the proportionality constant " C" related to the degeneracy. The first method based on fitting yields 172 ~ 173 while the second method yields 172.87· · ·, which strongly suggest that our area spectrum is on the right track. We also show that the area spectra based on Ashtekar variables neither reproduce the degeneracy of single-partition black hole nor yield agreement for C obtained by using the two methods.
Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Free-fall Frame
Wang, Peng; Ying, Shuxuan
2015-01-01
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass $m_{p}$. The corrections to the Hawking temperature are calculated for massive and charged particles to $\\mathcal{O}\\left( m_{p}^{-2}\\right) $ and neutral and massless particles with $\\lambda=0$ to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is...
We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.
Generalized Uncertainty Principle in Hawking Radiation of Noncommutative Schwarzschild Black Hole
The effects of noncommutativity in the framework of coordinate coherent states for Schwarzschild metric lead to a corrected solution in terms of the noncommutative parameter θ. Using the quasi-classical method, the Hawking radiation of such a noncommutative inspired black hole via the tunneling process is studied. In this situation, utilizing the generalized uncertainty principle, we show that the modification of the de Broglie relation in the quantum tunneling process of the black hole evaporation, provides the non-thermal effects which create the correlations between emitted modes of evaporation. In this setup, at least part of the quantum information becomes encoded in the Hawking radiation, and information can be appeared in the form of the non-thermal GUP correlations merged with the noncommutativity influences. (authors)
Extracting Information about the Initial State from the Black Hole Radiation
Lochan, Kinjalk; Padmanabhan, T.
2016-02-01
The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation.
Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics
Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...
Extracting Information about the Initial State from the Black Hole Radiation.
Lochan, Kinjalk; Padmanabhan, T
2016-02-01
The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation. PMID:26894699
Lan, X. G.; Jiang, Q. Q.; Wei, L. F.
2012-04-01
We apply the Damour-Ruffini-Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future.
Black hole radiation of massive spin-2 particles in (3+1) dimensions
Sakalli, I
2016-01-01
This paper is devoted to the study of radiation of massive spin-2 boson (graviton with a nonzero mass) through the event horizon of a generic static and spherically symmetric black hole in (3+1) dimensions. To this end, we consider the problem in the framework of quantum tunneling phenomenon. We evaluate the tunneling rate of the massive gravitons by applying the semiclassical WKB approximation to the Fierz-Pauli equation. The temperature of the radiation is obtained with the aid of the Boltzmann expression. Our findings are in good agreement with the existing Hawking radiation studies in the current literature.
Black hole radiation of massive spin-2 particles in (3+1) dimensions
Sakalli, I.; Övgün, A.
2016-06-01
This paper is devoted to the study of radiation of a massive spin-2 boson (graviton with a nonzero mass) through the event horizon of a generic static and spherically symmetric black hole in (3+1) dimensions. To this end, we consider the problem in the framework of the quantum tunneling phenomenon. We evaluate the tunneling rate of the massive gravitons by applying the semiclassical WKB approximation to the Fierz-Pauli equation. The temperature of the radiation is obtained with the aid of the Boltzmann expression. Our findings are in good agreement with the existing Hawking radiation studies in the current literature.
Wu, S Q; Xu, Cai
2002-01-01
Quantum thermal effect of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole is investigated by using the generalized tortoise coordinate transformation. The equation that determines the location, the Hawking temperature of the event horizon and the thermal radiation spectrum of neutrinos are derived. Our results show that the location and the temperature of the event horizon depend not only on the time but also on the angle.
Hawking Radiation of Spin-1 Particles From Three Dimensional Rotating Hairy Black Hole
Sakalli, I
2015-01-01
In the present article, we study the Hawking radiation (HR) of spin-1 particles -- so-called vector particles -- from a three dimensional (3D) rotating black hole with scalar hair (RBHWSH) using Hamilton-Jacobi (HJ) ansatz. Putting the Proca equation amalgamated with the WKB approximation in process, the tunneling spectrum of vector particles is obtained. We recover the standard Hawking temperature corresponding to the emission of these particles from RBHWSH.
Hawking Radiation of Mass Generating Particles From Dyonic Reissner Nordstr\\"{o}m Black Hole
Sakalli, I.; Övgün, A.
2016-01-01
The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton-Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyze the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton-Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads...
Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.; Maharaj, Sunil D.(Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 54001, 4000, Durban, South Africa)
2014-01-01
This paper considers the nature of apparent horizons for astrophysical black hole situated in a realistic cosmological context. Using semi-tetrad covariant methods we study the local evolutions of the boundaries of the trapped region in the spacetime. For a collapsing massive star immersed in a cosmology with Cosmic Background Radiation (CBR), we show that the initial 2 dimensional marginally trapped surface bifurcates into inner and outer horizons. The inner horizon is timelike while the con...
HAN Yi-Wen; YANG Shu-Zheng
2005-01-01
@@ We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose ArnowittDeser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as a tunnelling process across the event horizon and the cosmological horizon. From the tunnelling probability, we find a leading correction to the semi-classical emission rate. The result employs an underlying unitary theory.
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhao-Ming
2016-01-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and de...
Energy conservation for dynamical black holes
Hayward, Sean A.
2004-01-01
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures o...
Hawking radiation of Kerr-Newman black hole in different tortoise coordinate transformations
Ibungochouba Singh, T.
2013-10-01
Hawking radiation effect of Maxwell’s electromagnetic fields in the Kerr-Newman black hole space-time is investigated using two different tortoise coordinate transformations. It has been shown that the new tortoise coordinate transformation produces constant term ξ in the expression of surface gravity and Hawking temperature. If ξ is set to zero, the surface gravity and Hawking temperature will be equal to those obtained from the old tortoise coordinate transformation. This indicates that new transformation is more reliable and accurate. The black body radiant spectrum of photon displays a new spin-rotation coupling effect.
Lan, Xiao-Gang
2013-05-01
By introducing a new tortoise coordinate transformation, we apply Damour-Ruffini-Sannan method to study the Hawking radiation of massive scalar particles in a dynamic Dilaton-Maxwell black hole. We find that Hawking radiation spectrum shows still the blackbody one, while the Hawking temperature is significantly changed. Additionally, by adopting the thin film method, we calculate the entropy of a dynamic Dilaton-Maxwell black hole. The result indicates that the entropy for such a black hole is still in proportional to the area of its event horizon.
Liang, Jun; Zhang, Fang-Hui; Zhang, Wei; Zhang, Jing
2014-01-01
By utilizing the improved Damour-Ruffini method with a new tortoise transformation, we study the Hawking radiation of Dirac particles from a general dynamical spherically symmetric black hole. In the improved Damour-Ruffini method, the position of the event horizon of the black hole is an undetermined function, and the temperature parameter κ is an undetermined constant. By requiring the Dirac equation to be the standard wave equation near the event horizon of the black hole, κ can be determined automatically. Therefore, the Hawking temperature can be obtained. The result is consistent with that of the Hawking radiation of scalar particles.
Hossain, M Ilias
2013-01-01
Incorporating Parikh and Wilczek's opinion to the Kerr de-Sitter (KdS) black hole Hawking non-thermal and purely thermal radiations have been investigated using Hamilton-Jacobi method. We have taken the background spacetime of KdS black hole as dynamical, involving the self-gravitation effect of the emitted particles, energy and angular momentum has been taken as conserved and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The explored results gives a correction to the Hawking radiation of KdS black hole.
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Laura Mersini-Houghton
2014-11-01
Full Text Available Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Mersini-Houghton, Laura [DAMTP, University of Cambridge, Wilberforce Rd., Cambridge, CB3 0WA, England (United Kingdom); Department of Physics and Astronomy, UNC, Chapel Hill, NC 27599 (United States)
2014-11-10
Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Quantum strings and black holes
Damour, Thibault Marie Alban Guillaume
2001-01-01
The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
Resource Letter BH-2: Black Holes
Gallo, Elena
2008-01-01
This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...
Convection in radiatively inefficient black hole accretion flows
Igumenshchev, Igor V.; Abramowicz, Marek A.
2001-01-01
Recent numerical simulations of radiatively inefficient accretion flows onto compact objects have shown that convection is a general feature in such flows. Dissipation of rotational and gravitational energies in the accretion flows results in inward increase of entropy and development of efficient convective motions. Convection-dominated accretion flows (CDAFs) have a structure that is modified significantly in comparison with the canonical advection-dominated and Bondi-like accretion flows. ...
Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Static Frame
Wang, Peng
2015-01-01
Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appears that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study possible deviations from the Hawking's prediction, the dispersive field theory models have been proposed, following the Unruh's hydrodynamic analogue of a black hole radiation. In the dispersive field theory models, the dispersion relations of matter fields are modified at high energies, which leads to modifications of equations of motion. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass $m_{p}$. We calculate the corrections to the Hawking temperature for massive and charged particles to $\\mathcal{O}\\left(m_{p}^{-2}\\right) $ and massless and neutral particles to all orders. Our res...