Black hole accretion disc impacts
Pihajoki, P.
2016-04-01
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
Black hole accretion disc impacts
Pihajoki, Pauli
2015-01-01
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
Accretion, Primordial Black Holes and Standard Cosmology
Nayak, Bibekananda; Singh, Lambodar Prasad
2009-01-01
Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.
Accretion, primordial black holes and standard cosmology
B Nayak; P Singh
2011-01-01
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.
Black hole feedback from thick accretion discs
Sadowski, Aleksander; Lasota, Jean-Pierre; Abramowicz, Marek A.; Narayan, Ramesh
2015-01-01
We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretio...
How Dim Accreting Black Holes Could Be?
Abramowicz, M A; Abramowicz, Marek Artur; Igumenshchev, Igor V.
2001-01-01
Recent hydrodynamical simulations of radiatively inefficient black hole accretion flows with low viscosity have demonstrated that these flows differ significantly from those described by an advection-dominated model. The black hole flows are advection-dominated only in their inner parts, but convectively dominated at radii R>100R_g. In such flows, the radiative output comes mostly from the convection part, and the radiative efficiency is independent of accretion rate and equals ~0.001. This value gives a limit for how dim an accreting black hole could be. It agrees with recent Chandra observations which indicate that accreting black holes in low-mass X-ray binaries are by factor about 100 dimmer that neutron stars accreting with the same accretion rates.
Accretion onto a higher dimensional black hole
John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.
2013-01-01
We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, $\\dot{M}$, is an explicit function of the black hole mass, $M$, as well as the gas boundary conditions and the dimensionality, $D$, of the spacetime. We also find ...
Hot Accretion Flows Around Black Holes
Yuan, Feng(Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA); Narayan, Ramesh
2014-01-01
Black hole accretion flows can be divided into two broad classes: cold and hot. Cold accretion flows, which consist of cool optically thick gas, are found at relatively high mass accretion rates. Prominent examples are the standard thin disk, which occurs at a fraction of the Eddington mass accretion rate, and the slim disk at super-Eddington rates. These accretion flows are responsible for luminous systems such as active galactic nuclei radiating at or close to the Eddington luminosity and b...
Quasistars: Accreting black holes inside massive envelopes
Begelman, Mitchell C; Armitage, Philip J
2007-01-01
We study the structure and evolution of "quasistars," accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate onto the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasistars. We derive analytically the scaling of the photospheric temperature with the black hole mass and envelope mass, and show that it decreases with time as the black hole mass increases. Once the photospheric temperature becomes lower than 10000 K, the photospheric opacity drops precipitously and the photospheric temperature hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hy...
Foundations of Black Hole Accretion Disk Theory
Marek A. Abramowicz
2013-01-01
Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.
Accretion flows govern black hole jet properties
Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.
2015-07-01
The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.
Black hole feedback from thick accretion discs
Sadowski, Aleksander; Abramowicz, Marek A; Narayan, Ramesh
2015-01-01
We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is $3\\%$ - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.
Accretion onto a Kiselev black hole
Yang, Rong-Jia
2016-01-01
We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfil. The case of polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process.
Bondi accretion onto cosmological black holes
Karkowski, Janusz; Malec, Edward
2012-01-01
In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and --- above certain limit --- completely stops the steady accretion onto black holes, which in particular is prohibited in the inflation era and after (roughly) $10^{12}$ years from Big Bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Pe...
Dark Matter Accretion into Supermassive Black Holes
Peirani, Sébastien
2008-01-01
The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, $Q=\\rho_{\\infty}/\\sigma^3_{\\infty}$, remains constant during the inflow, the derived accretion rate can be higher up to five orders of magnitude than the classical accretion formula, valid for non-relativistic and non-interacting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is located at distances of about 30-150 times the horizon radius. Application of our results to black hole seeds hosted by halos issued from cosmological simulations indicate that dark matter contributes to no more than ~10% of the total accreted mass, confirming that the bolometric quasar luminosity is related to the baryonic accretion history of the black hole.
Dark matter accretion into supermassive black holes
The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, Q=ρ∞/σ∞3, remains constant during the inflow, the derived accretion rate can be higher up to 5 orders of magnitude than the classical accretion formula, valid for nonrelativistic and noninteracting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is located at distances of about 30-150 times the horizon radius. Application of our results to black hole seeds hosted by halos issued from cosmological simulations indicate that dark matter contributes to no more than ∼10% of the total accreted mass, confirming that the bolometric quasar luminosity is related to the baryonic accretion history of the black hole.
Foundations of Black Hole Accretion Disk Theory
Abramowicz, Marek A.; P. Chris Fragile
2011-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads ...
Dark Matter Accretion into Supermassive Black Holes
Peirani, Sébastien; De Freitas Pacheco, José Antonio
2008-01-01
The relativistic accretion rate of dark matter by a black hole is revisited. Under the assumption that the phase space density indicator, $Q=\\rho_{\\infty}/\\sigma^3_{\\infty}$, remains constant during the inflow, the derived accretion rate can be higher up to five orders of magnitude than the classical accretion formula, valid for non-relativistic and non-interacting particles, when typical dark halo conditions are considered. For these typical conditions, the critical point of the flow is loca...
Magnetically controlled accretion onto a black hole
Ikhsanov, N R; Beskrovnaya, N G; 10.1088/1742-6596/372/1/012062
2012-01-01
An accretion scenario in which the material captured by a black hole from its environment is assumed to be magnetized (\\beta ~ 1) is discussed. We show that the accretion picture in this case is strongly affected by the magnetic field of the flow itself. The accretion power within this Magnetically Controlled Accretion (MCA) scenario is converted predominantly into the magnetic energy of the accretion flow. The rapidly amplified field prevents the accretion flow from forming a homogeneous Keplerian disk. Instead, the flow is decelerated by its own magnetic field at a large distance (Shvartsman radius) from the black hole and switches into a non-Keplerian dense magnetized slab. The material in the slab is confined by the magnetic field and moves towards the black hole on the time scale of the magnetic field annihilation. The basic parameters of the slab are evaluated. Interchange instabilities in the slab may lead to a formation of Z-pinch type configuration of the magnetic field over the slab in which the acc...
Superextremal spinning black holes via accretion
Bode, Tanja; Laguna, Pablo; Matzner, Richard
2011-09-01
A Kerr black hole with mass M and angular momentum J satisfies the extremality inequality |J|≤M2. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasilocal characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as |J|≤2MH2, with MH the irreducible mass of the black hole computed from its apparent horizon area and J obtained using a rotational Killing vector field on the apparent horizon. The |J|≤2MH2 condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surrounded by a thick, shell cloud of negative energy density. For these numerical experiments, we introduce a new matter-without-matter evolution method.
Accretion and evaporation of modified Hayward black hole
We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)
Accretion and evaporation of modified Hayward black hole
Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Howrah (India)
2015-03-01
We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid's four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking radiation from the black hole, i.e., evaporation of the black hole, is analyzed. (orig.)
Accretion radiation from nearby isolated black holes
Recent work attempting to establish the presence of dark matter in the solar neighbourhood has led to renewed interest in the search for the nature of this matter. Previous authors attempt to exclude large (>=2 solar mass) objects by considering their tidal effect on wide binaries. Here independent constraints on such dark massive objects, if they are black holes, are provided by the requirement that their radiation due to accretion from the ISM should not make the nearest ones directly observable as optical objects. The expected infrared brightness is also predicted. It is shown that halo holes must be less massive than about 103 solar masses, and that the dark matter in the galactic disc cannot be made up of black holes of mass more than 10solar masses. Even if black holes do not make up the dark matter, they are expected to be present in the disc as remnants of massive stars. (author)
Normal Modes of Black Hole Accretion Disks
Ortega-Rodriguez, Manuel; /Stanford U., Appl. Phys. Dept. /Costa Rica U.; Silbergleit, Alexander S.; /Stanford U., HEPL; Wagoner, Robert V.; /Stanford U., Phys. Dept.
2006-11-07
This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.
Gravitomagnetic acceleration from black hole accretion disks
Poirier, J.; Mathews, G. J.
2016-05-01
We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
General Overview of Black Hole Accretion Theory
Blaes, Omer
2013-01-01
I provide a broad overview of the basic theoretical paradigms of black hole accretion flows. Models that make contact with observations continue to be mostly based on the four decade old alpha stress prescription of Shakura & Sunyaev (1973), and I discuss the properties of both radiatively efficient and inefficient models, including their local properties, their expected stability to secular perturbations, and how they might be tied together in global flow geometries. The alpha stress is a prescription for turbulence, for which the only existing plausible candidate is that which develops from the magnetorotational instability (MRI). I therefore also review what is currently known about the local properties of such turbulence, and the physical issues that have been elucidated and that remain uncertain that are relevant for the various alpha-based black hole accretion flow models.
Magnetohydrodynamic simulations of black hole accretion
Reynolds, C S; Chiang, J; Reynolds, Christopher S; Armitage, Philip J.; Chiang, James
2001-01-01
We discuss the results of three-dimensional magnetohydrodynamic simulations, using a pseudo-Newtonian potential, of thin disk (h/r ~ 0.1) accretion onto black holes. We find (i) that magnetic stresses persist within the marginally stable orbit, and (ii) that the importance of those stresses for the dynamics of the flow depends upon the strength of magnetic fields in the disk outside the last stable orbit. Strong disk magnetic fields (alpha > 0.1) lead to a gross violation of the zero-torque boundary condition at the last stable orbit, while weaker fields (alpha ~ 0.01) produce results more akin to traditional models for thin disk accretion onto black holes. Fluctuations in the magnetic field strength in the disk could lead to changes in the radiative efficiency of the flow on short timescales.
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
M. Sharif; Abbas, G.(Department of Mathematics, COMSATS Institute of Information Technology, 57000, Sahiwal, Pakistan)
2011-01-01
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom ene...
Stability of black hole accretion disks
Czerny B.
2012-12-01
Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ → 0. (general)
Black hole mass decreasing due to phantom energy accretion
Babichev, E.; Dokuchaev, V.; Eroshenko, Y.
2004-01-01
Solution for a stationary spherically symmetric accretion of the relativistic perfect fluid with an equation of state $p(\\rho)$ onto the Schwarzschild black hole is presented. This solution is a generalization of Michel solution and applicable to the problem of dark energy accretion. It is shown that accretion of phantom energy is accompanied with the gradual decrease of the black hole mass. Masses of all black holes tend to zero in the phantom energy universe approaching to the Big Rip.
Accretion onto Some Well-Known Regular Black Holes
Jawad, Abdul
2016-01-01
In this work, we discuss the accretion onto static spherical symmetric regular black holes for specific choices of equation of state parameter. The underlying regular black holes are charged regular black hole using Fermi-Dirac Distribution, logistic distribution, nonlinear electrodynamics, respectively and Kehagias-Sftesos asymptotically flat regular black hole. We obtain the critical radius, critical speed and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density and rate of change of mass for each regular black holes.
Accretion onto some well-known regular black holes
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-03-15
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
Extracting Energy from Accretion into Kerr Black Hole
Li, L X; Li, Li-Xin; Paczynski, Bohdan
2000-01-01
The highest efficiency of converting rest mass into energy by accreting matter into a Kerr black hole is ~ 31(Thorne 1974). We propose a new process in which periods of accretion from a thin disk, and the associated spin-up of the black hole, alternate with the periods of no accretion and magnetic transfer of energy from the black hole to the disk. These cycles can repeat indefinitely, at least in principle, with the black hole mass increasing by ~ 660er cycle, and up to ~ 43563641f accreted rest mass radiated away by the disk.
Accretion and evaporation of modified Hayward black hole
Debnath, Ujjal
2015-01-01
We assume the most general static spherically symmetric black hole metric. The accretion of any general kind of fluid flow around the black hole is investigated. The accretion of the fluid flow around the modified Hayward black hole is analyzed, and we then calculate the critical point, the fluid’s four-velocity, and the velocity of sound during the accretion process. Also the nature of the dynamical mass of the black hole during accretion of the fluid flow, taking into consideration Hawking ...
Phantom Energy Accretion onto Black Holes in Cyclic Universe
Sun, Cheng-Yi
2008-01-01
Black holes pose a serious problem in the cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by the phantom energy before turnaround before they can create any problems. In this paper, using the mechanism of the phantom accretion onto black holes, we find that black holes do not disappear before the phantom turnaround. But the remanent black holes will not cause any problems due to the Hawking evaporation.
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
M Sharif; G Abbas
2011-01-01
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass Bux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that the mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking A → 0.%@@ We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole.The energy flux conserva-tion,relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion.We discuss the conditions for critical accretion.It is found that the mass of the black hole decreases due to phantom accretion.There exist two critical points which lie in the exterior of horizons(black hole and cosmological horizons).The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking ∧→0.
The lamppost model of accreting black holes
Zdziarski, A.
2016-06-01
Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.
Sporadically Torqued Accretion Disks Around Black Holes
Garofalo, D; Garofalo, David; Reynolds, Christopher S.
2005-01-01
The assumption that black hole accretion disks possess an untorqued inner boundary, the so-called zero torque boundary condition, has been employed by models of black hole disks for many years. However, recent theoretical and observational work suggests that magnetic forces may appreciably torque the inner disk. This raises the question of the effect that a time-changing magnetic torque may have on the evolution of such a disk. In particular, we explore the suggestion that the ``Deep Minimum State'' of the Seyfert galaxy MCG--6-30-15 can be identified as a sporadic inner disk torquing event. This suggestion is motivated by detailed analyses of changes in the profile of the broad fluorescence iron line in XMM-Newton spectra. We find that the response of such a disk to a torquing event has two phases; an initial damming of the accretion flow together with a partial draining of the disk interior to the torque location, followed by a replenishment of the inner disk as the system achieves a new (torqued) steady-st...
Domination of black hole accretion in brane cosmology
A. S. Majumdar
2002-01-01
We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black h...
Primordial braneworld black holes: significant enhancement of lifetimes through accretion
A. S. Majumdar
2003-01-01
The Randall-Sundrum (RS-II) braneworld cosmological model with a fraction of the total energy density in primordial black holes is considered. Due to their 5-d geometry these black holes undergo modified Hawking evaporation. It is shown that during the high energy regime accretion from the surrounding radiation bath is dominant compared to evaporation. This effect increases the mass of the black holes till the onset of matter (or black hole) domination of the total energy density. Thus black ...
Phantom Energy Accretion by a Stringy Charged Black Hole
M.Sharif; G.Abbas
2012-01-01
We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric Row of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto a black hole decreases its mass. Further, the location of the critical points of accretion is explored, which yields a mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.%We investigate the dynamical behavior of phantom energy near a stringy magnetically charged black hole.For this purpose,we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole.It is found that phantom energy accreting onto a black hole decreases its mass.Further,the location of the critical points of accretion is explored,which yields a mass to charge ratio.This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity,hence cosmic censorship hypothesis remains valid here.
Accretion onto the First Stellar Mass Black Holes
Alvarez, Marcelo A; Abel, Tom
2008-01-01
The first stars in the universe, forming at redshifts z>15 in minihalos with masses of order 10^6 Msun, may leave behind black holes as their remnants. These objects could conceivably serve as "seeds" for much larger black holes observed at redshifts z~6. We study the growth of the remnant black holes through accretion including for the first time the emitted accretion radiation with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the accretion flow from large scales, resulting in negligible mass growth of the black hole. We compare cases with the accretion luminosity included and neglected to show that the accretion radiation drastically changes the environment within 100 pc of the black hole, where gas temperatures are increased by an order of magnitude. The gas densities are reduced and further star formation in the same minihalo prevented for the two hundred million years of evolution we followed. These calculation...
Diskoseismology - Signatures of black hole accretion disks
Nowak, Michael; Wagoner, Robert V.
1992-01-01
General relativity requires the existence of a spectrum of oscillations which are trapped near the inner edge of accretion disks around black holes. We have developed a general formalism for analyzing the normal modes of such acoustic perturbations of arbitrary thin disk models, approximating the dominant relativistic effects via a modified Newtonian potential (these modes do not exist in Newtonian gravity). The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall in to two main classes, which are analogous to the p-modes and g-modes in the sun. In this work, we compute the eigenfunctions and eigenfrequencies of isothermal disks. The (relatively small) rates of growth or damping of these oscillations due to gravitational radiation and parameterized models of viscosity are also computed.
Dynamical structure of magnetized dissipative accretion flow around black holes
Sarkar, Biplob; Das, Santabrata
2016-01-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion t...
Theory of disk accretion onto supermassive black holes
Armitage, Philip J.
2004-01-01
Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and ...
Accretion processes in magnetically and tidally perturbed Schwarzschild black holes
Kovacs, Z; Gergely, LA; Vasuth, M.
2011-01-01
We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by an asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts toward the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conv...
Theory of disk accretion onto supermassive black holes
Armitage, P J
2004-01-01
Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.
Domination of black hole accretion in brane cosmology.
Majumdar, A S
2003-01-24
We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black holes with small initial mass to survive until several cosmologically interesting eras. PMID:12570481
The Innermost Extremes of Black Hole Accretion
Fabian, A C
2015-01-01
The inner 20 gravitational radii around the black hole at the centre of luminous Active Galactic Nuclei and stellar mass Black Hole Binaries are now being routinely mapped by X-ray spectral-timing techniques. Spectral blurring and reverberation of the reflection spectrum are key tools in this work. In the most extreme AGN cases with high black hole spin, when the source appears in a low state, observations probe the region within 1 gravitational radius of the event horizon. The location, size and operation of the corona, which generates the power-law X-ray continuum, are also being revealed.
Generalized Shock Solutions for Hydrodynamic Black Hole Accretion
Das, Tapas Kumar
2002-01-01
For the first time, {\\it all} available pseudo-Schwarzschild potentials are exhaustively used to investigate the possibility of shock formation in hydrodynamic, invicid, black hole accretion discs. It is shown that a significant region of parameter space spanned by important accretion parameters allows shock formation for flow in {\\it all} potentials used in this work. This leads to the conclusion that the standing shocks are essential ingredients in accretion discs around non-rotating black ...
Accretion Onto a Charged Higher-Dimensional Black Hole
Sharif, M
2016-01-01
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstr$\\ddot{o}$m black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding critical radius, critical sound velocity and critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for Schwarzschild black hole are recovered when $q=0$ in four dimensions. We conclude that accretion process in higher dimensions becomes slower in the presence of charge.
Super-Eddington accretion disc around a Kerr black hole
Beloborodov, Andrei M.
1998-01-01
We calculate the structure of accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of a large viscosity parameter, alpha > 0.03, the accretion flow strongly deviates from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches a maximum, and then falls off. The maximum is achieved in ...
Black Hole Accretion in Low States: Electron Heating
Liu, Siming; Fryer, Christopher L.; Li, Hui
2007-01-01
Plasmas in an accretion flow are heated by MHD turbulence generated through the magneto-rotational instability. The viscous stress driving the accretion is intimately connected to the microscopic processes of turbulence dissipation. We show that, in a few well-observed black hole accretion systems, there is compelling observational evidence of efficient electron heating by turbulence or collective plasma effects in low accretion states, when Coulomb collisions are not efficient enough to esta...
Standing Shocks in Viscous Accretion Flows around Black Holes
GU Wei-Min; LU Ju-Fu
2005-01-01
@@ We study the problem of standing shocks in viscous accretion flows around black holes.We parameterize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K.By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with shocks of different types, namely Rankine-Hugoniot shocks, isothermal shocks, and more realistically, mixed shocks.
Cold, clumpy accretion onto an active supermassive black hole
Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.
2016-01-01
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecul...
Black hole accretion discs and screened scalar hair
Davis, Anne-Christine; Jha, Rahul
2016-01-01
We present a novel way to investigate scalar field profiles around black holes with an accretion disc for a range of models where the Compton wavelength of the scalar is large compared to other length scales. By analysing the problem in "Weyl" coordinates, we are able to calculate the scalar profiles for accretion discs in the static Schwarzschild, as well as rotating Kerr, black holes. We comment on observational effects.
Observational Signatures of Tilted Black Hole Accretion Disks from Simulations
Dexter, Jason; Fragile, P. Chris
2011-01-01
Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locatio...
The Efficiency of Using Accretion Power of Kerr Black Holes
Dutan, Ioana; Biermann, Peter
2004-01-01
The efficiency of a rapidly spinning Kerr black hole to turn accretion power into observable power can attain 32 percent for the photon emission from the disk, as is well known, following the work of Novikov-Page-Thorne. But many accretion disks are now understood to be underluminous ($L
Time-dependent Hypercritical Accretion onto Black Holes
Zampieri, Luca
1996-01-01
Results are presented from a time-dependent, numerical investigation of super-Eddington spherical accretion onto black holes with different initial conditions. We have studied the stability of stationary solutions, the non-linear evolution of shocked models and the time-dependent accretion from an expanding medium.
The ins and outs of emission from accreting black holes
S. Drappeau
2013-01-01
The most extreme physical conditions of space-time in the Universe happen in the vicinity of accreting black holes, which make them the perfect laboratory for testing extreme physics theories. The present thesis investigates accretion processes using radiation as a tracer of the physics occurring ve
Spinning up black holes with super-critical accretion flows
Sądowski, A.; Bursa, Michal; Abramowicz, M. A.; Kluzniak, W.; Lasota, J.-P.; Moderski, R.; Safarzadeh, M.
2011-01-01
Roč. 532, August (2011), A41/1-A41/11. ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole physics * accretion * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011
Some Interesting Behaviour of Accreting Particles in the Gap Region of Black Hole Accretion Discs
WANG Ding-Xiong; XIAO Kan; LEI Wei-Hua
2001-01-01
Some interesting behaviour of accreting particles in the gap region between the horizon of the Kerr black hole and the inner edge of the surrounding disc is investigated. The following results are obtained. (i) Spacetime coincidence of the maximum of angular velocity of accreting particles and that of the black hole horizon is extended to the more general disc-accretion. (ii) The possibility is discussed of negative energy of accreting particles in prograde orbit inside the ergosphere of the Kerr black hole, which is surrounded by strong enough magnetic field.
Dynamically important magnetic fields near accreting supermassive black holes.
Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A
2014-06-01
Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets. PMID:24899311
Cold, clumpy accretion onto an active supermassive black hole
Tremblay, Grant R; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen L; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael
2016-01-01
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds - a departure from the "hot mode" accretion model - although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z=0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities can precipitate from this hot gas, producing a rain of c...
Neutrino oscillation above a black hole accretion disk
We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere
Accretion onto a charged higher-dimensional black hole
M. Sharif; Iftikhar, Sehrish
2016-01-01
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner–Nordström black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic be...
Neutrino oscillation above a black hole accretion disk
Malkus, A.; Kneller, J. P.; McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Surman, R. [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States)
2015-05-15
We examine neutrino oscillations in the context of an accretion disk surrounding a black hole. Because accretion disks produce large quantities of neutrinos, they may be home to interesting neutrino oscillation as well. We model accretion disks associated with stellar collapse for the sake of understanding neutrino oscillations. We find that the neutrino oscillations include phenomena seen in the protoneutron star setting as well as phenomena not seen elsewhere.
Accretion in Strong Gravity: From Galactic to Supermassive Black Holes
Done, Chris; Gierlinski, Marek
2005-01-01
The galactic black hole binary systems give an observational template showing how the accretion flow changes as a function of increasing mass accretion rate, or L/L_Edd. These data can be synthetised with theoretical models of the accretion flow to give a coherent picture of accretion in strong gravity, in which the major hard-soft spectral transition is triggered by a change in the nature and geometry of the inner accretion flow from a hot, optically thin plasma to a cool, optically thick ac...
Quasistationary solutions of scalar fields around accreting black holes
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.
2016-08-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.
Rotating Accretion Flows: From Infinity to the Black Hole
Li, Jason; Sunyaev, Rashid
2012-01-01
Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There has been some analytic and numerical treatment of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions with and without viscous angular momentum transport, and also electron thermal conduction. Infalling gas is followed from well beyond R_Bondi down to the vicinity of the black hole. Absent viscous transport, when the centrifugal balance radius significantly exceeds R_Schwarzschild, the accretion rate is zero and the flow approaches a stationary solution in which pressure impedes inflow from large radii. With viscosity, we find two general classes of solutions: low inflow rate, hot, vertically extended disks with very low accret...
Retrograde binaries of massive black holes in circumbinary accretion discs
Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica
2016-06-01
Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under
Circumnuclear Media and Accretion Rates of Quiescent Supermassive Black Holes
Generozov, Aleksey; Metzger, Brian D
2015-01-01
We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting ("quiescent") galactic nuclei for a range of central black hole masses, parameterized gas heating rates, and observationally-motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the black hole accretion rate, as a function of the black hole mass and the gas heating efficiency, the latter being related to the star-formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities from nearby quiesce...
Black hole accretion in scalar-tensor-vector gravity
John, Anslyn J
2016-01-01
We examine the accretion of matter onto a black hole in scalar--tensor--vector gravity (STVG). The gravitational constant is $G=G_{N} (1 + \\alpha)$ where $\\alpha$ is a parameter taken to be constant for static black holes in the theory. The STVG black hole is spherically symmetric and characterised by two event horizons. The matter falling into the black hole obeys the polytrope equation of state and passes through two critical points before entering the outer horizon. We obtain analytical expressions for the mass accretion rate as well as for the outer critical point, critical velocity and critical sound speed. Our results complement existing strong field tests like lensing and orbital motion and could be used in conjunction to determine observational constraints on STVG.
Phantom energy accretion onto a black hole in Horava Lifshitz gravity
Abbas, G.(Department of Mathematics, COMSATS Institute of Information Technology, 57000, Sahiwal, Pakistan)
2013-01-01
In this Letter, we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Ho$\\check{r}$ava Lifshitz gravity. To discuss the accretion process onto the black hole, the equations of phantom flow near the black hole have been derived. It is found that mass of the black hole decreases because of phantom accretion. We discuss the conditions for critical accretion. Graphically, it has been found that the critical accretion phenomena is possible for different values of parameters...
The Accretion Disc Particle Method for Simulations of Black Hole Feeding and Feedback
Power, Chris; Nayakshin, Sergei; King, Andrew
2010-01-01
Black holes grow by accreting matter from their surroundings. However, angular momentum provides an efficient natural barrier to accretion and so only the lowest angular momentum material will be available to feed the black holes. The standard sub-grid model for black hole accretion in galaxy formation simulations - based on the Bondi-Hoyle method - does not account for the angular momentum of accreting material, and so it is unclear how representative the black hole accretion rate estimated ...
Standing Rankine-Hugoniot Shocks in Black Hole Accretion Discs
GU Wei-Min; LU Ju-Fu
2004-01-01
@@ We study the problem of standing shocks in viscous disc-like accretion flows around black holes. For the first time we parametrize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K. By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with Rankine-Hugoniot shocks; and that the possibilities of shock formation are the largest for inviscid flows, decreasing with increasing viscosity, and ceasing to exist for a strong enough viscosity. Our results support the view that the standing shock is an essential ingredient in black hole accretion discs and is a general phenomenon in astrophysics, and that there should be a continuous change from the properties of inviscid flows to those of viscous ones.
Observational Signatures of Tilted Black Hole Accretion Disks from Simulations
Dexter, Jason
2011-01-01
Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...
Deceleration Effect of Magnetic Field on Black Hole Accretion Disks
WANG Ding-Xiong
2000-01-01
The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.
OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS
Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.
Observational Signatures of Tilted Black Hole Accretion Disks from Simulations
Dexter, Jason; Fragile, P. Chris
2011-03-01
Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.
Dynamical structure of magnetized dissipative accretion flow around black holes
Sarkar, Biplob
2016-01-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accret...
Cold, clumpy accretion onto an active supermassive black hole
Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.
2016-06-01
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.
Cold, clumpy accretion onto an active supermassive black hole.
Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W
2016-06-01
Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it. PMID:27279215
Numerical models of rotating accretion flows around black holes
Igumenshchev, I V
1999-01-01
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter \\alpha. The high viscosity flows (\\alpha~1) are stable and have a strong equatorial inflow and bipolar outflows. The low viscosity flows (\\alpha<0.1) are convectively unstable and this induces quasi-periodic variability.
A New Approach to Evolution of Black Hole Accretion Disks
WANG Ding-Xiong; LEI Wei-Hua; XIAO Kan
2000-01-01
Evolution of black hole (BH) accretion disks is investigated by a new approach, in which the evolution of the central BH can be derived in terms of BH spin directly, and the evolution characteristics of the concerning BH parameters are shown more easily and obviously. As an example, the unusual evolution characteristics of angular velocity of BH horizon and that of accreting particles at the inner edge of the disk are derived by considering the Blandford-Znajek process.
Dark Energy Accretion onto black holes in a cosmic scenario
Martín Moruno, Prado; Marrakchi, Az-Eddine L.; Robles Pérez, Salvador; González-Díaz, Pedro F.
2008-01-01
In this paper we study the accretion of dark energy onto a black hole in the cases that dark energy is equipped with a positive cosmological constant and when the space-time is described by a Schwarzschild-de Sitter metric. While the first case is the same as the usual accretion procedure for a more complicated fluid, the second one give rise to a consistent cosmic scenario for the mentioned phenomenon. © Springer Science+Business Media, LLC 2009.
Mergers of accreting stellar-mass black holes
Tagawa, Hiromichi; Gouda, Naoteru
2016-01-01
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave emission are taken into consideration. To elucidate the key physics that regulates mergers of BHs, the dynamical friction and the mass accretion by ambient gas are incorporated. We consider a system composed of ten black holes with initial mass of $30~M_\\odot$. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is $\\sim10$ Eddington accretion rate, and then all BHs can merge into one heavy BH. More specifically, using the simulation results for a wide range of parameters, we derive a critical accretion rate ($\\dot{m}_{\\rm c}$), below which the BH growth is promoted faster by mergers: $\\dot{m}_{\\r...
Radiative Shocks in Rotating Accretion Flows around Black Holes
Okuda, T; Toscano, E; Molteni, D
2004-01-01
It is well known that the rotating accretion flows around black holes form shock waves close to the black holes, after the flow passes through the outer sonic point and can be virtually stopped by the centrifugal force. We examine numerically such shock waves in 1D and 2D accretion flows, taking account of the cooling and heating of gas and the radiation transport. The numerical results show that the shock location shifts outward compared with that in the adiabatic solutions and that the more rarefied ambient density leads to the more outward shock position. In the 2D-flow, we find an intermediate frequency QPO behavior of the shock location as is observed in the black hole candidate GRS 1915+105.
Retrograde versus Prograde Models of Accreting Black Holes
David Garofalo
2013-01-01
Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.
Super-Extremal Spinning Black Holes via Accretion
Laguna, Pablo; Bode, Tanja; Matzner, Richard
2011-04-01
A Kerr black hole with mass M and angular momentum J satisfies the extremality inequality J <=M2 . In the presence of matter and/or gravitational radiation, the bound needs to be reformulated in terms of local measurements of M and J directly associated with the black hole. The isolated and dynamical horizons framework provides such natural quasi-local characterization of M and J, making possible in axi-symmetry to reformulate the extremality limit as J <= 2M2 , with M the irreducible mass computed from the apparent horizon area and J obtained using approximate rotational Killing vectors on the apparent horizon. This condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality.
Ubiquitous equatorial accretion disc winds in black hole soft states
Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.
2012-01-01
High resolution spectra of Galactic Black Holes (GBH) reveal the presence of highly ionised absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are an ubiquitous compo...
Neutrino-cooled Accretion Disks around Spinning Black Holes
Chen, Wen-Xin; Beloborodov, Andrei M.
2006-01-01
We calculate the structure of accretion disk around a spinning black hole for accretion rates 0.01 - 10 M_sun/s. The model is fully relativistic and treats accurately the disk microphysics including neutrino emissivity, opacity, electron degeneracy, and nuclear composition. We find that the accretion flow always regulates itself to a mildly degenerate state with the proton-to-nucleon ratio Y_e ~ 0.1 and becomes very neutron-rich. The disk has a well defined "ignition" radius where neutrino fl...
Super-Extremal Spinning Black Holes via Accretion
Bode, Tanja; Matzner, Richard A
2011-01-01
A Kerr black hole with mass $M$ and angular momentum $J$ satisfies the extremality inequality $|J| \\le M^2$. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasi-local characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as $|J| \\le 2\\,M_H^2$, with $M_H$ the irreducible mass of the black hole computed from its apparent horizon area and $J$ obtained using approximate rotational Killing vectors on the apparent horizon. The $|J| \\le 2\\,M_H^2$ condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surr...
The evolution of misaligned accretion discs and spinning black holes
LODATO G; Pringle, J. E.
2006-01-01
In this paper we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in Active Galactic Nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evo...
Dynamical structure of magnetized dissipative accretion flow around black holes
Sarkar, Biplob; Das, Santabrata
2016-09-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.
Dynamical structure of magnetized dissipative accretion flow around black holes
Sarkar, Biplob; Das, Santabrata
2016-06-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.
Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation
Gagik Ter-Kazarian
2015-01-01
Full Text Available In the framework of microscopic theory of black hole (MTBH, which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs to the present time and examine the observable signatures today. Given the redshifts, masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and masses of the corresponding seed black holes. For the present masses MBH/M⊙≃1.1×106 to 1.3×1010 of 377 black holes, the computed intermediate seed masses are ranging from MBHSeed/M⊙≃26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy (UHE neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (θ≪1.
Accretion of radiation and rotating primordial black holes
Mahapatra, S.; Nayak, B.
2016-02-01
We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.
Mass loss from advective accretion disc around rotating black holes
Aktar, Ramiz; Nandi, Anuj
2015-01-01
We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter, PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (${\\mathcal E}$) and specific angular momentum ($\\lambda$) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole ($a_k$) plays an important role in deciding the outflow rate $R_{\\dot m}$ (ratio of mass flux of outflow and inflow), in particular, $R_{\\dot m}$ is directly correlated with $a_k$ for the same set of inflow parameters. It is found that ...
Diskoseismology: Probing black holes and their accretion disks
We review the relativistic results for diskoseismic modes of oscillation which are trapped within thin accretion disks by non-Newtonian gravitational properties of a black hole. Predicted frequencies are calculated for the potentially most observable modes, 'internal gravity' modes and 'corrugation' modes. The most definitive property of these two classes of modes is that the resulting eigenfrequencies depend almost entirely upon only the mass and angular momentum of the black hole. Such features may have been detected by RXTE in the power spectra of the luminosity modulations of the two galactic microquasars, GRS 1915+105 and GRO J1655-40. In the former system, we consider the possibility that this 67 Hz feature can be attributed to a g-mode in an accretion disk about a 10.6 M[odot] (nonrotating) to 36.3 M[odot] (maximally rotating) black hole. In the latter system, identification of the fundamental g-mode with the 300 Hz feature implies a black hole angular momentum approximately 93% of maximum
Chaotic cold accretion onto black holes
Gaspari, M; Oh, S Peng
2013-01-01
Using 3D AMR simulations, linking the 50 kpc to the sub-pc scales over the course of 40 Myr, we systematically relax the classic Bondi assumptions in a typical galaxy hosting a SMBH. In the realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the nonlinear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when t_cool/t_ff 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (t_turb/t_cool < 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions, shearing and tidal motions between clouds, filaments and the central torus cause a significant reduction of angular momentum, boosting accretion. ...
The evolution of misaligned accretion discs and spinning black holes
Pringle, J E
2006-01-01
In this paper we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in Active Galactic Nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole-disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius $R_{\\rm w}$ and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute exp...
X-ray reverberation around accreting black holes
Uttley, P; Fabian, A C; Kara, E; Wilkins, D R
2014-01-01
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We cons...
Quasistationary solutions of scalar fields around accreting black holes
Sanchis-Gual, Nicolas; Izquierdo, Paula; Font, José A; Montero, Pedro J
2016-01-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasi-bound states, have been studied both in the linear and nonlinear regimes. In this paper we show that quasi-bound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasi-bound states decreases as the mass of the black hole increases. In addition, accretion leads to a significative increase of the exponential decay of the scalar field energy due to the presence of terms of order higher than linear in the exponent. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar fiel...
Time-dependent, optically thick accretion onto a black hole
Gilden, D. L.; Wheeler, J. C.
1980-01-01
A fully relativistic hydrodynamics code which incorporates diffusive radiation transport is used to study time-dependent, spherically symmetric, optically thick accretion onto a black hole. It is found that matter free-falls into the hole regardless of whether the diffusion time scale is longer or shorter than the dynamical time. Nonadiabatic heating due to magnetic field reconnection is included. The internal energy thus generated affects the flow in a purely relativistic way, again ensuring free-fall collapse of the inflowing matter. Any matter enveloping a black hole will thus be swallowed on a dynamical time scale with relatively small net release of energy. The inclusion of angular momentum will not necessarily affect this conclusion.
Structure and Spectroscopy of Black Hole Accretion Disks
Liedahl, D; Mauche, C
2005-02-14
The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.
Accretion discs around black holes two dimensional, advection cooled flows
Igumenshchev, I V; Abramowicz, M A; Igumenshchev, Igor V; Chen, Xingming; Abramowicz, Marek Artur
1995-01-01
Two-dimensional accretion flows near black holes have been investigated by time-dependent hydrodynamical calculations. We assume that the flow is axisymmetric and that radiative losses of internal energy are negligible, so that the disc is geometrically thick and hot. Accretion occurs due to the overflow of the effective potential barrier near the black hole, similar to the case of the Roche lobe overflowing star in a binary system. We make no pre-assumptions on the properties of the flow, instead our models evolve self-consistently from an initially non-accreting state. The viscosity is due to the the small-scale turbulence and it is described by the \\alpha-viscosity prescription. We confirm earlier suggestions that viscous accretion flows are convectively unstable. We found that the instability produces transient eddies of various length-scales. The eddies contribute to the strength of the viscosity in the flow by redistributing the angular momentum. They also introduce low amplitude oscillatory variations ...
Multiphase, non-spherical gas accretion onto a black hole
Barai, Paramita; Nagamine, Kentaro
2011-01-01
(Abridged) We investigate non-spherical behavior of gas accreting onto a central supermassive black hole performing simulations using the SPH code GADGET-3 including radiative cooling and heating by the central X-ray source. As found in earlier 1D studies, our 3D simulations show that the accretion mode depends on the X-ray luminosity (L_X) for a fixed density at infinity and accretion efficiency. In the low L_X limit, gas accretes in a stable, spherically symmetric fashion. In the high L_X limit, the inner gas is significantly heated up and expands, reducing the central mass inflow rate. The expanding gas can turn into a strong enough outflow capable of expelling most of the gas at larger radii. For some intermediate L_X, the accretion flow becomes unstable developing prominent non-spherical features, the key reason for which is thermal instability (TI) as shown by our analyses. Small perturbations of the initially spherically symmetric accretion flow that is heated by the intermediate L_X quickly grow to fo...
Rapidly Accreting Supergiant Protostars: Embryos of Supermassive Black Holes?
Hosokawa, Takashi; Yorke, Harold W
2012-01-01
Direct collapse of supermassive stars (SMSs) is a possible pathway for generating supermassive black holes in the early universe. It is expected that an SMS could form via very rapid mass accretion with Mdot ~ 0.1 - 1 Msun/yr during the gravitational collapse of an atomic-cooling primordial gas cloud. In this paper we study how stars would evolve under such extreme rapid mass accretion, focusing on the early evolution until the stellar mass reaches 1000 Msun. To this end we numerically calculate the detailed interior structure of accreting stars with primordial element abundances. Our results show that for accretion rates higher than 0.01 Msun/yr, stellar evolution is qualitatively different from that expected at lower rates. While accreting at these high rates the star always has a radius exceeding 100 Rsun, which increases monotonically with the stellar mass. The mass-radius relation for stellar masses exceeding ~ 100 Msun follows the same track with R_* \\propto M_*^0.5 in all cases with accretion rates > 0...
Phantom energy accretion and primordial black holes evolution in Brans-Dicke theory
Nayak, B; Singh, L. P.
2011-01-01
In this work, we study the evolution of primordial black holes within the context of Brans-Dicke theory by considering the presence of a dark energy component with a super-negative equation of state called phantom energy as a background. Besides Hawking evaporation, here we consider two type of accretions - radiation accretion and phantom energy accretion. We found that radiation accretion increases the lifetime of primordial black holes whereas phantom accretion decreases the lifespan of pri...
Note on nonstationarity and accretion of Primordial Black Holes in Brans-Dicke theory
Nayak, Bibekananda; Singh, Lambodar Prasad
2010-01-01
We consider the evolution of primordial black holes by including non-stationarity in their formation process and accretion of radiation in Brans-Dicke theory. Specifically, we focus on how $\\eta$, the fraction of the horizon mass the black hole comprises capturing nonstationarity, affects the lifetimes of these primordial black holes. Our calculation reveals that the primordial black hole dynamics is controlled by the product $f\\eta$ where $f$ is the accretion efficiency. We also estimate the...
Growth of black holes and dark matter accretion
We investigate the distribution of fermion dark matter in the Milky Way galaxy and find that dark matter could gravitationally condensate in a degenerate core of mass of 3 x 106M o-dot embedded in a dark matter halo of 3 x 1012M o-dot with a size of about 200 kpc. We then show that the galactic black hole of mass of about 3 x 106M o-dot might have grown from a stellar seed black hole by mainly accreting dark matter from the compact degenerate fermion core. This leads to a lower limit on the mass of the fermion dark matter of about (6-10) keV. It is then argued that the constrained dark matter could be a sterile neutrino
Evolution of an Accretion Disk in Binary Black Hole Systems
Kimura, Shigeo S; Toma, Kenji
2016-01-01
We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...
Generalized second law of thermodynamics for a phantom energy accreting BTZ black hole
Jamil, Mubasher; Akbar, M.
2010-01-01
In this paper, we have studied the accretion of phantom energy on a (2+1)-dimensional stationary Banados-Teitelboim-Zanelli (BTZ) black hole. It has already been shown by Babichev et al that for the accretion of phantom energy onto a Schwarzschild black hole, the mass of black hole would decrease and the rate of change of mass would be dependent on the mass of the black hole. However, in the case of (2+1)-dimensional BTZ black hole, the mass evolution due to phantom accretion is independent o...
Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein-Power-Maxwell Gravity
Abbas, G.
2013-01-01
In this paper, we investigate the phantom energy accretion onto 3D black hole formulated in Einstein-Power-Maxwell theory. We have presented the conditions for critical accretion of phantom energy onto black hole. Further, we discuss the thermodynamics of phantom energy accreting onto black hole and found that first law of thermodynamics is easily satisfied while second law and generalized second law of thermodynamics remain invalid and conditionally valid, respectively. The results for BTZ b...
Accretion onto black holes formed by direct collapse
Johnson, Jarrett L; Greif, Thomas H; Durier, Fabrice
2010-01-01
One possible scenario for the formation of massive black holes (BHs) in the early Universe is from the direct collapse of primordial gas in atomic-cooling dark matter haloes in which the gas is unable to cool efficiently via molecular transitions. We study the formation of such BHs, as well as the accretion of gas onto these objects and the high energy radiation emitted in the accretion process, by carrying out cosmological radiation hydrodynamics simulations. In the absence of radiative feedback, we find an upper limit to the accretion rate onto the central object which forms from the initial collapse of hot (~ 10^4 K) gas of the order of 0.1 MSun per year. This is high enough for the formation of a supermassive star, the immediate precursor of a BH, with a mass of the order of 10^5 MSun. Assuming that a fraction of this mass goes into a BH, we track the subsequent accretion of gas onto the BH self-consistently with the high energy radiation emitted from the accretion disk. Using a ray-tracing algorithm to f...
Chaotic cold accretion on to black holes in rotating atmospheres
Gaspari, M; Oh, S Peng; Brighenti, F; Temi, P
2014-01-01
Using 3D high-resolution hydrodynamic simulations, we probe the impact of rotation on the hot and cold black hole accretion flow in a typical massive galaxy. In the adiabatic hot mode, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the accretion rate to 1/3 of the spherical case value. Stirring the hot flow with subsonic turbulence results in similar suppression. When radiative cooling is dominant, the gas loses pressure support and circularizes in a cold thin disk. The accretion rate is low and decoupled from the cooling rate, albeit its level is higher than in the hot mode. In the more common state of a turbulent and heated atmosphere, chaotic cold accretion drives the dynamics as long as the gas velocity dispersion exceeds the rotational velocity, i.e. turbulent Taylor number Ta_t 1, the turbulent broadening, the efficiency of collisions, and the thermal instability growth weaken, damping the accretion rate by a factor Ta_t, until the cold disk dominates the dynami...
Numerical Simulations of Viscous Accretion Flow around Black Holes
Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu
2016-06-01
We present shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The steady state shocked solution in the inviscid, as well as in the viscous regime, matched theoretical predictions well, but increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in microquasars; and strong shock oscillation induces strong episodic jet emission. The periodicity of jets and shock oscillation are similar. Our simulation shows that the jets for higher viscosity parameter are evidently stronger and faster than that for lower viscosity.
Gravitational Waves from Hyper-Accretion onto Nascent Black Holes
Araya-Gochez, R A
2003-01-01
We examine the possibility that hyper-accretion onto newly born, black holes occurs in highly intermittent, non-asymmetric fashion favorable to gravitational wave emission in a neutrino cooled disk. This picture of near-hole accretion is motivated by magneto-rotationally induced, ultra-relativistic disk dynamics in the region of the flow bounded from below by the marginally bound geodesic radius. For high spin values, a largely coherent magnetic field in this region has the dynamical implication of compact mass segregation at the displacement nodes of the non-axisymmetric, MRI modes. When neutrino stress competes favorably for the disk dynamical structure, the matter clumps may be rather dense and sufficiently long-lived to excite the Quasi-Normal Ringing (a.k.a. QNR) modes of the Kerr geometry upon their in-fall. We find that such accretion flow may drive bar-like, quadrupole (l,m=2,2) modes in nearly resonant fashion for spin parameters $a \\geq .9$. The ensuing build up in strain amplitude of the undamped o...
Ubiquitous equatorial accretion disc winds in black hole soft states
Ponti, G; Begelman, M C; Dunn, R J H; Neilsen, J; Coriat, M
2012-01-01
High resolution spectra of Galactic Black Holes (GBH) reveal the presence of highly ionised absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are an ubiquitous component of the jet-free soft states of all GBH. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionisation and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not ...
Hyper-Eddington accretion flows onto massive black holes
Inayoshi, Kohei; Ostriker, Jeremiah P
2015-01-01
We study very-high rate spherically symmetric accretion flows onto a massive black hole (BH; 10^2 (M_BH/10^4Msun)^{-1}(T/10^4 K)^{3/2}, where n and T are the density and temperature of ambient gas outside of the Bondi radius. The resulting accretion rate in this regime is steady, and larger than 3000 times the Eddington rate. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is limited below the Eddington rate. For the hyper-Eddington case, the steady solution consists of two parts: a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T~8000 K. When the emergent luminosity is limited below the Eddington luminosity because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of T_vir> 10^4 K. Once a seed BH fo...
On the lamppost model of accreting black holes
Niedzwiecki, Andrzej; Szanecki, Michal
2016-01-01
We study the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp, e.g., the neglect of the redshift of the photons emitted by the lamppost and directly observed. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the luminosity generated in the source as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame to be much high...
Forming supermassive black holes by accreting dark and baryon matter
Hu, J; Lou, Y Q; Zhang, S; Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan
2006-01-01
Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around $\\sim 10^9 M_{\\odot}$ at high redshifts $z (\\gsim 6)$. The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter onto seed black holes (BHs) created at redshifts $z\\lsim 30$ by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of $M_{\\hbox{\\tiny BH},t_1}\\backsimeq 1.4\\times 10^6\\ M_\\odot \\sigma_0/(1\\hbox{cm}^2\\hbox{g}^{-1})(C_s/30\\hbox{km s}^{-1})^4$ during $z\\sim 20-15$, where $\\sigma_0$ is the cross section per unit mass of SIDM particles and $C_s$ is the velocity dispersion in the SIDM halo referred to as an effective "sound speed". The second phase of BH mass growth is envisaged to proceed primar...
Hyper-Eddington accretion flows on to massive black holes
Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.
2016-07-01
We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.
Theoretical Researches on Hot Accretion Flows around Black Holes
Xie, F. G.
2010-10-01
Black hole accretion systems, which are widely believed to be harbored in the central regions of active galactic nuclei (AGNs), low-luminosity AGNs (LLAGNs) as well as some X-ray binaries (XRBs), are the key physical processes to understand their observational phenomena, like spectral energy distribution, radiative variability, etc. In this thesis, we focus on the hot accretion flow models, including advection-dominated accretion flow (ADAF) and luminous hot accretion flow (LHAF). These models are the foundations to explain the observations of LLAGNs and XRBs in hard state. In Chapter 1, a detailed description of the background is presented. First the astrophysical black holes and the systems in which they reside are discussed. Then, an extensive discussion on the accretion process is presented. The basic concepts, 4 well-known accretion models and the mechanism of the transition between ADAF and standard thin disk are focused on. After this, we further describe the properties of ADAF - the basic model of this thesis, e.g., the dynamics, the radiative processes and several recent progresses: outflow, direct turbulent heating to the electrons, as well as LHAF at relatively high accretion rate. In Chapter 2, the influences of outflow on the dynamics of inflow are explored. As indicated through observations (e.g., towards the Galactic center), theoretical researches and (magneto-) hydrodynamical simulations, outflow is a common phenomenon in accretion systems. However, most researches in this field, especially when aiming at explaining/fitting observational data, incline to only include the mass loss due to the existence of outflow, while all the other effects like the angular momentum transport are totally neglected. This obviously conflicts with the results from simulations. Since outflow is not fully understood currently, we here parameterize its properties. Our results are shown as follows: (1) under current status of observations and theories, it is acceptable to
Diagnosing the Black Hole Accretion Physics of Sgr A*
Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Hora, Joseph; Ingalls, James; Marrone, Daniel; Meyer, Leo; Morris, Mark; Smith, Howard; Willner, Steven; Witzel, Gunther
2016-08-01
The Galactic center offers the closest opportunity for studying accretion onto supermassive black holes. The fluctuating source, Sgr A*, is detected across the electromagnetic spectrum and may originate in the accretion flow or jet. Recent general relativistic magneto-hydrodynamic (GRMHD) models indicate that variability can be produced by a tilted inner disk, gravitational lensing of bright spots in the disk by the hole, or particle acceleration in reconnection events. These models produce different flare characteristics, and in particular better characterization of flares may enable us to distinguish between strong and weakly magnetized disks. Disentangling the power source and emission mechanisms of the flares is a central challenge to our understanding of the Sgr A* accretion flow. Following our successful observations of the variability of Sgr A* with IRAC in 2013 and 2014, we propose simultaneous IRAC (4.5 micron) and Chandra (2-10 keV) observations to (1) probe the accretion physics of Sgr A* on event-horizon scales and (2) detect any effect of the object G2 on Sgr A*. Specifically, we propose six additional epochs of observation, each of 24 uninterrupted hours; four in 2017 July and two in 2018 July. In this proposal we request two 24-hour (86.4 ks) Chandra periods, and are requesting another four through the Chandra TAC to have simultaneous X-ray observations in each of the six Spitzer epochs. Independent of this proposal we will also request NuSTAR (3-79 keV), SMA/ALMA/APEX (0.8 mm), and Keck/Magellan NIR (2.2 micron) observations during the IRAC/Chandra epochs. Only such long-duration, continuous, multi-wavelength observations can achieve a comprehensive view of the dominant emission process(es) and quantify the physical properties near the event horizon. Theoretical models are increasing in physical sophistication, and our study will provide essential constraints for the next generation of models.
Powerful jets from accreting black holes: evidence from the optical and infrared
D.M. Russell; R.P. Fender
2010-01-01
A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it ha
Mind the Resonances: Final stages of accretion into bumpy black holes
In this article we discuss a possible way of testing the Kerr black hole hypothesis by taking advantage of phenomena correlated with chaotic motion in the final stages of an accretion disk around a bumpy black hole. We anticipate that these phenomena should have an imprint in the electromagnetic spectrum coming from the accretion disk
Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion Disks
Li Xue; Ju-Fu Lu
2011-03-01
We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence radius.
Can Supermassive Black Holes alter Cold Dark Matter cusps through accretion?
Read, J. I.; Gilmore, G.
2002-01-01
We present some simple models to determine whether or not the accretion of cold dark matter by supermassive black holes is astrophysically important. Contrary to some claims in the literature, we show that supermassive black holes cannot significantly alter a power law density cusp via accretion, whether during mergers or in the steady state.
Circular geodesics and accretion disk in the spacetime of a black hole including global monopole
We study circular time-like geodesics in the spacetime of a black hole including global monopole. We show that when the range of parameter changed the properties of the circular geodesics and the radiation of accretion disks are different. It follows that the properties of the accretion disk around black hole including global monopole can be different from that of a disk around Schwarzschild black hole
Dark matter and dark energy accretion onto intermediate-mass black holes
Pepe, C.; L. J. Pellizza; Romero, G. E.
2011-01-01
In this work we investigate the accretion of cosmological fluids onto an intermediate-mass black hole at the centre of a globular cluster, focusing on the influence of the parent stellar system on the accretion flow. We show that the accretion of cosmic background radiation and the so-called dark energy onto an intermediate-mass black hole is negligible. On the other hand, if cold dark matter has a nonvanishing pressure, the accretion of dark matter is large enough to increase the black hole ...
A variable efficiency for thin disk black hole accretion
Reynolds, C S; Reynolds, Christopher S; Armitage, Philip J.
2001-01-01
We explore the presence of torques at the inner edges of geometrically-thin black hole accretion disks using 3-dimensional magnetohydrodynamic (MHD) simulations in a pseudo-Newtonian potential. By varying the saturation level of the magnetorotational instability that leads to angular momentum transport, we show that the dynamics of gas inside the radius of marginal stability varies depending upon the magnetic field strength just outside that radius. Weak fields are unable to causally connect material within the plunging region to the rest of the disk, and zero torque is an approximately correct boundary condition at the radius of marginal stability. Stronger fields, which we obtain artificially but which may occur physically within more complete disk models, are able to couple at least some parts of the plunging region to the rest of the disk. In this case, angular momentum (and implicitly energy) is extracted from the material in the plunging region. Furthermore, the magnetic coupling to the plunging region ...
The growth of supermassive black holes fed by accretion disks
Armijo, M A Montesinos
2010-01-01
Supermassive black holes are probably present in the centre of the majority of the galaxies. There is a consensus that these exotic objects are formed by the growth of seeds either by accreting mass from a circumnuclear disk and/or by coalescences during merger episodes. The mass fraction of the disk captured by the central object and the related timescale are still open questions, as well as how these quantities depend on parameters like the initial mass of the disk or the seed or on the angular momentum transport mechanism. This paper is addressed to these particular aspects of the accretion disk evolution and of the growth of seeds. The time-dependent hydrodynamic equations were solved numerically for an axi-symmetric disk in which the gravitational potential includes contributions both from the central object and from the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. The pr...
Dark matter accretion wakes of high-redshift black holes
Mohayaee, Roya; Colin, Jacques
2008-01-01
Anisotropic emission of gravitational waves during the merger or formation of black holes can lead to the ejection of these black holes from their host galaxies. A recoiled black hole which moves on an almost radial bound orbit outside the virial radius of its central galaxy, in the cold dark matter background, reaches its apapsis in a finite time. The low value of dark matter velocity dispersion at high redshifts and also the black hole velocity near the apapsis passage yield a high-density ...
Powerful jets from accreting black holes: evidence from the optical and infrared
Russell, D. M.; Fender, R. P.
2010-01-01
A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at ...
THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY
King, Ashley L. [Department of Physics, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States); Bietenholz, Michael; Bartel, Norbert [Department of Physics and Astronomy, York University, Toronto, M3J 1P3, Ontario (Canada); Mioduszewski, Amy [National Radio Astronomical Observatory, P.O. Box O, Socorro, NM 87801 (United States); Rupen, Michael, E-mail: ashking@stanford.edu [NRC Dominion Radio Astrophysical Observatory, Penticton, British Columbia V2A 6J9 (Canada)
2015-01-20
Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.
THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY
Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments
Fluid accretion onto a spherical black hole: relativistic description versus Bondi model
Malec, Edward
1999-01-01
We describe general-relativistically a spherically symmetric stationary fluid accretion onto a black hole. Relativistic effects enhance mass accretion, in comparison to the Bondi model predictions, in the case when backreaction is neglected. That enhancement depends on the adiabatic index and the asymptotic gas temperature and it can magnify accretion by one order in the ultrarelativistic regime.
Nucleosynthesis in Advective Accretion Disks Around Galactic and Extra-Galactic Black Holes
Mukhopadhyay, B
1998-01-01
We compute the nucleosynthesis of materials inside advective disks around black holes. We show that composition of incoming matter can change significantly depending on the accretion rate and accretion disks. These works are improvements on the earlier works in thick accretion disks of Chakrabarti, Jin & Arnett (1987) in presence of advection in the flow.
Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni
Muñoz-Darias, T.; Casares, J.; Sánchez, D. Mata; Fender, R. P.; Padilla, M. Armas; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; RODRIGUEZ,J
2016-01-01
Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black hole transients show outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disc encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient black hole transient V404 Cyg, and i...
Energy flows in thick accretion discs and their consequences for black hole feedback
Sądowski, Aleksander; Lasota, Jean-Pierre; Abramowicz, Marek A.; Narayan, Ramesh
2016-03-01
We study energy flows in geometrically thick accretion discs, both optically thick and thin, using general relativistic, three-dimensional simulations of black hole accretion flows. We find that for non-rotating black holes the efficiency of the total feedback from thick accretion discs is 3 per cent - roughly half of the thin disc efficiency. This amount of energy is ultimately distributed between outflow and radiation, the latter scaling weakly with the accretion rate for super-critical accretion rates, and returned to the interstellar medium. Accretion on to rotating black holes is more efficient because of the additional extraction of rotational energy. However, the jet component is collimated and likely to interact only weakly with the environment, whereas the outflow and radiation components cover a wide solid angle.
The X-ray Softening of Accreting Black Holes Toward Quiescence
Plotkin, Richard; Gallo, E.; Jonker, P. G.
2013-04-01
There is strong motivation to better understand accretion of matter onto black holes. Black hole accretion is at the heart of phenomena like stellar mass black hole X-ray binaries (BHXBs), Active Galactic Nuclei (AGN), and black hole feedback. In addition, studying black hole accretion can provide broad insight into many other classes of objects where similar physics is at play (e.g., young stars, white dwarfs, neutrons stars, gamma-ray bursts). Unfortunately, we know surprisingly little about black hole accretion at extremely low accretion rates, even though the most common type of black hole accretes very weakly. For example, most transient BHXBs spend the bulk of their time in a quiescent state with mass accretion rates 10^-9 -- 10^-6 L/L_Edd, and many supermassive black holes in the local Universe accrete just as weakly. Here, we present Chandra X-ray spectroscopy for nine quiescent BHXB systems, including multiple observations for several systems as they fade back into quiescence following an outburst. Our systems show softer X-ray spectra in quiescence compared to the canonical "low-hard state". With our dataset, we are in a unique position to track how BHXB X-ray spectra evolve as they return to quiescence following an outburst, both for individual sources and also for the ensemble average. We thus place new constraints on how quickly BHXB X-ray spectra soften as they fade, and we propose a physically meaningful definition for quiescence. Finally, we will discuss implications for the X-ray emission mechanism(s) and accretion flow (and outflow) geometries in quiescence, and we will make comparisons to AGN and neutron star X-ray binaries.
The Chaotic Light Curves of Accreting Black Holes
Kazanas, Demosthenes
2007-01-01
We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.
Misaligned accretion on to supermassive black hole binaries
Dunhill, Alex; Nixon, Chris; King, Andrew
2014-01-01
We present the results of high-resolution numerical simulations of gas clouds falling onto binary supermassive black holes to form circumbinary accretion discs, with both prograde and retrograde cloud orbits. We explore a range of clouds masses and cooling rates. We find that for low mass discs that cool fast enough to fragment, prograde discs are significantly shorter-lived than similar discs orbiting retrograde with respect to the binary. For fragmenting discs of all masses, we also find that prograde discs fragment across a narrower radial region. If the cooling is slow enough that the disc enters a self-regulating gravitoturbulent regime, we find that alignment between the disc and binary planes occurs on a timescale primarily dictated by the disc thickness. We estimate realistic cooling times for such discs, and find that in the majority of cases we expect fragmentation to occur. The longer lifetime of low-mass fragmenting retrograde discs allows them to drive significant binary evolution, and may provid...
X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin
Reynolds, C. S.
2000-01-01
The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.
Yuan, Ye-Fei; Cao, Xinwu; Huang, Lei; Shen, Zhi-Qiang
2009-01-01
In fully general relativity, we calculate the images of the radiatively inefficient accretion flow (RIAF) surrounding a Kerr black hole with arbitrary spins, inclination angles, and observational wavelengths. For the same initial conditions, such as the fixed accretion rate, it is found that the intrinsic size and radiation intensity of the images become larger, but the images become more compact in the inner region, while the size of the black hole shadow decreases with the increase of the b...
Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X
In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.
Li, Yan-Rong; Cheng, Cheng; Qiu, Jie
2015-01-01
Warped accretion disks have attracted intensive attention because of their critical role on shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of AGNs that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing to determine the gravitomagnetic torque that drives the alignments in a quite simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to...
Magnetic Coupling of a Rotating Black Hole with the SurroundingAccretion Disc
汪定雄; 肖看; 雷卫华
2001-01-01
The evolution characteristics and energy extraction of a rotating black hole are investigated by considering the magnetic coupling with the surrounding accretion disc. It is found that both the mass and spin of the black hole might be reduced by the joint effects of disc accretion and magnetic coupling, provided that the latter is stronger than the former. The efficiencies of the two energy mechanisms are calculated and compared to a variety of parameters. In addition, the validity of the laws of black hole thermodynamics is discussed.
Retrograde binaries of massive black holes in circum-binary accretion discs
Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica
2016-01-01
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole...
LOW-MASS AGNs AND THEIR RELATION TO THE FUNDAMENTAL PLANE OF BLACK HOLE ACCRETION
We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion—the plane that relates X-ray emission, radio emission, and mass of an accreting black hole—to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than 106.3 M ☉, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than ∼107 M ☉, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates
Super-Eddington Mechanical Power of an Accreting Black Hole in M83
Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.
2014-01-01
Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.
STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Strong Field Effects on Emission Line Profiles: Kerr Black Holes and Warped Accretion Disks
Wang, Yan; Li, Xiang-Dong
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Accretion onto Intermediate-mass Seed Black Holes in Primordial Galaxies
Li, Yuexing
2011-01-01
The origin of the supermassive black holes that power the most distant quasars observed is largely unknown. One hypothesis is that they grew rapidly from intermediate-mass seeds (~100 M_sun) left by the first stars. However, some previous studies argued that accretion onto these black holes was too low to build up the mass due to strong suppression by radiative feedback. Here, we re-exam the accretion process of such a black hole embedded in a primordial gas cloud, by considering a wide range of physical and numerical parameters not explored before. We find that, while radiative heating and pressure indeed suppress accretion effectively, self-gravity of the gas eventually overcomes the feedback effects and boosts the accretion to the Eddington rate after one free-fall timescale of the cloud. Moreover, for a given black hole mass, there exists a critical density above which the accretion can reach Eddington limit. Furthermore, we find a universal correlation between black hole accretion rate and ambient gas de...
Lorentz Symmetric Aether and Its Accretion Onto Black Holes
Mirbabayi, Mehrdad
Finding a consistent formulation of Lorentz-invariant massive gravity, with the right number of five degrees of freedom has been a long-standing problem in theoretical physics. A two-parameter family of candidate models has been recently proposed by de Rham, Gabadadze, and Tolley who provided considerable evidence for the absence of any extra degree of freedom. Meanwhile, it has been shown that massive gravity can be thought of as a generally covariant theory of a medium described by four scalar fields -- the aether . In the first part of the thesis, I study this theory of four scalar fields and show that de Rham-Gabadadze-Tolley massive gravity is the unique theory in which one of the scalar fields remains non-dynamical, and the full gravitational theory propagates five degrees of freedom, thereby proving the conjecture. The second part of the thesis deals with black holes in massive electrodynamics and massive gravity. In particular, the sense in which black hole solutions approach their counterparts in massless theories as the photon (graviton) mass is taken to zero. I will introduce and calculate the discharge mode for a Schwarzschild black hole in massive electrodynamics. For small photon mass, the discharge mode describes the decay of the electric field of a charged star collapsing into a black hole. I will then argue that a similar ``discharge of mass'' occurs in massive gravity and leads to a process of black hole disappearance. The zero-mass limit is, nevertheless, smooth in that the discharge (disappearance) rate vanishes in the limit: it scales as m2rg where m is the photon (graviton) mass and rg is the Schwarzschild radius of the black hole.
Spherical Accretion of Matter by Charged Black Holes on f(T) Gravity
Rodrigues, Manuel E
2016-01-01
We studied the spherical accretion of matter by charged black holes on $f(T)$ Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with $p=\\omega e$ and where $p$ is the pressure and $e$ the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.
Analytical solutions of accreting black holes immersed in a ΛCDM model
The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the Λ-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model.
Park, KwangHo; Ricotti, Massimo
2010-01-01
We study the effect of radiative feedback on accretion onto intermediate mass black holes (IMBHs) using the hydrodynamical code ZEUS-MP with a radiative transfer algorithm. In this paper, the first of a series, we assume accretion from a uniformly dense gas with zero angular momentum and extremely low metallicity. Our 1D and 2D simulations explore how X-ray and UV radiation emitted near the black hole regulates the gas supply from large scales. Both 1D and 2D simulations show similar accretio...
Estimation of mass outflow rates from viscous relativistic accretion discs around black holes
Chattopadhyay, Indranil; Kumar, Rajiv
2016-01-01
We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion - ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von - Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We foun...
Energetic Argument for Bimodal Black Hole Accretion discs
林一清; 卢炬甫; 顾为民
2002-01-01
Based on simple energetic considerations, we show that two crucial ingredients of bimodal black hole accretiondiscs, namely the sonic point and the transition radius, can be determined from the disc constant parameters.Thus, we can further justify the model of bimodal discs containing thermal instability triggered transition.
Retrograde binaries of massive black holes in circum-binary accretion discs
Amaro-Seoane, Pau; Dotti, Massimo; Colpi, Monica
2016-01-01
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different disc's surface densities which alter the black hole's dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less compu...
Effect of the flow composition on outflow rates from accretion discs around black holes
Kumar, Rajiv; Chattopadhyay, Indranil; Chakrabarti, Sandip K
2013-01-01
We studied the outflow behaviour from accretion discs around black holes taking into account the vertical equilibrium accretion flow model. The outflow rate is found to depend crucially on flow composition. Our approach is to study the outflow behaviour as function of inflow around black holes with an equation of state which allows flow to be thermally relativistic close to black holes and non relativistic far away from black holes. We studied shock ejection model. A pure electron positron pair flow never undergoes shock transition while presence of some baryons (common in outflows and jets) makes it possible to have standing shock waves in the flow. It can be concluded that the presence of protons is necessary for the flow to show the outflow behaviour. The outflow rate is maximum when the flow contains the proton number density which is 27% of the electron number density. We conclude that a pure electron-positron jet is unlikely to form.
Accretion-induced variability links young stellar objects, white dwarfs, and black holes.
Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C
2015-10-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307
Accretion-induced variability links young stellar objects, white dwarfs, and black holes
Scaringi, S; Koerding, E; Knigge, C; Vaughan, S; Marsh, T R; Aranzana, E; Dhillon, V; Barros, S C C
2015-01-01
The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.
Hyper-accreting black hole as GRB central engine. I: Baryon loading in GRB jets
Lei, Wei-Hua; Zhang, Bing; Liang, En-Wei
2012-01-01
A hyper-accreting stellar-mass black hole has been long speculated as the best candidate of central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by $\
Relativistic Accretion into a Reissner-Nordstr\\"om Black Hole Revisited
Pacheco, J A de Freitas
2011-01-01
The accretion of relativistic and non-relativistic fluids into a Reissner-Nordstr\\"om black hole is revisited. The position of the critical point, the flow velocity at this point and the accretion rate are only slightly affected with respect to the Schwarzschild case when the fluid is non-relativistic. On the contrary, relativistic fluids cross the critical point always subsonically. In this case, the sonic point is located near the event horizon, which is crossed by the fluid with a velocity less than the light speed. The accretion rate of relativistic fluids by a Reissner-Nordstr\\"om black hole is reduced with respect to those estimated for uncharged black holes, being about 60% less for the extreme case (charge-to-mass ratio equal to one).
Constraints on black hole spins with a general relativistic accretion disk corona model
You, Bei; Cao, Xin-Wu; Yuan, Ye-Fei
2016-04-01
The peaks in the spectra of the accretion disks surrounding massive black holes in quasars are in the far-UV or soft X-ray band, which are usually not observed. However, in the disk corona model, soft photons from the disk are Comptonized to high energy in the hot corona, and the hard X-ray spectra (luminosity and spectral shape) contain information on the incident spectra from the disk. The values of black hole spin parameter a* are inferred from the spectral fitting, which are spread over a large range, ˜ -0.94 to 0.998. We find that the inclination angles and mass accretion rates are well determined by the spectral fitting, but the results are sensitive to the accuracy of black hole mass estimates. No tight constraints on the black hole spins are achieved, if the uncertainties in black hole mass measurements are a factor of four, which are typical for the single-epoch reverberation mapping method. Recently, the accuracy of black hole mass measurement has been significantly improved to 0.2 - 0.4 dex with the velocity resolved reverberation mapping method. The black hole spin can be well constrained if the mass measurement accuracy is ≲ 50%. In the accretion disk corona scenario, a fraction of power dissipated in the disk is transported into the corona, and therefore the accretion disk is thinner than a bare disk for the same mass accretion rate, because the radiation pressure in the disk is reduced. We find that the thin disk approximation, H/R ≲ 0.1, is still valid if 0.3 < ṁ < 0.5, provided half of the dissipated power is radiated in the corona above the disk.
Dexter, Jason; Fragile, P. Chris
2012-01-01
High-resolution, multi-wavelength, and time-domain observations of the Galactic centre black hole candidate, Sgr A*, allow for a direct test of contemporary accretion theory. To date, all models have assumed alignment between the accretion disc and black hole angular momentum axes, but this is unjustified for geometrically thick accretion flows like that onto Sgr A*. Instead, we calculate images and spectra from a set of simulations of accretion flows misaligned ('tilted') by 15 degrees from ...
Strong field effects on emission line profiles: Kerr black holes and warped accretion disks
Wang, Yan
2011-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, ...
Numerical simulations of super-critical black hole accretion flows in general relativity
Sadowski, A.; Narayan, R; McKinney, J. C.; Tchekhovskoy, A.
2013-01-01
A new general relativistic radiation magnetohydrodynamical code KORAL, is described, which employs the M1 scheme to close the radiation moment equations. The code has been successfully verified against a number of tests. Axisymmetric simulations of super-critical magnetized accretion on a non-rotating black hole (a=0.0) and a spinning black hole (a=0.9) are presented. The accretion rates in the two models are \\dot M = 100-200 \\dot M_Edd. These first general relativistic simulations of super-c...
Suková, Petra; Janiuk, Agnieszka
2016-01-01
The high energy radiation emitted by black hole X-ray binaries originates in an accretion disk, hence the variability of the lightcurves mirrors the dynamics of the disc. We study the time evolution of the emitted flux in order to find evidences, that low dimensional non-linear equations govern the accretion flow. Here we test the capabilities of our novel method to find chaotic behaviour on the two numerical time series describing the motion of a test particle around a black hole surrounded ...
Suková, Petra
2016-01-01
The high energy radiation emitted by black hole X-ray binaries originates in an accretion disk, hence the variability of the lightcurves mirrors the dynamics of the disc. We study the time evolution of the emitted flux in order to find evidences, that low dimensional non-linear equations govern the accretion flow. Here we test the capabilities of our novel method to find chaotic behaviour on the two numerical time series describing the motion of a test particle around a black hole surrounded by a thin massive disc, one being regular and the other one chaotic.
Suppression of the accretion rate in thin discs around binary black holes.
Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.
2016-05-01
We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.
Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie
2015-05-01
Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen-Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.
Suppression of the accretion rate in thin discs around binary black holes
Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.
2016-08-01
We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.
Wang, Jian-Min; Cheng, Cheng; Li, Yan-Rong
2012-04-01
We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.
ACCRETION DISKS WITH A LARGE SCALE MAGNETIC FIELD AROUND BLACK HOLES
Gennady Bisnovatyi-Kogan
2013-12-01
Full Text Available We consider accretion disks around black holes at high luminosity, and the problem of the formation of a large-scale magnetic field in such disks, taking into account the non-uniform vertical structure of the disk. The structure of advective accretion disks is investigated, and conditions for the formation of optically thin regions in central parts of the accretion disk are found. The high electrical conductivity of the outer layers of the disk prevents outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. The problem of jet collimation by magneto-torsion oscillations is investigated.
Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion
Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Chandra, M.; Gammie, C. F.
2015-12-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an entropy equation for the electrons and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the backreaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at ≪10-5 of the Eddington accretion rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial applications to axisymmetric simulations of accreting black holes show that (1) physically motivated electron heating rates that depend on the local magnetic field strength yield electron temperature distributions significantly different from the constant electron-to-proton temperature ratios assumed in previous work, with higher electron temperatures concentrated in the coronal region between the disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature in the inner regions of black hole accretion flows if the effective electron mean free path is larger than the local scaleheight of the disc (at least for the initial conditions and magnetic field configurations we study). The methods developed in this work are important for producing more realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87; these applications will be explored in future work.
Non Axisymmetric Relativistic Wind Accretion with Velocity Gradients onto a Rotating Black Hole
Cruz-Osorio, A.; Lora-Clavijo, F. D.
2016-01-01
We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gra...
Detectable MeV neutrinos from black hole neutrino-dominated accretion flows
Liu, Tong; Zhang, Bing; Ma, Ren-Yi; Xue, Li
2015-01-01
Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) have been theorized as the central engine of relativistic jets launched in massive star core collapse events or compact star mergers. In this work, we calculate the electron neutrino/anti-neutrino spectra of NDAFs by fully taking into account the general relativistic effects, and investigate the effects of viewing angle, BH spin, and mass accretion rate on the results. We show that even though a typical ...
Janiuk, Agnieszka; Proga, Daniel; Kurosawa, Ryuichi
2008-01-01
We report on the fourth phase of our study of slightly rotating accretion flows onto black holes. The main new element of this study is that we used fully three dimensional (3-D) numerical simulations. We consider hydrodynamics of inviscid accretion flows. We assume a spherically symmetric density distribution at the outer boundary, but brake the flow symmetry by introducing a small, latitude-dependent angular momentum. We also consider cases where angular momentum at large radii is latitude-...
Inhomogeneous accretion discs and the soft states of black hole X-ray binaries
Dexter, Jason; Quataert, Eliot
2012-01-01
Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nucl...
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhao-Ming
2016-01-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and de...
Jamil, Mubasher; Hussain, Ibrar
2011-01-01
We have investigated the accretion of phantom energy onto a 5-dimensional extreme Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole. It is shown that the evolution of the EMGB black hole mass due to phantom energy accretion depends only on the pressure and density of the phantom energy and not on the black hole mass. Further we study the generalized second law of thermodynamics (GSL) at the event horizon and obtain a lower bound on the pressure of the phantom energy.
EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z ∼ 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is ∼104 times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only ∼102 times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.
Sądowski, Aleksander; Narayan, Ramesh
2016-03-01
We present a set of four three-dimensional, general relativistic, radiation magnetohydrodynamical simulations of black hole accretion at supercritical mass accretion rates, dot{M} > dot{M}_Edd. We use these simulations to study how disc properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of the order of 3 per cent dot{M} c^2, approximately a factor of 2 less than the efficiency of a standard thin accretion disc. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the 3 per cent dot{M} c^2 of energy emerges farther out in the disc, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about 8 per cent dot{M} c^2. By comparing the relative importance of advective and diffusive radiation transport, we show that photon trapping is effective near the equatorial plane. However, near the disc surface, vertical transport of radiation by diffusion dominates. We compare the properties of our fiducial three-dimensional run with those of an equivalent two-dimensional axisymmetric model with a mean-field dynamo. The latter simulation runs nearly 100 times faster than the three-dimensional simulation, and gives very similar results for time-averaged properties of the accretion flow, but does not reproduce the time-variability.
Numerical simulations of relativistic wind accretion on to black holes using Godunov-type methods
Font, J A; Papadopoulos, P P; Font, Jose A.; Ibanez, Jose M.; Papadopoulos, Philippos
1999-01-01
We have studied numerically the so-called Bondi-Hoyle (wind) accretion on to a rotating (Kerr) black hole in general relativity. We have used the Kerr-Schild form of the Kerr metric, free of coordinate singularities at the black hole horizon. The `test-fluid' approximation has been adopted, assuming no dynamical evolution of the gravitational field. We have used a recent formulation of the general relativistic hydrodynamic equations which casts them into a first-order hyperbolic system of conservation laws. Our studies have been performed using a Godunov-type scheme based on Marquina's flux-formula. We find that regardless of the value of the black hole spin the final accretion pattern is always stable, leading to constant accretion rates of mass and momentum. The flow is characterized by a strong tail shock which is increasingly wrapped around the central black hole as the hole angular momentum increases. The rotation induced asymmetry in the pressure field implies that besides the well known drag, the black...
Chakrabarti, Sandip K.
2016-01-01
An accretion flow around a black hole has a saddle type sonic point just outside the event horizon to guarantee that the flow enters the black hole supersonically. This feature exclusively present in strong gravity limit makes its marks in every observation of black hole candidates. Another physical sonic point is present (as in a Bondi flow) even in weak gravity. Every aspect of spectral or temporal properties of every black hole can be understood using this transonic or advective flow havin...
Understanding X-ray Reflection as a Probe of Accreting Black Holes
Wilkins, Dan
2014-01-01
Active galactic nuclei (AGN) are some of the most luminous objects we see in the Universe, powered by the accretion of matter onto a supermassive black hole in the centre of a galaxy, yet many of the physical processes by which the energy is released and injected into the surroundings remain a mystery. X-rays are emitted from a ‘corona’ of energetic particles surrounding the black hole and as well as being observed directly, they are seen to be reflected from the accreting disc, producing a number of spectral features including emission lines that are broadened by relativistic effects in the proximity of the black hole. In my thesis, I develop methods through which detailed measurement of the reflected X-rays from the accretion disc can be used to probe the innermost regions of accretion flow and corona, right down to the innermost stable orbit and the event horizon. Novel spectral analysis techniques allow us to reconstruct, from the observed relativistic X-ray reflection spectrum the spatially resolved illumination pattern of the accretion disc and will discuss how comparing this to the results of systematic general relativistic ray tracing simulations I have developed, we are able to constrain the location and geometry of the X-ray emitting corona and understand the dramatic change of the narrow line Seyfert 1 galaxy 1H 0707-495 into an extremely low flux state in terms of a collapse in the corona. I will discuss how measurements of the X-ray variability, specifically the reverberation time lags that are observed between variability in the directly observed X-rays from the corona and those reflected from the accretion disc add a further dimension to the study of accreting black holes, letting us not only build up a three dimensional image of the immediate vicinity of the black hole but also to probe mechanisms by which the energy is released from the accretion flow; techniques that will let us exploit not just current instrumentation but future proposed X
An Accretion Model for the Growth of Black Hole in Quasars
Lu, Ye; Cheng, K. S.; Zhang, S. N.
2003-01-01
A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.
On the Interplay Between Radial and Angular Reflection Emissivity from the Black Hole Accretion Disc
Svoboda, Jiří; Dovčiak, Michal; Goosmann, René; Karas, Vladimír
Cham: Springer International Publishing, 2014 - (Bičák, J.; Ledvinka, T.), s. 415-422. (Springer Proceedings in Physics. 157). ISBN 978-3-319-06760-5. ISSN 0930-8989. [100 Years after Einstein in Prague. Prague (CZ), 25.06.2012-29.06.2012] Institutional support: RVO:67985815 Keywords : black holes * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks
Lai, D.; Fu, W.; Tsang, D.; Horák, Jiří; Yu, C.
Cambridge Universrity Press: Cambridge, 2013, s. 57-61. (IAU Symposium Proceedings Series. IAU S290). ISBN 9781107033795. ISSN 1743-9213. [Symposium of the International Astronomical Union /290./. Beijing (CN), 20.08.2012-24.08.2012] Institutional support: RVO:67985815 Keywords : accretion disks * hydrodynamics * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Black hole accretion rings revealed by future X-ray spectroscopy
Sochora, Vjačeslav; Karas, Vladimír; Svoboda, Jiří; Dovčiak, Michal
2011-01-01
Roč. 418, č. 1 (2011), s. 276-283. ISSN 0035-8711 R&D Projects: GA ČR GA205/07/0052; GA MŠk ME09036 Institutional research plan: CEZ:AV0Z10030501 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.900, year: 2011
Black hole spin dependence of general relativistic multi-transonic accretion close to the horizon
Das, T. K.; Nag, S.; Hedge, S.; Bhattacharya, S.; Maity, I.; Czerny, B.; Barai, P.; Wiita, P. J.; Karas, Vladimír; Naskar, T.
2015-01-01
Roč. 37, May (2015), s. 81-104. ISSN 1384-1076 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : black holes * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.146, year: 2014
The truncated and evolving inner accretion disc of the black hole GX 339-4
Plant, D S; Ponti, G; Munoz-Darias, T; Coriat, M
2013-01-01
The nature of accretion onto stellar mass black holes in the low/hard state remains unresolved, with some evidence suggesting that the inner accretion disc is truncated and replaced by a hot flow. However the detection of relativistic broadened iron emission lines, even at relatively low luminosities, seems to require an accretion disc extending fully to its innermost stable circular orbit. Modelling such features is however highly susceptible to degeneracies, which could easily bias any interpretation. We present the first systematic study of the iron line region to track how the inner accretion disc evolves in the low/hard state of the black hole GX 339-4. Our four observations display increased broadening of the iron line over two magnitudes in luminosity, which we use to track any variation of the disc inner radius. We find that the disc extends closer to the black hole at higher luminosities, but is consistent with being truncated throughout the entire low/hard state, a result which renders black hole sp...
Beyond the standard model of the disc-line spectral profiles from black hole accretion discs
Sochora, Vjačeslav; Karas, Vladimír; Svoboda, Jiří; Dovčiak, Michal
2014-01-01
Roč. 54, č. 4 (2014), s. 301-304. ISSN 1210-2709 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion discs * black hole physics * galactic nuclei Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
The Eye of the Storm: Light from the Inner Plunging Region of Black Hole Accretion Discs
Zhu, Yucong; Narayan, Ramesh; Kulkarni, Akshay K; Penna, Robert F; McClintock, Jeffrey E
2012-01-01
It is generally thought that the light coming from the inner plunging region of black hole accretion discs contributes negligibly to the disc's overall spectrum, i.e. the plunging fluid is swallowed by the black hole before it has time to radiate. In the standard disc model used to fit X-ray observations of accretion discs, the plunging region is assumed to be perfectly dark. However, numerical simulations that include the full physics of the magnetized flow predict that a small fraction of the disc's total luminosity emanates from this plunging region. In this work, we investigate the observational consequences of this neglected inner light. We compute radiative transfer based disc spectra that correspond to 3D general relativistic magnetohydrodynamic simulated discs (which produce light inside their plunging regions). In the context of black hole spin estimation, we find that this neglected inner light only has a modest effect (this bias is less than typical observational systematic errors). For rapidly spi...
Sadowski, A; Narayan, R; Abarca, D; McKinney, J C
2016-01-01
We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation, and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric spacetime of the black hole. Numerical results are presented for five models of low luminosity black hole accretion. ...
Convection in radiatively inefficient black hole accretion flows
Igumenshchev, Igor V.; Abramowicz, Marek A.
2001-01-01
Recent numerical simulations of radiatively inefficient accretion flows onto compact objects have shown that convection is a general feature in such flows. Dissipation of rotational and gravitational energies in the accretion flows results in inward increase of entropy and development of efficient convective motions. Convection-dominated accretion flows (CDAFs) have a structure that is modified significantly in comparison with the canonical advection-dominated and Bondi-like accretion flows. ...
Growing massive black holes through supercritical accretion of stellar-mass seeds
Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.
2016-03-01
The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
Understanding X-ray reflection as a probe of accreting black holes
Wilkins, Daniel Richard
2013-01-01
The reflection of the X-rays emitted from a corona of energetic particles surrounding an accreting black hole from the accretion disc is investigated in the context of probing the structure of the central regions as well as the physical processes that power some of the brightest objects seen in the Universe. A method is devised to measure the emissivity profile of the accretion disc, that is the reflected flux as a function of radius in the disc. This method exploits the variation in the D...
An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.
Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L
2011-02-01
Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids. PMID:21217688
Suppression of the accretion rate in thin discs around binary black holes
Ragusa, Enrico; Price, Daniel J
2016-01-01
We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with $H/R\\gtrsim 0.1$, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on $H/R$) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed...
Estimation of mass outflow rates from viscous relativistic accretion discs around black holes
Chattopadhyay, Indranil
2016-01-01
We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion - ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von - Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist {for $\\alpha \\gsim0.06$} in the general relativistic prescription, but is lower if mass - loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock {location}. The jet terminal speed increases with stronger shocks, quantitatively speaking, the terminal speed of ...
Two-dimensional models of hydrodynamical accretion flows into black holes
Igumenshchev, I V; Igumenshchev, Igor V.; Abramowicz, Marek Artur
2000-01-01
We present a systematic numerical study of two-dimensional axisymmetric accretion flows around black holes. The flows have no radiative cooling and are treated in the framework of the hydrodynamical approximation. The models calculated in this study cover the large range of the relevant parameter space. There are four types of flows, determined by the values of the viscosity parameter $\\alpha$ and the adiabatic index $\\gamma$: convective flows, large-scale circulations, pure inflows and bipolar outflows. Thermal conduction introduces significant changes to the solutions, but does not create a new flow type. Convective accretion flows and flows with large-scale circulations have significant outward-directed energy fluxes, which have important implications for the spectra and luminosities of accreting black holes.
Pang, Bijia; Matzner, Christopher D; Green, Stephen R; Liebendörfer, Matthias
2010-01-01
We conduct a survey of numerical simulations to probe the structure and appearance of non-radiative black hole accretion flows like the supermassive black hole at the Galactic centre. We find a generic set of solutions, and make specific predictions for currently feasible rotation measure (RM) observations, which are accessible to current instruments including the EVLA, GMRT and ALMA. The slow time variability of the RM is a key quantitative signature of this accretion flow. The time variability of RM can be used to quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive measurements of RM can be achieved using RM synthesis or using pulsars. Our energy conserving ideal magneto-hydrodynamical simulations, which achieve high dynamical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to about one thousandth of that radius, and continue for tens of Bondi times. Magnetized flows which lack outward convection possess density slopes around -1, almo...
Black hole accretion disks in brane gravity via a confining potential
Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.i, E-mail: m.heydarifard@mail.sbu.ac.i [Department of Physics, University of Qom, PO Box 37185-359, Qom (Iran, Islamic Republic of)
2010-12-07
Accretion disks are among the most luminous and ubiquitous sources in astrophysics and they have drawn a good deal of attention from the observational and theoretical communities. In this paper, we study the process of matter forming thin accretion disks around black hole solutions in the context of the brane-world scenario where our universe is a three-brane embedded in an m-dimensional bulk and localization of matter on the brane is achieved by means of a confining potential. The physical properties of thin accretion disks including the time averaged energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and the results are compared with the DMPR, CFM and BMD brane black holes and the standard general relativistic Schwarzschild solution.
Convection in radiatively inefficient black hole accretion flows
Igumenshchev, I V; Igumenshchev, Igor V.; Abramowicz, Marek Artur
2001-01-01
Recent numerical simulations of radiatively inefficient accretion flows onto compact objects have shown that convection is a general feature in such flows. Dissipation of rotational and gravitational energies in the accretion flows results in inward increase of entropy and development of efficient convective motions. Convection-dominated accretion flows (CDAFs) have a structure that is modified significantly in comparison with the canonical advection-dominated and Bondi-like accretion flows. The flows are characterized by the flattened radial density profiles, ~R^{-1/2}, and have reduced mass accretion rates. Convection transports outward a significant amount of the released binding energy of the accretion flow. We discuss basic dynamical and observational properties of ADAFs using numerical models and self-similar analytical solutions.
Accretion Discs Around Black Holes: Developement of Theory
Bisnovatyi-Kogan, G. S.
1999-01-01
Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes t...
GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes
Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.
2016-08-01
In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.
Accretion of Chaplygin gas upon black holes: formation of faster outflowing winds
We study the accretion of modified Chaplygin gas upon different types of black holes. Modified Chaplygin gas is one of the best candidates for a combined model of dark matter and dark energy. In addition, from a field theoretical point of view the modified Chaplygin gas model is equivalent to that of a scalar field having a self-interacting potential. We formulate the equations related to both spherical accretion and disc accretion, and respective winds. The corresponding numerical solutions of the flow, particularly of velocity, are presented and analysed. We show that the accretion-wind system of modified Chaplygin gas dramatically alters the wind solutions, producing faster winds, upon changes in physical parameters, while accretion solutions qualitatively remain unaffected. This implies that modified Chaplygin gas is more prone to produce outflow which is the natural consequence of the dark energy into the system.
Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers
Rafikov, Roman R
2016-01-01
Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...
Dynamic processes during accretion into a black hole
G. S. Bisonvatyi-kogan
2001-01-01
Full Text Available Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as “alpha” prescription, when the (rϕ component of the stress tensor was approximated by (αP with a unknown constant α This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic filed role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF imposed by the presence of magnetic field are analyzed.
Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars
Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.
2004-01-01
One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.
Ingram, Adam
2015-01-01
Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.
Ingram, A. R.
2016-05-01
Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.
Shiokawa, Hotaka
The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions
Shenanigans at the black hole horizon: pair creation or Boulware accretion?
Israel, Werner
2015-01-01
The current scenario of black hole evaporation holds that the Hawking energy flux $F$ is powered by pair creation at the horizon. However, pair creation produces entanglements, some of which must necessarily be broken before the black hole evaporates completely. That leads to loss of information and violation of unitarity. In this paper, an alternative scenario is suggested that reproduces the essential features of Hawking evaporation, but does not invoke pair creation with its attendant problems. In this "accreting Boulware" scenario, a positive flux $F$ is still an outflux at infinity, but near the horizon it becomes an influx of negative energy. This negative energy flux (marginally) satisfies the Flanagan energy inequality.
Numerical simulations of relativistic wind accretion on to black holes using Godunov-type methods
Font, Jose A.; Ibanez, Jose M.; Papadopoulos, Philippos
1999-01-01
We have studied numerically the so-called Bondi-Hoyle (wind) accretion on to a rotating (Kerr) black hole in general relativity. We have used the Kerr-Schild form of the Kerr metric, free of coordinate singularities at the black hole horizon. The `test-fluid' approximation has been adopted, assuming no dynamical evolution of the gravitational field. We have used a recent formulation of the general relativistic hydrodynamic equations which casts them into a first-order hyperbolic system of con...
A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies
Done, C.; Jin, C; Middleton, M; Ward, M.
2013-01-01
We show that disc continuum fitting can be used to constrain black hole spin in a subclass of narrow-line Seyfert 1 (NLS1) active galactic nuclei as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper lim...
A new way to measure supermassive black hole spin in accretion disc dominated Active Galaxies
Done, C.; Jin, C; Middleton, M; Ward, M.
2013-01-01
We show that disc continuum fitting can be used to constrain black hole spin in a subclass of narrow-line Seyfert 1 (NLS1) active galactic nuclei as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper lim...
We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ2, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter
Chernov, S. V., E-mail: chernov@lpi.ru [Russian Academy of Sciences, Astrospace Center, Lebedev Physical Institute (Russian Federation)
2015-06-15
We consider the magnetohydrodynamic theory of spherically symmetric accretion of a perfect fluid onto a Schwarzschild black hole with an ultrahard equation of state, p = μ ∼ ρ{sup 2}, where p is the pressure, μ is the total energy density, and ρ is the fluid density. An approximate analytical solution is written out. We show that one critical sonic surface that coincides with the black hole event horizon is formed instead of two critical surfaces (fast and slow magnetosonic surfaces) for a degenerate ultrahard equation of state of matter.
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming
2016-01-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming
2016-06-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.
Non Axisymmetric Relativistic Wind Accretion with Velocity Gradients onto a Rotating Black Hole
Cruz-Osorio, A
2016-01-01
We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient $\\epsilon_{v}$, the black hole spin $a$, the asymptotic Mach number ${\\cal M}_{\\infty}$ and adiabatic index $\\Gamma$. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are $...
Non-axisymmetric relativistic wind accretion with velocity gradients on to a rotating black hole
Cruz-Osorio, A.; Lora-Clavijo, F. D.
2016-08-01
We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient $\\epsilon_{v}$, the black hole spin $a$, the asymptotic Mach number ${\\cal M}_{\\infty}$ and adiabatic index $\\Gamma$. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are $a=0.98$ and ${\\cal M}_{\\infty}=1$, respectively. A kind of flip-flop behavior is found at the early times; nevertheless, the system also reaches a steady state.
Inhomogeneous accretion discs and the soft states of black hole X-ray binaries
Dexter, Jason; Quataert, Eliot
2012-10-01
Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal (TD) state to the higher variability, non-thermal steep power law (SPL) state. The disc component in all states is typically modelled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogues of BHBs. An inhomogeneous disc (ID) model with large (≃0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation-dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction and rms variability amplitude in BHBs are reproduced with temperature fluctuations similar to those inferred in AGNs, suggesting a unified picture of luminous accretion discs across orders of magnitude in black hole mass. This picture can be tested with spectral fitting of ID models, X-ray polarization observations and radiation magnetohydrodynamic simulations. If BHB accretion discs are indeed inhomogeneous, only the most disc-dominated states (disc fraction ≳0.95) can be used to robustly infer black hole spin using current continuum fitting methods.
Eddington-limited accretion and the black hole mass function at redshift 6
Willott, Chris J; Arzoumanian, Doris; Bergeron, Jacqueline; Crampton, David; Delorme, Philippe; Hutchings, John B; Omont, Alain; Reyle, Celine; Schade, David
2010-01-01
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z=6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z~6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between MgII FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z=6. Our black hole mass function is ~10^4 times lower than at z=0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at hig...
Numerical relativity simulations of thick accretion disks around tilted Kerr black holes
Mewes, Vassilios; Galeazzi, Filippo; Montero, Pedro J; Stergioulas, Nikolaos
2015-01-01
In this work we present 3D numerical relativity simulations of thick accretion disks around {\\it tilted} Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered ($0.044-0.16$) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of ...
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2011-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.
Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.
Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J
2016-06-01
Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes. PMID:27251277
Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni
Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.
2016-06-01
Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10‑8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.
Numerical relativity simulations of thick accretion disks around tilted Kerr black holes
Mewes, Vassilios; Font, José A.; Galeazzi, Filippo; Montero, Pedro J.; Stergioulas, Nikolaos
2016-03-01
In this paper we present 3D numerical relativity simulations of thick accretion disks around tilted Kerr black holes. We investigate the evolution of three different initial disk models with a range of initial black hole spin magnitudes and tilt angles. For all the disk-to-black hole mass ratios considered (0.044-0.16) we observe significant black hole precession and nutation during the evolution. This indicates that for such mass ratios, neglecting the self-gravity of the disks by evolving them in a fixed background black hole spacetime is not justified. We find that the two more massive models are unstable against the Papaloizou-Pringle (PP) instability and that those PP-unstable models remain unstable for all initial spins and tilt angles considered, showing that the development of the instability is a very robust feature of such PP-unstable disks. Our lightest model, which is the most astrophysically favorable outcome of mergers of binary compact objects, is stable. The tilt between the black hole spin and the disk is strongly modulated during the growth of the PP instability, causing a partial global realignment of black hole spin and disk angular momentum in the most massive model with constant specific angular momentum l . For the model with nonconstant l -profile we observe a long-lived m =1 nonaxisymmetric structure which shows strong oscillations of the tilt angle in the inner regions of the disk. This effect might be connected to the development of Kozai-Lidov oscillations. Our simulations also confirm earlier findings that the development of the PP instability causes the long-term emission of large amplitude gravitational waves, predominantly for the l =m =2 multipole mode. The imprint of the black hole (BH) precession on the gravitational waves from tilted BH-torus systems remains an interesting open issue that would require significantly longer simulations than those presented in this paper.
A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations
Bachmann, Lisa K; Hirschmann, Michaela; Prieto, M Almudena; Remus, Rhea-Silvia
2014-01-01
In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in ma...
Horak, Jiri
2013-01-01
We study the dynamics of spiral waves and oscillation modes in relativistic rotating discs around black holes. Generalizing the Newtonian theory, we show that wave absorption can take place at the corotation resonance, where the pattern frequency of the wave matches the background disc rotation rate. We derive the general relativistic expression for the disc vortensity (vorticity divided by surface density), which governs the behaviour of density perturbation near corotation. Depending on the gradient of the generalized disc vortensity, corotational wave absorption can lead to the amplification or damping of the spiral wave. We apply our general theory of relativistic wave dynamics to calculate the non-axisymmetric inertial-acoustic modes (also called p-modes) trapped in the inner-most region of a black hole accretion disc. Because general relativity changes the profiles of the radial epicyclic frequency and disc vortensity near the inner disc edge close to the black hole, these p-modes can become overstable ...
NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES
It has been claimed that there is a large population of obscured, accreting black holes at high redshift and that the integrated black hole density at z = 6 as inferred from X-ray observations is ∼100 times greater than that inferred from optical quasars. I have performed a stacking analysis of very deep Chandra X-ray data at the positions of photometrically selected z = 6 galaxy candidates. It is found that there is no evidence for a stacked X-ray signal in either the soft (0.5-2 keV) or hard (2-8 keV) X-ray bands. Previous work which reported a significant signal is affected by an incorrect method of background subtraction which underestimates the true background within the target aperture. The puzzle remains as to why the z = 6 black hole mass function has such a flat slope and a low normalization compared to the stellar mass function.
Rapid growth of seed black holes in the early universe by supra-exponential accretion.
Alexander, Tal; Natarajan, Priyamvada
2014-09-12
Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. PMID:25103410
Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion
Ressler, Sean M; Quataert, Eliot; Chandra, Mani; Gammie, Charles F
2015-01-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an electron entropy equation and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the back-reaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at $\\ll 10^{-5}$ of the Eddington rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial a...
Rapid growth of seed black holes in the early universe by supra-exponential accretion
Alexander, Tal
2014-01-01
Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t_E ~ few x 0.01 Gyr, is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 Gyr old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is trapped in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly-draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.
IMPETUS: New Cloudy's radiative tables for accretion onto a galaxy black hole
Ramirez-Velasquez, Jose M; Gabbasov, Ruslan; Cruz, Fidel; Sigalotti, Leonardo Di G
2016-01-01
We present digital tables for the radiative terms that appear in the energy and momentum equations used to simulate the accretion onto supermassive black holes (SMBHs) in the center of galaxies. Cooling and heating rates and radiative accelerations are calculated with two different Spectral Energy Distributions (SEDs). One SED is composed of an accretion disk + [X-ray]-powerlaw, while the other is made of an accretion disk + [Corona]-bremsstrahlung with T_X=1.16 x 10^8 K, where precomputed conditions of adiabatic expansion are included. Quantification of different physical mechanisms at operation are presented, showing discrepancies and similarities between both SEDs in different ranges of fundamental physical parameters (i.e., ionization parameter, density, and temperature). With the recent discovery of outflows originating at sub-parsec scales, these tables may provide a useful tool to model gas accretion processes onto a SMBH.
Production of 56Ni in black hole-neutron star merger accretion disc outflows
The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disc of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disc outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disc model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disc on the element synthesis. While the neutrino fluxes from the early-time disc snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of 56Ni in the outflows. (paper)
Evolution of Accretion Discs around a Kerr Black Hole using Extended Magnetohydrodynamics
Foucart, Francois; Gammie, Charles F; Quataert, Eliot
2015-01-01
Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to $GM/c^2$. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code ${\\rm\\it grim}$, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the ...
Variabilities of Gamma-ray Bursts from Black Hole Hyper-accretion Disks
Lin, Da-Bin; Mu, Hui-Jun; Liu, Tong; Hou, Shu-Jin; Lv, Jing; Gu, Wei-Min; Liang, En-Wei
2016-01-01
The emission from black hole binaries (BHBs) and active galactic nuclei (AGNs) displays significant aperiodic variabilities. The most promising explanation for these variabilities is the propagating fluctuations in the accretion flow. It is natural to expect that the mechanism driving variabilities in BHBs and AGNs may operate in a black hole hyper-accretion disk, which is believed to power gamma-ray bursts (GRBs). We study the variabilities of jet power in GRBs based on the model of propagating fluctuations. It is found that the variabilities of jet power and the temporal profile of erratic spikes in this scenario are similar to those in observed light curves of prompt gamma-ray emission of GRBs. Our results show that the mechanism driving X-ray variabilities in BHBs and AGNs may operate in the central engine to drive the variabilities of GRBs.
Probing the Accretion Geometry of Black Holes with X-Ray Polarization
Schnitman, Jeremy D.
2011-01-01
In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.