Sample records for black cottonwood populus

  1. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.


    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.


    Cottonwood species (Populus spp.) are weedy in container nursery production throughout much of the U.S. Cottonwood species vary throughout the country, with black cottonwood (Populus trichocarpa Torr. & Gray) predominating Oregon and other parts of the Pacific Northwest U.S. Cottonwood release see...

  3. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    Zhao, Nan [ORNL; Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Chaiprasongsuk, Minta [University of Tennessee, Knoxville (UTK); Li, Guanglin [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Tschaplinski, Timothy J [ORNL; Guo, Hong [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK)


    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  4. Targeted enrichment of the black cottonwood (Populus trichocarpa gene space using sequence capture

    Zhou Lecong


    Full Text Available Abstract Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’. A total of 20.76Mb (5% of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end, 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.

  5. Preemergence Control of Black Cottonwood in Nursery Containers

    Two experiments were conducted to evaluate preemergence herbicides for control of black cottonwood (Populus trichocarpa) in nursery containers. In 2006, granular preemergence herbicides were applied to recently filled, weed-free containers in May just prior to seed release from mature cottonwood tr...

  6. Cottonwood Control in Nursery Containers

    An experiment was conducted to evaluate preemergence herbicides for control of black cottonwood (Populus trichocarpa) in nursery containers. In 2006, granular preemergence herbicides were applied to recently filled, weed-free containers. In May 2006, containers were infested with cottonwood seed b...

  7. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods

    Nagler, P.; Jetton, A.; Fleming, J.; Didan, K.; Glenn, E.; Erker, J.; Morino, K.; Milliken, J.; Gloss, S.


    Native tree plantations have been proposed for the restoration of wildlife habitat in human-altered riparian corridors of western U.S. rivers. Evapotranspiration (ET) by riparian vegetation is an important, but poorly quantified, term in river water budgets. Native tree restoration plots will potentially increase ET. We used sap flow sensors and satellite imagery to estimate ET in a 8 ha, cottonwood (Populus fremontii) restoration plot on the Lower Colorado River. Biometric methods were used to scale leaf area to whole trees and stands of trees. This technique was used to validate our estimates of ET obtained by scaling from branch level to stand (or plot) level measurements of ET. Cottonwood trees used 6-10 mm day-1 of water during the peak of the growing season as determined by sap flow sensors, and annual rates scaled by time-series MODIS satellite imagery were approximately 1.2 m year-1. Although irrigation was not quantified, the field had been flood irrigated at 2 week intervals during the 3 years prior to the study, receiving approximately 2 m year-1 of water. A frequency-domain electromagnetic induction survey of soil moisture content showed that the field was saturated (26-28% gravimetric water content) at the 90-150 cm soil depth under the field. Trees were apparently rooted into the saturated soil, and considerable saving of water could potentially be achieved by modifying the irrigation regime to take into account that cottonwoods are phreatophytes. The study showed that cottonwood ET can be monitored by remote sensing methods calibrated with ground measurements with an accuracy or uncertainty of 20-30% in western riparian corridors. ?? 2007 Elsevier B.V. All rights reserved.

  8. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    Andersen, Douglas C.


    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  9. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry


    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  10. Germination and establishment of the native plains cottonwood (Populus deltoides Marshall subsp. monilifera) and the exotic Russian-olive (Elaeagnus angustifolia L.)

    Shafroth, Patrick B.; Auble, Gregor T.; Scott, Michael L.


    Russian-olive (Elaeagnus angustifolia) is a small Eurasian tree that has escaped from cultivation and become naturalized, primarily along watercourses throughout the western United States. We examined germination and establishment of Russian-olive and plains cottonwood (Populus deltoides), the principal native riparian tree of the Great Plains, under a range of experimental moisture and light conditions. The fewest seedings established under the driest conditions; seedling biomass was predictably lower in the shade; root-to-shoot ratios were higher for cottonwood, higher in the sun, and higher under drier conditions. Several interactions were also significant. The timing of germination and mortality varied between plains cottonwood and Russian-olive: cottonwood germinated in mid-June in all treatments in a single pulse with subsequent mortality; the timing and amount of Russian-olive germination differed substantially across treatments with little net mortality. Differences in life-history traits of these species, including seed size, viability, and dispersal, help explain treatment differences. Russian-olive will likely remain an important component of riparian communities along both unregulated and regulated western rivers because it succeeds under conditions optimal for cottonwood establishment and under many conditions unfavorable for cottonwood. Furthermore, many western states still encourage planting of Russian-olive, and control techniques tend to be labor-intensive and expensive.

  11. The influence of alternative plant propagation and stand establishment techniques on survival and growth of eastern cottonwood (Populus deltoides Bartr.) clones.

    Kaczmarek, Donald J.; et. al.,


    Four eastern cottonwood clones, including standard operational clone ST66 and three advanced clonal selections were produced and included in a test utilizing five different plant propagation methods. Despite relatively large first-year growth differences among clones, all clones demonstrated similar responses to the treatments and clone 9 cutting treatment interactions were generally non-significant. The effects of changing cutting lengths are consistent with previous studies which indicated the potential for increased plant survival and growth with increased cutting lengths. Differences in stored carbohydrate reserves alone do not appear to completely control first-year growth and development of cuttings. First-year growth of 51 cm long cuttings planted 30.5 cm deep was greater than the same cuttings planted 48 cm deep. Stem form of plants derived from whip-tip propagation did not differ from plants derived from standard, unrooted cuttings. This propagation method offers the potential of far greater production capacity from a cutting orchard and rapid bulk-up of new or limited clones. Stand uniformity assessments suggest that surviving trees of each individual cutting treatment exhibit similar levels of growth variation. Optimization of plantation establishment techniques has the potential to increase growth of young Populus plantations.

  12. A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers.

    Sheppard, L A; Brunner, A M; Krutovskii, K V; Rottmann, W H; Skinner, J S; Vollmer, S S; Strauss, S H


    We isolated PTD, a member of the DEFICIENS (DEF) family of MADS box transcription factors, from the dioecious tree, black cottonwood (Populus trichocarpa). In females, in situ hybridization experiments showed that PTD mRNA was first detectable in cells on the flanks of the inflorescence meristem, before differentiation of individual flowers was visually detectable. In males, the onset of PTD expression was delayed until after individual flower differentiation had begun and floral meristems were developing. Although PTD was initially expressed throughout the inner whorl meristem in female and male flowers, its spatial expression pattern became sex-specific as reproductive primordia began to form. PTD expression was maintained in stamen primordia, but excluded from carpel primordia, as well as vegetative tissues. Although PTD is phylogenetically most closely related to the largely uncharacterized TM6 subfamily of the DEF/APETELA3(AP3)/TM6 group, its spatio-temporal expression patterns are more similar to that of DEF and AP3 than to other members of the TM6 subfamily. PMID:11027713

  13. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    McKown, Athena [University of British Columbia, Vancouver; Klapste, Jaroslav [University of British Columbia, Vancouver; Guy, Robert [University of British Columbia, Vancouver; Geraldes, Armando [University of British Columbia, Vancouver; Porth, Ilga [University of British Columbia, Vancouver; Hannemann, Jan [University of Victoria, Canada; Friedmann, Michael [University of British Columbia, Vancouver; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; Ehlting, Juergen [University of Victoria, Canada; Cronk, Quentin [University of British Columbia, Vancouver; El-Kassaby, Yousry [University of British Columbia, Vancouver; Mansfield, Shawn [University of British Columbia, Vancouver; Douglas, Carl [University of British Columbia, Vancouver


    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  14. Mixed, short rotation culture of red alder and black cottonwood: growth, coppicing, nitrogen fixation, and allelopathy

    Heilman, P.; Stettler, R.F.


    Alnus rubra seedlings were grown in a 1:1 mixture at a spacing of 1.2 x 1.2 m with 28 Populus clones (25 clones pf P. trichocarpa, 2 of P. deltoides x P. trichocarpa, and one P. deltoides x P. nigra) in a study established in W. Washington in March 1979. Trees were harvested at 4 yr old. At harvest, average heights were: pure Populus, 10.2 m; Populus in the mixed stand 11.0 m; and alder 8.4 m. Most Populus sprouted satisfactorily after harvest (6.6 shoots/plant when pure, 7.6 shoots/plant in the mixture), but alder sprouted poorly (3.6 shoots/plant). Above-ground biomass at harvest was 15.9 t/ha p.a. for the mixture and 16.7 t/ha p.a. for pure Populus, although the mixture had been more productive at 2 yr. Nitrogenase activity (nitrogen fixation as measured by acetylene reduction) of alder declines in the 4th season; competition was the most important factor influencing this decline. Soil N content had no effect on fixation. A pot study showed that ground Populus leaf and litter material inhibited the growth of red alder seedlings, although soil collected from Populus plots had no effect. Results indicated that allelopathy is probably a minor factor under field conditions, at most, and that growing mixed stands may, on balance, be beneficial. 20 references.

  15. Morphological study of the leaves of two European black poplar (Populus nigra L.) populations in Slovenia

    Jarni, Kristjan; Vaupotič, Urška; BOŽIČ, Gregor; Brus, Robert


    Background and Purpose: Conservation efforts across Europe and a substantial lack of information regarding the present status of black poplar (Populus nigra L.) in Slovenia led us to conduct this research. The objectives were to determine the presence of preserved native black poplar in Slovenia, to evaluate the variation within and between two selected populations, and to evaluate the condition of these populations, which is important for enabling their long-term gene pool conservation. ...

  16. Cottonwoods in British Columbia: Problem analysis. FRDA report No. 195

    McLennan, D.S.; Mamias, A.M.


    Black cottonwood and balsam poplar are the fastest growing trees in British Columbia and interest in their management has recently been renewed. This report assembled resource data on the amount, quality, distribution, and potential economic importance of cottonwood in B.C.; described the range of management regimes currently used and provided a summary of management options available; described the potential impacts of cottonwood harvest and management on other resources values; and summarized current cottonwood knowledge gaps and management problems and recommended research.

  17. Annotated host fungus index for populus in British Columbia. FRDA report No. 222

    Callan, B.E.


    This index lists all documented fungal associations with either living or dead native Populus in British Columbia. The first part of the index lists fungi in alphabetical order by species scientific name and includes synonyms (if any), a brief description, and the fungal association. This part arranges the fungi by host in four categories: Trembling aspen, black cottonwood, balsam poplar, and other Populus species and hybrids. The second part of the index provides cross-references from species name (arranged by taxonomic group) to the category of host.

  18. Micrometeorology of a black cottonwood plantation forest during establishment years in south Iceland, 1993--1996

    Strachan, Ian Brett

    A micrometeorological study of the energy exchanges of a forest plantation ecosystem (Populus trichocarpa, Torr & Grey with an understorey of Agrostis spp.) located in southern Iceland was conducted during a four year period spanning the 1993-1996 growing seasons. The changing pathways for energy exchange were explained using two sparse canopy models: Shuttleworth-Wallace (SW; 1985) and Evaporation and Radiation Interception from Neighbouring plants (ERIN; Wallace, 1997). This study represented the first field test of the ERIN model. Macro-boundary conditions affecting the availability and movement of water within the soil-plant-atmosphere system were measured in terms of climatology, soil morphology, and hydrology. The study site is located in a region characterised by cool, short summers, frequent precipitation and almost constant and strong wind speed. The soil which is of volcanic origin (termed Andisol) contains numerous layers attributable to deposition of volcanic ejecta and re-worked eolian materials transported on-site. The soil has excellent water-holding characteristics and water was revealed to be not limiting throughout the study period. The Bowen Ratio Energy Balance (BREB) technique was used to measure total system evapotranspiration. System energy exchange was dominated by the latent heat component with a Bowen ratio <1.0. The system was moderately decoupled from the atmosphere indicating an evapotranspiration rate that was radiation driven, closely resembling the equilibrium rate. Sub-models for stomatal resistance of the trees and grass were developed based on routinely measured environmental parameters. A novel model of substrate surface resistance as a function of an adjusted equilibrium rate at the soil surface was developed using infrared surface temperature. The canopy extinction coefficient was determined from in situ measurements to be 0.35 while the light use efficiency was calculated as 0.71 g.MJ -1. The canopy roughness length and zero

  19. Geochemical peculiarities of black poplar leaves (Populus nigra L.) in the sites with heavy metals intensive fallouts

    Yalaltdinova, Albina; Baranovskaya, Natalya; Rikhvanov, Leonid; Matveenko, Irina


    The article deals with the content of 28 chemical elements in the leaves ash of black poplar (Populus nigra L.) growing in Ust-Kamenogorsk city area. It is the major industrial center of Kazakhstan Republic on the territory where the industrial giants of non-ferrous metallurgy and nuclear energy are situated. Comparative analysis with the similar data obtained from leaves ash of Populus nigra L. in Tomsk, Ekibastuz, and Pavlodar cities has revealed that in comparison with other urban areas, leaves ash of black poplar (Populus nigra L.) from Ust-Kamenogorsk city is characterized by elevated concentration rates of Ta, U, Zn, Ag, As, Sb, Br, Sr and Na. Within the city, the sites and areas with abnormal contents of typomorphic pollutants have been revealed. In the central part of the city, in the vicinity of lead-zinc plant and Ulba metallurgical plant, the highest concentrations of Ta, U, Zn, Ag, Au, As, Sb, Cr and Fe were marked. In the northeast, where the titanium-magnesium plant is located, elevated concentrations of Br and Sr were stated. Thus, the impact of major city enterprises which are the main sources of heavy metals is reflected in the element composition. Zn, As, Sb, Ag and Au comes from lead-zinc plant and its refinery plants, while Ulba metallurgical plant can be considered source of Ta and U in the environment, producing tantalum and fuel pellets for nuclear power plants. These companies, due to the current objective circumstances, are located in the central part of the city, have a significant negative effect on the environment and form the risk factors for human health.

  20. Black poplar-tree (Populus nigra L.) bark as an alternative indicator of urban air pollution by chemical elements

    Capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric air pollution by chemical elements were tested against epiphytic lichens Xanthoria parietina (L.) and Physcia adscendens (Fr.). Concentrations of 40 macro and trace elements were determined using epicadmium and instrumental NAA. The data obtained were processed using non-parametric tests. A good correlation was found between concentrations of majority of elements in bark and lichens. On the accumulation capability bark turned out to be competitive with both lichens examined. The main inorganic components of black poplar-tree bark were revealed. A substrate influence on the concentrations of some elements in epiphytic lichens was established. An optimized procedure of bark pre-irradiation treatment was suggested. (author)

  1. Structure of the genetic diversity in Black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration

    Smulders, M.J.M.; Cottrell, J.E.; Lefevre, F.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.; Tabbener, H.E.; Grassi, F.; Fossati, T.; Castiglione, S.; Krystufek, V.; Fluch, S.; Burg, K.; Vornam, B.; Pohl, A.; Gebhardt, K.; Alba, N.; Agúndez, D.; Maestro, C.; Notivol, E.; Volosyanchuck, R.; Pospiskova, M.; Bordacs, S.; Bovenschen, J.; Dam, van B.C.; Koelewijn, H.P.; Halfmaerten, D.; Ivens, B.; Slycken, Van J.; Vanden Broeck, A.; Storme, V.; Boerjan, W.


    Black poplar (Populus nigra L.) is a keystone species for riparian ecosystems in Europe. We analysed the structure of genetic diversity of 17 populations from 11 river valleys that are part of seven catchment systems (Danube, Ebro, Elbe, Po, Rhine, Rhone, and Usk) in Europe, in relation to geography

  2. Cottonwood Tree Rings and Climate in Western North America

    Friedman, J. M.; Edmondson, J.; Griffin, E. R.; Meko, D. M.; Merigliano, M. F.; Scott, J. A.; Scott, M. L.; Touchan, R.


    In dry landscapes of interior western USA, cottonwood (Populus spp.) seedling establishment often occurs only close to river channels after floods. Where winter is sufficiently cold, cottonwoods also have distinct annual rings and can live up to 370 years, allowing us to reconstruct the long-term history of river flows and channel locations. We have analyzed the annual rate of cottonwood establishment along streams in Montana, Wyoming, Colorado, North Dakota and Idaho. Because the trees germinate next to the river, establishment rates are strongly correlated with the rate of channel migration driven by floods. Along large rivers dominated by snowmelt from the mountains, interannual variation in peak flows and cottonwood establishment is small, and century-scale variation driven by climate change is apparent. The upper Snake, Yellowstone and Green rivers all show a strong decrease in cottonwood establishment beginning in the late 1800s and continuing to the present, indicating a decrease in peak flows prior to flow regulation by large dams. This is consistent with published tree-ring studies of montane conifers showing decreases in snowpack at the same time scale. In contrast, beginning in the late 1800s cottonwood ring widths along the Little Missouri River, North Dakota show an increase in annual growth that continues into the present. Because annual growth is strongly correlated with April-July flows (r=0.69) the ring-width data suggest an increase in April-July flows at the same time tree establishment dates suggest a decrease in peak flows. These results may be reconciled by the hypothesis that increases in low temperatures have decreased snowpack while lengthening the growing season.

  3. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra)

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G.


    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D...

  4. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions

    A comparative study of the capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric heavy-metal pollution is reported. Performance indicators (concentrations and enrichment factors) of heavy metal bioaccumulation of bark were compared to the corresponding indicators of epiphytic lichens Xanthoria parietina (L.) Th. Fr. and Physcia adscendens (Fr.) H. Oliver, collected simultaneously with bark samples within the Kiev urban-industrial conurbation. The concentrations of 40 minor and trace elements in the samples were measured by a combination of epithermal and instrumental neutron activation analysis (NAA) using a 10 MW nuclear research reactor WWR-M as the neutron source. Statistical analysis of the data was carried out using non-parametric tests. It was shown that for the majority of the elements determined a good correlation exists between their concentrations in bark and in the lichen species. The accumulation capability of the bark was found to be as effective as, and in some cases better, for both types of lichens. Based on the background levels and variations of the elemental concentration in black poplar-tree bark, threshold values for the enrichment factors were established. For a number of elements (As, Au, Ce, Co, Cr, Cu, La, Mn, Mo, Ni, Sb, Sm, Ti, Th, U, V, W) an interspecies calibration was performed. An optimized pre-irradiation treatment of the bark sample was employed which efficiently separated the most informative external layer from the deeper layers of the bark and thus minimized variations of the element concentrations. Results of this study support black poplar-tree bark as an alternative to epiphytic lichens for heavy metal air pollution monitoring in urban and industrial regions, where severe environmental conditions may result in scarcity or even lack of the indicator species

  5. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.).

    Viger, Maud; Smith, Hazel K; Cohen, David; Dewoody, Jennifer; Trewin, Harriet; Steenackers, Marijke; Bastien, Catherine; Taylor, Gail


    Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. 'North eastern' genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ(13)C. In contrast, 'southern' genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1-3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought. PMID:27174702

  6. An increase in herbivory of cottonwood in yellowstone national park

    Keigley, R.B.


    This study examined an effect of elk (Cervus elaphus nelsoni) on narrowleaf cottonwood (Populus angustifolia) in northern Yellowstone National Park, where stands consist of old trees and younger, densely-branched bushes. The elk herd increased from a census of 3,172 in 1968 to a census of 18,913 in 1988. The purposes of this study were to: 1) document the height-growth of cottonwood bushes, 2) determine if the height of browsing corresponded with snow depth, and 3) determine if there has been a recent increase in cottonwood herbivory. In 5 stands of different age (ranging ca. 9-45 y old), I measured the height of live previous-year-growth and the height of the oldest stems killed by browsing. The tallest previous-year-growth was 80 cm; all stems taller than 29 cm had been browsed. Stems were killed by browsing closer to the ground in younger stands (respectively, 87, 62, 28, 14, and 9 cm; P herbivory since respective stand creation. The large variances in the height of browse-killed stems in older stands (745, 399, and 291 cm2) were likely caused by an initial period of light-to-moderate herbivory followed by an increase in herbivory that killed the stem tips at the heights existing at the time. The bush growth-form apparently results from an increase in herbivory that occurred between 1968 and 1977, a period in which the elk winter census increased from 3,172 to 8,981. The weight of evidence suggests that EuroAmerican influences have caused the northern elk herd to increase in number since the establishment of the park. If herbivory does not decrease, cottonwood may be eliminated from Yellowstone's northern range.

  7. Adaptive traits to fluvial systems of native tree European black Poplar (Populus nigra L.) population in Southern Italy

    Saulino, Luigi; Pasquino, Vittorio; Todaro, Luigi; Rita, Angelo; Villani, Paolo; Battista Chirico, Giovanni; Saracino, Antonio


    This work focuses on the morphological and biomechanical traits developed by the European black poplar (Populus nigra) to cope with the hydraulic force and prolonged submersion periods during floods. Two riverine environments of the Cilento sub-region (Southern Italy) have been selected for this experimental study. The two sites have the same climatic and hydrological regimes. The first site is located along the Ripiti stream, characterized by a braided channel with longitudinal and transverse bars and eroding banks. The second site is located along the Badolato stream, an entrenched meandering riffle/pool channel, with low gradients and high width/depth. P. nigra mixed with Salix alba and along the Badolato stream also Platanus orientalis, is the dominant wooden riparian vegetation in both sites. Cuttings from adult P. nigra trees originated by seeds were collected and planted in the 'Azienda Sperimentale Regionale Improsta' (Eboli-Salerno, Campania region). The experimental plantation was managed according to a multi-stem short rotation coppice with low external energy input and high disturbance regime generated by a 3 years rotation coppicing. The two sample stool sets exhibit statistically similar morphological traits, but different values of Young elasticity module of the shoots. A functional evaluation of the biomechanical differences was performed by measuring the bending of the individual stems under the hypothesis of complete submergence within a flow of different mean velocities, using a numerical model that predicts the bending of woody vegetation beams allowing for large deflections. The results suggest that plants with the same gene pool but coming from morphologically different riverine environments, may reflect different dominant biomechanical properties, which might be relevant for designing local sustainable management and restoration plans of rivers and riparian systems.

  8. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).

    Geraldes, A; Hefer, C A; Capron, A; Kolosova, N; Martinez-Nuñez, F; Soolanayakanahally, R Y; Stanton, B; Guy, R D; Mansfield, S D; Douglas, C J; Cronk, Q C B


    All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole-genome scans that the sex-associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of 'turnover' of sex-determination regions in animals. We performed whole-genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex-associated SNPs revealed this to be an XY sex-determining system. Estimated divergence times of X and Y haplotype sequences (6-7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past. PMID:25728270

  9. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones.

    Bassman, J H; Zwier, J C


    of the eastern Washington clone of P. trichocarpa; and (3) introducing eastern Washington clones of black cottonwood into breeding programs is likely to yield lines with favorable growth characteristics combined with enhanced WUE and adaptation to soil water deficits. PMID:14972886

  10. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra).

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G


    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar. PMID:24390071

  11. Phytoremediation of trichloroethene (TCE) using cottonwood trees

    Jones, S.A.; Lee, R.W.; Kuniansky, E.L.


    The ability of cottonwood trees for phytoremediation was studied on aerobic shallow groundwater containing TCE. Cottonwood trees were planted over a 0.2-ha area at the Naval Air Station at Fort Worth, TX, in April 1996. Two years later, groundwater chemistry in the terrace alluvial aquifer was changing locally. Dissolved oxygen (DO) concentrations declined at the southern end of the whip plantings while total iron concentration increased. Groundwater chemistry near a mature cottonwood tree ~ 60 m from the caliper trees was different from that observed elsewhere. Anaerobic conditions near the mature cottonwood tree were evident. Reductive dechlorination of TCE occurred in the aquifer near the mature tree, as demonstrated by very small concentration of TCE in groundwater, a small median ratio of TCE to the degradation product cis-1,2-DCE and the presence of vinyl chloride.

  12. Plains cottonwood's last stand: can it survive invasion of Russian olive onto the Milk River, Montana floodplain?

    Pearce, C M; Smith, D G


    Russian olive (Elaeagnus angustifolia L.) was introduced in 1950 onto one site on the Milk River floodplain, northern Montana, 10 km downstream from the Canada/United States border. To analyze dispersal of Russian olive from the point source between 1950 and 1999, we compared distribution, numbers, size structure, and mortality of Russian olive and plains cottonwood (Populus deltoides Marsh:) on an unregulated reach of the Milk River floodplain in southeastern Alberta and north-central Montana. Within 50 years, Russian olive in this reach has moved upriver into Alberta and downriver to the Fresno Reservoir. It is now present on 69 of the 74 meander lobes sampled, comprising 34%, 62%, and 61% of all Russian olive and plains cottonwood seedlings, saplings, and trees, respectively. On some meander lobes, Russian olive has colonized similar elevations on the floodplain as plains cottonwood and is oriented in rows paralleling the river channel, suggesting that recruitment may be related to river processes. Breakup ice had killed 400 Russian olive saplings and trees and damaged >1000 others on 30 of the meander lobes in 1996. Nevertheless, Russian olive now outnumbers cottonwood on many sites on the Milk River floodplain because its seeds can be dispersed by wildlife (particularly birds) and probably by flood water and ice rafts; seeds are viable for up to 3 years and germination can take place on bare and well-vegetated soils; and saplings and trees are less palatable to livestock and beaver than plains cottonwood. Without control, Russian olive could be locally dominant on the Milk River floodplain in all age classes within 10 years and replace plains cottonwood within this century. PMID:11568843

  13. Chemical and physical properties of two-year short-rotation deciduous species. [Olea sp. , Populus deltoides, Platanus sp. , Alnus glutinosa, Paulownia tomentosa, Robina pseudoacacia, Acer saccharinum

    Lee, C.S


    The following seven broadleaved species were tested: autumn olive (Olea sp.) eastern cottonwood (Populus deltoides), sycamore (Platanus species), black alder (Alnus glutinosa), royal paulownia (Paulownia tomentosa), black locust (Robina pseudoacacia) and silver maple (Acer saccharinum). The species and portions both significantly affected the chemical and the physical findings of the juvenile wood. The ages, which were tested in factorial combination with the species, also showed a significant effect on both the chemical and the physical properties of wood. All of the results indicated that both chemical and physical properties did vary with species, among the portions of the wood, and according to the ages of the wood. From the portion standpoint, the bark had higher gross heat content, sulphur content, ash content and lignin content, and it was also higher in all three kinds of extractives contents. The wood portion was found to be rich in holocellulose, alpha-cellulose and pentosan. In considering the chemical and physical properties of juvenile wood among the species, eastern cottonwood was found to have the highest value for ash content and all of the three kinds of extractives content. Paulownia had the highest value for sulphur content. Black locust had highest gross heat content, holocellulose and alpha-cellulose contents. Silver maple had highest lignin content. Results from this study showed that these seven juvenile hardwood species can produce high biomass yields of fibre and energy when grown under intensive care in central and southern Illinois sites. The best species of these seven tested woods seem to be black locust, which could also serve as a raw material for the pulp and paper industry, as well as for a fuel for energy generation. However, further economic and energy efficiency analyses are needed before judging the feasibility of these short-rotation juvenile hardwood species.

  14. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Sedgwick, James A.; Knopf, Fritz L.


    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  15. Populus: arabidopsis for forestry. Do we need a model tree?

    Taylor, Gail


    Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the

  16. Identifying data gaps and prioritizing restoration strategies for Fremont cottonwood using linked geomorphic and population models

    Harper, E. B.; Stella, J. C.; Fremier, A. K.


    Fremont cottonwood (Populus fremontii) is an important component of semi-arid riparian ecosystems throughout western North America, but its populations are in decline due to flow regulation. Achieving a balance between human resource needs and riparian ecosystem function requires a mechanistic understanding of the multiple geomorphic and biological factors affecting tree recruitment and survival, including the timing and magnitude of river flows, and the concomitant influence on suitable habitat creation and mortality from scour and sedimentation burial. Despite a great deal of empirical research on some components of the system, such as factors affecting cottonwood recruitment, other key components are less studied. Yet understanding the relative influence of the full suite of physical and life-history drivers is critical to modeling whole-population dynamics under changing environmental conditions. We addressed these issues for the Fremont cottonwood population along the Sacramento River, CA using a sensitivity analysis approach to quantify uncertainty in parameters on the outcomes of a patch-based, dynamic population model. Using a broad range of plausible values for 15 model parameters that represent key physical, biological and climatic components of the ecosystem, we ran 1,000 population simulations that consisted of a subset of 14.3 million possible combinations of parameter estimates to predict the frequency of patch colonization and total forest habitat predicted to occur under current hydrologic conditions after 175 years. Results indicate that Fremont cottonwood populations are highly sensitive to the interactions among flow regime, sedimentation rate and the depth of the capillary fringe (Fig. 1). Estimates of long-term floodplain sedimentation rate would substantially improve model accuracy. Spatial variation in sediment texture was also important to the extent that it determines the depth of the capillary fringe, which regulates the availability of

  17. Climate and flow variation revealed in tree rings of riparian cottonwood, western North Dakota, USA

    Friedman, J. M.; Edmondson, J. R.; Meko, D. M.; Touchan, R.; Griffin, E. R.; Zhou, H.


    In the western Great Plains, where old upland trees are scarce, rings of riparian trees provide an important opportunity for reconstructing past river flow and climate. We present data from 489 plains cottonwood (Populus deltoides ssp. monilifera) trees along the Little Missouri River in western North Dakota. The trees are in randomly selected flood-plain locations within the North and South units of Theodore Roosevelt National Park. The two sites are separated by 160 river km. The Little Missouri watershed contains foothills but no mountains, and most annual high flows result from snowmelt in March or April. Cores were collected and processed using standard dendrochronological methods. The effect of tree age was removed from the chronology using a single relation for the site as a whole (age-curve standardization), which preserves century-scale variation. Trees were as old as 371 years. Given that cottonwood establishment depends upon channel migration, abundant establishment from 1864-1891 at both sites suggests that one or more large floods occurred prior to this period. At the North Unit, establishment continued at a lower rate during the next century, but upstream at the South Unit, tree establishment was greatly curtailed after the 1800s. Comparison of General Land Office Maps from 1907 to recent satellite imagery confirms that channel migration in the last century was much greater within the North Unit, a difference caused in part by a downstream increase in flood amplification by ice jamming. Ring widths show that even on the flood plain riparian trees were chronically drought stressed. At both sites growth was strongly positively correlated with flow and precipitation and weakly negatively correlated with temperature. Growth was most strongly correlated with flow and precipitation in April-July, which is consistent with dendrometer-band measurements showing growth cessation in August. Whereas cottonwood establishment decreased in the 1900s, ring widths

  18. The response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) cuttings to different water table depths and sediment types: implications for flow management and river corridor biodiversity

    Hughes, Francine M. R.; Barsoum, Nadia; Richards, Keith S.; Winfield, Mark; Hayes, Adrian


    Management of river flows has altered the pattern of flood arrival times and reduced their frequency and duration on many European floodplains. Floodplain tree species depend on floods both to provide new sites for their regeneration and to recharge water tables at various depths in the rooting zone. A reduction in floods is one factor that has led to loss of river corridor biodiversity, with early successional tree species from the Salicaceae being particularly adversely affected. Members of the Salicaceae are dioecious and it is possible that the males and females of these species have measurably different water table requirements, which might lead to spatial segregation of the sexes on a floodplain. This paper describes an investigation that was carried out into the response of male and female black poplar (Populus nigra L. subspecies betulifolia (Pursh) W. Wettst.) to different soil moisture conditions. An experiment was set up on an alluvial island in the River Great Ouse (UK) in which cuttings of male and female black poplar were grown in different sediment types with different water table levels. The experiment was carried out over two field seasons in 1997 and 1998. Results showed that females tended to prefer wetter and more nutrient-rich sites than males but that there was considerable overlap in their requirements. A complementary genetic study showed very little genetic variation in the experimental population, which may also partially explain the relatively low level of variation between the two sexes found in the study. It is suggested that some limited spatial segregation of the sexes does occur in response to soil moisture availability and that river flow management which aims to maintain or increase river corridor biodiversity may need to take this into account.

  19. Cottonwood data collection protocol : Great Sand Dunes National Park : Elk/Bison grazing ecology study

    US Fish and Wildlife Service, Department of the Interior — This protocol/SOP is from USGS to estimate percent consumption of cottonwood saplings, seedlings, and resprouts and recruitment rates of cottonwood subjected to...

  20. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    Coyle, D R; D.C. Booth: M.S. Wallace


    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  1. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    Vining Kelly J


    Full Text Available Abstract Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem in the reference tree species black cottonwood (Populus trichocarpa. Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq, we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation" had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.

  2. Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites.

    Gregg, Jillian W; Jones, Clive G; Dawson, Todd E


    Previously we found that cloned cottonwood saplings (Populus deltoides) grew twice as large in New York, New York, USA, compared to surrounding rural environments and that soils, temperature, CO2, nutrient deposition, and microclimatic variables could not account for the greater urban plant biomass. Correlations between final season biomass and cumulative O3 exposures, combined with twofold growth reductions in an open-top chamber experiment provided strong evidence that higher cumulative O3 exposures in rural sites reduced growth in the country. Here, we assess the field gas exchange, growth and development, and allocation responses underlying the observed growth differences and compare them with isolated O3 responses documented in the open-top chamber experiment. Cottonwoods showed no visible foliar injury, reduced photosynthesis of recently expanded foliage, early leaf senescence, protective reduction in stomatal conductance, or compensatory allocation to shoot relative to root biomass for either the chamber or field experiment. Instead, O3-impacted chamber plants had significantly higher conductance and reduced photosynthesis of older foliage that led to reduced leaf area production and a twofold biomass reduction in the absence of visible injury. Rural-grown field plants showed the same pattern of significantly higher conductance in the absence of concomitant increases in photosynthesis that was indicative of a loss of stomatal control. Incremental changes in foliar production were also significantly inversely related to fluctuations in ambient O3 exposures. The similarity in biomass, gas exchange, phenological, and allocation responses between chamber and field experiments indicate that mechanisms accounting for reduced growth at rural sites were consistent with those in the open-top chamber O3 experiment. This study shows the limitation of visible symptoms as a sole diagnostic factor for documenting detrimental O3 impacts and points toward a new approach to

  3. Anthropogenic radionuclides and heavy metals in black poplar tree (Populus nigra l.) bark sampled in one of the residential districts of Kyiv

    Tree bark is known to be a good alternative biological substrate that can be successfully used in the air pollution monitoring studies, especially in urban and industrialized areas suffering from the severe anthropogenic pressure. In Kyiv black poplar is a widespread tree species, whose bark was used as a biological indicator in our research. The bark samples were collected within one of the residential districts of Kyiv and were subject to comprehensive analysis for the content of stable elements and anthropogenic radionuclides. Thermal and epicadmium NAA in short- and long-term irradiation modes, respectively, were used for the determination of concentrations of up to 40 heavy metals, while gamma spectrometry, alpha spectrometry and radiochemical extraction-ion-exchange techniques were applied to determine137Cs, 90Sr, Pu and Am radioactive isotopes in single bark samples. The analytical data obtained were subject to correlation and factor analysis, which revealed basic air pollution sources in the investigated region. It was shown that no significant correlations exist between radionuclides and any determined stable elements in the analyzed samples. All measured radioactive isotopes turned out to fall into a separate factor, which is believed to present the direct deposition of fuel microparticles from the Chernobyl NPP's Unit 4 from the atmosphere into the substratum during radioactive fallouts in spring 1986. This conclusion was supported by the evaluated isotopic ratios 137Cs/90Sr = 1.1 ± 0.4, 137Cs/239+240Pu = 100 ± 40, 239+240Pu/238Pu = 1.0 ± 0.6, as well as by the observed significant variation of the radionuclide concentrations (e.g. 10 Bq/kg - 1540 Bq/kg for 137Cs, 0.1 Bq/kg - 21 Bq/kg for 238,240Pu), which is believed to reflect a microparticle character of the pollution. The obtained data suggest that re-suspension does not play a significant role in the formation of atmospheric air pollution by radioactive substances in the investigated region

  4. Seasonal patterns of photosynthetic gas-exchange and leaf reflectance characteristics in male and female riparian cottonwoods of southern Alberta

    Letts, M. G.; Phelan, C. A.; Johnson, D. R.; Pearce, D. W.; Rood, S. B.


    Riparian, or streamside, cottonwood trees ( Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in arid and semi-arid ecosystems throughout the northern hemisphere. In southern Alberta, groundwater and soil moisture levels typically decline during the May to September growth season. To understand how narrowleaf cottonwoods ( Populus angustifolia James) respond to this seasonal decrease in moisture availability, we repeatedly measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (δ13C) in four male and four female trees of the Oldman River valley, throughout the 2006 growth season. Maximum light-saturated net photosynthesis rates (Amax), near 16 μmol m-2 s-1, occurred on day of year (DOY) 205, one month after peak soil moisture, but coincident with the maximum quantum efficiency of Photosystem II (Fv/Fm), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI). CI data suggest that the early-season rise in Amax and Fv/Fm was partly due to growth in the chlorophyll pool. Thereafter, Amax fell to near 10 μmol m-2 s-1, largely due to its positive logarithmic relationship with stomatal conductance (gs; r2=0.89), which decreased from 559 to 246 mmol m-2 s-1 from DOY 205 to 237. The normalized difference vegetation index (NDVI), CI, sPRI and quantum yield of electron transfer at Photosystem II (ΦPSII) also declined in response to lower volumetric soil moisture content (θv) and increasing groundwater depth (Zgw). Little change in transpiration rate (E) was observed in response to changing environmental conditions, except on DOY 237, when a combination of unseasonably low vapour pressure deficit (D) and low θv above the deepening capillary fringe caused E to decrease. No significant difference was observed between the mean WUE (Amax/E) of males (2.1 ± 0.2 mmol mol-1) and females (2.5 ± 0.2 mmol mol-1; repeated measures ANOVA, df=6, F=2.39, p=0

  5. Sink-source interactions between a galling aphid and its narrowleaf cottonwood host: Within and between plant variation

    The authors examined within and between plant variation in the capacity of the leaf gallin aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). Within a plant, a series of 14C-labeling experiments showed that P. betae actively manipulated host translocation patterns by acting as a strong sink and fed on assimilates produced in surrounding plant tissues serving as sources. Food resources drawn into the galled leaf from storage tissues in the stem and from surrounding leaves were a major resource for this herbivore in addition to resources from the galled leaf blade. Aphids compete for resources with natural plant sinks, such as developing fruits. In common gardens containing aphid resistant and aphid susceptible clones, I tested the hypothesis that aphid gall success on resistant trees is limited by competition between aphid-induced sinks and the plant's natural sinks, and that the intensity of intraplant competition was determined by the genetically determined architecture of the tree. Through bud removal, a resistant clone could be given the architecture of a susceptible clone. Aphid survival was increased two fold on architecturally modified resistant clones

  6. Artificial cavities enhance breeding bird densities in managed cottonwood forests

    Twedt, D.J.; Henne-Kerr, J.L.


    The paucity of natural cavities within short-rotation hardwood agroforests restricts occupancy by cavity-nesting birds. However, providing 1.6 artificial nesting cavities (nest boxes)/ha within 3- to 10-year-old managed cottonwood forests in the Mississippi Alluvial Valley increased territory density of cavity-nesting birds. Differences in territory densities between forests with and without nest boxes increased as stands aged. Seven bird species initiated 38 nests in 173 boxes during 1997 and 39 nests in 172 boxes during 1998. Prothonotary warblers (Protonotaria citrea) and eastern bluebirds (Sialia sialis) accounted for 67% of nests; nearly all warbler nests were in 1.8-L, plastic-coated cardboard (paper) boxes, whereas bluebird nests were divided between paper boxes and 3.5-L wooden boxes. Larger-volume (16.5-L) wooden nest boxes were used by eastern screech owls (Otus asio) and great crested flycatchers (Myiarchus crinitus), but this box type often was usurped by honey bees (Apis mellifera). To enhance territory densities of cavity-nesting birds in cottonwood agroforests, we recommend placement of plastic-coated paper nest boxes, at a density of 0.5/ha, after trees are >4 years old but at least 2 years before anticipated timber harvest.

  7. Native Venturia inopina sp. nov., specific to Populus trichocarpa and its hybrids.

    Newcombe, George


    Venturia populina, first described on European Populus nigra, has been thought to be the only species of Venturia in Europe and North America to cause leaf and shoot blight of balsam poplars and cottonwoods in Populus sects. Tacamahaca and Aigeiros. The species of Venturia occurring on introduced P. nigra and native P. trichocarpa in the Pacific northwest were examined. Venturia populina was consistently found on P. nigra (i.e. the widespread P. nigra cv. 'italica') in the region, but V. inopina sp. nov. was present on native P. trichocarpa and its hybrids. There were neither examples of V. populina on P. trichocarpa and its hybrids nor of V. inopina on P. nigra cv. 'italica' (27 collections from 16 sites in Oregon, Washington, and Vancouver Island were made during 1995-2002). In an inoculation study, host-range separation was confirmed in that V. inopina caused sporulating leaf lesions on P. trichocarpa and its hybrids, but only non-sporulating lesions on P. nigra cv. 'italica'. These two species of Venturia can readily be distinguished by conidial septation; V. populina is primarily 2-septate, whereas V. inopina is primarily 1-septate. Growth rates on PDA at 15 degrees C, and ITS sequences (2.3% divergence) were also distinct in isolates of these congeners. Conidial shape was of more value in discriminant analysis than conidial length. Venturia inopina is homothallic, given the sexual fertility of cultures of single ascospores that were overwintered under ambient conditions. Its geographic range appears to be restricted even within the Pacific northwest, leaving open the possibility that still other undescribed, native species of Venturia occur elsewhere in North America on sects. Tacamahaca and Aigeiros. PMID:12735251

  8. Clone history shapes Populus drought responses.

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M


    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. PMID:21746919

  9. Protease gene families in Populus and Arabidopsis

    Jansson Stefan


    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  10. Variability and relationship among cuttings' rooting characters for eastern cottonwood

    Kovačević Branislav


    Full Text Available The influence of genotype, year and genotype x year interaction on variation of 14 characters of hardwood cutting rooting ability in field conditions, as well as relationship among them was examined in four dates of observation during the first half of vegetation period for fifteen genotypes of Populus deltoides Bartr. are presented. The influence of year rose throughout the examined period, while influence of genotype x year interaction was usually weak. Most of characters had high heritability in second date of observation (second half of May. Beside total number of first-order roots, results signify number of roots on middle and basal part of cutting, as well as shoot characters (number of leaves and shoot height, while characters describing wound roots (roots on basal cut appeared insignificant. Examined characters were grouped according to PCA(Principal Component Analysis in two groups, defined by number of roots in the middle part of cutting and number of roots on basal part of cutting. .

  11. Genetic Test of New Cottonwood Clones at Nursery Stage

    QINGuanghua; JIANGYuezhong


    Twenty-five new clones belong to Populus Aigeiros of both domestic and foreign origin had been introduced and tested at nursery stage in Shandong province. Results showed that height (H),diameter at stem base (DO) and survival rate (SR) varied significantly and genetic variation were very large among the clones. CVg and broad-sense heritability (h2) of H, DO and SR of 1-year-old stock nursery were 7.43%, 9.25%, 18.78% and 78.91%, 96.31%, 95.93%, respectively, showing high genetic control on the tested traits. 11 superior clones with characteristics of high growth rate and medium or high SR were primarily selected and genetic gains (△G) of H, DO and SR were 16.89%, 16.08% and 13.08%, respectively.Rooting habits test of some selected clones were also conducted based on the cutting culture in water container and annual growth increment measured. The date of first root emergence, number of main roots, number of lateral roots, length of main roots and the emergence date of growth peak varied to certain degree among the selected clones.

  12. Populus transcriptomics : from noise to biology

    Sjödin, Andreas


    Mikromatriser handlar numera inte bara om att alstra genuttrycksdata i snabb takt, utan det är minst lika viktigt att effektivt ta hand om informationen efteråt. I den här avhandlingen presenteras ett arbetsflöde för att mäta, lagra och analysera genuttrycksdata i asp och poppel (Populus spp.). En Populus} mikromatrisdatabas - UPSC--BASE - tillgänglig för alla intresserade, utvecklades i syfte att samla in och lagra genuttrycksdata. Flertalet analysverktyg gjordes samtidigt tillgängliga, för ...

  13. Epigenomics of Development in Populus

    Strauss, Steve; Freitag, Michael; Mockler, Todd


    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  14. 76 FR 34197 - Anchorage; Change to Cottonwood Island Anchorage, Columbia River, Oregon and Washington


    .... SUMMARY: The Coast Guard proposes to increase the size of the Cottonwood Island Anchorage on the Columbia River. The change is necessary to help ensure that there is sufficient space to accommodate vessels... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316)....

  15. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    Hultine, K R; Bush, S E; Ehleringer, J R


    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  16. Allelopathic potential of populus euphratica olivier

    Populus euphratica Olivier is frequently cultivated deciduous tree in Pakistan on agricultural land for its shade, fodder, timber and fuel wood. A relatively reduced under storey is often observed below it. Therefore the present study was conducted to assess the allelopathic potential of Populus euphratica against some crop species. Plant material of Populus euphratica were collected from the agriculture fields of Lahor, District Swabi in 2008 and were dried at room temperature (258 deg. C-308 deg. C). Allelopathic studies conducted by using aqueous extracts from various parts including young leaves, mature leaves, bark, litter and mulching in various experiments invariably retarded the germination, plumule, radical growth, fresh and dry weight of Sorghum vulgare Perse, Setaria italica (L.) P. Beauv and Triticum aestivum L., in laboratory experiments. The aqueous extracts obtained after 48 h were more inhibitory than 24 h. Leaves were more toxic than bark. Litter and mulching experiments also proved to be inhibitory. It is suggested that the various assayed parts of Populus euphratica have strong allelopathic potential at least against the tested species. Further investigation is required to see its allelopathic behavior under field condition against its associated species and to identify the toxic principles. (author)

  17. Terra Populus and DataNet Collaboration

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.


    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  18. Barcoding poplars (Populus L. from western China.

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  19. Stomata morphological traits in two different genotypes of Populus nigra L.

    Russo G


    Full Text Available Populus nigra L. (black poplar possesses amphistomatic leaves, with large (giant and normal sized stomata. The role of giant stomata in leaf development, and the consequences on stomatal density in adult leaves remains elusive. This paper describes the characteristics of ordinary and giant stomata in leaves of two black poplar genotypes (58-861 with large leaves from northern Italy, and Poli with small leaves from southern Italy. Stomatal traits in both genotypes were studied using light microscopy on mature leaf adaxial and abaxial epidermal impressions. Moreover, scanning electron microscopy was applied to study giant and normal stomata in early, young, and mature leaves. Leaf abaxial surfaces in the two genotypes revealed variable sizes and patterns of stomata related to differences in intrinsic water use efficiency (Wi. These observations provided evidence of different stomatal types in mature black poplar leaves, and new information regarding the presence and potential role of giant stomata in black poplar leaves.

  20. Ultraviolet-B radiation alters phenolic salicylate and flavenoid composition of Populus trichocarpa leaves

    Warren, J. M. [USDA Forest Service, Forestry Science Laboratory, Corwallis, OR (United States); Bassman, J. H. [Washington State Univ., Dept. of Natural Resources Sciences, Pullman, WA (United States); Fellman, J. K.; Mattinson, D. S. [Washington State Univ., Dept. of Horticulture and Landscape Architecture, Pullman, WA (United States); Eigenbrode, S. [Idaho Univ., Dept. of Plant, Soil and Entomological Sciences, Moscow, ID (United States)


    Foliar phenolic composition of field- and greenhouse-grown black cottonwood was studied by subjecting samples to near zero, ambient and twice-ambient concentrations of biologically effective ultraviolet-B radiation. Phenolic compounds were extracted after three months, separated by liquid chromatography and identified and quantified by diode-array spectrometry and mass spectrometry. Phenolic compounds that were found to have increased in response to UV-B radiation were flavonoids, although increasing the level of radiation to ambient and twice ambient levels did not result in further flavonoid accumulation in either greenhouse or field samples. There was, however, an increase in salicortin, a non-flavonoid glycoside, and a salicylates that is important in plant-herbivore-predator relationships. It was concluded that enhanced solar UV-B radiation has the capacity to significantly alter trophic structure in some ecosystems by stimulating specific phenolic compounds. 74 refs., 1 tab., 6 figs.

  1. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA

    Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M.


    SummaryApplication of two-step approach of evapotranspiration (ET) crop coefficients (Kc) to "approximate" a very complex process of actual evapotranspiration (ETa) for field crops has been practiced by water management community. However, the use of Kc, and in particular the concept of growing degree days (GDD) to estimate Kc, have not been sufficiently studied for estimation of evaporative losses from riparian vegetation. Our study is one of the first to develop evapotranspiration crop coefficient (KcET) curves for mixed riparian vegetation and transpiration (TRP) crop coefficients (KcTRP) for individual riparian species as a function GDD through extensive field campaigns conducted in 2009 and 2010 in the Platte River Basin in central Nebraska, USA. KcTRP values for individual riparian vegetation species [Common reed (Phragmites australis), Cottonwood (Populus deltoids) and Peach-leaf willow (Salix amygdaloides)] were quantified from the TRP rates obtained using scaled-up canopy resistance from measured leaf-level stomatal resistance and reference evapotranspiration. The KcET and KcTRP curves were developed for alfalfa-reference (KcrET and KcrTRP) surface. The seasonal average mixed riparian plant community KcrET was 0.89 in 2009 and 1.27 in 2010. In 2009, the seasonal average KcrTRP values for Common reed, Cottonwood and Peach-leaf willow were 0.57, 0.51 and 0.62, respectively. In 2010, the seasonal average KcrTRP were 0.69, 0.62 and 0.83 for the same species, respectively. In general, TRP crop coefficients had less interannual variability than the KcrET. Response of the vegetation to flooding in 2010 played an important role on the interannual variability of KcrET values. We demonstrated good performance and reliability of developed GDD-based KcrTRP curves by using the curves developed for 2009 to predict TRP rates of individual species in 2010. Using the KcrTRP curves developed during the 2009 season, we were able to predict the TRP rates for Common reed

  2. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis


    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers. PMID:22574380

  3. Populus Responses to Edaphic and Climatic Cues: Emerging Evidence from Systems Biology Research

    Wullschleger, Stan D [ORNL; Weston, David [ORNL; Davis, John M [University of Florida


    The emergence of Populus as a model system for tree biology continues to be driven by a community of scientists dedicated to developing the resources needed to undertake genetic and functional genomic studies in this genus. As a result, understanding the molecular processes that underpin the growth and development of cottonwood, aspen, and hybrid poplar has steadily increased over the last several decades. Recently, our ability to examine the basic mechanisms whereby trees respond to a changing climate and resource limitations has benefited greatly from the sequencing of the P. trichocarpa genome. This landmark event has laid a solid foundation upon which biologists can now quantify, in breathtaking and unprecedented detail, the diversity of genes, proteins, and metabolites that govern the growth and development of some of the longest living and tallest growing organisms on Earth. Although the challenges likely to be encountered by scientists who work with trees are many, recent literature provides a few examples where a systems approach, one that focuses on integrating transcriptomic, proteomic, and metabolomic analyses, is beginning to provide insights into the molecular-scale response of poplars to their climatic and edaphic environment. In this review, our objectives are to look at evidence from studies that examine the molecular response of poplar to edaphic and climatic cues and highlight instances where two or more omic-scale measurements confirm and hopefully expand our inferences about mechanisms contributing to observed patterns of response. Based on conclusions drawn from these studies, we propose that three requirements will be essential as systems biology in poplar moves to reveal unique insights. These include use of genetically-defined individuals (e.g., pedigrees or transgenics) in studies; incorporation of modeling as a complement to transcriptomic, proteomic and metabolomic data; and inclusion of whole-tree and stand-level phenotypes to place

  4. Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.

    Zupanc, Vesna; Justin, Maja Zupančič


    The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (Pfield capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios. PMID:20554192

  5. Gamma radiation effect on Populus nigra assimilatory pigments

    The influence of low intensity gamma radiation on the photosynthesis in young poplar saplings was studied. Black poplar (Populus nigra) was chosen due to its ecological importance, as fast growing tree species with many hybrids, in the frame of a polluted environment. Assimilatory pigments in the leaves of irradiated saplings were assayed using standard spectrophotometric method in acetone extract. Series of five saplings formed the experimental samples. Chlorophyll a and chlorophyll b levels appeared as diminished in exposed samples in comparison to the controls. Linear regression was established in every case, the line slope showing the higher effect in chlorophyll b. Carotene pigments presented a slight increasing tendency in the exposed samples. Assimilatory pigment sum was shown to be affected by the same decreasing tendency. Student t-test was applied (two tailed, pair type) to reveal statistical significance of observed modifications. Though not very deep, the modifications induced by exposure to gamma radiation of low intensity (comparable to the local atmospheric variations, caused by both natural and artificial sources) represent putative inhibitory factors in young plant photosynthesis. The main mechanism of radiation action seems to be water radiolysis, triggering peroxide cascade, generally producing toxic products for the cell metabolism. Nevertheless, living cell ability to repair some damages caused by external stress could be revealed in the present case by the enhancing tendency of the carotenes which sustain photosynthesis as secondary pigments. (authors)

  6. Identification and Characterization of the Populus AREB/ABF Subfamily

    Lexiang Ji; Jia Wang; Meixia Ye; Ying Li; Bin Guo; Zhong Chen; Hao Li; Xinmin An


    Abscisic acid (ABA) is a major plant hormone that plays an important role in responses to abiotic stresses.The ABA-responsive element binding proteinlABRE-binding factor (AREB/ABF) gene subfamily contains crucial transcription factors in the ABA-mediated signaling pathway.In this study,a total of 14 putative AREB/ABF members were identified in the Populus trichocarpa Torr.& Gray.genome using five AREB/ABF amino acid sequences from Arabidopsis thaliana probes.The 14 putative Populus subfamily members showed high protein similarities,especially in the basic leucine zipper (bZlP) domain region.A neighbor-joining analysis combined with gene structure data revealed homology among the 14 genes.The expression patterns of the Populus AREB/ABF subfamily suggested that the most abundant transcripts of 11 genes occurred in leaf tissues,while two genes were most transcribed in root tissues.Significantly,eight Populus AREB/ABF gene members were upregulated after treatment with 100 μM exogenous ABA,while the other six members were downregulated.We identified the expression profiles of the subfamily members in Populus tissues and elucidated different response patterns of Populus AREB/ABF members to ABA stress.This study provided insight into the roles of Populus AREB/ABF homologues in plant response to abiotic stresses.

  7. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa


    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  8. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    Guo, Jianjun [ORNL; Morrell-Falvey, Jennifer L [ORNL; Labbe, Jessy L [ORNL; Muchero, Wellington [ORNL; Kalluri, Udaya C [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL


    Background: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  9. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays.

    Jianjun Guo

    Full Text Available BACKGROUND: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  10. 2004 progress report : Effects of ungulate browsing on post-fire recovery of riparian cottonwoods : Implications for management of riparian forests, Seedskadee National Wildlife Refuge, Wyoming

    US Fish and Wildlife Service, Department of the Interior — Browsing pressure by ungulates may limit natural establishment of native cottonwood and willow stands, and fires, which have become more frequent on riparian lands...

  11. Audubon National Wildlife Refuge, Lake Nettie National Wildlife Refuge, Camp Lake Easement Refuge, Wintering River Easement Refuge, Cottonwood Lake Easement Refuge, Sheyenne Lake Easement Refuge : Narrative report : 1969

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon National Wildlife Refuge including Lake Nettie National Wildlife Refuge, Camp Lake Easement Refuge, Cottonwood Lake...

  12. The CLE gene family in Populus trichocarpa.

    Liu, Zhijun; Yang, Nan; Lv, Yanting; Pan, Lixia; Lv, Shuo; Han, Huibin; Wang, Guodong


    The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants. PMID:27232947

  13. Growth of Populus and Salix Species under Compost Leachate Irrigation

    Tooba Abedi


    Full Text Available According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran. The highest diameter growth rate was exhibited for all three plant species by the 1:1 treatment with an average of 0.26, 0.22 and 0.16 cm in eight months period for P. euroamericana, P. deltoides and S. alba, respectively. Over a period of eight months a higher growth rate of height was observed in (P and (1:1 treatment for S. alba (33.70 and 15.77 cm, respectively and in (C treatment for P. deltoides (16.51 cm. P. deltoides and S. alba produced significantly (p<0.05 smaller aboveground biomass in (P treatment compared to all species. P. deltoides exhibited greater mean aboveground biomass in the (1:1 treatment compared to other species. There were significant differences (p<0.05 in the growth of roots between P. deltoides, P. euramericana and S. alba in all of the treatments.

  14. Prevalence of LuxR- and LuxI-type quorum sensing circuits in members of the Populus deltoides microbiome

    Schaefer, Amy L [University of Washington, Seattle; Lappala, Colin [University of Washington, Seattle; Morlen, Ryan [University of Washington, Seattle; Pelletier, Dale A [ORNL; Lu, Tse-Yuan [ORNL; Lankford, Patricia K [ORNL; Harwood, Caroline S [University of Washington, Seattle; Greenberg, E. Peter [University of Washington, Seattle


    We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus 25 deltoides. There is a large bank of bacterial isolates from P. deltoides and there are 44 draft 26 genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand 27 the roles of bacterial communication and plant-bacterial signaling in P. deltoides we focused on 28 the prevalence of acyl-homoserine lactone (AHL) quorum sensing signal production and 29 reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for 30 AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and 31 we queried the available genome sequences of microbiome isolates for homologs of AHL 32 synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. 33 Positive isolates included -, - and -Proteobacteria. Members of the luxI family of AHL 34 synthases were identified in 18 of 39 Proteobacteria genomes including genomes of some 35 isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, 36 that include AHL-responsive factors, were more abundant than luxI homologs. There were 72 in 37 the 39 Proteobacteria genomes. Some of the luxR homologs appear to be members of a 38 subfamily of LuxRs that respond to as yet unknown plant signals rather than bacterial AHLs. 39 Apparently, there is a substantial capacity for AHL cell-to-cell communication in Proteobacteria 40 of the P. deltoides microbiota and there are also Proteobacteria with LuxR homologs of the type 41 hypothesized to respond to plant signals or cues.

  15. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Xue Han


    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  16. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento


    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning


    Jakovljević, Tamara; Radojčić Redovniković, Ivana; Cvjetko, Marina; Bukovac, Ivana; Sedak, Marija; Đokić, Maja; Bilandžić, Nina


    Fitoremedijacija se smatra obećavajućom, jeftinom te estetski prihvatljivom, in situ tehnologijom za remedijaciju teških metala iz onečišćenih tala. Potencijal uporabe drveća u fitoremedijaciji tla prepoznat je zadnjih desetljeća, te je u skladu s tim u ovom radu utvrđen potencijal jablana (Populus nigra var. italica) u fitoremedijaciji kadmija. U tu svrhu ispitan je fitoekstrakcijski potencijal jablana (Populus nigra var. italica), distribucija kadmija u pojedine dijelove biljke (list, stabl...

  18. Riparian cottonwood ecosystems and regulated flows in Kootenai and Yakima sub-basins : Volume II Yakima (overview, report, appendices); TOPICAL

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins

  19. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Jamieson, Bob; Braatne, Jeffrey H.


    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  20. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Jamieson, Bob; Braatne, Jeffrey H.


    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  1. The glutamine synthetase gene family in Populus

    Cánovas Francisco M


    Full Text Available Abstract Background Glutamine synthetase (GS; EC:, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  2. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.


    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  3. Microbiology of Wetwood: Importance of Pectin Degradation and Clostridium Species in Living Trees

    Schink, Bernhard; James C. Ward; Zeikus, J. Gregory


    Wetwood samples from standing trees of eastern cottonwood (Populus deltoides), black poplar (Populus nigra), and American elm (Ulmus americana) contained high numbers of aerobic and anaerobic pectin-degrading bacteria (104 to 106 cells per g of wood). High activity of polygalacturonate lyase (≤0.5 U/ml) was also detected in the fetid liquid that spurted from wetwood zones in the lower trunk when the trees were bored. A prevalent pectin-degrading obligately anaerobic bacterium isolated from th...

  4. A new diterpenoid from the stem bark of Populus davidiana

    Xin Feng Zhang; Xiang Li; Byung Sun Min; Ki Hwan Bae


    A new diterpenoid, named populusol A (1), was isolated from the methanolic extraction of the stem bark of Populus davidiana. The structure was elucidated on the basis of extensive 1D and 2D NMR as well as HRFAB-MS spectroscopic analysis.

  5. Precision Gravity Monitoring of Artificial Recharge at Little Cottonwood Canyon, Wasatch Front, Utah

    Johnson, B. S.; Gettings, P.; Chapman, D. S.


    Repeated high-precision (± 5 μGal) gravity surveys are used to monitor artificial groundwater recharge at the Little Cottonwood Water Treatment Plant (LCWTP) in the southern portion of the Salt Lake Valley, UT. The gravity survey network consists of 30 sites arranged to capture the expected horizontal migration (> 500 meters/yr) of the infiltrated water. An additional 4 stations are arranged 1500 meters from the LCWTP infiltration sites for regional and environmental background control. Prior to starting recharge operations, a set of five background surveys were made between spring 2006 and summer 2007. Background (natural/environmental) variability is reliably estimated at 20 μGals. Infiltration commenced in mid-September 2007 and bimonthly gravity surveys were conducted until July 2008. A peak gravity change of 100 μGals was observed at the end of infiltration. The campaigns following cessation of infiltration showed a decreasing gravity anomaly indicating a dispersion of the ground water mound produced by the infiltration. The final gravity results from July of 2008 showed a 70 μGal decrease from the peak gravity value. Observations suggest the subsurface water flowed to the west of the LCWTP; however the control stations at the western most extent of the survey area show no increase in gravity. The gravity observations are comparable to a previous study conducted in the Weber River delta, which showed that the gravity decay over 3-5 months can be used to determine the bulk hydraulic conductivity of the area.

  6. Allelopathic interference of Populus deltoides with some winter season crops

    Singh, Harminder; Kohli, Ravinder; Batish, Daizy


    Interférence allélopathique de Populus deltoides avec quelques cultures d'hiver. On a étudié dans deux groupes de champs du Punjab (Inde du Nord) les performances des cultures d'hiver suivantes associées avec des allées de Populus deltoides : Triticum aestivum, Lens culinaris, Phaseolus mungo, Avena sativa, Trifolium alexandrinum, Brassica juncea et Helianthus annuus. Dans l'un des groupes le sol d'origine a été conservé (S$_{\\rm p}$), tandis que dans l'autre il a été remplacé par un sol prél...

  7. Increasing the productivity of short-rotation Populus plantations. Final report

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station


    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  8. Using Populus as a lignocellulosic feedstock for bioethanol.

    Porth, Ilga; El-Kassaby, Yousry A


    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  9. Flooding Regime Impacts on Radiation, Evapotranspiration, and Latent Energy Fluxes over Groundwater-Dependent Riparian Cottonwood and Saltcedar Forests

    James Cleverly


    Full Text Available Radiation and energy balances are key drivers of ecosystem water and carbon cycling. This study reports on ten years of eddy covariance measurements over groundwater-dependent ecosystems (GDEs in New Mexico, USA, to compare the role of drought and flooding on radiation, water, and energy budgets of forests differing in species composition (native cottonwood versus nonnative saltcedar and flooding regime. After net radiation (700–800 W m−2, latent heat flux was the largest energy flux, with annual values of evapotranspiration exceeding annual precipitation by 250–600%. Evaporative cooling dominated the energy fluxes of both forest types, although cottonwood generated much lower daily values of sensible heat flux (<−5 MJ m−2 d−1. Drought caused a reduction in evaporative cooling, especially in the saltcedar sites where evapotranspiration was also reduced, but without a substantial decline in depth-to-groundwater. Our findings have broad implications on water security and the management of native and nonnative vegetation within semiarid southwestern North America. Specifically, consideration of the energy budgets of GDEs as they respond to fluctuations in climatic conditions can inform the management options for reducing evapotranspiration and maintaining in-stream flow, which is legally mandated as part of interstate and international water resources agreements.

  10. Comparative nucleotide diversity across North American and European populus species.

    Ismail, Mohamed; Soolanayakanahally, Raju Y; Ingvarsson, Pär K; Guy, Robert D; Jansson, Stefan; Silim, Salim N; El-Kassaby, Yousry A


    Nucleotide polymorphisms in two North American balsam poplars (Populus trichocarpa Torr. & Gray and P. balsamifera L.; section Tacamahaca), and one Eurasian aspen (P. tremula L.; section Populus) were compared using nine loci involved in defense, stress response, photoperiodism, freezing tolerance, and housekeeping. Nucleotide diversity varied among species and was highest for P. tremula (θ(w) = 0.005, π(T) = 0.007) as compared to P. balsamifera (θ(w) = 0.004, π(T) = 0.005) or P. trichocarpa (θ(w) = 0.002, π(T) = 0.003). Across species, the defense and the stress response loci accounted for the majority of the observed level of nucleotide diversity. In general, the studied loci did not deviate from neutral expectation either at the individual locus (non-significant normalized Fay and Wu's H) or at the multi-locus level (non-significant HKA test). Using molecular clock analysis, section Tacamahaca probably shared a common ancestor with section Populus approximately 4.5 million year ago. Divergence between the two closely related balsam poplars was about 0.8 million years ago, a pattern consistent with an isolation-with-migration (IM) model. As expected, P. tremula showed a five-fold higher substitution rate (2 × 10(-8) substitution/site/year) compared to the North American species (0.4 × 10(-8) substitution/site/year), probably reflecting its complex demographic history. Linkage disequilibrium (LD) varied among species with a more rapid decay in the North American species (balsam poplar species likely reflects the recent time of their divergence. PMID:22562720

  11. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Babst Benjamin A


    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  12. Response of Populus x canescens (Populus tremula x alba) to high concentration of NaCl stress

    GAO Jian; PENG Zhen-hua


    Populus x canescens was cultivated on solid substrate and treated by salt (150 mM NaCl). The growth parametersincluding new leaf formation, height increment, diameter at the base increment, fresh and dry mass of leaf, stem, coarse root, and fine root were determined. The nutrient elements in leaves of samples under salt stress and the control, and the chlorophyll fluorescence of plants separated dark and light, initial fluorescence (Fo), and maximum fluorescence (Fm) were measured. Results showed that 150 mM NaCl treatment resulted in growth reduction of Populus x canescens. Nutrient element contents in the foliage of plants under salt stress were different from that of control. The foliar N-concentrations of plants under salt stress were not affected. Contents of Na under salt stress were 120 times as much as that under control. However, contents of S, K, P, Ca, Mg, Fe, Mn under salt stress were less than that under control. Salt stress caused damage in the PSII reaction centers, i.e. photo-inhibition couldn't be repaired under dark situation. The yield of chlorophyll fluorescence showed that several parameters associated with PSII functions, e.g. Fv/Fo, Fv/Fm were not influenced at the first stage of salt stress treatment. However, after a period of time, PSII functions were significantly inhibited, which led to the decrease of carbon assimilation. These results suggest that salt stress (150 mM NaCl) did not affect photosynthetic chlorophyll fluorescence of Populus x canescens immediately. After four day of salt stress, PSII reaction centres were seriously damaged during photo-inhibition.

  13. Audubon National Wildlife Refuge, Lake Nettie National Wildlife Refuge, Camp-Strawberry Lake Easement Refuge, Cottonwood Lake Easement Refuge, Wintering River Easement Refuge, Sheyenne Lake Easement Refuge : Narrative report : 1968

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Audubon National Wildlife Refuge (including Lake Nettie National Wildlife Refuge, Camp-Strawberry Lake Easement Refuge, Cottonwood...

  14. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera).

    Olson, Matthew S; Robertson, Amanda L; Takebayashi, Naoki; Silim, Salim; Schroeder, William R; Tiffin, Peter


    *Current perceptions that poplars have high levels of nucleotide variation, large effective population sizes, and rapid decay of linkage disequilibrium are based primarily on studies from one poplar species, Populus tremula. *We analysed 590 gene fragments (average length 565 bp) from each of 15 individuals from different populations from throughout the range of Populus balsamifera. *Nucleotide diversity (theta(total) = 0.0028, pi = 0.0027) was low compared with other trees and model agricultural systems. Patterns of nucleotide diversity and site frequency spectra were consistent with purifying selection on replacement and intron sites. When averaged across all loci we found no evidence for decay of linkage disequilibrium across 750 bp, consistent with the low estimates of the scaled recombination parameter, rho = 0.0092. *Compared with P. tremula, a well studied congener with a similar distribution, P. balsamifera has low diversity and low effective recombination, both of which indicate a lower effective population size in P. balsamifera. Patterns of diversity and linkage indicate that there is considerable variation in population genomic patterns among poplar species and unlike P. tremula, association mapping techniques in balsam poplar should consider sampling single nucleotide polymorphisms (SNPs) at well-spaced intervals. PMID:20122131

  15. Black to Black

    Langkjær, Michael Alexander


    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as...... is hinted by Rudyard Kipling’s illustration of ‘The [Black] Cat That Walked by Himself’ in his classic children’s tale). It was well understood by uniformed Anarchists, Fascists and the SS that there is an assertive presence connected with the black-clad figure. The paradox of black’s abstract elegance......-styled references to, among other things, the culturally and ideologically effervescent interwar-period have made me curious as to what alternative possibilities – for instance ‘emancipation’ – a comparative analysis might disclose concerning the visual rhetoric of black. Thus, in conclusion, it is briefly...

  16. Chemo-mechanical modification of cottonwood for Pb(2+) removal from aqueous solutions: Sorption mechanisms and potential application as biofilter in drip-irrigation.

    Mosa, Ahmed; El-Ghamry, Ayman; Trüby, Peter; Omar, Mahmoud; Gao, Bin; Elnaggar, Abdelhamid; Li, Yuncong


    Using biomass (e.g. crop residues) and its derivatives as biosorbents have been recognized as an eco-friendly technique for wastewater decontamination. In this study, mechanically modified cottonwood was further activated with KOH to improve its sorption of Pb(2+). In addition, its potential as a biofilter to safeguard radish (Raphanus sativus, L.) against Pb-stress was evaluated in a gravity-fed drip irrigation system. Physiochemical properties of the chemo-mechanically activated cottonwood (CMACW) and the mechanically activated cottonwood (MACW) before and after sorption process were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), digital selected-area electron diffraction (SAED) and Fourier transform infrared spectroscopy (FTIR). After activation, several sorption mechanisms (i.e. precipitation, electrostatic outer- and inner-sphere complexation) were responsible for the higher sorption capacity of CMACW as compared with MACW (8.55 vs. 7.28 mg g(-1)). Sorption kinetics and isotherms fitted better with the pseudo-second-order and Langmuir models as compared with the pseudo-first-order and Freundlich models, respectively. In the gravity-fed drip irrigation system, the CMACW biofilter reduced the accumulation of Pb in radish roots and shoots and avoided reaching the toxic limits in some cases. Soil types had a significant effect on Pb(2+) bioavailability because of the difference in sorption ability. Findings from this study showed that CMACW biofilter can be used as a safeguard for wastewater irrigation. PMID:27393935

  17. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Jamieson, Bob; Braatne, Jeffrey H.


    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  18. Cross Breeding of Populus and Its Hybrids for Cold Resistance


    Populus tomentosa was crossed with P. tremuloidis, P. grandidentata, P. alba × P. grandidentata and P. alba × Ulmus pumila in order to maintain its rapid growth and high wood quality and improve its resistance to cold. Two methods were used to increase the germination rate from 1.5% to 41.1% and the remaining rate from 1.7% to 44.2%. Forty crossing combinations were conducted and 2 744 hybrid seedlings were obtained. MX4 × P. grandidentata (G-1-58), MX3 × P. tremuloidis (T-44-60), MX2 × P. tremuloidis (l-13-87-37) and MX2 × (P. alba × P. grandidentata) were regarded as superior combinations after analysis and selection. Thirty seedlings of these combinations and 11 triploid seedlings identified by counting their chromosomes were selected as super plants.

  19. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny

    Monclus, Romain; Villar, Marc; Barbaroux, Cécile; Bastien, Catherine; Fichot, Régis; Delmotte, Francis; Delay, Didier; Petit, Jean-Michel; Brechet, Claude; Dreyer, Erwin; Brignolas, Franck


    Genotypic variability for productivity, wateruse efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh • Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orle´ ans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remaine...

  20. Black rings

    A black ring is a five-dimensional black hole with an event horizon of topology S1 x S2. We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)


    Yong-Hao Ni


    Full Text Available Triploid Populus tomentosa Carr. (Salicaceae is a good alternative to meet the increasing need of the global pulp and paper industry. Meanwhile, the xylem of this species could be a useful bioresource to develop low molecular extractives with significant bioactive potential. In the present work, a phytochemical investigation on aqueous EtOH extractives of Triploid P. tomentosa xylem, by systematical performance of Sephadex LH-20 open column chromatography and Thin Layer Chromatography (TLC, resulted in the isolation of two phenolic acids (ρ-coumaric acid (I and caffeic acid (II, two flavonoids (apigenin (III and luteolin (IV, and three phenolic glucosides (salicortin (V, salireposide (VI and populoside (VII. The structure elucidation and determination of the isolated extractives were based on their spectroscopical data and physiochemical evidences. This was the first time to report the low molecular weight extractives of Triploid P. tomentosa. Various low molecular weight extractives from Triploid P. tomentosa xylem exhibited significant antioxidative activities by DPPH and hydroxyl radical scavenging assays.

  2. Lignin Characterization of Triploid Clones of Populus tomentosa Carr.

    Jin Xiao-juan; Pu Jun-wen; Xie Yi-min; Takeshi Furuno; Liu Xin-yu


    In order to understand the structural characteristics of lignin in triploid clones ofPopulus tomentosa and its changes in the processes of pulping and bleaching, milled wood lignin (MWL), lignin carbohydrate complex (LCC) and the residual lignin from kraft pulp (KP) and sulfite pulp (SP) were isolated and analyzed by Fourier transform infrared (FTIR) spectrum and 13C nuclear magnetic resonance (NMR). The most diagnostic peaks were assigned and the differences were discussed. The spectral patterns reveal that triploid P. tomentosa shows the specific features of hardwood from temperate areas, but in the spectrum of FTIR, the strength ratio of A1270 cm-1 to A1226 cm-1 is 0.88, higher than the average of hardwood from temperate areas, which will make the lignin delignification more difficult during pulping and bleaching. The LCC from triploid P. tomentosa is mainly composed of xyloglucan and glucuronic acid, and other glucides have much lower ratio. In LCC FTIR, there are three peaks at 1 427, 1 329 and 1046 cm--1, indicating that both semi-cellulose and cellulose could exist in LCC, and that there might be relationships between cellulose and lignin. Compared with the residual lignin from KP and SP, the condensed structure in KP is more than that in SP.

  3. Spatiotemporal distribution of essential elements through Populus leaf ontogeny.

    Carvalho, Mónica R; Woll, Arthur; Niklas, Karl J


    We examined the spatiotemporal distribution and accumulation of calcium (Ca), potassium (K), and zinc (Zn) during the growth and maturation of grey poplar (Populus tremula × alba) leaves covering plastochrons 01 through 10. This period spans the sugar sink-to-source transition and requires coordinated changes of multiple core metabolic processes that likely involve alterations in essential and non-essential element distributions as tissues mature and effect a reversal in phloem flow direction. Whole-leaf elemental maps were obtained from dried specimens using micro X-ray fluorescence spectroscopy. Additional cross-sections of fresh leaves were scanned to check for tissue specificity in element accumulation. The anatomical distribution of Zn and K remains relatively consistent throughout leaf development; Ca accumulation varied across leaf developmental stages. The basipetal allocation of Ca to the leaf mesophyll matched spatially and temporally the sequence of phloem maturation, positive carbon balance, and sugar export from leaves. The accumulation of Ca likely reflects the maturation of xylem in minor veins and the enhancement of the transpiration stream. Our results independently confirm that xylem and phloem maturation are spatially and temporally coordinated with the onset of sugar export in leaves. PMID:26985054

  4. Oxidation behavior of biomass chars: pectin and Populus deltoides

    Hong-Shig Shim; Mohammad R. Hajaligol; Vicki L. Baliga [Philip Morris USA, Richmond, VA (United States). Research Center


    Biomass chars of pectin and cotton wood (Populus deltoides) were prepared by using a heating rate of about 1{sup o}C/s, peak pyrolysis temperatures of 400-800{sup o}C, and residence times of 10-60 min at peak temperatures. Char samples were pyrolyzed in a helium atmosphere using a thermogravimetric analyzer (TGA). Oxidation reactivity measurements of the same char samples in the TGA were collected after converting the helium atmosphere to an oxygen containing atmosphere. Reactivities were measured using an isothermal method at various reaction temperatures from 400 to 700{sup o}C and oxygen concentrations of 2-21%. Oxidation kinetic parameters such as apparent reaction order and apparent activation energies were obtained. Scanning electron microscopy (SEM) was employed to study morphological and structural development in the char samples as a function of heat treatment temperature. An interesting morphological development on the surface of the char was observed by SEM, which showed evolution of vesicle formation and whisker growth as heat treatment temperatures increased. Its implication on char reactivity is discussed. Preliminary results showed decreasing reactivity with increasing peak heat treatment temperatures. Char reactivity was affected more by the heat treatment temperature than by the hold times (10-60 min). 15 refs., 12 figs., 3 tabs.

  5. Construction of cDNA Library from Populus euphratica

    Yu Guangjun; Wang Yiqin; Shen Xin


    In order to isolate and clone salt-tolerance involved genes of Populus euphratica, we constructed a cDNA library from salt-treated leaves of P. euphratica. In the experiment, double strand cDNA were synthesized by a beads-based method. The syntheses of the first strand and the second strand cDNA, adapter ligation and restriction reaction for releasing cDNA were all conducted on the beads. The double strand cDNA were released from magnetic beads by digestion with NotI, and cDNA fragments smaller than 500 bp and residual adapters were removed through cDNA size fractionation columns. Finally, double strand cDNA were directionally cloned intoλExcell vector. The results show that the primary titer of the cDNA library is 7.46×106 pfu per mL and the packaging efficiency reaches 1.47×107 recombinants per μg DNA. λDNA extracted from two clones of plaque were digested by EcoR I and NotI, both of the clones contained inserts larger than 900 bp. These results show that the cDNA library of salt-treated P. euphratica leaves has been successfully constructed.

  6. Genetic diversity in Populus nigra plantations from west of Iran

    Afrooz Alimohamadi


    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  7. Establishment of in vitro culture of Populus euphratica Olivier

    Zhao Peng; Dong Zhan-yuan; Sun Hong-bin; Zhao Ju-ying; Wang Hua-fang


    The purpose of our study was to establish a regeneration system for micropropagation of Populus euphratica Olivier. On the basis of an analysis of plant leaf mineral nutrients, a special medium was proposed, called MP2. In optimizing media for in vitro plant cultures including MS, B5 and MP2 media we employed hormones, auxin IAA, cytokine benzyladenine (BAP) and gibberellic acid (GA) in our factorial experiments on media. Adventitious shoots were derived from cuttings of adult plants taken from Xingjiang, west China, on selected media with MP2 + 0.5 mg.L-1 BA + 0.1 mg·L-1 NAA. The shoots were elongated on a medium with 0.25mg.L-1 BAP, 0.1 mg.L-1NAA and 2 mg·L-1 GA and were then rooted on a medium with 0.2-0.5 mg·L-1 IBA. All the media were incorporated with 30 g·L-1 sucrose and an adjusted pH at 6.3.

  8. Genetic diversity in Populus nigra plantations from west of Iran

    Afrooz Alimohamadi


    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  9. Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae).

    Breen, Amy L; Glenn, Elise; Yeager, Adam; Olson, Matthew S


    Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P < 0.001) and among populations (F(ST) = 0.256, P < 0.001). These results suggest that geographic or taxonomic factors are important for understanding patterns of variation throughout the genus Populus. Our findings have the potential to aid in the design of sampling regimes for conservation and breeding stock and contribute to historical inferences regarding the factors that shaped the genetic diversity of boreal plant species. PMID:19228296


    Populus deltoides forests along the Rio Grande river drainage are predicted to disappear within this century. We evaluated stand health over three years by examining the sex ratio, size, and spatial distribution of male, female, and non-reproductive trees in six even-aged stands of Populus deltoide...


    Populus deltoides forests along the Rio Grande river drainage are predicted to disappear within this century. We evaluated stand health over three years by examining the sex ratio, size, and spatial distribution of male, female, and non-reproductive trees in six even-aged stands of Populus deltoide...

  12. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  13. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    Orendovici-Best, T. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, J.M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Davis, D.D. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail:; Ferdinand, J.A.; Savage, J.E. [Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Stevenson, R.E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)


    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury.

  14. Black Consciousness

    Hraba, Joseph; Siegman, Jack


    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  15. Hydrology and water quality of an urban stream reach in the Great Basin--Little Cottonwood Creek near Salt Lake City, Utah, water years 1999-2000

    Gerner, Steven J.; Waddell, Kidd M.


    The hydrology and water quality of an urbanized reach of Little Cottonwood Creek near Salt Lake City, Utah, were examined as part of the Great Salt Lake Basins study, part of the U.S. Geological Survey National Water-Quality Assessment program. Physical and chemical properties of the stream were referenced to established aquatic-life criteria as available. Two fixed sampling sites were established on Little Cottonwood Creek with the purpose of determining the influence of urbanization on the water quality of the stream. The fixed-site assessment is a component of the National Water-Quality Assessment surface-water study design used to assess the spatial and temporal distribution of selected water-quality constituents. The occurrence and distribution of major ions, nutrients, trace elements, dissolved and suspended organic carbon, pesticides, volatile organic compounds, and suspended sediment were monitored during this study. From October 1998 to September 2000, stream samples were collected at regular intervals at the two fixed sites. Additional samples were collected at these sites during periods of high flow, which included runoff from snowmelt in the headwaters and seasonal thunderstorms in the lower basin.

  16. The obscure events contributing to the evolution of an incipient sex chromosome in Populus A retrospective working hypothesis.

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Chen, Jay [ORNL; Labbe, Jessy L [ORNL; Ranjan, Priya [ORNL; DiFazio, Steven P [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL


    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is partially genetically controlled, the precise gender-determining systems remain unclear. The recently-released second draft assembly and annotated gene set of the Populus genome provided an opportunity to re-visit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistances genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found there are gender-specific accumulations of phenolic glycosides. Taken together, these findings provide new insights into the genetic control of gender determination in Populus.

  17. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    Tschaplinski, Timothy J [ORNL; Tsai, Chung-Jui [Michigan Technological University; Harding, Scott A [Michigan Technological University; Lindroth, richard L [University of Wisconsin, Madison; Yuan, Yinan [Michigan Technological University


    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  18. Environmental Influences on Wood Chemistry and Density of Populus and Loblolly Pine

    Tuskan, G.A.


    The objectives of the study are to: (1) determine the degree to which physical and chemical wood properties vary in association with environmental and silvicultural practices in Populus and loblolly pine and (2) develop and verify species-specific empirical models in an effort to create a framework for understanding environmental influences on wood quality.

  19. RepPop: a database for repetitive elements in Populus trichocarpa

    Xu Ying


    Full Text Available Abstract Background Populus trichocarpa is the first tree genome to be completed, and its whole genome is currently being assembled. No functional annotation about the repetitive elements in the Populus trichocarpa genome is currently available. Results We predicted 9,623 repetitive elements in the Populus trichocarpa genome, and assigned functions to 3,075 of them (31.95%. The 9,623 repetitive elements cover ~40% of the current (partially assembled genome. Among the 9,623 repetitive elements, 668 have copies only in the contigs that have not been assigned to one of the 19 chromosome while the rest all have copies in the partially assembled chromosomes. Conclusion All the predicted data are organized into an easy-to-use web-browsable database, RepPop. Various search capabilities are provided against the RepPop database. A Wiki system has been set up to facilitate functional annotation and curation of the repetitive elements by a community rather than just the database developer. The database RepPop will facilitate the assembling and functional characterization of the Populus trichocarpa genome.

  20. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Steven P [West Virginia University


    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.


    尹春英; 李春阳


    The drought resistance of woody plants, in particular, Populus, was reviewed in this paper. Studies about drought resistance of Populus mostly focused on changes in growth properties, physiological adaptation and biochemical aspects, but a few on molecular biology. The indexes of drought adaptation and productivity were analyzed and these indexes could be employed to identify drought resistance of woody plants. Combination of such different approaches will, hopefully, give us a more complete understanding of the various regulatory mechanisms in trees than what we may have today. With development of the molecular biology of woody plants, the sluties on stress resistance of Populus which was regarded as a model plant, are summarised. Ref 96

  2. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  3. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University


    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  4. Black Eye

    ... eyesight if not treated. If both eyes are black after a head injury, it could signify a skull fracture or other serious injury. Next Black Eye Symptoms Related Ask an Ophthalmologist Answers How ...

  5. Black tea

    ... diuretic to increase urine flow. Some people use black tea for preventing tooth decay and kidney stones. In combination with various other products, black tea is used for weight loss. In foods, ...

  6. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types ▿†

    Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Vilgalys, Rytas; Doktycz, Mitchel J.; Schadt, Christopher W.


    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Commun...

  7. Black Holes

    Luminet, Jean-Pierre


    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  8. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    Muchero, Wellington [ORNL; Labbe, Jessy L [ORNL; Priya, Ranjan [University of Tennessee, Knoxville (UTK); DiFazio, Steven P [West Virginia University, Morgantown; Tuskan, Gerald A [ORNL


    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  9. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny.

    Monclus, R; Villar, M; Barbaroux, C; Bastien, C; Fichot, R; Delmotte, F M; Delay, D; Petit, J-M; Bréchet, C; Dreyer, E; Brignolas, F


    Genotypic variability for productivity, water-use efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh x Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orléans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remained irrigated (control). Stem biomass and leaf structure (e.g., specific leaf area and leaf area) were measured in 2004 and 2005 and functional leaf traits (e.g., carbon isotope discrimination, Delta) were measured only in 2004. Tolerance to water deficit was estimated at genotype level as the ability to limit losses in biomass production in water deficit versus control trees. Stem biomass, leaf structure and Delta displayed a significant genotypic variability whatever the irrigation regime. For all traits, genotype ranks remained stable across years for similar irrigation conditions. Carbon isotope discrimination scaled negatively with productivity and leaf nitrogen content in controls. The most productive genotypes were the least tolerant to moderate water deficit. No relationship was evidenced between Delta and the level of tolerance to water deficit. The relationships between traits evidenced in this collection of P. deltoides x P. trichocarpa F1 genotypes contrast with the ones that were previously detected in a collection of P. deltoides x Populus nigra L. cultivars tested in the same field trial. PMID:19773340

  10. Pollen development and multi-nucleate microspores of Populus bolleana Lauche

    ZHANG Zheng-hai; KANG Xiang-yang; WANG Shang-de; LI Dai-li; CHEN Hong-wei


    Populus bolleana is a variety of P. alba, commonly used in poplar breeding programs in China. Developmental biology that involves staminate flowers, microsporogenesis and microgametogenesis ofP bolleana is essential for Populus improvement in cross breeding for better characteristics in sexual reproduction. Flower morphology and pollen development were described and illustrated using anatomical, sectioning and stain-clearing techniques. The results show that microsporocytes undergo a regular meioticprocess, but some multi-nucleate microspores occur at the microspore stage. It takes five days for microsporocytes to develop to mature pollen by forcing flower branches under greenhouse conditions. Additionally, an important relationship was found between stages of meiosis and anther colors. Microspore tetrads formed when the anther color turned yellow, whereas, when the pollen matured, the anther was red and the tapetum degenerated completely. When mature pollen grains are formed, flower buds develop into male eatkins. In the end, filament elongated and pollen grains were released from dehisced anthers.

  11. Increase in radiosensitivity with increase in age of Populus tremuloides seed

    Populus tremuloides seeds from one tree were irradiated with a 260-Ci 137 Cs gamma source to exposures of 0.47, 0.94, 1.4, 1.8, 3.7, 7.5, 15, 22, 30, 45, and 60 kr at increasing time intervals after seed collection. Two methods of seed storage were used prior to irradiation, refrigerator storage at 50C and freezer storage at -190C with vacuum desiccation. Gamma radiation had no effect upon germination percentage. However, marked decreases in the LD/sub 50-30/ of Populus tremuloides seedlings, grown from seed that was gamma irradiated at increasing time intervals after seed collection, indicated that the seed radiosensitivity increases with increasing age of the seed. Seed storage under vacuum desiccation in a freezer at -190C prolonged the viable storage life of the seed over refrigerator storage

  12. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)


    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  13. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    Robinson, Kathryn M; Pär K Ingvarsson; Jansson, Stefan; Albrectsen, Benedicte R.


    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod ...

  14. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening

    S. Di Lonardo; Capuana, M.; Arnetoli, M.; R. GABBRIELLI; Gonnelli, C


    Abstract Purpose This work was planned for providing a useful screening tool for the selection of Populus alba clones suitable for phytoremediation techniques. To this aim, we investigated variation in arsenic, cadmium, copper, and zinc tolerance, accumulation and translocation in three poplar clones through an in vitro screening. Poplars have been widely proposed for phytoremediation, as they are adaptable to grow on contaminated areas and able to accumulate metals...


    Qiang Zhao; Junwen Pu; Shulei Mao; Guibo Qi


    To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED) was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp con...

  16. A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides

    Takata Naoki


    Full Text Available Abstract Background The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches. Results We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter. Conclusions The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.

  17. Successful Agrobacterium-mediated transformation of Populus tomentosa with apple SPDS gene

    LIU Ting-ting; PANG Xiao-ming; LONG Cui; ZHANG Zhi-yi


    The problem of salinized soils has become one of the most serious constraints to agricultural and forest productivity. With the purpose of enhancing salt stress tolerance of Populus tomentosa, we transformed this tree species with spermidine synthase (SPDS) genes derived from an apple by an Agrobacterium-mediatod method. Four transgenic clones were confirmed by PCR and Southern blot analysis. As well, the expression of introduced SPDS genes was analyzed by real-time quantitative PCR.

  18. Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress

    Luo, Zhi-Bin; Li, Ke; Jiang, Xiangning; Polle, Andrea


    Mycorrhizal fungi and hydrogels (water-absorbing polymers) can improve water availability for trees. The combination of both factors for plant performance under water limitation has not yet been studied. • To investigate the influence of the ectomycorrhizal fungus Paxillus involutus, hydrogel and the combination of both factors, a drought-sensitive poplar, Populus euphratica, was examined in this study. • After 16 weeks of inoculation, no ectomycorrhizas were found. Nevertheles...

  19. Local Selection Across a Latitudinal Gradient Shapes Nucleotide Diversity in Balsam Poplar, Populus balsamifera L

    Keller, Stephen R.; Levsen, Nicholas; Ingvarsson, Pär K.; Olson, Matthew S.; Tiffin, Peter


    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleo...

  20. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Callahan, Colin M.; Rowe, Carol A.; Ryel, Ronald J.; Shaw, John D.; Madritch, Michael D.; Mock, Karen E.


    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns o...

  1. Sub-Soiling and Genotype Selection Improves Populus Productivity Grown on a North Carolina Sandy Soil

    Shawn Dayson Shifflett; Dennis W. Hazel; Elizabeth Guthrie Nichols


    This study reports the stem volume of 10 Populus genotypes in a randomized split-plot design with different tillage treatments (disking versus sub-soiling) after two years of growth. Height, diameter at breast height (DBH), stem aboveground volume index, survival, Melampsora rust resistance, leaf area index (LAI), chlorophyll content, and foliar nitrogen concentration (Foliar N) were measured to identify how tillage treatments might alter poplar growth. Stem volume index and LAI were positive...

  2. Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides

    Sandeep Bisht; Piyush Pandey; Anchal Sood; Shivesh Sharma; Bisht, N. S.


    Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K) of isolat...

  3. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    Zalesny, Ronald S; Bauer, Edmund O


    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation. PMID:18246776

  4. Palaeogene fossil Populus leaves from Lanzhou Basin and their palaeoclimatic significance

    SUN Bainian; YAN Defei; XIE Sanping; CONG Peiyun; XIN Cunlin; YUN Fei


    An angiosperm compression flora is found in Palaeogene from Lanzhou Basin and the cuticular analysis of Populus davidiana Dode in the flora is carefully made. Furthermore, the fossil cuticles are compared with the epidermal structures of extant Populus leaves growing in different environments, I.e. Moist, semimoist, and semiarid to arid climatic regions. The present experiments indicate that mature leaves of P. Davidiana show leaf size from big to small, leaf cuticles from thick to thin and anticlinal walls of epidermal cells from faintness to clarity along with the increase of latitudes of the plant distributions, the climatic variation from moist to arid, the annual precipitation from more to less and the annual mean temperature from high to low. The fossil P.davidiana differs from the specimens collected from Shandan in semiarid to arid climatic regions but closely resembles the Wushan leaves in a semi-moist climatic area in a lot of features. In a word, the new research may reflect that the flora lives in a semi-moist climatic environment. The present discovery of compression of Paleogene Populus davidiana is of great significance to studying vegetation types, climatic and environmental changes during the primal uplifting of the Qinghai-Tibet Plateau.

  5. Estimating Stem Volume Using QuickBird Imagery and Allometric Relationships for Open Populus xiaohei Plantations

    Xiao-Qing Wang; Zeng-Yuan Li; Xing-E Liu; Guang Deng; Ze-Hui Jiang


    There has been a great deal of interest in studying the crown of trees using remote sensing data. In this study, crown width was extracted from high-resolution QuickBird images for open Populus xiaohei plantations. Regression models for predicting the individual stem volumes of Populus xiaohei were established using extracted crown width, as well as estimated tree parameters (i.e. diameter at breast height [DBH] and tree height) as predictors. Our results indicated that crown width could be accurately extracted from QuickBird images using a multi-scale segmentation approach with a mean relative error of 5.74%, especially for wide-spacing stands. Using either extracted crown width alone or with estimated DBH and tree height can successfully estimate individual stem volume of Populus xiaohei with the R2 value ranging from 0.87 to 0.92 depending on different model forms. In particular, the two second-order polynomial models (model2 and model 6), based on QuickBird image-derived crown widths and estimated DBH and tree heights, respectively, were the best at describing the relationship between stem volume and tree characteristics.

  6. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor


    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  7. Black Culture

    Angela Khristin Brown


    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life. 

  8. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression

    Yellanki Priyadarshini


    Full Text Available Abstract Background Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. Results The phylogenetic analyses showed that CAD genes fall into three main classes (clades, one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10 belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. Conclusion The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication

  9. Are black holes totally black?

    Grib, A A


    Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.

  10. The establishment patterns of tree seedlings are determined immediately after wildfire in a black spruce (Picea mariana) forest

    Tsuyuzaki, Shiro; NARITA, Kenji; Sawada, Yuki; Kushida, Keiji


    Fire severity is predicted to increase in boreal regions due to global warming. We hypothesized that these extreme events will alter regeneration patterns of black spruce (Picea mariana). To test this hypothesis, we monitored seed dispersal and seedling emergence, survival and growth for 6 years from 2005 to 2010 after the 2004 wildfire on Poker Flat, interior Alaska, using 96 1 x 1 m plots. A total of 1,300 seedlings of black spruce and three broad-leaved deciduous trees (Populus tremuloides...

  11. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL


    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  12. Black market

    One way for states and subnational groups to acquire material, knowledge and equipment necessary to build a nuclear weapon or device are illegal transactions. These were singular in the past and did not cause the development of a nuclear black market. But all necessary components of a functioning black market exist. Therefore the further spread and extension of the use of nuclear power would enhance the threat of a nuclear black market, if the trade and use of specific nuclear material is not abandoned worldwide. (orig.)

  13. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Nicola eCarraro


    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  14. Emergency assessments of postfire debris-flow hazards for the 2009 La Brea, Jesusita, Guiberson, Morris, Sheep, Oak Glen, Pendleton, and Cottonwood fires in southern California

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.


    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 La Brea and Jesusita fires in Santa Barbara County, the Guiberson fire in Ventura County, the Morris fire in Los Angeles County, the Sheep, Oak Glen, and Pendleton fires in San Bernardino County, and the Cottonwood fire in Riverside County, southern California. Statistical-empirical models developed to analyze postfire debris flows are used to estimate the probability and volume of debris-flows produced from drainage basins within each of the burned areas. Debris-flow probabilities and volumes are estimated as functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 2-year-recurrence thunderstorm and to a widespread, 12-hour-duration, 2-year-recurrence winter storm. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire.

  15. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in populus.

    Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui


    Salicylate-containing phenolic glycosides (PGs) are abundant and often play a dominant role in plant-herbivore interactions of Populus and Salix species (family Salicaceae), but the biosynthetic pathway to PGs remains unclear. Cinnamic acid (CA) is thought to be a precursor of the salicyl moiety of PGs. However, the origin of the 6-hydroxy-2-cyclohexen-on-oyl (HCH) moiety found in certain PGs, such as salicortin, is not known. HCH is of interest because it confers toxicity and antifeedant properties against herbivores. We incubated Populus nigra leaf tissue with stable isotope-labeled CA, benzoates, and salicylates, and measured isotopic incorporation levels into both salicin, the simplest PG, and salicortin. Labeling of salicortin from [13C6]-CA provided the first evidence that HCH, like the salicyl moiety, is a phenylpropanoid derivative. Benzoic acid and benzaldehyde also labeled both salicyl and HCH, while benzyl alcohol labeled only the salicyl moiety in salicortin. Co-administration of unlabeled benzoates with [13C6]-CA confirmed their contribution to the biosynthesis of the salicyl but not the HCH moiety of salicortin. These data suggest that benzoate interconversions may modulate partitioning of phenylpropanoids to salicyl and HCH moieties, and hence toxicity of PGs. Surprisingly, labeled salicyl alcohol and salicylaldehyde were readily converted to salicin, but did not result in labeled salicortin. Co-administration of unlabeled salicylates with labeled CA suggested that salicyl alcohol and salicylaldehyde may have inhibited salicortin biosynthesis. A revised metabolic grid model of PG biosynthesis in Populus is proposed, providing a guide for functional genomic analysis of the PG biosynthetic pathway. PMID:20177744

  16. Black tea

    ... product containing black tea extract plus green tea extract, asparagus, guarana, kidney bean, and mate along with a combination of kidney bean pods, garcinia, and chromium yeast for 12 weeks does not reduce body weight ...

  17. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in Tobacco Enhances Salt Tolerance


    The Populus euphratica stress responsive zinc-finger protein gene PSTZ, which encodes a protein including typical Cys2/His2 zinc finger structure, was isolated by reverse transcription-polymerase chain reaction from P. euphratica.Northern hybridization revealed that its expression was induced under drought and salt stress conditions. To examine its function, cDNA of the PSTZ gene, driven by the cauliflower mosaic virus 35S promoter, was cloned into a plant expression vector pBin438 and introduced into tobacco plants. Transgenic tobacco showed an enhanced salt tolerance, suggesting that PSTZ may play a role in plant responsiveness to salt stress.

  18. Diversity of insect communities with different development phases in natural Populus euphratica forests in Xinjiang

    QIAO Hai-li; LUO You-qing; TIAN Chengming; SUN Jian-hua; FENG Xiaofeng


    An investigation method with sample plots was used to study insect communities in four different growth phases of natural Populus euphratica forests, which are juvenile, middle aged, over-mature and degraded forests, in Tarim, Xinjiang in July, 2005 and April, 2006. In our studies, 5,116 insect specimens, belonging to 12 orders, 61 families and 141 species, were collected. Lepidoptera and Coleoptera were the dominant orders. In middle-aged forests, species, individual numbers and diversity indices of insect communities were higher than those in other woodlands. The species richness and diversity indices were lowest in degraded forests because of extremely scarce vegetation.

  19. Reproductive Characteristics of a Populus euphratica Population and Prospects for Its Restoration in China

    Cao, Dechang; Li, Jingwen; Huang, Zhenying; Baskin, Carol C.; Baskin, Jerry M.; Hao, Peng; Zhou, Weilei; Li, Junqing


    Populus euphratica is a dominant tree in riparian ecosystems in arid areas of northwest China, but it fails to regenerate in these systems. This study evaluates causes for the failure of sexual and asexual regeneration of this species in the wild. P. euphratica disperses as many as 85743 seeds/m2 during summer, and the seeds germinate to 92.0% in distilled water and to 60.8% on silt. However, very few seeds (3.6%) can germinate on unflooded soil. The seed-rain season is prolonged by temporal ...

  20. Modification of water vapor diffusion in poplar wood (Populus nigra L.) by steaming at high temperatures

    SAYAR, Maedeh; TARMIAN, Asghar


    In this investigation, the effect of steaming on the water vapor diffusion coefficient of poplar wood (Populus nigra L.) was studied. Boards with dimensions of 50 × 50 × 150 (W × H × L) mm3 and average moisture content of 12% were steamed at temperatures of 120, 140, 160, and 180 °C for 1, 2, and 3 h. The diffusion coefficients were then measured based on Fick's law of diffusion in steady-state conditions using the cup method. Results showed that the steaming of poplar wood at all mentio...

  1. Generalized allometric regression to estimate biomass of Populus in short-rotation coppice

    Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne


    Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.

  2. Populus spp.: supervivencia y crecimiento en clones implantados en Buenos Aires, Argentina

    Marlats, Raúl M.; Senisterra, Gabriela; Marquina, Jorge; Ciocchini, Gabriel R.


    El objetivo de este trabajo fue evaluar la supervivencia, evolución de las alturas y áreas basales de rebrotes de clones de Populus spp. de diferentes procedencias implantados en Argiudoles típicos del borde Sur de la Pampa Ondulada, Buenos Aires, Argentina (34°55' S; 57°57' W; 15 m snm). Los clones evaluados fueron ‘Delta Gold’, ‘Stoneville 71’, ‘Catfish 2’, ‘Harvard’, ‘Onda’ e ‘I-74/51’. Se compararon, para el conjunto de clones, los comportamientos para el primero y segundo corte. Se re...

  3. Populations of aspen (Populus tremuloides Michx.) with different evolutionary histories differ in their climate occupancy.

    Greer, Burke T; Still, Christopher; Howe, Glenn T; Tague, Christina; Roberts, Dar A


    Quaking aspens (Populus tremuloides Michx.) are found in diverse habitats throughout North America. While the biogeography of aspens' distribution has been documented, the drivers of the phenotypic diversity of aspen are still being explored. In our study, we examined differences in climate between northern and southwestern populations of aspen, finding large-scale differences between the populations. Our results suggest that northern and southwestern populations live in distinct climates and support the inclusion of genetic and phenotypic data with species distribution modeling for predicting aspens' distribution. PMID:27217950

  4. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China.

    Dechang Cao

    Full Text Available Populus euphratica is a dominant tree in riparian ecosystems in arid areas of northwest China, but it fails to regenerate in these systems. This study evaluates causes for the failure of sexual and asexual regeneration of this species in the wild. P. euphratica disperses as many as 85743 seeds/m(2 during summer, and the seeds germinate to 92.0% in distilled water and to 60.8% on silt. However, very few seeds (3.6% can germinate on unflooded soil. The seed-rain season is prolonged by temporal variability in seed dispersal among individuals, which ensures that seedling emergence can occur during favorable conditions (i.e., floods and rainfall. As a result of water shortage and river channeling due to water usage and altered river flows, there are no safe sites on river banks for seed germination, which has led to the failure of P. euphratica to regenerate from seed. Root suckers of P. euphratica were present in 86% of the forest gaps investigated. However, extensive grazing has destroyed many of them and thus has reduced this form of regeneration. This research suggests that human activities are resulting in the failure of P. euphratica to regenerate. Changes in land management such as reduced use of concrete canals in Populus forests and/or reduced sheep grazing in these areas may promote their regeneration.

  5. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng


    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world.

  6. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.


    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  7. Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China

    LIU Jia-zhen; CHEN Ya-ning; CHEN Yong-jin; ZHANG Na; LI Wei-hong


    To investigate the relationships between the degradation of plant community and groundwater level in the lower reaches of the Tarim River, nine monitored sections were set along the main stream, where there had been no runoff for nearly 30 years. The characteristics of plant communities were analyzed. It was found that the coverage of trees gradually decreased along the groundwater depth gradient, while the coverage of shrubs slightly increased rather than decreased at first and then gradually decreased, and the coverage of herbs steadily decreased at the beginning and then quickly decreased. The species diversity and species richness of both herbs and woody plants showed obvious degrading trends, while the variations in species evenness were slight. The degrading sequences of species were related to their physiological and ecological characteristics, especially their sensitivity to changes of groundwater table. The herbs with shallow roots first degenerated or disappeared when the groundwater table fell, and then did the deep-rooted herbs, and finally the trees and shrubs with strong tolerance to drought degenerated. The Populus euphratica communities showed typical degrading characteristics, namely the dominant species Populus euphratica remained its dominant status during the degradation. Overall, the existence of strongly tolerant-drought species was the obvious indication of plant species degradation; while simplification of community structure and the decrease of species richness were the obvious indication of plant community degradation.

  8. Response of photosynthesis and cellular antioxidants to ozone in Populus leaves

    Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides x Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but gluthathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while flutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone

  9. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Yunlin Chen


    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  10. Ultrastructural and Extracellular Protein Changes in Cell Suspension Cultures of Populus euphratica Associated with Low Temperature-induced Cold Acclimation

    Dai Huanqin; Lu Cunfu; Zhang Hui; Zhang Xujia


    Populus euphratica Olive is the only tree species that can grow in the saline land and also survive cold winters in northwest China, and it plays a very important role in stabilizing the vulnerable ecosystem there. A cell suspension culture was initiated from callus derived from plantlets of Populus euphratica. Cold acclimation was induced (LT50 of-17.5 ℃) in cell suspension at 4-5 ℃ in the dark for 30 days and the freezing tolerance increased from LT50 of-12.5 ℃ in nonacclimated cells to LT50 of-17.5 ℃ in cold-acclimated cells. Microvacuolation, cytoplasmic augmentation and accumulation of starch granules were observed in cells that were cold-acclimated by exposure to low temperatures. Several qualitative and quantitative changes in proteins were noted during cold acclimation. Antibodies to carrot extracellular (apoplastic) 36 kD antifreeze protein did not cross react on immunoelectroblots with extracellular proteins in cell suspension culture medium of Populus euphratica, indicating no common epitopes in the carrot 36 kD antifreeze protein and P euphratica extracellular proteins. The relationship of these changes to cold acclimation in Populus euphratica cell cultures was discussed.

  11. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Bisaria, Anjali [ORNL; Tuskan, Gerald A [ORNL; Kalluri, Udaya C [ORNL


    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  12. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA.

    Hamzeh, Mona; Dayanandan, Selvadurai


    The species of the genus Populus, collectively known as poplars, are widely distributed over the northern hemisphere and well known for their ecological, economical, and evolutionary importance. The extensive interspecific hybridization and high morphological diversity in this group pose difficulties in identifying taxonomic units for comparative evolutionary studies and systematics. To understand the evolutionary relationships among poplars and to provide a framework for biosystematic classification, we reconstructed a phylogeny of the genus Populus based on nucleotide sequences of three noncoding regions of the chloroplast DNA (intron of trnL and intergenic regions of trnT-trnL and trnL-trnF) and ITS1 and ITS2 of the nuclear rDNA. The resulting phylogenetic trees showed polyphyletic relationships among species in the sections Tacamahaca and Aigeiros. Based on chloroplast DNA sequence data, P. nigra had a close affinity to species of section Populus, whereas nuclear DNA sequence data suggested a close relationship between P. nigra and species of the section Aigeiros, suggesting a possible hybrid origin for P. nigra. Similarly, the chloroplast DNA sequences of P. tristis and P. szechuanica were similar to that of the species of section Aigeiros, while the nuclear sequences revealed a close affinity to species of the section Tacamahaca, suggesting a hybrid origin for these two Asiatic balsam poplars. The incongruence between phylogenetic trees based on nuclear- and chloroplast-DNA sequence data suggests a reticulate evolution in the genus Populus. PMID:21652373

  13. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues

    Johnson Virgil E


    Full Text Available Abstract Background BAHD acyltransferases are involved in the synthesis and elaboration of a wide variety of secondary metabolites. Previous research has shown that characterized proteins from this family fall broadly into five major clades and contain two conserved protein motifs. Here, we aimed to expand the understanding of BAHD acyltransferase diversity in plants through genome-wide analysis across five angiosperm taxa. We focus particularly on Populus, a woody perennial known to produce an abundance of secondary metabolites. Results Phylogenetic analysis of putative BAHD acyltransferase sequences from Arabidopsis, Medicago, Oryza, Populus, and Vitis, along with previously characterized proteins, supported a refined grouping of eight major clades for this family. Taxon-specific clustering of many BAHD family members appears pervasive in angiosperms. We identified two new multi-clade motifs and numerous clade-specific motifs, several of which have been implicated in BAHD function by previous structural and mutagenesis research. Gene duplication and expression data for Populus-dominated subclades revealed that several paralogous BAHD members in this genus might have already undergone functional divergence. Conclusions Differential, taxon-specific BAHD family expansion via gene duplication could be an evolutionary process contributing to metabolic diversity across plant taxa. Gene expression divergence among some Populus paralogues highlights possible distinctions between their biochemical and physiological functions. The newly discovered motifs, especially the clade-specific motifs, should facilitate future functional study of substrate and donor specificity among BAHD enzymes.

  14. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan


    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  15. Integration of Palmer Drought Severity Index and remote sensing data to simulate wetland water surface from 1910 to 2009 in Cottonwood Lake area, North Dakota

    Huang, S.; Dahal, D.; Young, Caitlin; Chander, G.; Liu, S.


    Spatiotemporal variations of wetland water in the Prairie Pothole Region are controlled by many factors; two of them are temperature and precipitation that form the basis of the Palmer Drought Severity Index (PDSI). Taking the 196km2 Cottonwood Lake area in North Dakota as our pilot study site, we integrated PDSI, Landsat images, and aerial photography records to simulate monthly water surface. First, we developed a new Wetland Water Area Index (WWAI) from PDSI to predict water surface area. Second, we developed a water allocation model to simulate the spatial distribution of water bodies at a resolution of 30m. Third, we used an additional procedure to model the small wetlands (less than 0.8ha) that could not be detected by Landsat. Our results showed that i) WWAI was highly correlated with water area with an R2 of 0.90, resulting in a simple regression prediction of monthly water area to capture the intra- and inter-annual water change from 1910 to 2009; ii) the spatial distribution of water bodies modeled from our approach agreed well with the water locations visually identified from the aerial photography records; and iii) the R2 between our modeled water bodies (including both large and small wetlands) and those from aerial photography records could be up to 0.83 with a mean average error of 0.64km2 within the study area where the modeled wetland water areas ranged from about 2 to 14km2. These results indicate that our approach holds great potential to simulate major changes in wetland water surface for ecosystem service; however, our products could capture neither the short-term water change caused by intensive rainstorm events nor the wetland change caused by human activities. ?? 2011.

  16. Fischer Black

    Robert C. Merton; Myron S. Scholes


    ReprintThis article was originally published by Wiley for the American Finance Association (Merton RC, Scholes MS. 1995. Fischer Black. J. Finance 50(5):1359–70). It is reprinted with permission from John Wiley and Sons © 1995. Reference formatting was updated to facilitate linking.

  17. Conservation and Diversity of MicroRNA-associated Copper-regulatory Networks in Populus trichocarpa

    Shanfa Lu; Chenmin Yang; Vincent L. Chiang


    Plants develop important regulatory networks to adapt to the frequently-changing availability of copper (Cu).However,little is known about miRNA-associated Cu-regulatory networks in plant species other than Arabidopsis.Here,we report that Cu-responsive miRNAs in Populus trichocarpa (Torr.& Gray)include not only conserved miR397,miR398 and miR408,but also Populus-specific miR1444,suggesting the conservation and diversity of Cu-responsive miRNAs in plants.Copper-associated suppression of mature miRNAs is in company with the up-regulation of their target genes encoding Cu-containing proteins in Populus.The targets include miR397-targeted PtLAC5,PtLAC6 and PtLAC110a,miR398-targeted PtCSD1,PtCSD2a and PtCSD2b,miR408-targeted PtPCL1,PtPCL2,PtPCL3 and PtLAC4,and miR1444-targeted PtPPO3 and PtPPO6.Consistently,P.trichocarpa miR408 promoter-directed GUS gene expression is down-regulated by Cu in transgenic tobacco plants.Cu-response elements (CuREs) are found in the promoters of Cu-responsive miRNA genes.We identified 34 SQUAMOSA-promoter binding protein-like (SPL) genes,of which 17 are full-length PtSPL proteins or partial sequences with at least 300 amino acids.Phylogenetic analysis indicates that PtSPL3 and PtSPL4 are CuRE-binding proteins controlling Cu-responsive gene expression.Cu appears to be not involved in the regulation of these transcription factors because neither PtSPL3 nor PtSPL4 is Cu-regulated and no CuRE exists in their promoters.

  18. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency.

    Chen, Min; Wang, Chenlu; Bao, Hai; Chen, Hui; Wang, Yanwei


    Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants

  19. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes.

    Davies, Chantel; Ellis, Christopher J; Iason, Glenn R; Ennos, Richard A


    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity. PMID:24789141

  20. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations

    Evans, Luke M [West Virginia University, Morgantown; Slavov, Gancho [West Virginia University, Morgantown; Rodgers-Melnick, Eli [West Virginia University, Morgantown; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Ranjan, Priya [ORNL; Muchero, Wellington [ORNL; Brunner, Amy M. [Virginia Polytechnic Institute and State University; Schackwitz, Wendy [U.S. Department of Energy, Joint Genome Institute; Gunter, Lee E [ORNL; Chen, Jay [ORNL; Tuskan, Gerald A [ORNL; Difazio, Stephen P. [West Virginia University, Morgantown


    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.

  1. Development of polymorphic microsatellite markers based on expressed sequence tags in Populus cathayana (Salicaceae).

    Tian, Z Z; Zhang, F Q; Cai, Z Y; Chen, S L


    Populus cathayana occupies a large area within the northern, central, and southwestern regions of China, and is considered to be an important reforestation species in western China. In order to investigate the population genetic structure of this species, 10 polymorphic microsatellite loci were identified based on expressed sequence tags from de novo sequencing on the Illumina HiSeq 2000 platform. All microsatellite primers were tested on 48 P. cathayana individuals from four locations on the Qinghai-Tibet Plateau. The observed heterozygosity ranged from 0.000 to 1.000, and the null-allele frequency ranged from 0.000 to 0.904. These microsatellite markers may be a useful tool in genetic studies on P. cathayana and closely related species. PMID:27525845

  2. Cloning of plasma membrane H+-ATPase gene in Populus euphratica Oliv.

    Ning De-juan; Hou Pei-chen; Hu Zan-min; Shen Xin; Chen Shao-liang


    For this paper, the plasma membrane (PM) H+-ATPase gene has been cloned from Populus euphratica Oliv. through a homology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame (ORF) which encodes a putative H+-ATPase protein of 953 amino acid residues, with a significant homology to plasma membrane H+-ATPase of Prunus persica,Phaseolus vulgaris, Sesbania rostrata and Daucus carota. The predicted protein has a molecular weight of 104,553 Da. The copy number analysis revealed multiple copies of the PM H+-ATPase in the P. euphratica genome after digestion of their genomic DNA by the restriction enzymes EcoRⅠ, NdeⅠ, FbaⅠ and BglⅡ, and Southern blot.

  3. Seed yield and quality in Populus tremuloides following pollination with gamma-irradiated pollen

    A pollen mixture from three male quaking aspen (Populus tremuloides Michx.) trees was irradiated at exposures of 484, 968, 1453, 1937, 3874, 7747, and 15 494 R and used to control-pollinate cut branches from three female trees. The pollen LD50 exposure varied with the end point evaluated, ranging from 255 R for number of 50-mesh seed per catkin to 8800 R for total seeds per catkin. The mean LD50 for nine seed yield and seed quality end points was 3995 R. A significant stimulatory response in seed yield was noted at low pollen irradiation levels, particularly at the 484-R exposure. The LD100 was approached but not reached at 15 494 R. Irradiated quaking aspen pollen may be useful in breeding experiments. (author)

  4. Conversion of water consumption of a single tree and a forest stand of Populus euphratica

    ZHANG Xiao-you; MENG Tong-tong; KANG Er-si


    Our study dear with the determination of sapwood sap flow of a single Populus euphratica tree by heat pulse technique and the calculation of water consumption of an entire forest stand, given the correlation between sap flow and sapwood area of P. euphratica. The relation between diameter at breast height (DBH) and sapwood area constitutes a powerful model; these variables are highly correlated. By means of an analysis of DBH in the sample plot, the distribution of the sapwood area of the forest land was obtained and the water consumption of this P. euphratica forest, in the lower reaches of the Heihe River, calculated as 214.9 mm by standard specific conductivity of the sample tree.

  5. Dynamics of the volatile defense of winter "dormant" balsam poplar (Populus balsamifera).

    Clausen, Thomas P; Chen, Janice; Bryant, John P; Provenza, Frederick D; Villalba, Juan


    6-Hydroxycylohex-2-en-1-one (6-HCH) has been reported as a major chemical defense of the winter-dormant internodes of balsam poplar (Populus balsamifera) against feeding by herbivores such as the snowshoe hare (Lepus americanus). We report that the concentration of 6-HCH in the fall internodes is triggered by a single hard frost, and then undergoes an exponential decline through volatilization over the winter that results in barely detectable quantities by early spring. We conclude that the role of 6-HCH in the defense of mature balsam poplar is more complex than simply acting as a toxin. Rather, 6-HCH's role as a defensive agent must evolve over the course of the winter from being a co-toxin to a cue for a conditioned flavor aversion (CFA) to finally having no role by late spring. PMID:20411311

  6. Restriction map and polymorphisms of nuclear ribosomal genes of Populus balsamifera.

    Stoehr, M U; Singh, R S


    Balsam poplar (Populus balsamifera) clones from five populations, which were collected along a transect from northern Wisconsin to the northern tree line, were evaluated for polymorphisms in nuclear ribosomal DNA. For this purpose, a restriction map was constructed using four six-cutter enzymes in single and double digests of genomic DNA. After electrophoretic separation on agarose gels and Southern transfer, blots were hybridized to non-radioactively labeled heterologous rDNA probes of soybean. Among populations, variation was detected in the length of the intergenic spacer between the tandem repeats of the coding regions and in the degree of methylation of one restriction enzyme recognition site. Based on a comparison of the derived restriction map of balsam poplar and other poplars, high homology was evident in the rDNA coding regions among species, whereas the intergenic spacer varied slightly in both length and number of restriction sites. PMID:14969912

  7. The essential oil of Populus balsamifera buds: its chemical composition and cytotoxic activity.

    Piochon-Gauthier, Marianne; Legault, Jean; Sylvestre, Muriel; Pichette, André


    The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-alpha-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-alpha-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 microg/mL. (+)-alpha-Bisabolol exhibited pronounced activity (IC50 14 microg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 microg/mL) against human glioma (U251), higher than the one observed for (-)-alpha-bisabolol (IC50 34 microg/mL), which is known for its apoptosis-inducing effect against glioma cells. PMID:24689304

  8. Interrelationships between leaf heat conductivity and tissue structures of different varieties of Populus tomentosa Carr.

    WANG Min; ZHANG Wen-jie; XIAO Jian; ZHANG Zhi-yi; LIU Jing


    Plant heat conductivity largely depends on tissue structure. Different structures lead to different heat conductivity. As well, water transfer also plays a very important role in heat transfer in plants. We have studied leaf heat conductivity and tissue structure of 3- and 30-year-old Populus tomentosa Carr. trees using mildred thermal imaging, steady state heat conductivity surveys and paraffin section and investigated the relationship between leaf heat conductivity, tissue structure and water content of leaves. The results show that the temperature on leaf surfaces among the various varieties of trees was almost the same. Leaf heat conductivity, temperature and water content of leaves are positively correlated. The thicker the leaf tissue structures, the larger the heat resistance. That is, the tighter the cells and the smaller the interspaces, the smaller the heat conductivity, which is not conducive for heat transfer.

  9. Structural Characteristics and Eco-adaptability of Heteromorphic Leaves of Populus euphratica

    Li Zhao-xia; Zheng Cai-xia


    The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope and optical microscope. The results showed that with the leaves changing from lanceolate shape to dentate broad-ovate shape, their structure obviously tended to be xeromorph: developed palisade tissue, undeveloped spongy tissue, thick cutin layer and sunken stomas. The amount of mitochondria tended to be increased, and the shape of chloroplasts varied from regular spindle to irregular rotundity or oval. The leaves were covered with wax without cilium, and the stomas on the upper and lower epidermis of the leaves opened unevenly. The stomas on the lower epidermis were deeper than those on the upper epidermis under the scanning electron microscope. The results implied that the structural characteristics of the diversiform-leaves of P. euphratica are related to its eco-adaptability.

  10. Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. "2KEN8" mature pollen.

    Zhang, Jin; Wu, Li-Shuan; Fan, Wei; Zhang, Xiao-Ling; Jia, Hui-Xia; Li, Yu; Yin, Ya-Fang; Hu, Jian-Jun; Lu, Meng-Zhu


    Proteomic analysis was used to generate a map of Populus deltoides CL. "2KEN8" mature pollen proteins. By applying 2-D electrophoresis, we resolved 403 protein spots from mature pollen. Using the matrix-assisted laser desorption/ionization time time-of-flight/time-of-flight tandem mass spectrometry method, we identified 178 distinct proteins from 218 protein spots expressed in mature pollen. Moreover, out of these, 28 proteins were identified as putative allergens. The expression patterns of these putative allergen genes indicate that several of these genes are highly expressed in pollen. In addition, the members of profilin allergen family were analyzed and their expression patterns were compared with their homologous genes in Arabidopsis and rice. Knowledge of these identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with poplar pollen allergy. PMID:26284084

  11. Impact du stress hydrique sur le fonctionnement hydraulique foliaire du peuplier Populus tremula x alba

    Daaboul, Philippe


    Afin d’aborder l’impact du stress hydrique sur le fonctionnement hydraulique foliaire, des plants de Populus tremula x alba ont été soumis à un stress hydrique modéré ou sévère pendant une semaine par ajout de PEG dans la solution nutritive. La mesure de paramètres écophysiologiques et moléculaires tissus spécifiques a permis de dégager plusieurs tendances sur la caractérisation de l’influence du stress. Les deux types de stress n’ont que peu d’impact sur la croissance et la capacité de synth...

  12. Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides

    Sandeep Bisht


    Full Text Available Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K of isolates were found to increase with successive increase in substrate concentration (0.5 to 1.0 mg/50ml. B. circulans SBA12 and Kurthia SBA4 degraded 87.5% and 86.6% of anthracene while, Kurthia sp. SBA4, B. circulans SBA12, and M. varians SBA8 degraded 85.3 %, 95.8 % and 86.8 % of naphthalene respectively after 6 days of incubation as determined by HPLC analysis.

  13. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D


    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides. PMID:17267367

  14. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types.

    Gottel, Neil R [ORNL; Castro Gonzalez, Hector F [ORNL; Kerley, Marilyn K [ORNL; Yang, Zamin [ORNL; Pelletier, Dale A [ORNL; Podar, Mircea [ORNL; Karpinets, Tatiana V [ORNL; Uberbacher, Edward C [ORNL; Tuskan, Gerald A [ORNL; Vilgalys, Rytas [Duke University; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL


    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  15. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.


    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  16. Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus*

    Abraham, Paul; Giannone, Richard J.; Adams, Rachel M.; Kalluri, Udaya; Tuskan, Gerald A.; Hettich, Robert L.


    High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval t...

  17. The Tonoplast-Localized Sucrose Transporter in Populus (PtaSUT4) Regulates Whole-Plant Water Relations, Responses to Water Stress, and Photosynthesis

    Frost, Christopher J; Nyamdari, Batbayar; Tsai, Chung-Jui; Harding, Scott A.


    The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonoplast sucrose fluxes contribute to the regulation of osmotic gradients between cellular compartments,...

  18. Response of the accumulation of proline in the bodies of Populus euphratica to the change of groundwater level at the lower reaches of Tarim River

    CHEN Yaning; CHEN Yapeng; LI Weihong; ZHANG Hongfeng


    The content of proline in the plant bodies is closely related to the converse-succession-resistant capability of the plants. In this paper, the relationship between the proline accumulation in the bodies of Populus euphratica and the change of groundwater level is analyzed by taking Populus euphratica, the main community-building species of the desert riparian forests along the Tarim River, as the research object. The research results show that the accumulation of proline in the bodies of Populus euphratica is closely related to the change of groundwater level gradient under drought stress, it increases with the drawdown of groundwater level and the increase of moisture stress degree; the accumulation of proline in the bodies of Populus euphratica has two extremely high points at the groundwater depth ranges of 3.64-5.14 m and 9.46-10.16 m. Combining the field investigation and the analysis of the plots, it is considered that the groundwater level of 3.5-4.5 m is rational for the growth of Populus euphratica. The stress groundwater depth for the normal growth and the critical one for the survival of Populus euphratica are below 4.5 m and 9-10 m respectively at the lower reaches of the Tarim River.

  19. Studies on uptake pattern of the phosphorus employing radioisotopes as tracer on the xPopulus albaglandulosa (I)

    The uptake ratio of supplying P32 labelled double superphosphate and the hastening efficiency of the uptake by addition of magnesium sulfate to the fertilizer were studied on the xPopulus albaglandulosa planted with 0/1 cutting in 1975. The results are summerized as follows. Average 13% of supplying double superphosphate was absorbed into xPopulus albaglandulosa planted on the reddish heavy clay soil in Institute of Forest Genetics. The accumulation of absorbed magnesium was more amount in leaf than in stem. The uptake ratio of supplying double superphosphate was able to increase up to 16%-33% by the addition of magnesium sulfate to the fertilizer. It might be possible to increase the tree growth following the acceleration of photosynthesis due to the increasing amount of magnesium known to be a component of chlorophyll in leaf as well as to hasten the efficiency of uptake of phosphorus by the addition of magnesium to double superphosphate. (Author)

  20. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Pär K Ingvarsson; Zhang, Deqiang


    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positiv...

  1. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants

    Han, Yansha; Wang, Wei; Sun, Jian; Ding, Mingquan; Zhao, Rui; Deng, Shurong; Wang, Feifei; Hu, Yue; Wang, Yang; Lu, Yanjun; Du, Liping; Hu, Zanmin; Diekmann, Heike; SHEN, XIN; Polle, Andrea


    Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased cap...

  2. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  3. Suppression of PtrDUF579-3 expression causes structural changes of the glucuronoxylan in Populus

    Dongliang eSong


    Full Text Available DUF579 (domain unknown function 579 genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus.

  4. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus.

    Song, Dongliang; Gui, Jinshan; Liu, Chenchen; Sun, Jiayan; Li, Laigeng


    DUF579 (domain unknown function 579) genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX) synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA) in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus. PMID:27148318

  5. Characteristics of the stem sap flux of Populus euphratica in the lower reaches of the Heihe River Basin, Northwest China


    Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem sap flux of Populus euphratica and its rela-tionship to environmental factors using the thermal dissipation probe(TDP) method.The results showed that(1) daily variation of sap flow of P.euphratica on clear days exhibited an obvious unimodal curve;sap flow rates in June,July,August,and September were 13.39,12.07,12.69,and 5.10 L/d,respectively;(2) the average transpiration of the Populus euphratica from June through September amounted to 1,309.84 L;(3) stem sap flow can be affected by a number of environmental factors that,in terms of the influential degree,can be arranged in the descending order of air temperature,soil moisture,relative humidity,total solar radiation,soil temperature,and wind velocity.

  6. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action.

    Martineau, Louis C; Hervé, Jessica; Muhamad, Asim; Saleem, Ammar; Harris, Cory S; Arnason, John T; Haddad, Pierre S


    Obesity is an epidemic in most developed countries and novel therapeutic approaches are needed. In the course of a screening project of medicinal plants used by the Eastern James Bay Cree of Canada and having potential for the treatment of diabetes, we have identified several products that inhibit adipogenesis, suggesting potential antiobesity activities. The inhibitory activity of two of these, the extract of the inner bark of the deciduous trees Alnus incana ssp. rugosa (Speckled Alder) and Populus balsamifera L. (Balsam Poplar), was analyzed using the 3T3-L1 cell model of adipogenesis. Intracellular triglyceride accumulation, pre-adipocyte proliferation, and PPAR- γ activity were measured. Alnus incana extracts acted early in the differentiation process but did not affect clonal expansion of pre-adipocytes nor the morphological transformation from fibroblast-like to rounded fat-laden cells. Alnus incana extracts were found to act as partial agonists toward PPAR- γ activity. In contrast, Populus balsamifera extracts completely abrogated adipogenesis, severely limited clonal expansion of pre-adipocytes and generally maintained cells in an undifferentiated fibroblast-like morphology. Populus balsamifera extracts exerted antagonistic action against PPAR- γ activity. It is concluded that, through their actions on the adipocyte, these plant products may be useful for the treatment of obesity and related metabolic diseases. PMID:20301057

  7. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Nan Lu


    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  8. Defining the Boundaries and Characterizing the Landscape of Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics

    Abraham, Paul E [ORNL; Adams, Rachel M [ORNL; Giannone, Richard J [ORNL; Kalluri, Udaya C [ORNL; Ranjan, Priya [ORNL; Erickson, Brian K [ORNL; Shah, Manesh B [ORNL; Tuskan, Gerald A [ORNL; Hettich, Robert {Bob} L [ORNL


    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: 1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, 2) bioinformatics clustering to effectively handle gene duplication, and 3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7,505 identified proteins to a total of 4,226 protein groups, in which 2,016 were singletons. This reduction implies that ~50% of the measured proteins were clustered into groups that shared extensive sequence homology. Using conservative search criteria, we were able to identify 1,354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 proteins that were not previously identified. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an unprecedented level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  9. Comparative physiology of allopatric Populus species: Geographic clines in photosynthesis, height growth and carbon isotope discrimination in common gardens

    Raju Yaranna Soolanayakanahally


    Full Text Available Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both P. tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A, whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06. Stomatal conductance (gs and chlorophyll content index (CCI follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C were observed for both species; but, intrinsic water-use efficiency (WUEi was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED, which was well approximated by the number of days available for free growth between bud flush and bud set. In doing so, we highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.

  10. The absorption, utilization and distribution of nitrate 15N and ammonium 15N in Populus Tomentosa seedlings

    Effects of different nitrogen sources (NO3-, NH4+) on the absorption, distribution and utilization of nitrogen on Populus tenement's seedlings (clone 50) was studied by using the 15N trace technique. Results showed that the Populus tenement's seedlings had the same nitrogen take up pattern: tissue nitrogen content grew up after fertilization, remarkbaly rising up after one week and reached peak after 28 days. Although the treatments are different, the tissue N content was about the same between 0.6g · plant-1. The maximum absorption of NO3-15N and NH4-15N was 0.26g · plant-1 and 0.12g · plant -1, which accounted for 39.15% and 19.95% of total nitrogen, respectively. The nitrogen use efficiency (NUE) of two nitrogen sources varied gignificantly. The maximum NUE of NO3-15N reached 25.83%, nearly twice of that of NH4-15N (12.03%). Hence we conclude that Populus tomentosa seedlings (clone 50) prefer to absorb NO3-. Nitrogen distribution rate changed obviously among different organs and the trend was leaf>root>stem. In the leaf, the distribution of NO3-15N was higher than that of NH4-15N. (authors)

  11. Radionic nonuniform black strings

    Tamaki, Takashi; Kanno, Sugumi; Soda, Jiro


    Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane limit and reduces to the Reissner-Nordström black hole in the close limit of two-branes. The stability of solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.

  12. Genotypic Variation in Nutrient Selectivity in Populus under NaCl Stress

    Chen Shaoliang; Bai Genben; Liu Xiangfen; Li Jinke; Wang Shasheng; Andrea Polle; Aloys Huttermann


    We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus ‘popularis35-44' (P. popularis) and the hybrid P. talassica Kom × (P. euphratica + Salix alba L.) to examine genotypic differences in nutrientselectivity under NaCl stress. One-year-old seedlings ofP. euphratica and one-year-old hardwood cuttings ofP. popularis were usedin a short-term study (24 hours), while in a long-term study, up to 4 weeks, two-year-old seedlings ofP. euphratica and the hybrid P.talassica Kom × (P. euphratica + Salix alba L.) were compared. In the short-term study, K+ concentration in the xylem sap ([K+]xylem)of P. euphratica significantly increased after salt stress was initiated, and maintained 1-2 fold higher than control levels during theperiod of salt stress (24 hours). Xylem Ca2+ and Mg2+ concentrations ([Ca2+]xylem, [Mg2+]xylem) in P. euphratica resembled the patternof K+ despite a lesser magnitude in elevation. However, [K+]xylem, [Ca2+]xylem and [Mg2+]xylem in P. popularis exhibited a transient in-crease at the beginning of salt treatment, thereafter, they all returned to control levels at 4 hours and no further rise was observed inthe following hours. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in P. popularis increased sharply upon NaCl stress and steadily reachedthe maximum at 24 hours. In contrast, xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in NaCl-treated plants of P. euphratica did not signifi-cantly increase during the period of salt stress (24 hours). Noteworthy, Na+/K+ markedly declined after the onset of stress. These re-sults suggest that P. euphratica had a higher nutrient selectivity in face of salinity. A same trend was observed in a 4-week study.Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in salinised plants of the hybrid abruptly increased after 4 days of stress, and then continu-ously increased to reach the highest level at day 8 or day 15. In comparison, the magnitude of Na+/K+, Na+/Ca2+ and Na+/Mg2+ eleva-tion in the xylem of P

  13. [Physiological-ecological effects of Populus davidiana--Quercus liaotungensis mixed forest in Ziwuling forest area].

    Qin, Juan; Shangguan, Zhouping


    This paper studied the soil physical- properties under Populus davidiana, Quercus liaotungensis, and Populus davidiana--Quercus liaotungensis mixed forest in the Ziwuling forest area of Loess Plateau, and the leaf photosysthetic characteristics of these three types of forests. The results showed that soil moisture content in 0 - 300 cm layer was the highest under P. davidiana forest, and obviously increased below 200 cm in depth under P. davidiana--Q. liaotungensis mixed forest, which was 10.5% - 19.76% higher than that under Q. liaotungensis forest. In 0 - 60 cm layer, P. davidiana forest showed the highest soil bulk density and the lowest soil porosity, while P. davidiana--Q. liaotungensis mixed forest presented the lowest soil bulk density and the highest soil porosity, and both of these indices surpassed their corresponding values under pure forests, which indicated that the mixed forest could make effective use of water in deep soil, and obviously improved soil physical and chemical properties. P. davidiana and Q. liaotungensis had a higher content of leaf chlorophyll than P. davidiana--Q. liaotungensis mixed forest, and Q. liaotungensis presented the highest leaf chlorophyll content. Q. liaotungensis had the highest photosynthetic rate and stomatal conductance, followed by P. davidiana, and by P. davidiana--Q. liaotungensis mixed forest. The water use efficiency of the forests ranked in the decreasing order of Q. liaotungensis in pure forest, Q. liaotungensis in mixed forest, P. davidiana in mixed forest, and P. davidiana in pure forest. Q. liaotungensis in mixed forest presented the highest F(v)/F(m) and F(v)/F(o), and did not remarkably differ from those in pure forest, but in the mixed forest, the F(v)/F(m) and F(v)/F(o) of P. davidiana were markedly lower than those of P. davidiana in pure forest. Both the q(p) and NPQ of P. davidiana and Q. liaotungensis in pure forests were higher than those in mixed forest, respectively. In Ziwuling forest area, Q

  14. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    Merritt, David M; Poff, N LeRoy


    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  15. Morphological and Molecular Characterization of Two Aphelenchoides Endophytic in Poplar Leaves.

    Carta, Lynn K; Li, Shiguang; Skantar, Andrea M; Newcombe, George


    During a long-term, large network study of the ecology of plant endophytes in native habitats, various nematodes have been found. Two poplar species, Populus angustifolia (narrowleaf cottonwood) and Populus trichocarpa (black cottonwood), are important ecological and genomic models now used in ongoing plant-pathogen-endophyte interaction studies. In this study, two different aphelenchid nematodes within surface-sterilized healthy leaves of these two Populus spp. in northwestern North America were discovered. Nematodes were identified and characterized microscopically and molecularly with 28S ribosomal RNA (rRNA) and 18S rRNA molecular markers. From P. angustifolia, Aphelenchoides saprophilus was inferred to be closest to another population of A. saprophilus among sequenced taxa in the 18S tree. From P. trichocarpa, Laimaphelenchus heidelbergi had a 28S sequence only 1 bp different from that of a Portuguese population, and 1 bp different from the original Australian type population. The 28S and 18S rRNA trees of Aphelenchoides and Laimaphelenchus species indicated L. heidelbergi failed to cluster with three other Laimaphelenchus species, including the type species of the genus. Therefore, we support a conservative definition of the genus Laimaphelenchus, and consider these populations to belong to Aphelenchoides, amended as Aphelenchoides heidelbergi n. comb. This is the first report of these nematode species from within aboveground leaves. The presence of these fungal-feeding nematodes can affect the balance of endophytic fungi, which are important determinants of plant health. PMID:27168650

  16. Characteristics and dynamics analysis of Populus euphratica populations in the middle reaches of Tarim River

    JunXia WU; XiMing ZHANG; ChaoZhou DENG; GuoJun LIU; Hong LI


    Populus euphratica widely distributed along the Tarim River.Maintaining stability of P.euphratica population is important to local development.This study explored the static life table,survivorship curves and four function curves(survival rate,cumulative mortality rate,mortality density,and hazard rate),and development index of P.euphratica population in the middle reaches of Tarim River.The results indicated that the age structure of P.euphratica population belonged to positive pyramidal type,which meant young age-class individuals occupied most populations.The number of Ⅰ-Ⅱ age classes accounted for 66.2% of whole population,and this indicated that there were abundant subsequent seedlings resources to support the growth of P.euphratica population in the middle reaches of Tarim River.The survivorship curve of P.euphratica belonged to the Deevey Ⅲ(concave-type)and the development index was 47.72%.Four function curves revealed that the individuals of P.euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve.Time sequence prediction models predicted that the number of midlife individuals would increase in future 10,20,30 years,and P.euphratica population grew steadily as a result of rich saplings.

  17. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    Nadjet Debbache-Benaida; Dina Atmani-Kilani; Valrie Barbara Schini-Keirth; Nouredine Djebbli; Djebbar Atmani


    Objective: To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods: Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and-rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results:The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10-1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and-rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions: The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+influx.

  18. Duplication of Locus Coding of Malate Dehydrogenase in Populus tomentosa Carr.


    Horizontal starch-gel electrophoresis was used to study crude enzyme extraction from young leaves of 234 clones of Populus tomentosa Carr. selected from nine provenances in North China. Ten enzyme systems were resolved. One hundred and fifty-six clones showing unusual allozyme band patterns at locus Mdh-1 were found. Three allozyme bands at locus Mdh-1 were 9:6:1 in concentration. Further studies on the electrophoretic patterns of ground mixed pollen extraction of 30 male clones selected at random from the 156 clones were conducted and it was found that allozyme bands at locus Mdh-1 were composed of two dark-stained bands and a weak band. Only one group of the malate dehydrogenase (MDH) zymogram composed of two bands was obtained from the electrophoretic segregation of pollen leachate of the same clones. A comparison of the electrophoretic patterns one another suggested that the locus Mdh-1 coding malate dehydrogenase in diploid species of P. tomentosa was duplicated. The duplicate gene locus possessed three same alleles and was located in mitochondria. The locus duplication of alleles coding malate dehydrogenase in P. tomentosa was discovered and reported for the first time.

  19. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis plantlets exposed to high temperature and drought.

    Xiong Li

    Full Text Available Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA, dehydrin, and small heat shock proteins (sHSPs, were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.

  20. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  1. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests

    Trees can be used to monitor the level of pollution of trace elements in the soil and atmosphere. In this paper, we surveyed the content of eight trace elements (As, Cd, Cu, Fe, Mn, Ni, Pb and Zn) in leaves and stems of white poplar (Populus alba) trees. We selected 25 trees in the riparian forest of the Guadiamar River (S. Spain), one year after this area was contaminated by a mine spill, and 10 trees in non-affected sites. The spill-affected soils had significantly higher levels of available cadmium (mean of 1.25 mg kg-1), zinc (117 mg kg-1), lead (63.3 mg kg-1), copper (58.0 mg kg-1) and arsenic (1.70 mg kg-1), than non-affected sites. The concentration of trace element in poplar leaves was positively and significantly correlated with the soil availability for cadmium and zinc, and to a lesser extent for arsenic (log-log relationship). Thus, poplar leaves could be used as biomonitors for soil pollution of Cd and Zn, and moderately for As

  2. The yield of natural trembling aspen (populus tremula L.) stands (northern and eastern anatolia)

    Trembling aspen (Populus tremula L.) is one of the most resistant to cold natural species in Turkey. In spite of its importance, there is no research on the yield. Hence, site productivity was determined and yield Table for undisturbed natural trembling aspen stands in Turkey was developed. Data were obtained from a total of 46 plots ranging in age from 17 to 82 years. Yield Table indicates that trembling aspen is very slow growing in young and middle age and Current Annual Increment (CAI) and Mean Annual Increment (MAI) values do not reach its maximum value, even at age 70. This is a proof that trembling aspen is not a fast growing species as expected. The reason for its slow growth is attributed to very short period of growth at very high altitudes. However, in the event of 50 years rotation age, mean annual volume increments of 8.0, 3.6 and 1.1 m3 are estimated for trembling aspen for site classes I, II and III, respectively. At extended rotations, trees of pole sizes could be obtained on all site classes. (author)

  3. Improved salt tolerance of Populus davidiana × P. bolleana overex-pressed LEA from Tamarix androssowii

    Yanshuang Sun; Su Chen; Haijiao Huang; Jing Jiang; Shuang Bai; Guifeng Liu


    Development of transgenic plants with tolerance to environ-mental stress is an important goal of plant biotechnology. Late-embryogenesis-abundant (LEA) proteins accumulate in seeds dur-ing late embryogenesis, where they protect cellular membranes and macromolecules against drought. In this work, we transferred the Tamarix androssowii LEA gene into hybrids of Populus davidiana×P. bolleana. We compared relative rates of height growth, chlorophyll fluo-rescence kinetic parameters, and leaf Na+ levels of six TaLEA-containing lines with non-transferred plants (NT), all grown under 0.8% NaCl stress condition. Survival percentages of transgenic lines were all higher than for NT controls after rehydration and the sur-vival percentage of SL2 was five-fold higher than for NT controls. Seed-ling height increased 48.7%in SL2 (from the onset of induced stress to the end of the growing season), 31% more than for the NT controls. Chlorophyll fluorescence kinetic parameters showed a marked increase in photosynthetic capacity in SL2 and SL5. Na+levels in young leaves of transgenic lines were lower than in control NT leaves, but higher in yel-low and withered leaves, indicating improved salt tolerance in transgenic lines.

  4. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  5. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam poplar, Populus balsamifera.

    Keller, Stephen R; Olson, Matthew S; Silim, Salim; Schroeder, William; Tiffin, Peter


    Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range-wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species' range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in-depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies. PMID:20163548

  6. Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.

    Keller, Stephen R; Levsen, Nicholas; Ingvarsson, Pär K; Olson, Matthew S; Tiffin, Peter


    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps. PMID:21624997

  7. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Hang-Yong Zhu


    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  8. Effects of Planting Density on Growth of New Clones in Populus tomentosa

    Zhang Zihui; Zhang Zhiyi; Lin Shanzhi; Li Xinguo


    Effects of seven planting densities on the growth and tree form of nine 5-year-old new clones in Populus tomentosa were studied. The plantations, arranged with completely random block design, were located in Wuzhi County, Henan Province. Results indicated that effects of planting density on the diameter at breast height (DBH), individual volume and growing stock increment of all new clones in P. tomentosa were significant at the 1% level of probability, effects of planting density on the tree height increment of new clones B2 and B31 and on the live branches height (LBH) increment of new clones B5 and B30 were significant at the 5% level of probability, while the interaction between planting density and clone was not significant at the 5% level of probability. It was concluded that the degree of differences among new clones within the same planting density was different with different planting densities and traits. For short rotation industrial timber, clones B1, B3, B4, B5, B7, B9, B31 were suitable with the density of 1 000-2 500 trees per hectare, while for bigger diameter timber, clones B1, B3, B4, B7, B9, B31 could be used with the planting density of 660-833 trees per hectare. Clonal repeatability was also different in different planting densities.


    Mahdi Shahverdi,


    Full Text Available The influence of three drying schedules on the selected mechanical properties of poplar wood (Populus alba L. was evaluated in terms of suitability for structural applications. For this purpose, 70 mm-thick poplar lumber was conventionally dried by three different moisture content based schedules of T5-D2, T5-D4, and T5-D6. In these schedules, the wet bulb depression was changed as a means of increasing of the drying intensity. After drying, the mechanical properties of the lumber, including bending properties (MOE and MOR, toughness, shear strength parallel to grain, and tensile strength perpendicular to grain, were measured. Results revealed that the severe drying schedule (T5-D6 caused higher reductions in the mechanical properties of the dried boards, particularly the MOE and MOR. Furthermore, toughness and tensile strength perpendicular to grain were not affected by the increasing of the wet bulb depression. The influence of all the three adopted schedules on the mechanical properties was evaluated using the drying rate, final moisture content gradient, and qualitative characteristics of the dried boards.


    Qiang Zhao


    Full Text Available To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp consistency 10%, bleaching temperature 70oC, bleaching time 60 min when the charge of H2O2 was 4%, NaOH charge 2%, and molar ratio of TAED to H2O2 0.3. The pulp brightness gain reached 23.6% ISO with the optimized bleaching conditions. FTIR analysis indicated that the H2O2/TAED bleaching system can decrease carbonyl group further than that of conventional H2O2 bleaching, which contributed to the higher bleaching efficiency and final brightness. The H2O2/TAED bleaching had stronger oxidation ability on lignin than that of H2O2 bleaching.

  11. Map and analysis of microsatellites in the genome of Populus: The first sequenced perennial plant

    LI; ShuXian; YIN; TongMing


    We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated trat SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri- and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di- and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.

  12. Influence of climatic factors on fruit morphological traits in Populus euphratica Oliv.

    Azam Soleimani


    Full Text Available Populus euphratica Oliv. is a native species in arid and semi- arid zone of Iran distributing naturally in the vast regions. We studied the variation in fruit morphological traits in P. euphratica trees originating from seven provenances of Iran. P. euphratica samples were prepared from Karaj Research Station. In this study, catkin length, number of capsules in each catkin, capsule length, capsule width, capsule length to capsule width ratio, number of seeds in each capsule, seed length, seed width, seed length to seed width ratio, the weight of 1000 seeds and germination rate were measured. Analysis of variance on all morphological traits except germination showed significant differences (P < 0.05 among provenances. In addition, positive significant correlations were observed in some of the fruit morphological traits. Capsule length, seed length and number of seeds in each capsule showed a significant positive correlation with mean annual  precipitation, mean annual temperature and longitude. Seed width showed a significant negative correlation with longitude and latitude. The results show that morphological fruit characteristics in P. euphratica are mainly influenced by the mean annual temperature of the origins.

  13. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets.

    Joshua R Puzey

    Full Text Available Populus trichocarpa is an important woody model organism whose entire genome has been sequenced. This resource has facilitated the annotation of microRNAs (miRNAs, which are short non-coding RNAs with critical regulatory functions. However, despite their developmental importance, P. trichocarpa miRNAs have yet to be annotated from numerous important tissues. Here we significantly expand the breadth of tissue sampling and sequencing depth for miRNA annotation in P. trichocarpa using high-throughput smallRNA (sRNA sequencing. miRNA annotation was performed using three individual next-generation sRNA sequencing runs from separate leaves, xylem, and mechanically treated xylem, as well as a fourth run using a pooled sample containing vegetative apices, male flowers, female flowers, female apical buds, and male apical and lateral buds. A total of 276 miRNAs were identified from these datasets, including 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Importantly, we identified several xylem-enriched miRNAs predicted to target genes known to be important in secondary growth, including the critical reaction wood enzyme xyloglucan endo-transglycosylase/hydrolase and vascular-related transcription factors. This study provides a thorough genome-wide annotation of miRNAs in P. trichocarpa through deep sRNA sequencing from diverse tissue sets. Our data significantly expands the P. trichocarpa miRNA repertoire, which will facilitate a broad range of research in this major model system.

  14. Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa.

    Shao, Yuanhua; Wei, Guo; Wang, Ling; Dong, Qing; Zhao, Yang; Chen, Beijiu; Xiang, Yan


    BURP domain-containing proteins have a conserved structure and are found extensively in plants. The functions of the proteins in this family are diverse, but remain unknown in Populus trichocarpa. In the present study, a complete genome of P. trichocarpa was analyzed bioinformatically. A total of 18 BURP family genes, named PtBURPs, were identified and characterized according to their physical positions on the P. trichocarpa chromosomes. A phylogenetic tree was generated from alignments of PtBURP protein sequences, while phylogenetic relationships were also examined between PtBURPs and BURP family genes in other plants, including rice, soybean, maize and sorghum. BURP genes in P. trichocarpa were classified into five classes, namely PG1β-like, BNM2-like, USP-like, RD22-like and BURP V. The multiple expectation maximization for motif elicitation (MEME) and multiple protein sequence alignments of PtBURPs were also performed. Results from the transcript level analyses of 10 PtBURP genes under different stress conditions revealed the expression patterns in poplar and led to a discussion on genome duplication and evolution, expression profiles and function of PtBURP genes. PMID:21767343

  15. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Tejinder Pal Khaket


    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  16. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang


    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies. PMID:24739232

  17. Assessment of Rhizospheric Microorganisms of Transgenic Populus tomentosa with Cowpea Trypsin Inhibitor (CpTI) Gene


    To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P. bolleana) × P. tomentosa with the cowpea trypsin inhibitor (CpTI) gene, two layers of rhizospheric soil (from 0 to 20 cm deep and from 20 to 40 cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1 000 and 1:10 000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10 000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.

  18. Drying Kinetics of Poplar (Populus Deltoides Wood Particles by a Convective Thin Layer Dryer

    Hamid Zarea Hosseinabadi


    Full Text Available Drying of poplar wood (Populus Deltoides particles was carried out at different drying conditions using a laboratory convective thin layer dryer. Drying curves were plotted and in order to analyze the drying behavior, the curves were fi tted to different semi-theoretical drying kinetics models. The effective moisture diffusivity was also determined from the integrated Fick’s second law equation and correlated with temperature using an Arrhenius- type model to calculate activation energy of diffusion. The results showed that Midilli et al. model was found to satisfactorily describe the drying characteristics of poplar wood particles dried at all temperatures and air flow velocities. In general, the drying rate increases with increasing air temperature and air fl ow velocity. A short constant drying rate period was observed and drying frequently took place at falling rate period in all cases. The effective moisture diffusivity of poplar wood particles increased from 1.01E-10 to 2.53E-10 m2·s-1 as the drying air temperature increased from 65 to 85 °C. The activation energy of diffusion for 1 m·s-1 and 1.5 m·s-1 air flow velocities were calculated as 27.8 kJ·mol-1 and 50.8 kJ·mol-1, respectively.

  19. Temperature Evolution in Poplar (Populus nigra Tension Wood and Normal Wood during a Conventional Drying Process

    Asghar TARMIAN


    Full Text Available In this paper, temperature evolution through tension wood and normal wood in poplar (Populus nigra under a convective drying condition was investigated. Flat-sawn boards with green dimensions 80�40�25 mm were dried at constant dry-bulb temperature of 60�C and relative humidity (RH of 50% to a final moisture content of about 8%. They were coated on four surfaces using aluminum foil bonded with polyurethane (PU glue to confine moisture movement along the board thickness. The measurement of board temperature was carried out at 2.5, 5, 7.5, 10 and 12.5 mm along the board thickness every 20 minutes by means of 1 mm-thermocouples. The pattern of temperature profile was observed to be almost similar for both tension wood and normal wood. However, a slightly steeper temperature gradient occurred in the normal wood compared to the tension wood. In both types of woods, the surface temperature rose progressively from the initial value to the dry-bulb temperature but the core temperature remained at an almost constant value as the wet-bulb temperature even at the end of drying.

  20. Comparison of stomatal characteristics and photosynthesis of polymorphic Populus euphratica leaves

    ZHENG Caixia; QIU Jian; JIANG Chunning; YUE Ning; WANG Xiuqin; WANG Wanfu


    The leaf shapes of adult Populus euphratica vary from lanceolate to dentate broad-ovate.In order to find the mechanism regarding the ecological adaptation of the polymorphic leaves,the dentate broad-ovate,broad-ovate,and lanceolate leaves were chosen to study their stomatal and photosynthetic characteristics.It is observed that the stomas on the adaxial and abaxial epidermis of the same leaves open non-uniformly with similar densities.The stomatal densities are different among the three typical leaves,which decrease from broad-ovate to lanceolate leaves.Their stomatal sunken degree varied obviously,decreasing from broad-ovate to lanceolate leaves.The changes of the diurnal photosynthetic rate of the three typical leaves follow a single peak curve.The mean diurnal photosynthetic rates of these leaves rank from high to low as broad-ovate>dentate broad-ovate>lanceolate leaves.The light compensation points are similar in the three typical leaves,while the light saturation points vary obviously.The efficiency of solar energy conversion and potential activity of the PSⅡ in the leaves differ significantly,with the dentate broad-ovate leaves the highest.The results suggest that their leaf shapes,anatomic structures,and photosynthetic characteristics change during the leaf development.

  1. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    Menon, Mitra; Barnes, William J; Olson, Matthew S


    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature. PMID:25809016

  2. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina


    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses. PMID:24372544

  3. Characteristics and dynamics analysis of Populus euphratica populations in the middle reaches of Tarim River


    Populus euphratica Oliv. is widely distributed along the Tarim River. Maintaining stability of P. euphratica population is important to local development. This study explored the static life table, survivorship curves and four function curves (survival rate, cumulative mortality rate, mortality density, and hazard rate), and development index of P. euphratica population in the middle reaches of Tarim River. The results indicated that the age structure of P. euphratica population belonged to positive pyramidal type, which meant young age-class individuals occupied most populations. The number ofⅠ-Ⅱage classes accounted for 66.2% of whole population, and this indicated that there were abundant subsequent seedlings resources to support the growth of P. euphratica population in the middle reaches of Tarim River. The survivorship curve of P. euphratica belonged to the Deevey Ⅲ (concave-type) and the development index was 47.72%. Four function curves revealed that the individuals of P. euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve. Time sequence prediction models predicted that the number of midlife individuals would increase in future 10, 20, 30 years, and P. euphratica population grew steadily as a result of rich saplings.

  4. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S


    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. PMID:27116372

  5. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca


    This is the first study reporting the presence of endogenous caffeine, theobromine, and theophylline in all organs of poplar plants. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used in order to evaluate the uptake, translocation, and metabolism of caffeine-(trimethyl-(13)C) in Populus alba L. Villafranca clone grown in hydroponic conditions. We investigated the remediation of caffeine since it is one of the most widely consumed drugs and it is frequently detected in wastewater treatment plant effluents, surface water, and groundwater worldwide. Our results demonstrated that poplar can absorb and degrade exogenous caffeine without negative effects on plant health. Data showed that concentrations of all endogenous compounds varied depending on caffeine-(trimethyl-(13)C) treatments. In particular, in control conditions, endogenous caffeine, theobromine, and theophylline were mainly distributed in roots. On the other hand, once caffeine-(trimethyl-(13)C) was provided, this compound and its dimethy-(13)C metabolites are mainly localized at leaf level. In conclusion, our results support the possible use of Villafranca clone in association with other water treatment systems in order to complete the process of caffeine remediation. PMID:26681326

  6. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De


    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site. PMID:21548283

  7. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae).

    Jelínková, Hana; Tremblay, Francine; Desrochers, Annie


    Trembling aspen (Populus tremuloides) is a clonal tree species, which regenerates mostly through root suckering. In spite of vegetative propagation, aspen maintains high levels of clonal diversity. We hypothesized that the maintenance of clonal diversity in this species can be facilitated by integrating different clones through natural root grafts into aspen's communal root system. To verify this hypothesis, we analyzed root systems of three pure aspen stands where clones had been delineated with the help of molecular markers. Grafting between roots was frequent regardless of their genotypes. Root system excavations revealed that many roots were still living below trees that had been dead for several years. Some of these roots had no root connections other than grafts to living ramets of different clones. The uncovered root systems did not include any unique genotypes that would not occur among stems. Nevertheless, acquiring roots of dead trees helps to maintain extensive root systems, which increases the chances of clone survival. Substantial interconnectivity within clones as well as between clones via interclonal grafts results in formation of large genetically diverse physiological units. Such a clonal structure can significantly affect interpretations of diverse ecophysiological processes in forests of trembling aspen. PMID:21628295

  8. Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa

    ZHANG TingTing; SONG YunZhi; LIU YuDong; GUO XingQi; ZHU ChangXiang; WEN FuJiang


    The cDNA of AtPLDα (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDα gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCl treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDα expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some antioxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDα gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.

  9. Survey of Plant Drought-Resistance Promoting Bacteria from Populus euphratica Tree Living in Arid Area.

    Wang, Shanshan; Ouyang, Liming; Ju, Xiangyang; Zhang, Lili; Zhang, Qin; Li, Yanbin


    Two hundred and thirty-two bacterial strains were isolated from the rhizospheric soil of Populus euphratica which is the dominant tree living in extreme arid regions in northwest China. Some strains with plant growth-promoting bacteria related metabolic characteristics were able to promote drought resistance in plants after inoculation. Ten strains with the greatest effects increased the dry weight of wheat shoots from 0.5 to 34.4 %, and the surface area of the root systems from 12.56 to 212.17 % compared to the control after drought treatment whereas no obvious promoting effect was observed in normal water conditions. These 10 strains were identified to be of the genera Pseudomonas, Bacillus, Stenotrophomonas and Serratia by 16S rRNA (rrs) gene sequence alignment. Among these strains, Serratia sp. 1-9 and Pseudomonas sp. 5-23 were the two most effective strains. Both of them produced auxin and the production increased significantly when cultured under simulated drought conditions which are inferred to be the most plausible mechanism for their plant growth-promoting effect under drought stress. PMID:25320440

  10. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others


    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.