WorldWideScience

Sample records for biureas

  1. The determination of biurea: A novel method to discriminate between nitrofurazone and azodicarbonamide use in food products

    International Nuclear Information System (INIS)

    Mulder, P.P.J.; Beumer, B.; Rhijn, J.A. van

    2007-01-01

    Recently doubts have arisen on the usefulness of semicarbazide as marker residue for the illegal use of the antibiotic nitrofurazone (NFZ) in aquaculture and poultry production. Most notably azodicarbonamide (ADC) has been implicated as an alternative source of semicarbazide. ADC is used in some countries as a dough conditioner at concentrations up to 45 mg kg -1 . The use of ADC-treated flour or dough in coated or breaded food products may generate false non-compliant results in the analytical method for nitrofurazone metabolites, which is currently in use. During the dough preparation process ADC is largely reduced to biurea, which can be considered as an appropriate marker residue of ADC. Thus far no methods have been published for the determination of biurea in food commodities. Due to its polar nature it is very difficult to generate sufficient retention on conventional C 18 HPLC columns. With a TSK amide HILIC type column good retention was obtained. A straightforward extraction-dilution protocol was developed. Using a mixture of dimethyl formamide and water biurea was nearly quantitatively extracted from a variety of fresh, coated and processed products. Mass spectrometric detection was performed with positive electrospray ionisation. The sensitivity and selectivity of the mass spectrometer for biurea was very good, allowing detection at concentrations as low as 10 μg kg -1 . However, in some extracts severe ion suppression effects was observed. To overcome the implications of ion suppression on the quantitative performance of the method an isotopically-labelled biurea internal standard was synthesized and incorporated in the method. The method developed can be used effectively in nitrofurazone analysis to eliminate the risk of false non-compliant results due to the presence of azodicarbonamide-treated components in the food product

  2. Fate of inhaled azodicarbonamide in rats

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Ayres, P.H.; Bechtold, W.E.; Dutcher, J.S.; Cheng, Y.S.; Bond, J.A.; Medinsky, M.A.; Henderson, R.F.; Birnbaum, L.S.

    1987-01-01

    Azodicarbonamide (ADA) is widely used as a blowing agent in the manufacture of expanded foam plastics, as an aging and bleaching agent in flour, and as a bread dough conditioner. Human exposures have been reported during manufacture as well as during use. Groups of male F344/N rats were administered ADA by gavage, by intratracheal instillation, and by inhalation exposure to determine the disposition and modes of excretion of ADA and its metabolites. At 72 hr following gavage, 30% of the administered ADA was absorbed whereas following intratracheal instillation, absorption was 90%. Comparison between groups of rats exposed by inhalation to ADA to achieve body burdens of 24 or 1230 micrograms showed no significant differences in modes or rates of excretion of [ 14 C]ADA equivalents. ADA was readily converted to biurea under physiological conditions and biurea was the only 14 C-labeled compound present in excreta. [ 14 C]ADA equivalents were present in all examined tissues immediately after inhalation exposure, and clearance half-times on the order of 1 day were evident for all tissues investigated. Storage depots for [ 14 C]ADA equivalents were not observed. The rate of buildup of [ 14 C]ADA equivalents in blood was linearly related to the lung content as measured from rats withdrawn at selected times during a 6-hr inhalation exposure at an aerosol concentration of 25 micrograms ADA/liter. In a study extending 102 days after exposure, retention of [ 14 C]ADA equivalents in tissues was described by a two-component negative exponential function. The results from this study indicate that upon inhalation, ADA is rapidly converted to biurea and that biurea is then eliminated rapidly from all tissues with the majority of the elimination via the urine

  3. Comparative Human Health and Environmental Toxicology Review of Seven Candidate Obscurant Smokes for Replacement of M83 Grenade

    Science.gov (United States)

    2017-03-01

    urine ; there is very little systemic retention of biurea. Azodicarbonamide is of low acute toxicity by all relevant routes of exposure. The LC50 value...plasma urea was increased in males at the 300 mg/kg treatment level. Nitrates can be transformed to nitrites by certain microorganisms in the soil...machines, as an additive in the chemical synthesis of some organic compounds, as a relative humidity standard in the calibration of hygrometers, and as a

  4. Component Analysis of Deposits in Selective Catalytic Reduction System for Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Zhu Neng

    2016-01-01

    Full Text Available In this paper, deposits in exhaust pipes for automotive diesel engines were studied by various chemical analysis methods and a kind of analysis process to determine the compositions of organic matter was proposed. Firstly, the elements of the deposits were determined through the element analysis method. Then using characteristic absorption properties of organic functional groups to the infrared spectrum, the functional groups in the deposits were determined. Finally, by GC-MS (gas chromatography - mass spectrometry test, the content of each main component was determined quantitatively. Element analysis results indicated that the deposits adsorbed metal impurities from fuel oil, lubricating oil, mechanical wear and urea water solution. The result of GC-MS test showed that the area percentage of cyanuric acid was the biggest (about 85%, the second was urea (about 4%, and the content of biuret and biurea was scarce.

  5. The determination of biurea: a novel method to discriminate between nitrofurazone and azodicarbonamide use in food products

    NARCIS (Netherlands)

    Mulder, P.P.J.; Beumer, B.; Rhijn, van J.A.

    2007-01-01

    Recently doubts have arisen on the usefulness of semicarbazide as marker residue for the illegal use of the antibiotic nitrofurazone (NFZ) in aquaculture and poultry production. Most notably azodicarbonamide (ADC) has been implicated as an alternative source of semicarbazide. ADC is used in some