WorldWideScience

Sample records for biosurfactant-producing bacillus sp

  1. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    Science.gov (United States)

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound.

  2. SCREENING OF BIOSURFACTANT PRODUCTION BY BACILLUS SP ISOLATED FROM COASTAL REGION IN CUDDALORE TAMILNADU

    OpenAIRE

    Bhuvaneswari. M*and P. Sivagurunathan

    2016-01-01

    Marine microorganisms produce extracellular or membrane associated surface-active compounds (bio surfactants). Biosurfactant are organic compounds belonging to various classes including glycolipids, lipopeptides, fatty acids, phospholipids that reduce the interfacial tension between immiscible liquids.This study deals with production and characterization of biosurfactant from Bacillus sp. The efficiency of Bacillus spstrain isolated from a marine sediments soil sample from coastal region -Cud...

  3. Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants.

    Science.gov (United States)

    Donio, M B S; Ronica, S F A; Viji, V Thanga; Velmurugan, S; Jenifer, J Adlin; Michaelbabu, M; Citarasu, T

    2013-11-01

    To characterize the pharmacological importance of biosurfactants isolated from halophilic Bacillus sp BS3. Halophilic Bacillus sp. BS3 was isolated from solar salt works, identified by 16S rRNA sequencing and was used for screening their biosurfactant production. Characters of the biosurfactant and their anticancer activity were analyzed and performed in mammary epithelial carcinoma cell at different concentrations. The biosurfactant were characterized by TLC, FTIR and GC-MS analysis and identified as lipopeptide type. GC-MS analysis revealed that, the biosurfactant had various compounds including 13-Docosenamide, (Z); Mannosamine, 9- and N,N,N',N'-tetramethyl. Surprisingly the antiviral activity was found against shrimp white spot syndrome virus (WSSV) by suppressing the viral replication and significantly raised shrimp survival (Pbiosurfactants, among the various concentrations of biosurfactants such as 0.000 25, 0.002 5, 0.025, 0.25 and 2.5 μg, the 0.25 μg concentration suppressed the cells significantly (P<0.05) to 24.8%. Based on the findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil

    International Nuclear Information System (INIS)

    Sheng Xiafang; He Linyan; Wang Qingya; Ye Hesong; Jiang Chunyu

    2008-01-01

    A biosurfactant-producing Bacillus sp. J119 isolated from heavy metal contaminated soils was investigated for its effects on the plant growth-promoting characteristics and heavy metal and antibiotic resistance. A pot experiment was conducted for investigating the capability of the biosurfactant-producing bacterial strain Bacillus sp. J119 to promote the plant growth and cadmium uptake of rape, maize, sudangrass and tomato in soil artificially contaminated with different levels of cadmium (Cd) (0 and 50 mg kg -1 ). The strain was found to exhibit different multiple heavy metal (Pb, Cd, Cu, Ni and Zn) and antibiotic (kanamycin, streptomycin, ampicillin, tetracycline and rifampin) resistance characteristics. The strain had the capacity to produce indole acetic acid (IAA) and siderophores. Cd treatment did not significantly decreased growth of tomato, maize and rape plants, but Cd treatment significantly decreased growth of sudangrass (p -1 , increase in above-ground tissue Cd content varied from 39 to 70% in live bacterium-inoculated plants compared to dead bacterium-inoculated control. In addition, among the inoculated plants, tomato was the greatest Cd accumulator. The bacterial strain was also able to colonize and develop in the rhizosphere soils after root inoculation

  5. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil.

    Science.gov (United States)

    Chen, J; Huang, P T; Zhang, K Y; Ding, F R

    2012-04-01

    To screen and identify biosurfactant producers from petroleum-contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. We successfully isolated three biosurfactant producers from petroleum-contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth-associated biosurfactant production by Acinetobacter sp. YC-X 2 with an optimized medium: beef extract 3·12 g l(-1) ; peptone 20·87 g l(-1) ; NaCl 1·04 g l(-1); and n-hexadecane 1·86 g l(-1). Biosurfactant produced by Acinetobacter sp. YC-X 2 retained its properties during exposure to a wide range of pH values (5-11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na(+) and Ca(2+) ], which was more sensitive to Ca(2+) than Na(+). Two novel biosurfactant producers were isolated from petroleum-contaminated soil. Biosurfactant from Acinetobacter sp. YC-X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. The fact, an increasing demand of high-quality surfactants and the lack of cost-competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost-effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface-active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro-organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter

  6. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.

    Science.gov (United States)

    Eddouaouda, Kamel; Mnif, Sami; Badis, Abdelmalek; Younes, Sonia Ben; Cherif, Slim; Ferhat, Samira; Mhiri, Najla; Chamkha, Mohamed; Sayadi, Sami

    2012-08-01

    A biosurfactant-producing bacterium (Staphylococcus sp. strain 1E) was isolated from an Algerian crude oil contaminated soil. Biosurfactant production was tested with different carbon sources using the surface tension measurement and the oil displacement test. Olive oil produced the highest reduction in surface tension (25.9 dynes cm(-1)). Crude oil presented the best substrate for 1E biosurfactant emulsification activity. The biosurfactant produced by strain 1E reduced the growth medium surface tension below 30 dynes cm(-1). This reduction was also obtained in cell-free filtrates. Biosurfactant produced by strain 1E showed stability in a wide range of pH (from 2 to 12), temperature (from 4 to 55 °C) and salinity (from 0 to 300 g l(-1)) variations. The biosurfactant produced by strain 1E belonged to lipopeptide group and also constituted an antibacterial activity againt the pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Phenanthrene solubility in water was enhanced by biosurfactant addition. Our results suggest that the 1E biosurfactant has interesting properties for its application in bioremediation of hydrocarbons contaminated sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  8. Application of the biosurfactants produced by Bacillus spp. (SH 20 ...

    African Journals Online (AJOL)

    Application of the biosurfactants produced by Bacillus spp. (SH 20 and SH 26) and P. aeruginosa SH 29 isolated from the rhizosphere soil of an Egyptian salt marsh plant for the cleaning of oil - contaminataed vessels and enhancing the biodegradat.

  9. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides

    Science.gov (United States)

    Perez, Karla J.; Viana, Jaime dos Santos; Lopes, Fernanda C.; Pereira, Jamile Q.; dos Santos, Daniel M.; Oliveira, Jamil S.; Velho, Renata V.; Crispim, Silvia M.; Nicoli, Jacques R.; Brandelli, Adriano; Nardi, Regina M. D.

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances. PMID:28197131

  10. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  11. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  12. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.

    Science.gov (United States)

    Sousa, M; Melo, V M M; Rodrigues, S; Sant'ana, H B; Gonçalves, L R B

    2012-08-01

    Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8 ± 0.0 and 27.1 ± 0.1 mN m(-1), respectively. Additionally, at 72 h of cultivation, 441.06 and 267.56 mg L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.

  13. Isolation, Fermentation Optimization and Performance Studies of a Novel Biosurfactant Producing Strain Bacillus amyloliquefaciens

    OpenAIRE

    Zhang, W.; Zhang, X.; Cui, H.

    2015-01-01

    In this research, biosurfactant-producing bacteria were isolated from the outlet sludge of a canteen and one promising strain was identified through 16S rDNA sequence as Bacillus amyloliquefaciens. This strain can utilize water-soluble carbon source and the FT-IR analysis indicated the biosurfactant was probably glycolipids. Further factors (fermentation time, temperature, carbon source, nitrogen source, ion concentration) affecting the biosurfactant production were determined. The optimum fe...

  14. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Detection of biosurfactants in Bacillus species: genes and products identification.

    Science.gov (United States)

    Płaza, G; Chojniak, J; Rudnicka, K; Paraszkiewicz, K; Bernat, P

    2015-10-01

    To screen environmental Bacillus strains for detection of genes encoding the enzymes involved in biosurfactant synthesis and to evaluate their products e.g. surfactin, iturin and fengycin. The taxonomic identification of isolated from the environment Bacillus strains was performed by Microgene ID Bacillus panel and GEN III Biolog system. The polymerase chain reaction (PCR) strategy for screening of genes in Bacillus strains was set up. Liquid chromatography-mass spectrometry (LC-MS/MS) method was used for the identification of lipopeptides (LPs). All studied strains exhibited the presence of srfAA gene and produced surfactin mostly as four homologues (C13 to C16). Moreover, in 2 strains (KP7, T'-1) simultaneous co-production of 3 biosurfactants: surfactin, iturin and fengycin was observed. Additionally, it was found out that isolate identified as Bacillus subtilis ssp. subtilis (KP7), beside LPs co-production, synthesizes surfactin with the efficiency much higher than other studied strains (40·2 mg l(-1) ) and with the yield ranging from 0·8 to 8·3 mg l(-1) . We showed that the combined methodology based on PCR and LC-MS/MS technique is an optimal tool for the detection of genes encoding enzymes involved in biosurfactant synthesis as well as their products, e.g. surfactin, iturin and fengycin. This approach improves the screening and the identification of environmental Bacillus co-producing biosurfactants-stimulating and facilitating the development of this area of science. The findings of this work will help to improve screening of biosurfactant producers. Discovery of novel biosurfactants and biosurfactants co-production ability has shed light on their new application fields and for the understanding of their interactions and properties. © 2015 The Society for Applied Microbiology.

  16. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.

    Science.gov (United States)

    Aparna, A; Srinikethan, G; Smitha, H

    2012-06-15

    Biosurfactant-producing bacteria were isolated from terrestrial samples collected in areas contaminated with petroleum compounds. Isolates were screened for biosurfactant production using Cetyl Tri Ammonium Bromide (CTAB)-Methylene blue agar selection medium and the qualitative drop-collapse test. An efficient bacterial strain was selected based on rapid drop collapse activity and highest biosurfactant production. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, 2B, identified the bacterium as Pseudomonas sp. Five different low cost carbon substrates were evaluated for their effect on biosurfactant production. The maximum biosurfactant synthesis (4.97 g/L) occurred at 96 h when the cells were grown on modified PPGAS medium containing 1% (v/v) molasses at 30 °C and 150 rpm. The cell free broth containing the biosurfactant could reduce the surface tension to 30.14 mN/m. The surface active compound showed emulsifying activity against a variety of hydrocarbons and achieved a maximum emulsion index of 84% for sunflower oil. Compositional analysis of the biosurfactant reveals that the extracted biosurfactant was a glycolipid type, which was composed of high percentages of lipid (∼65%, w/w) and carbohydrate (∼32%, w/w). Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. The mass spectra (MS) shows that dirhamnolipid (l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate, Rha-Rha-C(10)-C(10)) was detected in abundance with the predominant congener monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate, Rha-C(10)-C(10)). The crude oil recovery studies using the biosurfactant produced by Pseudomonas sp. 2B suggested its potential application in microbial enhanced oil recovery and bioremediation. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    Science.gov (United States)

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  18. Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources

    Directory of Open Access Journals (Sweden)

    Juliana Guerra de Oliveira

    2013-02-01

    Full Text Available Biosurfactants are chemical molecules produced by the microorganisms with potential for application in various industrial and environmental sectors. The production parameters and the physicochemical properties of a biosurfactant synthesized by Bacillus pumilus using different concentrations of vinasse and waste frying oil as alternative carbon sources were analyzed. The microorganism was able to grow and produce a biosurfactant using both the residues. The surface tension was reduced up to 45 mN/m and the maximum production of crude biosurfactant was 27.7 and 5.7 g/l for vinasse and waste frying oil, respectively, in concentration of 5%. The critical micelle concentration (CMC results of 1.5 and 0.2 g/l showed the efficiency of the biosurfactant produced on both the substrates. The results showed that the alternative substrates could be used for the production of an efficient biosurfactant by B. pumilus. These properties have potential for industrial and environmental applications.

  19. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.

    Science.gov (United States)

    Qazi, Muneer A; Kanwal, Tayyaba; Jadoon, Muniba; Ahmed, Safia; Fatima, Nighat

    2014-01-01

    This study reports characterization of a biosurfactant-producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS-8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant-producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m(-1) ) with a critical micelle concentration of ≥ 1.2 mg mL(-1) . During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L(-1) pure biosurfactant having significant emulsifying index (E24 , 70%) and oil-displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS-8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers.

  20. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas

    2017-01-01

    This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L -1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L -1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN

    Energy Technology Data Exchange (ETDEWEB)

    Tuleva, B.; Christova, N. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Jordanov, B.; Nikolova-Damyanova, B. [Inst. of Organic Chemistry, Sofia (Bulgaria); Petrov, P. [National Center of Infectious and Parasitic Diseases, Sofia (Bulgaria)

    2005-08-01

    Biosurfactant activity and naphthalene degradation by a new strain identified as Bacillus cereus 28BN were studied. The strain grew well and produced effective biosurfactants in the presence of n-alkanes, naphthalene, crude oil and vegetable oils. The biosurfactants were detected by the surface tension lowering of the medium, thin layer chromatography and infrared spectra analysis. With (2%) naphthalene as the sole carbon source, high levels of rhamnolipids at a concentration of 2.3 g l{sup -1} were determined in the stationary growth. After 20 d of incubation 72 {+-} 4% of the initial naphthalene was degraded. This is the first report for a Bacillus cereus rhamnolipid producing strain that utilized naphthalene under aerobic conditions. The strain looks promising for application in environmental technologies. (orig.)

  2. Influence of toluene and salinity on biosurfactant production by Bacillus sp.: scale up from flasks to a bench-scale bioreactor

    Directory of Open Access Journals (Sweden)

    Ellen Cristina Souza

    Full Text Available ABSTRACT To select the best biosurfactant producer, Pseudomonas putida, Bacillus megatherium, Bacillus licheniformis and Bacillus subtilis were cultured in flasks on media with different salinity [low salinity (LS, Bushnell-Haas (BH and artificial sea water (SW media] supplemented or not with toluene as a model pollutant. Toluene inhibited the growth of all microorganisms and stimulated the biosurfactant production. B. subtilis exhibited the best performance, being able to lower the surface tension (ST in the LS medium to 65.5 mN/min in the absence of toluene, and to 46.5 mN/min in the BH medium in the presence of toluene, corresponding to ST reductions of 13.0 and 27.5 mN/m, respectively. Scaling up the process to a bench-scale fermentor, the best results were obtained in the LS medium, where B. subtilis was able to reduce the toluene concentration from 26.0 to 4.3 g/L within 12 h and ST by 17.2 mN/m within 18 h. The results of this study point out that B. subtilis is an interesting biosurfactant producer, which could be used in the bioremediation of toluene-contaminated water.

  3. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification.

    Science.gov (United States)

    Mukherjee, S; Das, P; Sivapathasekaran, C; Sen, R

    2009-03-01

    To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities. The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex G-50 matrix. The purification attained by employing this technique was evident from UV-visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification. The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities. The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.

  4. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance

    OpenAIRE

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-01-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16?S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8?pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified...

  5. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance.

    Science.gov (United States)

    Donio, Mariathason Birdilla Selva; Ronica, Fernando Arul; Viji, Vijayaragavan Thanga; Velmurugan, Subramanian; Jenifer, John Selesteen Charles Adlin; Michaelbabu, Mariavincent; Dhar, Prasenjit; Citarasu, Thavasimuthu

    2013-12-01

    Halophilic bacteria were isolated from Thamaraikulam solar salt works in India. After routine biosurfactant screening by various methods, the biosurfactant producing bacteria, Halomonas sp BS4 was confirmed by 16 S rRNA sequencing. The growth optimization of Halomonas sp BS4 revealed their optimum growth at 8% NaCl and 6-8 pH in the growth medium. Further the partially purified biosurfactants were characterized by TLC, FTIR and GC-MS analysis. GC-MS results revealed that, the partial purified biosurfactants contain 1, 2-Ethanediamine N, N, N', N'-tetra, 8-Methyl-6-nonenamide, (Z)-9-octadecenamide and a fatty acid derivative. Pharmacological screening of antibacterial, antifungal, antiviral and anticancer assays revealed that, the biosurfactant extracted from Halomonas sp BS4 effectively controlled the human pathogenic bacteria and fungi an aquaculturally important virus, WSSV. The biosurfactant also suppressed the proliferation of mammary epithelial carcinoma cell by 46.77% at 2.5 μg concentration. Based on these findings, the present study concluded that, there is a possibility to develop eco-friendly antimicrobial and anticancer drugs from the extremophilic origin.

  6. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2007-05-01

    Full Text Available Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Songkhla Province, Thailand. Haemolytic activity, emulsification activity toward nhexadecane,emulsion of weathered crude oil, drop collapsing test as well as oil displacement test were used to determine biosurfactant producing activity of marine bacteria. Among two-hundred different strains, 40strains exhibited clear zone on blood agar plates. Only eight strains had haemolytic activity and were able to emulsify weathered crude oil in marine broth during cultivation. Eight strains named SM1-SM8 wereidentified by 16S rRNA as Myroides sp. (SM1; Vibrio paraheamolyticus (SM2; Bacillus subtilis (SM3; Micrococcus luteus (SM4; Acinetobacter anitratus (SM6; Vibrio paraheamolyticus (SM7 and Bacilluspumilus (SM8. However, SM5 could not be identified. Strain SM1 showed the highest emulsification activity against weathered crude oil, by which the oil was emulsified within 24 h of cultivation. In addition, strainSM1 exhibited the highest activity for oil displacement test and emulsification test toward n-hexadecane. The emulsification activity against n-hexadecane of crude extract of strain SM1 was stable over a broadrange of temperature (30-121oC, pH (5-12 and salt concentration (0-9% NaCl, whereas CaCl2 showed an adverse effect on emulsifying activity.

  7. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.

    Science.gov (United States)

    da Silva, Fábio Sérgio Paulino; Pylro, Victor Satler; Fernandes, Pericles Leonardo; Barcelos, Gisele Souza; Kalks, Karlos Henrique Martins; Schaefer, Carlos Ernesto Gonçalves Reynaud; Tótola, Marcos Rogério

    2015-05-01

    We aimed to isolate biosurfactant-producing bacteria in high salt conditions from uncontaminated soils on the Brazilian oceanic island, Trindade. Blood agar medium was used for the isolation of presumptive biosurfactant-producing bacteria. Confirmation and measurements of biosurfactant production were made using an oil-spreading method. The isolates were identified by fatty acid profiles and partial 16S rRNA gene sequence analysis. A total of 14 isolates obtained from the 12 soil samples were found to produce biosurfactants. Among them, two isolates stood out as being able to produce biosurfactant that is increasingly active in solutions containing up to 175 g L(-1) NaCl. These high salt tolerant biosurfactant producers are affiliated to different species of the genus Bacillus. Soil organic matter showed positive correlation with the number of biosurfactant-producing bacteria isolated from our different sampling sites. The applied approach successfully recovered and identified biosurfactant-producing bacteria from non-contaminated soils. Due to the elevated salt tolerance, as well as their capacity to produce biosurfactants, these isolates are promising for environmental biotechnological applications, especially in the oil production chain.

  8. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  9. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  10. Draft Genome Sequence of a Biosurfactant-Producing Bacillus subtilis UMX-103 Isolated from Hydrocarbon-Contaminated Soil in Terengganu, Malaysia.

    Science.gov (United States)

    Abdelhafiz, Yousri Abdelmutalab; Manaharan, Thamilvaani; BinMohamad, Saharuddin; Merican, Amir Feisal

    2017-07-01

    The draft genome here presents the sequence of Bacillus subtilis UMX-103. The bacterial strain was isolated from hydrocarbon-contaminated soil from Terengganu, Malaysia. The whole genome of the bacterium was sequenced using Illumina HiSeq 2000 sequencing platform. The genome was assembled using de novo approach. The genome size of UMX-103 is 4,234,627 bp with 4399 genes comprising 4301 protein-coding genes and 98 RNA genes. The analysis of assembled genes revealed the presence of 25 genes involved in biosurfactant production, where 14 of the genes are related to biosynthesis and 11 of the genes are in the regulation of biosurfactant productions. This draft genome will provide insights into the genetic bases of its biosurfactant-producing capabilities.

  11. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633.

    Science.gov (United States)

    Dehghan-Noude, Gholamreza; Housaindokht, Mohammadreza; Bazzaz, Bibi Sedigeh Fazly

    2005-06-01

    Bacillus subtilis ATCC 6633 was grown in BHIB medium supplemented with Mn2+ for 96 h at 37 degrees C in a shaker incubator. After removing the microbial biomass, a lipopeptide biosurfactant was extracted from the supernatant. Its structure was established by chemical and spectroscopy methods. The structure was confirmed by physical properties, such as Hydrophile-Lipophile Balance (HLB), surface activity and erythrocyte hemolytic capacity. The critical micelle concentration (cmc) and erythrocyte hemolytic capacity of the biosurfactant were compared to those of surfactants such as SDS, BC (benzalkonium chloride), TTAB (tetradecyltrimethylammonium bromide) and HTAB (hexadecyltrimethylammonium bromide). The maximum hemolytic effect for all surfactants mentioned was observed at concentrations above cmc. The maximum hemolytic effect of synthetic surfactants was more than that of the biosurfactant produced by B. subtilis ATCC 6633. Therefore, biosurfactant would be considered a suitable surface-active agent due to low toxicity to the membrane.

  12. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    Science.gov (United States)

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  13. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    Science.gov (United States)

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.

  14. Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations.

    Science.gov (United States)

    Mukherjee, A K

    2007-09-01

    Crude cyclic lipopeptide (CLP) biosurfactants from two Bacillus subtilis strains (DM-03 and DM-04) were studied for their compatibility and stability with some locally available commercial laundry detergents. CLP biosurfactants from both B. subtilis strains were stable over the pH range of 7.0-12.0, and heating them at 80 degrees C for 60 min did not result in any loss of their surface-active property. Crude CLP biosurfactants showed good emulsion formation capability with vegetable oils, and demonstrated excellent compatibility and stability with all the tested laundry detergents. CLP biosurfactants from B. subtilis strains act additively with other components of the detergents to further improve the wash quality of detergents. The thermal resistance and extreme alkaline pH stability of B. subtilis CLP biosurfactants favour their inclusion in laundry detergent formulations. This study has great significance because it is already known that microbial biosurfactants are considered safer alternative to chemical or synthetic surfactants owing to lower toxicity, ease of biodegradability and low ecological impact. The present study provides further evidence that CLP biosurfactants from B. subtilis strains can be employed in laundry detergents.

  15. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  16. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil.

    Science.gov (United States)

    Menezes Bento, Fátima; de Oliveira Camargo, Flavio A; Okeke, Benedict C; Frankenberger, William T

    2005-01-01

    Biosurfactant production is a desirable property of hydrocarbon-degrading microorganisms (HDM). We characterized biosurfactant producing microbial populations from a Long Beach soil, California (USA) and a Hong Kong soil (China), contaminated with diesel oil. A total of 33 hydrocarbon-utilizing microorganisms were isolated from the soils. Twelve isolates and three defined consortia were tested for biosurfactant production and emulsification activity. The highest reduction of surface tension was achieved with a consortium of L1, L2 and L3 isolates from a Long Beach soil (41.4mN m(-1)). Isolate L1 (Acinetobacter junii) displayed the highest reduction of surface tension (46.5 mN m(-1)). The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate L5 (74%). No substantial emulsification was achieved with the cell-free extracts, indicating that the emulsifying activity was not extracellular. Based on surface tension and the E24 index results, isolates F1, F2, F3, F4, L1, L2, L3 and L4 were identified by 16S rRNA gene sequencing as Bacillus cereus, Bacillus sphaericus, B. fusiformis, Acinetobacter junii, a non-cultured bacterium, Pseudomonas sp. and B. pumilus, respectively. Cluster analyses of 16S rRNA gene sequences of the bacterial isolates revealed 70% similarity amongst hydrocarbon-degrading bacterial community present in both soils. Five isolates (isolates F1, F2, F3, F4 and L4) belong to the Firmicutes order, two isolates (L1 and L3) belong to the Proteobacteria order and one isolate (L2) is an Actinomyces sp. Simpson's index (1 - D) and the Shannon-Weaver index (H) revealed more diversity of HDM in the Hong Kong soil, while evenness (E) and the equitability (J) data indicated that there was not a dominant population. Bacterial isolates displaying substantial potential for production of biosurfactants can be applied in the bioremediation of soils contaminated with petroleum hydrocarbons.

  17. Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans.

    Science.gov (United States)

    Das, P; Mukherjee, S; Sen, R

    2008-06-01

    To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high-performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27.3 min showed the maximum surface tension-reducing property and reduced the surface tension of water from 72 mNm(-1) to 28 mNm(-1). Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram-positive and Gram-negative pathogenic and semi-pathogenic micro-organisms including a few multidrug-resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram-negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 microg ml(-1). The biosurfactant was also active against methicillin-resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine-B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin

  18. Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater.

    Science.gov (United States)

    Basak, Geetanjali; Das, Nilanjana

    2014-11-01

    The present study aimed at elucidating the role of biosurfactant produced by yeast for the removal of Zn(II) ions from electroplating wastewater. The yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp.VITGBN2, based on molecular techniques, and was found to be potent producer of biosurfactant in mineral salt media containing vegetable oil as additional carbon source. Chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. Interaction of Zn(II) ions with biosurfactant was monitored using FT-IR, SEM and EDS analysis. Zn (II) removal at 100 mg l(-1) concentration was 84.8% compared were other synthetic surfactants (Tween 80 and sodium dodecyl sulphate), yeast mediated biosurfactant showed enhanced Zn (II) removal in batch mode. The role of biosurfactant on Zn(II) removal was evaluated in column mode packed with biosurfactant entrapped in sodium alginate beads. At a flow rate of 1 ml min(-1) and bed height of 12 cm, immobilized biosurfactant showed 94.34% Zn(II) removal from electroplating wastewater. The present study confirmed that Zn(II) removal was biosurfactant mediated. This is the first report establishing the involvement of yeast mediated biosurfactant in Zn(II) removal from wastewater.

  19. Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant.

    Science.gov (United States)

    Zouari, Raida; Moalla-Rekik, Dorsaf; Sahnoun, Zouheir; Rebai, Tarek; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-12-01

    Lipopeptide microbial surfactants are endowed with unique surface properties as well as antimicrobial, anti-wrinkle, moisturizing and free radical scavenging activities. They were introduced safely in dermatological products, as long as they present low cytotoxicity against human cells. The present study was undertaken to evaluate the in vitro antioxidant activities and the wound healing potential of Bacillus subtilis SPB1 lipopeptide biosurfactant on excision wounds induced in experimental rats. The scavenging effect of Bacillus subtilis SPB1 biosurfactant on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 1mg/mL was 70.4% (IC 50 =0.55mg/mL). The biosurfactant produced by Bacillus subtilis SPB1 also showed good reducing power and significant effects in terms of the β-carotene test (IC 50 =2.26mg/mL) when compared to BHA as a reference standard. Moreover, an interesting ferrous ion chelating activity (80.32%) was found for SPB1 biosurfactant at 1mg/mL. Furthermore, the topical application of Bacillus subtilis SPB1 biosurfactant based gel on the wound site in a rat model every two days, increased significantly the percentage of wound closure over a period of 13days, when compared to the untreated and CICAFLORA™-treated groups. Wound healing effect of SPB1 biosurfactant based gel was confirmed by histological study. Biopsies treated with SPB1 lipopeptides showed wholly re-epithelialized wound with a perfect epidermal regeneration. The present study provides justification for the use of Bacillus subtilis SPB1 lipopeptide biosurfactant based gel for the treatment of normal and complicated wounds as well as skin diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  1. Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region.

    Science.gov (United States)

    Santos, A P P; Silva, M D S; Costa, E V L; Rufino, R D; Santos, V A; Ramos, C S; Sarubbo, L A; Porto, A L F

    2017-12-11

    Surfactants are amphipathic compounds containing both hydrophilic and hydrophobic groups, capable to lower the surface or interfacial tension. Considering the advantages of the use of biosurfactants produced by microorganisms, the aim of this paper was to develop and characterize a biosurfactant produced by Streptomyces sp. DPUA1559 isolated from lichens of the Amazon region. The microorganism was cultured in a mineral medium containing 1% residual frying soybean oil as the carbon source. The kinetics of biosurfactant production was accompanied by reducing the surface tension of the culture medium from 60 to values around 27.14 mN/m, and by the emulsification index, which showed the efficiency of the biosurfactant as an emulsifier of hydrophobic compounds. The yield of the isolated biosurfactant was 1.74 g/L, in addition to the excellent capability of reducing the surface tension (25.34 mN/m), as observed from the central composite rotational design when the biosurfactant was produced at pH 8.5 at 28°C. The critical micelle concentration of the biosurfactant was determined as 0.01 g/mL. The biosurfactant showed thermal and pH stability regarding the surface tension reduction, and tolerance under high salt concentrations. The isolated biosurfactant showed no toxicity to the micro-crustacean Artemia salina, and to the seeds of lettuce (Lactuca sativa L.) and cabbage (Brassica oleracea L.). The biochemistry characterization of the biosurfactant showed a single protein band, an acid character and a molecular weight around 14.3 kDa, suggesting its glycoproteic nature. The results are promising for the industrial application of this new biosurfactant.

  2. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release

    Science.gov (United States)

    2011-01-01

    Background Biosurfactants have been reported to utilize a number of immiscible substrates and thereby facilitate the biodegradation of panoply of polyaromatic hydrocarbons. Olive oil is one such carbon source which has been explored by many researchers. However, studying the concomitant production of biosurfactant and esterase enzyme in the presence of olive oil in the Bacillus species and its recombinants is a relatively novel approach. Results Bacillus species isolated from endosulfan sprayed cashew plantation soil was cultivated on a number of hydrophobic substrates. Olive oil was found to be the best inducer of biosurfactant activity. The protein associated with the release of the biosurfactant was found to be an esterase. There was a twofold increase in the biosurfactant and esterase activities after the successful cloning of the biosurfactant genes from Bacillus subtilis SK320 into E.coli. Multiple sequence alignment showed regions of similarity and conserved sequences between biosurfactant and esterase genes, further confirming the symbiotic correlation between the two. Biosurfactants produced by Bacillus subtilis SK320 and recombinant strains BioS a, BioS b, BioS c were found to be effective emulsifiers, reducing the surface tension of water from 72 dynes/cm to as low as 30.7 dynes/cm. Conclusion The attributes of enhanced biosurfactant and esterase production by hyper-producing recombinant strains have many utilities from industrial viewpoint. This study for the first time has shown a possible association between biosurfactant production and esterase activity in any Bacillus species. Biosurfactant-esterase complex has been found to have powerful emulsification properties, which shows promising bioremediation, hydrocarbon biodegradation and pharmaceutical applications. PMID:21707984

  3. Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria.

    Science.gov (United States)

    Ghojavand, H; Vahabzadeh, F; Mehranian, M; Radmehr, M; Shahraki, Kh A; Zolfagharian, F; Emadi, M A; Roayaei, E

    2008-10-01

    Several facultative bacterial strains tolerant to high temperature and salinity were isolated from the oil reservoir brines of an Iranian oil field (Masjed-I Soleyman). Some of these isolates were able to grow up to 60 degrees C and at high concentration of NaCl (15% w/v). One of the isolates grew at 40 degrees C, while it was able to grow at 15% w/v NaCl. Tolerances to NaCl levels decreased as the growth temperatures were increased. Surfactant production ability was detected in some of these isolates. The use of biosurfactant is considered as an effective mechanism in microbial-enhanced oil recovery processes detected in some of these isolates. The surfactant producers were able to grow at high temperatures and salinities to about 55 degrees C and 10% w/v, respectively. These isolates exhibited morphological and physiological characteristics of the Bacillus genus. The partial sequencing of the 16S ribosomal deoxyribonucleic acid gene of the selected isolates was assigned them to Bacillus subtilis group. The biosurfactant produced by these isolates caused a substantial decrease in the surface tension of the culture media to 26.7 mN/m. By the use of thin-layer chromatography technique, the presence of the three compounds was detected in the tested biosurfactant. Infrared spectroscopy and (1)H nuclear magnetic resonance analysis were used, and the partial structural characterization of the biosurfactant mixture of the three compounds was found to be lipopeptidic in nature. The possibility of use of the selected bacterial strains reported, in the present study, in different sectors of the petroleum industry has been addressed.

  4. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    Science.gov (United States)

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L -1 and its surface tension was 26.52 ± 0.057 mN m -1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil

  5. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    Science.gov (United States)

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications.

  6. Isolation of biosurfactant producing bacteria from petroleum contaminated sites and their characterization

    Directory of Open Access Journals (Sweden)

    Rida Batool

    2017-05-01

    Full Text Available Biosurfactants are microbial amphiphilic compounds which can reduce surface tension between aqueous and hydrocarbon mixtures. Bacterial strains isolated from petroleum contaminated soil of various motor workshops were characterized morphologically and biochemically. Biosurfactant producing ability of the strains was determined and their emulsification activity was screened against different oils. All the selected bacterial strains showed enhanced biosurfactants production with yeast extract as nitrogen source and glucose as carbon source at optimized conditions. These strains also exhibited multiple metal and antibiotics resistance. Isolated biosurfactants of three most promising strains SF-1, SF-4 and SM-1 were extracted by solvent extraction and subjected to TLC technique. The technique indicates the glycolipid nature of the compounds and presence of rhamnose sugar, which was further confirmed by FT-IR analysis. 16srRNA analysis revealed that SF-1 and SM-1 had close resemblance with Pseudomonas sp. while SF-4 showed homology with Enterobacter sp. Isolation and screening of biosurfactant producing strains from petroleum polluted places proved to be a quick and effective means to find bacterial strains with possible industrial uses.

  7. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  8. Biosurfactants produced by Bacillus subtilis A1 and Pseudomonas stutzeri NA3 reduce longevity and fecundity of Anopheles stephensi and show high toxicity against young instars.

    Science.gov (United States)

    Parthipan, Punniyakotti; Sarankumar, Raja Kumaresan; Jaganathan, Anitha; Amuthavalli, Pandian; Babujanarthanam, Ranganathan; Rahman, Pattanathu K S M; Murugan, Kadarkarai; Higuchi, Akon; Benelli, Giovanni; Rajasekar, Aruliah

    2018-04-01

    Anopheles stephensi acts as vector of Plasmodium parasites, which are responsible for malaria in tropical and subtropical areas worldwide. Currently, malaria management is a big challenge due to the presence of insecticide-resistant strains as well as to the development of Plasmodium species highly resistant to major antimalarial drugs. Therefore, the present study focused on biosurfactant produced by two bacteria Bacillus subtilis A1 and Pseudomonas stutzeri NA3, evaluating them for insecticidal applications against malaria mosquitoes. The produced biosurfactants were characterized using FT-IR spectroscopy and gas chromatography-mass spectrometry (GC-MS), which confirmed that biosurfactants had a lipopeptidic nature. Both biosurfactants were tested against larvae and pupae of A. stephensi. LC 50 values were 3.58 (larva I), 4.92 (II), 5.73 (III), 7.10 (IV), and 7.99 (pupae) and 2.61 (I), 3.68 (II), 4.48 (III), 5.55 (IV), and 6.99 (pupa) for biosurfactants produced by B. subtilis A1 and P. stutzeri NA3, respectively. Treatments with bacterial surfactants led to various physiological changes including longer pupal duration, shorter adult oviposition period, and reduced longevity and fecundity. To the best of our knowledge, there are really limited reports on the mosquitocidal and physiological effects due to biosurfactant produced by bacterial strains. Overall, the toxic activity of these biosurfactant on all young instars of A. stephensi, as well as their major impact on adult longevity and fecundity, allows their further consideration for the development of insecticides in the fight against malaria mosquitoes.

  9. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  10. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.

    Science.gov (United States)

    Varadavenkatesan, Thivaharan; Murty, Vytla Ramachandra

    2013-01-01

    Biosurfactants are surface-active compounds derived from varied microbial sources including bacteria and fungi. They are secreted extracellularly and have a wide range of exciting properties for bioremediation purposes. They also have vast applications in the food and medicine industry. With an objective of isolating microorganisms for enhanced oil recovery (EOR) operations, the study involved screening of organisms from an oil-contaminated site. Morphological, biochemical, and 16S rRNA analysis of the most promising candidate revealed it to be Bacillus siamensis, which has been associated with biosurfactant production, for the first time. Initial fermentation studies using mineral salt medium supplemented with crude oil resulted in a maximum biosurfactant yield of 0.64 g/L and reduction of surface tension to 36.1 mN/m at 96 h. Characterization studies were done using thin layer chromatography and Fourier transform infrared spectroscopy. FTIR spectra indicated the presence of carbonyl groups, alkyl bonds, and C-H and N-H stretching vibrations, typical of peptides. The extracted biosurfactant was stable at extreme temperatures, pH, and salinity. Its applicability to EOR was further verified by conducting sand pack column studies that yielded up to 60% oil recovery.

  11. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    Science.gov (United States)

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  12. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.

    Science.gov (United States)

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

    2014-09-15

    An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Isolation and characterization of a biosurfactant-producing heavy metal resistant Rahnella sp. RM isolated from chromium-contaminated soil

    OpenAIRE

    GOVARTHANAN, Muthusamy; MYTHILI, R.; SELVANKUMAR, Thangasamy; KAMALA-KANNAN, S.; CHOI, DuBok; CHANG, Young-Cheol

    2017-01-01

    Objective of the study was to isolate heavy metal resistant bacteria from chromium-contaminated subsurface soil and investigate biosurfactant production and heavy metal bioremediation. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolate was identified as Rahnella sp. RM. The biosurfactant production by heavy metal resistant Rahnella sp. RM was optimized using Box- Behnken design (BBD). The maximum emulsification activity was obtained 66% at 6% soybean meal in pH 7.0 and 33....

  14. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth.

    Science.gov (United States)

    Sajna, Kuttuvan Valappil; Sukumaran, Rajeev Kumar; Gottumukkala, Lalitha Devi; Pandey, Ashok

    2015-09-01

    The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L(-1) supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L(-1). It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ∼46% improvement in degradation of C10-C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biosurfactants produced by Microbacterium sp., isolated from aquatic macrophytes in hydrocarbon-contaminated area in the Rio Negro, Manaus, Amazonas

    Directory of Open Access Journals (Sweden)

    João Marcelo Silva Lima

    2017-05-01

    Full Text Available Endophytic bacteria isolated from Eichhornia crassipes (Mart Solms., collected in oil contaminated wastewater of effluent generated by Petrobras refinery in Manaus were investigated to determine their potential for producing biosurfactants. Assay with 2.6-dichlorophenol indophenol (DCPIP indicator to verify hydrocarbon biodegradation activity; oil emulsification test; drop-collapse method; surface tension and growth curve of biosurfactant production. The M87 Microbacterium sp. strain chosen for this work was identified by the sequencing of the rDNA region and the chemical characterization was performed by FTIR, UFLC/MS and 1H RMN techniques. The selected bacterial isolate provided 3g L-1 of biosurfactant, using diesel oil as sole carbon source, being efficient in biodegrading oil as demonstrated by the DCPIP test. Fractions obtained by column chromatography were efficient in reducing water surface tension around 40 mN m-1, especially fraction 1, which reduced it to 34.17 mN m-1. The different techniques of chemical analysis used for the identification of the biosurfactant isolate indicated that this is probably a long - chain fatty acid lipid type, which may be used in the future as both biosurfactant in decontamination processes of hydrocarbon-polluted areas or as bioemulsifier in countless processes, since it exhibited no toxicity as determined by Alamar Blue assay.

  16. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  17. Removal of Cadmium and Zinc from Soil using Immobilized Cell of Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Charoon Sarin

    2010-07-01

    Full Text Available Immobilized biosurfactant producing bacteria (Bacillus subtilis TP8 and Pseudomonas fluorescens G7 were assessed for survival in heavy metal contaminated soil and for their ability to remove cadmium and zinc from contaminated soil. P. fluorescens G7 was considered to be a good candidate for bioremediation of heavy metals because of its high minimum inhibitory concentrations (MIC for each heavy metal and because of the obviously increased numbers of cell surviving after incubation in the heavy metal contaminated soil up to 4 weeks. The results of soil remediation showed that approximately 19% of Zn and 16.7% of Cd could be removed by this immobilized biosurfactant producing bacteria after incubation for 2 weeks. The results confirm the potential applicability of the immobilized biosurfactant producing bacteria for heavy metal bioremediation.

  18. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    Science.gov (United States)

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  20. Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11

    Directory of Open Access Journals (Sweden)

    Beom Ryong Kang

    2017-06-01

    Full Text Available Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761 with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951–0.977. Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.

  1. PRODUCTION OF FIBRINOLYTIC ENZYME (NATTOKINASE) FROM BACILLUS SP.

    OpenAIRE

    Padma Singh, Rekha Negi*, Vani Sharma, Alka Rani, Pallavi and Richa Prasad

    2018-01-01

    During present study Nattokinase which is a novel fibrinolytic enzyme was produced by Bacillus sp. To screen and extract nattokinase enzyme from Bacillus sp. were isolated from soil of different agricultural field by serial dilution method. Out of 10 isolate, one strain i.e. B3 produced nattokinase on screening medium. B3 was identified by biochemical characterization. The caseinolytic activity of Nattokinase was 0.526 U/ml and the selected isolate Bacillus sp. could produce active nattokinas...

  2. A novel hyaluronidase produced by Bacillus sp. A50.

    Directory of Open Access Journals (Sweden)

    Xueping Guo

    Full Text Available Hyaluronidases are a family of enzymes that degrade hyaluronic acid (hyaluronan, HA and widely used in many fields. A hyaluronidase producing bacteria strain was screened from the air. 16S ribosomal DNA (16S rDNA analysis indicated that the strain belonged to the genus Bacillus, and the strain was named as Bacillus sp. A50. This is the first report of a hyaluronidase from Bacillus, which yields unsaturated oligosaccharides as product like other microbial hyaluronate lyases. Under optimized conditions, the yield of hyaluronidase from Bacillus sp. A50 could reach up to 1.5×10(4 U/mL, suggesting that strain A50 is a good producer of hyaluronidase. The hyaluronidase (HAase-B was isolated and purified from the bacterial culture, with a specific activity of 1.02×10(6 U/mg protein and a yield of 25.38%. The optimal temperature and pH of HAase-B were 44°C and pH 6.5, respectively. It was stable at pH 5-6 and at a temperature lower than 45°C. The enzymatic activity could be enhanced by Ca2+, Mg2+, or Ni2+, and inhibited by Zn2+, Cu2+, EDTA, ethylene glycol tetraacetic acid (EGTA, deferoxamine mesylate salt (DFO, triton X-100, Tween 80, or SDS at different levels. Kinetic measurements of HAase-B towards HA gave a Michaelis constant (Km of 0.02 mg/mL, and a maximum velocity (Vmax of 0.27 A232/min. HAase-B also showed activity towards chondroitin sulfate A (CSA with the kinetic parameters, Km and Vmax, 12.30 mg/mL and 0.20 A232/min respectively. Meanwhile, according to the sequences of genomic DNA and HAase-B's part peptides, a 3,324-bp gene encoding HAase-B was obtained.

  3. Production and applications of biosurfactant from Bacillus subtilis MUV4

    Directory of Open Access Journals (Sweden)

    Aran H-Kittikun

    2008-04-01

    Full Text Available Bacillus subtilis MUV4 produced biosurfactant in shake-flask culture (200 rpm at 30oC with modified Mckeen medium containing 1% glucose as a carbon source, 1% monosodium glutamate and 0.3% yeast extract as nitrogen sources. The supernatant of B. subtilis MUV4 reduced the surface tension of the medium from 53.50 mN/m to 33.50 mN/m after 48 h of cultivation. The yield of crude biosurfactant from B. subtilis MUV4 after precipitating the supernatant with 6N HCl was 0.652 g/L. Growth kinetics studies showed the specific growth rate (μ of 0.14 h-1, yield of biomass to substrate (Yx/s of 0.713, yield of product to substrate (Yp/s of 0.072 and yield of product to biomass (Yp/x of 0.101. Moreover, B. subtilis MUV4 produced 0.30 g/L crude biosurfactant after 96 h of cultivation in the fermentor with agitation rate of 200 rpm without aeration and uncontrolled pH condition. The crude biosurfactant was dissolved in methanol and dried by vacuum evaporator (crude methanol. The supernatant, the crude biosurfactant and the crude methanol retained the biosurfactant activity over the pH range of 1-6, 7-10 and 4-10, respectively and the emulsion stability at 24 h (E24 at pH 7 were 66.67%, 33.33% and 33.33%, respectively. The supernatant and the crude biosurfactant showed surface tension activity at 4oC, room temperature (30±2oC and 50oC after incubation for 5 h. However, only crude methanol still retained surface tension activity after 100oC for 5 h. The surface tension activity of the supernatant and the crude biosurfactant was stable in 3-10% (w/v NaCl while crude methanol showed stability in 3-20% (w/v NaCl. However, all samples lost emulsion stability when NaCl concentration was higher than 5% (w/v. With sand pack column technique, crude methanol enhanced the recovery of crude oil and kerosene oil by 41.85% and 75.00%, respectively. In hydrocarbon degradation application study, the crude biosurfactant was added to the culture medium containing 0.3% crude oil

  4. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    Science.gov (United States)

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  5. Environmental applications for biosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Catherine N. [Department Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec, H3G 1M8 (Canada)]. E-mail: mulligan@civil.concordia.ca

    2005-01-01

    Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties. - More information is needed to be able to predict and model the behaviour of biosurfactants.

  6. Environmental applications for biosurfactants

    International Nuclear Information System (INIS)

    Mulligan, Catherine N.

    2005-01-01

    Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties. - More information is needed to be able to predict and model the behaviour of biosurfactants

  7. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  8. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking

    Science.gov (United States)

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-01-01

    Summary Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra-or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish

  9. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  10. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration.

    Science.gov (United States)

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.

  11. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  12. Isolation and characterization of lactobacillus and bacillus producing ...

    African Journals Online (AJOL)

    This study focuses on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus, and its antimicrobial properties against causal microorganisms of food borne infection (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion method ...

  13. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    Science.gov (United States)

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Effect of garlic solution to Bacillus sp. removal

    Science.gov (United States)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  15. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities.

    Science.gov (United States)

    Basit, Madiha; Rasool, Muhammad Hidayat; Naqvi, Syed Ali Raza; Waseem, Muhammad; Aslam, Bilal

    2018-01-01

    Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 mg/ml of biosurfactants and thus considered as safe. They also showed very good antioxidant activity by ferric-reducing activity and DPPH scavenging activity at 2 mg/ml. Consequently, the study offers an insight for the exploration of new bioactive molecules from the soil. It was concluded that lipopeptide biosurfactants produced from native strains of B. cereus may be recommended as safe antimicrobial, emulsifier and antioxidant agent.

  16. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    Science.gov (United States)

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-07-01

    Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.

  18. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.

    Science.gov (United States)

    Singh, P B; Sharma, S; Saini, H S; Chadha, B S

    2009-09-01

    To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos. A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0.01 g l(-1)). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0.2 g l(-1), was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0.01 g l(-1)) by ChlD strain. The best degradation efficiency was observed at 0.1 g l(-1) supplement of biosurfactant, as validated by GC and HPLC studies. The addition of biosurfactant at 0.1 g l(-1) resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation. This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.

  19. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    Science.gov (United States)

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  20. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    Science.gov (United States)

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  1. Identification of potential local isolated for biosurfactant production

    Science.gov (United States)

    Shafiei, Zahra; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul; Moazami, Nasrin; Hamzah, Ainon; Fooladi, Taybeh

    2013-11-01

    Biosurfactant are amphiphilic molecule that have received increasing attention in recent years because of their role in the growth of microorganisms on water-insoluble hydrophobic materials such as hydrocarbons as well as their commercial potential in the cosmetics, food, oil recovery and agricultural industries. In this study a potential biosurfactant producing strain was isolated from several soil samples of Terengganu oil refinery, Malaysia and selected during preliminary screening using hemolytic activity, oil spreading and drop collapsed technique. Isolates with at least more than one positive response to these three methods were subjected to complementary screening by measuring surface tension reduction as well as emulsification capacity. The biosurfactant produced by isolated 5M was able to reduced surface tension of culture medium from 60 mN/m to30mN/m. The biochemical and morphological characterization, 16SrRNA gene sequencing showed that the isolated 5M belongs to bacillus groups. The maximum production of biosurfactant by Bacillus 5M was observed after 48 h of incubation.

  2. Alternative methodology for isolation of biosurfactant-producing bacteria.

    Science.gov (United States)

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  3. Alternative methodology for isolation of biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    N. Krepsky

    Full Text Available Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1 and Arabian Light oil (2 g.L-1 as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  4. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    OpenAIRE

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate ...

  5. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. ... Solms and Cyperus ligularis L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for producing biosurfactants; the most promising ones ...

  6. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    Science.gov (United States)

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  7. Production, Characterization and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    Directory of Open Access Journals (Sweden)

    Sanket J. Joshi

    2016-11-01

    Full Text Available The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses or date molasses, as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33+0.57mN m-1 and 2.47+0.32mN m-1 respectively within 72h, at 40 C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67°+1.6° to 19.54°+0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor. The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial enhanced oil recovery processes.

  8. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Science.gov (United States)

    Liu, Jin-Feng; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed. PMID:25741767

  9. Chemical Structure, Property and Potential Applications of Biosurfactants Produced by Bacillus subtilis in Petroleum Recovery and Spill Mitigation

    Directory of Open Access Journals (Sweden)

    Jin-Feng Liu

    2015-03-01

    Full Text Available Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.

  10. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    OpenAIRE

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black pepper in Vietnam and promote root and shoot development of the ‘King of Spices’. Biosurfactant-producing P. fluorescens strain SS101 was also effective in controlling tomato late blight caused by P...

  11. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources.

    Science.gov (United States)

    Paraszkiewicz, Katarzyna; Bernat, Przemysław; Kuśmierska, Anna; Chojniak, Joanna; Płaza, Grażyna

    2018-03-01

    The aim of the study was to identify and characterize lipopeptide (LP) biosurfactants produced by two Bacillus subtilis strains (KP7 and I'-1a) grown on various media prepared from renewable natural resources: two different brewery wastewaters (BW#4 and BW#6), 2% beet molasses (M), apple peels extract (APE) supplemented with 0.25% of yeast extract (YE) or 0.25% peptone (P), and similarly supplemented carrot peels extract (CPE). In all used media both strains retained their individual LP production signature characterized by surfactin and iturin overproduction exhibited by KP7 and I'-1a strain, respectively. The production level and the structural diversity of synthesized LPs were dependent on the medium composition. In the CPE+YE medium it was higher than the yield obtained in Luria-Bertani (140.6 and 100.3 mg L -1 , respectively). Surfactins were produced by both strains as a mixture of four homologues (C13-C16) with the domination of variant C14. All other broths prepared from renewable resources strongly stimulated the iturin production by I'-1a strain with the exception of BW media. The highest iturin concentration (428.7 mg L -1 ) obtained in the CPE+P culture of I'-1a strain was about seven-fold higher than in LB. In all cultures only iturin A was identified. Among four iturin homologues (C13-16) produced by I'-1a strain, the highest relative contents of C16 variant (70-80%) were calculated for samples obtained from APE+P and CPE+P media. The obtained data indicate that the waste composition has an influence on both the types and amounts of biosurfactants produced by studied B. subtilis strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  13. Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India

    Science.gov (United States)

    Sarafin, Yesurethinam; Donio, Mariathasan Birdilla Selva; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-01-01

    Biosurfactant screening was made among the eight halophilic bacterial genera isolated from Kovalam solar salt works in Kanyakumari of India. After initial screening, Kocuria sp. (Km), Kurthia sp. (Ku) and Halococcus sp. (Hc) were found to have positive biosurfactant activity. Biosurfactant derived from Kocuria sp. emulsified more than 50% of the crude oil, coconut oil, sunflower oil, olive oil and kerosene when compared to the other strains. Further, Kocuria marina BS-15 derived biosurfactant was purified and characterized by TLC, FTIR and GC–MS analysis. The TLC analysis revealed that, the purified biosurfactants belong to the lipopeptide group. The IR spectrum results revealed that functional groups are R2C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 NN, alkenes and N–H. The GC–MS analysis confirmed the compound as Nonanoic acid and Cyclopropane with the retention time of 12.78 and 24.65, respectively. PMID:25473358

  14. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities Avaliação de um lipopeptídio biosurfactante de Bacillus natto TK-1 com fonte potencial de atividade antiadesiva, antimicrobiana e antitumoral

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Cao

    2009-06-01

    Full Text Available A lipopeptide biosurfactant produced by Bacillus natto TK-1 has a strong surface activity. The biosurfactant was found to be an anti-adhesive agent against several bacterial strains, and also showed a broad spectrum of antimicrobial activity. The biosurfactant induced a significant reduction in tumor cells viability in a dose- dependent manner.Um lipopeptídio biosurfactante produzido por Bacillus natto TK-1 apresenta intensa atividade de superfície. Verificou-se que o biosurfactante apresentou atividade antiadesiva contra várias cepas bacterianas, e também atividade antimicrobiana de amplo espectro. O biosurfactante causou uma redução significativa na viabilidade de células tumorais, de forma dose-dependente.

  15. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    Science.gov (United States)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  16. Production of Cold Active Lipase from Bacillus sp.

    OpenAIRE

    Yasemin, Sara; Arabacı, Nihan; Korkmaz Güvenmez, Hatice

    2018-01-01

    A cold active lipase producing Bacillus sp. strains were isolated from sewage of oil. Bacillus sp. strain SY-7 was determined as the best lipase producing isolate. The highest enzyme production was found at 20°C and pH 8.0 on tributyrin media. Analyses of molecular mass of the partial purified lipase was carried out by SDS-PAGE which revealed a single band as 110.5 kDa. The enzyme activity and stability were determined by spectrophotometric and titrimetric methods. The enzyme was active betwe...

  17. [EFFICIENCY OF INTRODUCING CAROTENE PRODUCING STRAINS BACILLUS SP. 1.1 AND B. AMYLOLIQUEFACIENS UCM B-5113 INTO THE CHIKENS DIET].

    Science.gov (United States)

    Nechypurenko, O O; Kharhota M A; Avdeeva, L V

    2015-01-01

    It was shown the efficiency of carotene producing strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 in the diet of chickens. Also it was detected the lowering of the quantitative content of bacterial genera Enterococcus, Staphylococcus, family Enterobacteriaceae in the gut after eating by chickens cross "H&N Brown Nick" fodder with strains Bacillus sp. 1.1 and B. amyloliquefaciens UCM B-5113 alone and in composition in quantities 1 x 10(10) CFU per 1 g of feed. On the 18th day after introduction of cultures Bacillus sp. 1.1, B. amyloliquefaciens UCM B-5113 and their composition in the diet of poultry we revealed the increasing of body weight by 21.6, 7.6 and 22.0%, respectively, comparesing to controls. Also due to Bacillus sp. 1.1 it was detected the restore of intestinal villous structures, tissues of spleen, liver and heart. We found the additive effect of the composition of the investigated strains of bacteria genus Bacillus to the chickens.

  18. Screening of potential biosurfactant-producing bacteria isolated from ...

    African Journals Online (AJOL)

    Seawater represents a specific environment harboring complex bacterial community which is adapted to harsh conditions. Hence, biosurfactant produced by these bacteria under these conditions have interesting proprieties. The screening of biosurfactant producing strains isolated from seawater biofilm was investigated.

  19. Screening concepts for the isolation of biosurfactant producing microorganisms.

    Science.gov (United States)

    Walter, Vanessa; Syldatk, Christoph; Hausmann, Rudolf

    2010-01-01

    This chapter gives an overview of current methods for the isolation of biosurfactant producing microbes. The common screening methods for biosurfactants are presented. Sampling and isolation of bacteria are the basis for screening of biosurfactant producing microbes. Hydrocarbon-contaminated sites are the most promising for the isolation of biosurfactant producing microbes, but many strains have also been isolated from undisturbed sites. In subsequent steps the isolates have to be characterized in order to identify the strains which are interesting for a further investigation. Several techniques have been developed for identifying biosurfactant producing strains. Most of them are directly based on the surface or interfacial activity of the culture supernatant. Apart from that, some screening methods explore the hydrophobicity of the cell surface. This trait also gives an indication on biosurfactant production. In recent years automation and miniaturization have led to the development of high throughput methods for screening. High throughput screening (HTS) for analyzing large amounts of potential candidates or whole culture collections is reflected in the end. However, no new principals have been introduced by HTS methods.

  20. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot

  1. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required

  2. Kinetic study and modeling of biosurfactant production using Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Hesty Heryani

    2017-05-01

    Conclusions: For further development and industrial applications, the modified Gompertz equation is proposed to predict the cell mass and biosurfactant production as a goodness of fit was obtained with this model. The modified Gompertz equation was also extended to enable the excellent prediction of the surface tension.

  3. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    Science.gov (United States)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  4. Yeasts and bacterial biosurfactants as demulsifiers for petroleum derivative in seawater emulsions.

    Science.gov (United States)

    Rocha E Silva, Fernanda Cristina P; Roque, Bruno Augusto C; Rocha E Silva, Nathalia Maria P; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2017-11-15

    Oil sludge or waste generated in transport, storage or refining forms highly stable mixtures due to the presence and additives with surfactant properties and water forming complex emulsions. Thus, demulsification is necessary to separate this residual oil from the aqueous phase for oil processing and water treatment/disposal. Most used chemical demulsifiers, although effective, are environmental contaminants and do not meet the desired levels of biodegradation. We investigated the application of microbial biosurfactants as potential natural demulsifiers of petroleum derivatives in water emulsions. Biosurfactants crude extracts, produced by yeasts (Candida guilliermondii, Candida lipolytica and Candida sphaerica) and bacteria (Pseudomonas aeruginosa, Pseudomonas cepacia and Bacillus sp.) grown in industrial residues, were tested for demulsification capacity in their crude and pure forms. The best results obtained were for bacterial biosurfactants, which were able to recover about 65% of the seawater emulsified with motor oil compared to 35-40% only for yeasts products. Biosurfactants were also tested with oil-in-water (O/W) and water-in-oil (W/O) kerosene model emulsions. No relationship between interfacial tension, cell hydrophobicity and demulsification ratios was observed with all the biosurfactants tested. Microscopic illustrations of the emulsions in the presence of the biosurfactants showed the aspects of the emulsion and demulsification process. The results obtained demonstrate the potential of these agents as demulsifiers in marine environments.

  5. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa.

    Science.gov (United States)

    Thavasi, Rengathavasi; Jayalakshmi, Singaram; Banat, Ibrahim M

    2011-01-01

    This study was conducted to investigate the effects of fertilizers and biosurfactants on biodegradation of crude oil by three marine bacterial isolates; Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Five sets of experiments were carried out in shake flask and microcosm conditions with crude oil as follows: Set 1-only bacterial cells added (no fertilizer and biosurfactant), Set 2-with additional fertilizer only, Set 3-with additional biosurfactant only, Set 4-with added biosurfactant+fertilizer, Set 5-with no bacterial cells added (control), all the above experimental sets were incubated for 168 h. The biosurfactant+fertilizer added Set 4, resulted in maximum crude oil degradation within shake flask and microcosm conditions. Among the three bacterial isolates, P. aeruginosa and biosurfactant produced by this strain resulted in maximum crude oil degradation compared to the other two bacterial strains investigated. Interestingly, when biosurfactant and bacterial cells were used (Set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in Set 4 with added fertilizer+biosurfactant were only 4-5% higher degradation level in shake flask and 3.2-7% in microcosm experiments for all three bacterial strains used. It is concluded that, biosurfactants alone capable of promoting biodegradation to a large extent without added fertilizers, which will reduce the cost of bioremediation process and minimizes the dilution or wash away problems encountered when water soluble fertilizers used during bioremediation of aquatic environments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    Science.gov (United States)

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  7. Suitable conditions for xylanases activities from Bacillus sp. GA2(1 and Bacillus sp. GA1(6 and their properties for agricultural residues hydrolysis

    Directory of Open Access Journals (Sweden)

    Sudathip Chantorn

    2016-04-01

    Full Text Available Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were isolated from soybean field in Khon Kaen province, Thailand. Crude enzymes from both isolates showed the activities of cellulase, xylanase, and mannanase at 37°C for 24 h. The highest xylanase activities of Bacillus sp. GA2(1 and Bacillus sp. GA1(6 were 1.58±0.25 and 0.82±0.16 U/ml, respectively. The relative xylanase activities from both strains were more than 60% at pH 5.0 to 8.0. The optimum temperature of xylanases was 50°C in both strains. The residual xylanase activities from both strains were more than 70% at 60°C for 60 min. Five agricultural wastes (AWs, namely coffee residue, soybean meal, potato peel, sugarcane bagasse, and corn cobs, were used as substrates for hydrolysis properties. The highest reducing sugar content of 101±1.32 µg/ml was obtained from soybean meal hydrolysate produced by Bacillus sp. GA2(1 xylanase.

  8. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  9. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    Science.gov (United States)

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  10. Scale up and application of biosurfactant from Bacillus subtilis in Enhanced Oil recovery.

    Science.gov (United States)

    Amani, Hossein; Mehrnia, Mohammad Reza; Sarrafzadeh, Mohammad Hossein; Haghighi, Manouchehr; Soudi, Mohammad Reza

    2010-09-01

    There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y(p/x)), biosurfactant on sucrose (Y(p/s)), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g(-1), 0.18 g g(-1), and 0.03 g l(-1) h(-1), respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y(x/s), Y(p/x), Y(p/s), and Y of 0.42 g g(-1), 0.595 g g(-1), 0.25 g g(-1), and 0.057 g l(-1) h(-1), respectively. The biosurfactant maximum production, 2.5 g l(-1), was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K(L)a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s(-1), respectively. Comparison of K(L)a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K(L) a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.

  11. Indigenous production of biosurfactant and degradation of crude oil

    Directory of Open Access Journals (Sweden)

    Hamid Rashedi

    2015-04-01

    Full Text Available The present study investigated the isolation and identification of biosurfactant producing bacteria from Iranian oil wells. The biosurfactant production of bacteria isolates was evaluated and confirmed using hemolysis and emulsification tests. The biodegradation of crude oil was studied using GC and HPLC analysis. A total of 45 strains have been isolated. These strains showed less than a 40 mN m-1 reduction in surface tension. The effects of different pH (4.2-9.2, salinity concentrations (1%-15%, and temperatures (25-50 in biosurfactant production of isolated strains were evaluated. One of the strains (Bacillus sp. NO.4 showed a high salt tolerance and a successful production of biosurfactant in a vast pH range. Its maximum biomass production (about 3.1 g L-1 dry weight was achieved after 60 hours of growth. The surface tension of the culture broth dropped rapidly after inoculation and reached its lowest value (36 mN m-1 during the exponential phase after about 36-48 hours of growth. The study of the GC graphs showed that higher aliphatic reduction occurred in fractions with C14 to C24 hydrocarbons. The depicted results of the HPLC graphs indicated a 100% degradation of chrysene and fluorine. In this study, we demonstrated the useful capacities of the isolates in removing oil pollutants and their application in MEOR in vitro.

  12. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment.

    Science.gov (United States)

    Luo, Liang; Zhao, Zhigang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng; Xu, Qiyou

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L -1 of glucose and 0.5 g L -1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L -1 . The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology.

  13. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms.

    Science.gov (United States)

    Dusane, Devendra H; Matkar, Pratiek; Venugopalan, Valayam P; Kumar, Ameeta Ravi; Zinjarde, Smita S

    2011-03-01

    Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.

  14. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  15. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2016-02-01

    Full Text Available Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens, and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  16. Alternative methodology for isolation of biosurfactant-producing bacteria

    OpenAIRE

    Krepsky, N.; Da Silva, FS.; Fontana, LF.; Crapez, MAC.

    2007-01-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1) and Arabian Light oil (2 g.L-1) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Lig...

  17. Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System.

    Science.gov (United States)

    Bouassida, Mouna; Ghazala, Imen; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2018-01-28

    Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

  18. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance)

    International Nuclear Information System (INIS)

    Hassanshahian, Mehdi

    2014-01-01

    Highlights: • Biosurfactant producing bacteria were isolated from Persian Gulf. • There is high diversity of biosurfactant producing bacteria in the Persian Gulf. • These bacteria are very useful for management of oil pollution in the sea. - Abstract: Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted

  19. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    Science.gov (United States)

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils.

  20. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice.

    Science.gov (United States)

    de Oliveira, Darlane Wellen Freitas; França, Italo Waldimiro Lima; Félix, Anne Kamilly Nogueira; Martins, João Jeferson Lima; Giro, Maria Estela Aparecida; Melo, Vânia Maria M; Gonçalves, Luciana Rocha Barros

    2013-01-01

    In this work a low cost medium for the production of a biosurfactant by Bacillus subtilis LAMI005 and the kinetics of surfactin production considering the effect of initial substrate concentration were investigated. First, cashew apple juice supplementation for optimal production of biosurfactant by B. subtilis LAMI005 was studied. The medium formulated with clarified cashew apple juice and distilled water, supplemented with 1.0 g/L of (NH(4))(2)SO(4), proved to be the best among the nutrients evaluated. The crude biosurfactant had the ability to decrease the surface tension of water to 30 dyne/cm, with a critical micelle concentration (CMC) of 63.0 mg/L. Emulsification experiments indicated that this biosurfactant effectively emulsified kerosene (IE(24)=67%) and soybean oil (IE(24)=64%). Furthermore, the emulsion stability was always very high. It was shown by biochemical analysis, IR spectra, that there is no qualitative differences in the composition of the crude biosurfactant from a standard sample of surfactin from B. subtilis. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis.

    Science.gov (United States)

    Olivera, Nelda L; Nievas, Marina L; Lozada, Mariana; Del Prado, Guillermo; Dionisi, Hebe M; Siñeriz, Faustino

    2009-01-01

    Biosurfactant-producing bacteria belonging to the genera Alcanivorax, Cobetia and Halomonas were isolated from marine sediments with a history of hydrocarbon exposure (Aristizábal and Gravina Peninsulas, Argentina). Two Alcanivorax isolates were found to form naturally occurring consortia with strains closely related to Pseudomonas putida and Microbacterium esteraromaticum. Alkane hydroxylase gene analysis in these two Alcanivorax strains resulted in the identification of two novel alkB genes, showing 86% and 60% deduced amino acid sequence identity with those of Alcanivorax sp. A-11-3 and Alcanivorax dieselolei P40, respectively. In addition, a gene homologous to alkB2 from Alcanivorax borkumensis was present in one of the strains. The consortium formed by this strain, Alcanivorax sp. PA2 (98.9% 16S rRNA gene sequence identity with A. borkumensis SK2(T)) and P. putida PA1 was characterized in detail. These strains form cell aggregates when growing as mixed culture, though only PA2 was responsible for biosurfactant activity. During exponential growth phase of PA2, cells showed high hydrophobicity and adherence to hydrocarbon droplets. Biosurfactant production was only detectable at late growth and stationary phases, suggesting that it is not involved in initiating oil degradation and that direct interfacial adhesion is the main hydrocarbon accession mode of PA2. This strain could be useful for biotechnological applications due to its biosurfactant production, catabolic and aggregation properties.

  2. Biosurfactant-producing yeasts widely inhabit various vegetables and fruits.

    Science.gov (United States)

    Konishi, Masaaki; Maruoka, Naruyuki; Furuta, Yoshifumi; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2014-01-01

    The isolation of biosurfactant-producing yeasts from food materials was accomplished. By a combination of a new drop collapse method and thin-layer chromatography, 48 strains were selected as glycolipid biosurfactant producers from 347 strains, which were randomly isolated from various vegetables and fruits. Of the producers, 69% were obtained from vegetables of the Brassica family. Of the 48 producers, 15 strains gave relatively high yields of mannosylerythritol lipids (MELs), and were identified as Pseudozyma yeasts. These strains produced MELs from olive oil at yields ranging from 8.5 to 24.3 g/L. The best yield coefficient reached 0.49 g/g as to the carbon sources added. Accordingly, MEL producers were isolated at high efficiency from various vegetables and fruits, indicating that biosurfactant producers are widely present in foods. The present results should facilitate their application in the food and related industries.

  3. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    Science.gov (United States)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  4. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  5. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Norfloxacin degradation by Bacillus subtilis strains able to produce biosurfactants on a bioreactor scale

    Directory of Open Access Journals (Sweden)

    Jałowiecki Łukasz

    2017-01-01

    Full Text Available The discharge of antibiotics into the environment has become a major concern since this group of pharmaceuticals influence on microbial communities not only by its mode of action, but also because of the risk of a worldwide dispersal of antibiotic resistance genes (ARG. Antibiotics residues have been found in various environments such as waters, sediments, and soils. Moreover, most WWTPs are not designed to treat such kind of pollutants, which remain incompletely removed. Currently, biodegradation processes which involved bacterial strains with increased degradation capabilities is one of the most promising technique. The aim of this study was to evaluate the norfloxacin biodegradation potential of the three Bacillus subtilis strains named T-1, T’-1 and I’-1a on a bioreactor scale. The aerobic degradation was conducted in a 5-liter bioreactor on minimal salts medium in co-metabolic culture supplemented with glucose. The degradation rate of norfloxacin was determined with the HPLC technique. The surface tension was determined using ring method in order to observe the changes in biosurfactants production. Also, the biofilm formation abilities of the bacteria with two quantitative methods, crystal violet (CV method and TTC-based test and enzymes production were evaluated.

  7. Production of biosurfactants using substrates from renewable-resources

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-05-01

    Full Text Available Surface-active compounds commonly used in industries are chemically synthesized. However, biosurfactants have been paid increasing attention to replace the synthetic surfactants owing to their advantages such as biodegradability and low toxicity. Nowadays, the use of biosurfactant has been limited due to the high production cost. Nevertheless, biosurfactants can be produced with high yield by some microorganisms, especially Pseudomonas sp. These microorganisms can use the various renewal resources, especially agroindustrial wastes, as the potential carbon sources. This leads to the greater possibility for economical biosurfactant production and reduced pollution caused by those wastes.

  8. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  9. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species.

    Science.gov (United States)

    Wang, Beibei; Wang, Qingling; Liu, Wuxing; Liu, Xiaoyan; Hou, Jinyu; Teng, Ying; Luo, Yongming; Christie, Peter

    2017-09-01

    Phytoremediation together with microorganisms may confer the advantages of both phytoremediation and microbial remediation of soils containing organic contaminants. In this system biosurfactants produced by Pseudomonas sp. SB may effectively help to increase the bioavailability of organic pollutants and thereby enhance their microbial degradation in soil. Plants may enhance the rhizosphere environment for microorganisms and thus promote the bioremediation of contaminants. In the present pot experiment study, dichlorodiphenyltrichloroethane (DDT) residues underwent an apparent decline after soil bioremediation compared with the original soil. The removal efficiency of fertilizer + tall fescue, fertilizer + tall fescue + Pseudomonas, fertilizer + perennial ryegrass, and fertilizer + perennial ryegrass + Pseudomonas treatments were 59.4, 65.6, 69.0, and 65.9%, respectively, and were generally higher than that in the fertilizer control (40.3%). Principal coordinates analysis (PCoA) verifies that plant species greatly affected the soil bacterial community irrespective of inoculation with Pseudomonas sp. SB. Furthermore, community composition analysis shows that Proteobacteria, Acidobacteria and Actinobacteria were the three dominant phyla in all groups. In particular, the relative abundance of Pseudomonas for fertilizer + tall fescue + Pseudomonas (0.25%) was significantly greater than fertilizer + tall fescue and this was related to the DDT removal efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  11. Isolation of biosurfactant-producing bacteria from the Rancho La Brea Tar Pits.

    Science.gov (United States)

    Belcher, Richard W; Huynh, Kelvin V; Hoang, Timothy V; Crowley, David E

    2012-12-01

    This research was conducted to identify culturable surfactant-producing bacterial species that inhabit the 40,000-year-old natural asphalt seep at the Rancho La Brea Tar Pits in Los Angeles, CA. Using phenanthrene, monocyclic aromatic hydrocarbons, and tryptic soy broth as growth substrates, culturable bacteria from the tar pits yielded ten isolates, of which three species of gamma-proteobacteria produced biosurfactants that accumulated in spent culture medium. Partially purified biosurfactants produced by these strains lowered the surface tension of water from 70 to 35-55 mN/m and two of the biosurfactants produced 'dark halos' with the atomized oil assay, a phenomenon previously observed only with synthetic surfactants. Key findings include the isolation of culturable biosurfactant-producing bacteria that comprise a relatively small fraction of the petroleum-degrading community in the asphalt.

  12. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194.

    Science.gov (United States)

    Madhu, Arenahalli Ningegowda; Prapulla, Siddalingaiya Gurudutt

    2014-02-01

    The study details the investigations on the ability of Lactobacillus plantarum CFR 2194, an isolate from kanjika, a rice-based ayurvedic fermented product, to produce biosurfactant. Surfactant production, as a function of fermentation time, indicates that the maximum production occurred at 72 h under stationary conditions. Isolation, partial purification, and characterization of the biosurfactant produced have been carried out, and Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that biosurfactants were constituted by protein and polysaccharide fractions, i.e., possessed the structure typical of glycoprotein, which is affected by the medium composition and the phase of growth of the biosurfactant-synthesizing strain. Critical micelle concentration (cmc) of the biosurfactant was found to be 6 g l(-1). The emulsification index (EI), emulsification activity (EA), and emulsion stability (ES) values of the biosurfactant have confirmed its emulsification property. Aqueous fractions of the produced biosurfactant exhibited a significant antimicrobial activity against the food-borne pathogenic species: Escherichia coli ATCC 31705, E. coli MTCC 108, Salmonella typhi, Yersinia enterocolitica MTCC 859, and Staphylococcus aureus F 722. More importantly, the biosurfactant from L. plantarum showed antiadhesive property against above food-borne pathogens. The results thus indicate the potential for developing strategies to prevent microbial colonization of food contact surfaces and health-care prosthesis using these biosurfactants.

  13. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards; SEMIANNUAL

    International Nuclear Information System (INIS)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr. D.P.; Sharma, P.K.; Jackson, B.E.

    2002-01-01

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains

  14. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    Science.gov (United States)

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  16. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  17. Improved Method for the Isolation of Biosurfactant Glycolipids from Rhodococcus sp. Strain H13A

    OpenAIRE

    Bryant, Frank O.

    1990-01-01

    An improved method for the isolation of the biosurfactant glycolipids from Rhodococcus sp. strain H13A by using XM 50 diafiltration and isopropanol precipitation was devised. This procedure was advantageous since it removes protein coisolated when the glycolipids are obtained by organic extraction and silicic acid chromatography. The protein apparently does not contribute any biosurfactant characteristics to the glycolipids. The deacylated glycolipid backbone included only a disaccharide.

  18. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  19. Uji produksi biosurfaktan oleh Pseudomonas sp. pada substrat yang berbeda

    Directory of Open Access Journals (Sweden)

    Fatimah Fatimah

    2012-02-01

    Full Text Available Biosurfactant, microbial metabolite whose properties like surfactant, was suggested to replace chemically synthesized surfactant for take in hand environtmental pollution by petroleum hydrocarbon. This work was done to examine potency of Pseudomonas sp. isolated from Tanjung Perak Harbor to produce biosurfactant. Also, to know the effect of different substrates (glucose + yeast extract, lubricating oil and hexadecane toward biosurfactant production. Pseudomonas sp. grown in mineral synthetic water and biosurfactant production was measured on stationary phase. Biosurfactant production based on emulsification activity and surface tension reduction of supernatant (using Du Nouy tensiometer. Solar, lubricating oil, and hexadecane were used to examine emulsification activity. Results indicated that Pseudomonas sp. have a potency to produce biosurfactant. Surface tension of supernatant decreased up to 20 dyne/cm, when grown on hexadecane substrate. Hexadecane is the best growing substrate for biosurfactant production than others.

  20. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  1. Characterization of biosurfactant produced from submerged ...

    African Journals Online (AJOL)

    user

    interfacial tension. This work was designed to produce biosurfactants from the fermentation of .... The cashew apples were collected from. Ubogidi cashew ... and manually crushed to remove the juice using a pestle and mortar. The bagasse was ..... degradation by yeast species Trichosporon asahii isolated from petroleum ...

  2. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Staphylococcus haemolyticus as a potential producer of biosurfactants with antimicrobial, anti-adhesive and synergistic properties.

    Science.gov (United States)

    Rossi, C C; Santos-Gandelman, J F; Barros, E M; Alvarez, V M; Laport, M S; Giambiagi-deMarval, M

    2016-09-01

    Staphylococcus haemolyticus is an opportunistic human pathogen that usually gains entry into the host tissue in association with medical device contamination. Biofilm formation is a key factor for the establishment of this bacterium and its arrangement and dynamics can be influenced by the synthesis of biosurfactants. Biosurfactants are structurally diverse amphiphilic molecules with versatile biotechnological applications, but information on their production by staphylococci is still scarce. In this work, two Staph. haemolyticus strains, showing high potential for biosurfactant production - as observed by four complementary methods - were investigated. Biosurfactant extracts were produced and studied for their capacity to inhibit the growth and biofilm formation by other bacterial human pathogens. The biosurfactant produced by the one of the strains inhibited the growth of most bacteria tested and subinhibitory concentrations of the biosurfactant were able to decrease biofilm formation and showed synergistic effects with tetracycline. Because these results were also positive when the biosurfactants were tested against the producing strains, it is likely that biosurfactant production by Staph. haemolyticus may be an unexplored virulence factor, important for competition and biofilm formation by the bacterium, in addition to the biotechnological potential. This work is the first to show the production of biosurfactants by Staphylococcus haemolyticus strains. Extracts showed antimicrobial, anti-adhesive and synergistic properties against a variety of relevant human pathogens, including the producing strains. In addition to the biotechnological potential, biosurfactants produced by Staph. haemolyticus are potentially undescribed virulence determinants in their producing strains. © 2016 The Society for Applied Microbiology.

  4. SCREENING AND EXTRACTION OF BIOSURFACTANT PRODUCING BACTERIA FROM OIL CONTAMINATED SOILS.

    OpenAIRE

    B. F. Paul Beulah.

    2018-01-01

    Biosurfactants produced by bacteria are surface active compounds involved in the degradation of hydrocarbons. They are heterogeneous group of surface active molecules produced by microorganisms, which adhere to the cell surface or are excreted extra cellularly in the growth medium. The biosurfactants producing microbes are helpful in bioremediation of heavy metals, pesticides and hydrocarbon contaminated sites. They are also used as bio control agent to protect plant against various diseases,...

  5. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  6. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain.

    Science.gov (United States)

    Ruiz-García, Cristina; Béjar, Victoria; Martínez-Checa, Fernando; Llamas, Inmaculada; Quesada, Emilia

    2005-01-01

    Two Gram-positive, endospore-forming bacterial strains, CR-502T and CR-14b, which produce surfactant molecules are described. Phenotypic tests and phylogenetic analyses showed these strains to be members of the genus Bacillus and related to the species Bacillus atrophaeus, Bacillus mojavensis, Bacillus subtilis, Bacillus vallismortis and Bacillus amyloliquefaciens, although they differ from these species in a number of phenotypic characteristics. DNA-DNA hybridization confirmed that they show less than 20 % hybridization with the above-mentioned species and therefore represent a novel species of Bacillus. The DNA G+C content is 46.4 mol% in strain CR-502T and 46.1 mol% in strain CR-14b. The main fatty acids in strain CR-502T are 15 : 0 anteiso (32.70 %), 15 : 0 iso (29.86 %) and 16 : 0 (13.41 %). The main quinone in strain CR-502T is MK-7 (96.6 %). In the light of the polyphasic evidence gathered in this study, it is proposed that these strains be classified as a novel species of the genus Bacillus, with the name Bacillus velezensis sp. nov. The type strain (CR-502T=CECT 5686T=LMG 22478T) was isolated from a brackish water sample taken from the river Vélez at Torredelmar in Málaga, southern Spain.

  7. Enhanced production of poly glutamic acid by Bacillus sp. SW1-2 ...

    African Journals Online (AJOL)

    Bacillus sp. SW1-2 producing poly glutamic acid (PGA), locally isolated from Eastern province in Saudi Arabia, was characterized and identified based on 16S rRNA gene sequencing. Phylogenetic analysis revealed its closeness to Bacillus megaterium. The homopolymer consists mainly of glutamic as indicated in the ...

  8. USE OF BUTTER MILK AND POULTRY-TRANSFORMING WASTES FOR ENHANCED PRODUCTION OF Bacillus subtilis SPB1 BIOSURFACTANT IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Raida Zouari

    2015-04-01

    Full Text Available Biosurfactants are valuable microbial amphiphilic molecules with effective surface-active and biological properties applicable to several industries and processes. Microorganisms synthesize them, especially during growth on water-immiscible substrates, providing an alternative to chemically prepared conventional surfactants. Microbial surfactants are not yet a sustainable alternative to chemically synthesized surfactants seeing their potentially high production charges. This study highlights the use of low-cost agro-industrial raw material for fermentative production of biosurfactants. The Box–Behnken Design and response surface methodology were employed to optimize the concentrations of the ratio butter milk /distilled water, poultry-transforming wastes and inoculum size for lipopeptide biosurfactant production by B.subtilis SPB1 in submerged fermentation.The best production yield was about 12.61 ± 0.7 g/L of crude lipopeptide biosurfactant. It can be obtained when using a ratio butter milk /distilled water of 1.5, poultry-transforming wastes of 23g/L and an inoculum size of 0.12. In comparison to the highest biosurfactant production yield reported for Bacillus subtilis SPB1, three fold increases were obtained.

  9. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.

    Science.gov (United States)

    Das, Amar Jyoti; Kumar, Rajesh

    2016-06-01

    Soil contaminated by Petroleum oil cannot be utilized for agricultural purposes due to hydrocarbon toxicity. Oil contaminated soil induces toxicity affecting germination, growth and productivity. Several technologies have been proposed for bioremediation of oil contaminated sites, but remediation through biosurfactant producing plant growth promontory rhizobacteria (PGPR) is considered to be most promising methods. In the present study the efficacy of seed priming on growth and pigment of Withania somnifera under petroleum toxicity is explored. Seeds of W. somnifera were primed with biosurfactant producing Pseudomonas sp. AJ15 with plant growth promoting traits having potentiality to utilized petroleum as carbon source. Results indicates that plant arose from priming seeds under various petroleum concentration expressed high values for all the parameters studied namely germination, shoot length, root length, fresh and dry weight and pigments (chlorophyll and carotenoid) as compared to non primed seed. Hence, the present study signifies that petroleum degrarding biosurfactant producing PGPR could be further used for management and detoxification of petroleum contaminated soils for growing economically important crops. Copyright © 2016. Published by Elsevier Ltd.

  10. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  11. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U.

    Science.gov (United States)

    Ismail, Wael; El Nayal, Ashraf M; Ramadan, Ahmed R; Abotalib, Nasser

    2014-01-01

    Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like

  12. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation.

    Science.gov (United States)

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  13. Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR).

    Science.gov (United States)

    Pathak, Khyati V; Keharia, Hareshkumar

    2014-02-01

    Bacillus subtilis K1 isolated from aerial roots of banyan tree secreted mixture of surfactins, iturins and fengycins with high degree of heterogeneity. The extracellular extract consisting of mixture of these cyclic lipopeptides exhibited very good emulsification activity as well as excellent emulsion stability. The culture accumulated maximum surfactant up to 48 h of growth during batch fermentation in Luria broth. The emulsion of hexane, heptane and octane prepared using 48-h-old culture supernatant of B. subtilis K1 remained stable up to 2 days while emulsion of four stroke engine oil remained stable for more than a year. The critical micelle concentration of crude lipopeptide biosurfactant extracted by acid precipitation from 48-h-old fermentation broth of B. subtilis K1 was found to be 20.5 μg/mL. The biosurfactant activity was found to be stable at 100 °C for 2 h, over a pH range of 6-12 h and over an NaCl concentration up to 10 % (w/v). The application of biosurfactant on laboratory scale sand pack column saturated with four stroke engine oil resulted in ~43 % enhanced oil recovery, suggesting its suitability in microbially enhanced oil recovery.

  14. Evaluation of antifungal metabolites activity from bacillus licheniformis OE-04 against Colletotrichum gossypii.

    Science.gov (United States)

    Nawaz, Hafiz Husnain; Nelly Rajaofera, M J; He, Qiguang; Anam, Usmani; Lin, Chunhua; Miao, Weiguo

    2018-04-01

    Anthracnose disease in the cotton plant caused by fungal pathogen Colletotrichum gossypii. It is supposed to be most critical diseases in the cotton crop as it causes infection and leads to complete damaging of the cotton crop by infecting the leaves, stems, and bolls in the field. The disease control is challenging due to the absence of an effective fungicide without damaging the farmer health and environment. So the series of experiments were designed to assess the antagonistic activity of biosurfactant released by strain Bacillus licheniformis OE-04 against the anthracnose causing agent in cotton and this strain was screened out from forty eight strain of rhizobacteria. We also estimated the heat stability and pH range and toxicity of biosurfactant produced by strain 0E-04. The results showed that biosurfactant has maximum antifungal activity against C. gossypii. In vitro study concluded that the biosurfactant can reduce fungal activity by inhibiting the spore germination of C. gossypii. Moreover, the biosurfactant also has wide pH and temperature range. We observed Antifungal activity of biosurfactant at 5 to 10 pH range and temperature range was also wide from room temperature to 100 °C. We also observed the toxicity of biosurfactant produced by Bacillus licheniformis against zebra fish (Danio rerio). We were noticed that biosurfactant have least harmful effect with maximum concentration. The study confirmed that biosurfactant of Bacillus licheniformis have high pH and heat stability range with least harmful effects so it can be a good replacement of chemical pesticides for cotton anthracnose control. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  16. Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency.

    Science.gov (United States)

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.

  17. Isolation and identification of biosurfactant-producing strains from the genus Pseudomonas aeruginosa and antibacterial effects of biosurfactant production in vitro

    Directory of Open Access Journals (Sweden)

    Salman Ahmady-Asbchin

    2013-01-01

    Full Text Available Introduction: Biosurfactants are amphiphilic biological compounds produced extracellularly or as part of the cell membranes by a variety of microorganisms. Because of their use in various industries, they are of a particular importance. The aim of this study was to identify a strain of bacteria of the genus Pseudomonas aeruginosa biosurfactant producers. Materials and methods: In this study, different samples of oil, water and soil contaminated with oil were prepared. Hemolytic activity, emulsification activity and measurement of surface tension were used and selected strains were identified by biochemical tests. The nature and effect of antibacterial biosurfactant was evaluated for strain selection.Results: In this study, eighty eight bacterial strains were isolated. Twenty four strains were isolated from the isolated strains with hemolytic activity. Among which, 14 strains have emulsification activity more than 70% and at last four strains reached surface tension to be less than 40 mN/m. Selected strain based on biochemical tests was recognized as a Pseudomonas aeruginosa. The nature of biosurfactant was determined by TLC, and proved to be of glycolipid kind. Therefore, the produced biosurfactant of the selected strain had antibacterial activity against six bacterial infectious. Sensitive bacteria to the effects of biosurfactant extract of Pseudomonas aeruginosa83, was Staphylococcus aureus and the most resistant bacteria to these extract, was the Proteus mirabilis. The results of MIC, MBC showed that MIC of the extract in concentration of 63 and 125 mg/ml on Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus respectively. Also, the MBC were extract in concentration of 63 and 125mg/ml on Staphylococcus epidermidis and Staphylococcus aureus respectively.Discussion and conclusion: Pseudomonas aeruginosa had high potential in reducing the surface tension and biosurfactant extracted had high antibacterial effects. Therefore, it

  18. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination.

    Science.gov (United States)

    Etchegaray, Augusto; Coutte, François; Chataigné, Gabrielle; Béchet, Max; Dos Santos, Ramon H Z; Leclère, Valérie; Jacques, Philippe

    2017-01-01

    Biosurfactants are important in many areas; however, costs impede large-scale production. This work aimed to develop a global sustainable strategy for the production of biosurfactants by a novel strain of Bacillus amyloliquefaciens. Initially, Bacillus sp. strain 0G was renamed B. amyloliquefaciens subsp. plantarum (syn. Bacillus velezensis) after analysis of the gyrA and gyrB DNA sequences. Growth in modified Landy's medium produced 3 main recoverable metabolites: surfactin, fengycin, and acetoin, which promote plant growth. Cultivation was studied in the presence of renewable carbon (as glycerol) and nitrogen (as arginine) sources. While diverse kinetics of acetoin production were observed in different media, similar yields (6-8 g·L -1 ) were obtained after 72 h of growth. Glycerol increased surfactin-specific production, while arginine increased the yields of surfactin and fengycin and increased biomass significantly. The specific production of fengycin increased ∼10 times, possibly due to a connecting pathway involving arginine and ornithine. Adding value to crude extracts and biomass, both were shown to be useful, respectively, for the removal of p-xylene from contaminated water and for biodiesel production, yielding ∼70 mg·g -1 cells and glycerol, which could be recycled in novel media. This is the first study considering circular bioeconomy to lower the production costs of biosurfactants by valorisation of both microbial cells and their primary and secondary metabolites.

  19. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  20. Lama Penyimpanan, Karakterisasi Fisiologi, dan Viabilitas Bakteri Endofit Bacillus sp. dalam Formula Tepung

    Directory of Open Access Journals (Sweden)

    Diana putri

    2016-03-01

    Full Text Available Endophytic bacteria can be formulated to retain its ability as disease control agents. Three of endophytic bacteria which had the capability to suppress infection of Meloidogyne sp, and to enhance pepper growth were gained from the previous study. This research was aimed to evaluate the influence of storage time on the viability of endophytic bacteria, Bacillus sp. AA2, Bacillus sp. MER and MSJ, and to study its physiological charaterization during storage. The formulation evaluated in this study was : formulation 1 (50 g talc, 1 g pepton, 0.5 g CMC, and brown sugar 1.5 g, formulation 2 (50 g talc, 1 g pepton, 0.5 g CMC, and 1.5 g white sugar, formulation 3 (50 g talc, 1 g pepton, 0.5 g CMC, 1 g yeast extract, and 1.5 gwhite sugar and formulation 4 (50 g talc, 1 g pepton, 0.5 g CMC, 1 g yeast extract, 3 mL molasses, 1 gbentonite, 0.75 g calcium carbonate, and 1 g dextrose. The results of the bacterial characterization showed that Bacillus sp AA2 and Bacillus sp MER belongs to Gram positive, produced lipase and protease enzyme, as well as  IAA hormone. N2 fixation is only existed in Bacillussp. AA2 and MSJ isolate. The highest viability was shown on MSJ isolate with 2.5×106 cfu mL-1. in the fourth formulation, whereas Bacillus sp. AA2 and Bacillus sp. MER viability was 1.9×106 cfu mL-1. and 1.2×106 cfu mL-1. , respectively. 

  1. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei

    OpenAIRE

    Gudiña, Eduardo J.; Teixeira, J. A.; Rodrigues, L. R.

    2010-01-01

    In this study, the crude biosurfactant produced by a Lactobacillus paracasei strain isolated in a Portuguese dairy industry was characterized. The minimum surface tension (41.8mN/m) and the critical micelle concentration (2.5 mg/ml) obtained were found to be similar to the values previously reported for biosurfactants isolated from other lactobacilli. The biosurfactant was found to be stable to pH changes over a range from 6 to 10, being more effective at pH 7, and showed no loss ...

  2. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, Ligia R.; Teixeira, Jose A.; van der Mei, Henny C.; Oliveira, Rosario

    2006-01-01

    Isolation and characterization of the surface active components from the crude biosurfactant produced by Streptococcus thermophilus A was studied. A fraction rich in glycolipids was obtained by the fractionation of crude biosurfactant using hydrophobic interaction chromatography. Molecular (by

  3. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3.

    Science.gov (United States)

    Sen, Suparna; Borah, Siddhartha Narayan; Bora, Arijit; Deka, Suresh

    2017-05-30

    Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain, Rhodotorula babjevae YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by R. babjevae YS3. The growth kinetics and biosurfactant production by R. babjevae YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC-MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm 2 and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2-10), salinity (2-10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz. Colletotrichum gloeosporioides, Fusarium verticilliodes, Fusarium oxysporum f. sp. pisi, Corynespora cassiicola, and Trichophyton rubrum. The

  4. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Dhouha Ghribi

    2012-01-01

    Full Text Available During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size. Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth.

  5. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2010-03-01

    In this study, the crude biosurfactant produced by a Lactobacillus paracasei strain isolated in a Portuguese dairy industry was characterized. The minimum surface tension (41.8mN/m) and the critical micelle concentration (2.5mg/ml) obtained were found to be similar to the values previously reported for biosurfactants isolated from other lactobacilli. The biosurfactant was found to be stable to pH changes over a range from 6 to 10, being more effective at pH 7, and showed no loss of surface activity after incubation at 60 degrees C for 120h. Although the biosurfactant chemical composition has not been determined yet, a fraction was isolated through acidic precipitation, which exhibited higher surface activity as compared with the crude biosurfactant. Furthermore, this isolated biosurfactant showed antimicrobial and anti-adhesive activities against several pathogenic microorganisms. In addition, L. paracasei exhibited a strong autoaggregating phenotype, which was maintained after washing and resuspending the cells in PBS, meaning that this attribute must be related to cell surface components and not to excreted factors. The autoaggregation ability exhibited by this strain, together with the antimicrobial and anti-adhesive properties observed for this biosurfactant opens the possibility for its use as an effective probiotic strain.

  6. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    Science.gov (United States)

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by

  7. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed.

    Science.gov (United States)

    Singh, Durgesh Narain; Tripathi, Anil Kumar

    2013-01-01

    A strain of Pseudomonas stutzeri was isolated form an enrichment of perchlorate reducing bacteria from the formation water collected from an Indian coalbed which solubilized coal and produced copious amount of biosurfactant when coal was added to the medium. It produced maximum biosurfactant with lignite coal followed by olive oil and soybean oil which was able to emulsify several aromatic hydrocarbons including kerosene oil, diesel oil, hexane, toluene etc. Haemolytic test, growth inhibition of Bacillus subtilis and FTIR analysis showed rhamnolipid nature of the biosurfactant. The stability of the coal induced biosurfactant in pH range of 4-8 and up to 25% NaCl concentration and 100 °C temperature suggests that due to its ability to produce biosurfactant and solubilize coal P. stutzeri may be useful in the coalbed for in situ biotransformation of coal into methane and in the bioremediation of PAHs from oil contaminated sites including marine environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam.

    Science.gov (United States)

    Tran, H; Kruijt, M; Raaijmakers, J M

    2008-03-01

    Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Biosurfactant-producing pseudomonads were genotypically and biochemically characterized by BOX-polymerase chain reaction (PCR), 16S-rDNA sequencing, reverse-phase-high-performance liquid chromatography and liquid chromatography-mass spectrometry analyses. Biosurfactant-producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX-PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant-producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Biosurfactant-producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.

  9. Thermophilic and unusually acidophilic amylase produced by a thermophilic acidophilic bacillus sp

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, F

    1982-01-01

    Bacillus sp. 11-1S, a thermophilic acidophilic bacterial strain, produced an extracellular amylase with unusual characteristics. The enzyme was purified 40-fold by SE-Sephadex column chromatography. The pH optimum for activity was 2.0, and substantial activity was noted in the pH range of 1.5-3.5. The optimal temperature was 70 degrees C, but the activity decreased markedly in lower reaction temperatures. Arrhenius plots of the reaction showed two straight lines intersecting at about 50 degrees C. The activity or stability of the enzyme was not likely to depend on Ca2+. The molecular weight of the enzyme was 54,000 calculated from the electrophoretic mobility. The enzyme behaved like an alpha-amylase (1,4-alpha-D- glucan glucanohydrolase, E.C. 3.2.1.1). About 34% of glucosidic linkages of soluble starch was hydrolyzed at 65 degrees C and pH 2.0, in 24 hours, and the major products were maltotriose and maltose. (Refs. 14).

  10. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988

    Directory of Open Access Journals (Sweden)

    Raquel Diniz Rufino

    2014-01-01

    Conclusions: The isolated biosurfactant showed no toxicity against different vegetable seeds: Brassica oleracea, Solanum gilo and Lactuca sativa L. and the micro-crustacean Artemia salina. The properties of the biosurfactant produced suggest its potential application in industries that require the use of effective compounds at low cost.

  11. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    Science.gov (United States)

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant.

  12. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation.

    Science.gov (United States)

    Jamal, Parveen; Mir, Shajrat; Alam, Md Zahangir; Wan Nawawi, Wan M Fazli

    2014-01-01

    Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.

  13. Production and characterization of biosurfactant from marine Streptomyces species B3.

    Science.gov (United States)

    Khopade, Abhijit; Ren, Biao; Liu, Xiang-Yang; Mahadik, Kakasaheb; Zhang, Lixin; Kokare, Chandrakant

    2012-02-01

    The present study demonstrates the production and properties of a biosurfactant isolated from marine Streptomyces species B3. The production of the biosurfactant was found to be higher in medium containing sucrose and lower in the medium containing glycerol. Yeast extract was the best nitrogen source for the production of the biosurfactant. The isolated biosurfactant reduced the surface tension of water to 29 mN/m. The purified biosurfactant was shown critical micelle concentrations of 110 mg/l. The emulsifying activity and stability of the biosurfactant was investigated at different salinities, pH, and temperature. The biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and salt concentration. The purified biosurfactant was shown strong antimicrobial activity. The biosurfactant was produced from the marine Streptomyces sp. using non-hydrocarbon substrates such as sucrose that was readily available and not required extensive purification procedure. Streptomyces species B3 can be used for microbially enhanced oil recovery process. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites.

    Science.gov (United States)

    Batista, S B; Mounteer, A H; Amorim, F R; Tótola, M R

    2006-04-01

    Biosurfactant-producing bacteria were isolated from terrestrial and marine samples collected in areas contaminated with crude oil or its byproducts. Isolates were screened for biosurfactant/bioemulsifier production in different carbon sources (glucose, fructose, sucrose and kerosene) using the qualitative drop-collapse test. Glucose produced the highest number of positive results (17 of 185 isolates). All 17 isolates produced emulsions with kerosene and 12 exhibited high emulsion-stabilizing capacity, maintaining 50% of the original emulsion volume for 48 h. Eight of the 17 isolates reduced the growth medium surface tension below 40 mN m(-1) with 5 exhibiting this capacity in cell-free filtrates. Onset of biosurfactant production differed among the isolates, with some initiating synthesis during the exponential growth phase and others after the stationary phase was reached. Increasing temperature from 25 to 35 degrees C accelerated onset of biosurfactant production in only two isolates while pH (6.5-7.6) had no effect in any isolate tested. Isolation from petroleum contaminated sites using the screening protocol presented proved to be a rapid and effective manner to identify bacterial isolates with potential industrial applications.

  15. Diversity of Antifungal Compounds-Producing Bacillus spp. Isolated from Rhizosphere of Soybean Plant Based on ARDRA and 16S rRNA

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2010-09-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR play an important role in improvement of seed germination, root development, and water utilization by plants. These rhizobacteria can stimulate plant growth directly by producing growth hormones or indirectly by producing antifungal compounds/antibiotics to suppress phytopathogenic fungi. The objective of this research was to analyze the diversity of 22 antifungal-producing rhizobacteria of Bacillus sp. isolated from rhizosphere of soybean plant based on Amplified rDNA Restriction Analysis (ARDRA and 16S rRNA Sequence. Restriction enzymes in ARDRA analysis, HinfI, HaeIII, and RsaI were used to digest 22 16S rDNA amplified from Bacillus sp. genomes. Based on this analysis, genetic diversity of 22 Bacillus sp. producing antifungal compounds were classified into eight different groups. Moreover, six selected isolates randomly from each ARDRA group that have strong activity to suppress fungal growth were analyzed for their 16S rDNA sequences compared with reference strains. The distributions of these isolates were genetically diverse on several species of Bacillus sp. such as B. subtilis, B. cereus, and B. fusiformis. ARDRA is a reliable technique to analyze genetic diversity of Bacillus sp. community in the rhizosphere.

  16. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  17. Isolation and screening of glycolipid biosurfactant producers from sugarcane.

    Science.gov (United States)

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Hirose, Naoto; Kitamoto, Dai

    2012-01-01

    Forty-three fungal producers for glycolipid biosurfactants, mannosylerythritol lipids (MELs), were isolated from leaves and smuts of sugarcane plants. These isolates produced MELs with sugarcane juice as nutrient source. The strains were taxonomically categorized into the genera Pseudozyma and Ustilago on the basis of partial sequences of the ribosomal RNA gene.

  18. Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures produced under different pH conditions.

    Science.gov (United States)

    Rodríguez, N; Salgado, J M; Cortés, S; Domínguez, J M

    2010-08-01

    Study of the potential of Lactococcus lactis CECT-4434 as a biosurfactants and nisin (the only bacteriocin allowed to be used in the food industry) producer for industrial applications, exploiting the possibility of recovering separately both metabolites, taking into account that L. lactis is an interesting micro-organism with several applications in the food industry because it is recognized as GRAS. The results showed the ability of this strain to produce cell-bound biosurfactants, under controlled pH, and cell-bound biosurfactants and bacteriocins, when pH was not controlled. Three extraction procedures were designed to separately recover these substances. The strain L. lactis CECT-4434 showed to be a cell-bound biosurfactants and bacterocins producer when fermentations were carried out under uncontrolled pH. Both products can be recovered separately. Development of a convenient tool for the extraction of cell-bound biosurfactants and bacteriocins from the fermentation broth.

  19. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  20. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  1. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    Science.gov (United States)

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Biosurfactants in agriculture.

    Science.gov (United States)

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  3. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  4. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    International Nuclear Information System (INIS)

    Prabhawathi, Veluchamy; Thirunavukarasu, Kathirvel; Doble, Mukesh

    2014-01-01

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm 2 for B. subtilis and 13 and 8.6 μg/cm 2 for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm 2 , respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm 2 , respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different. • So they need

  5. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    Energy Technology Data Exchange (ETDEWEB)

    Prabhawathi, Veluchamy; Thirunavukarasu, Kathirvel; Doble, Mukesh, E-mail: mukeshd@iitm.ac.in

    2014-07-01

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm{sup 2} for B. subtilis and 13 and 8.6 μg/cm{sup 2} for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm{sup 2}, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm{sup 2}, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different.

  6. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang.

    Science.gov (United States)

    Kim, W; Choi, K; Kim, Y; Park, H; Choi, J; Lee, Y; Oh, H; Kwon, I; Lee, S

    1996-01-01

    Bacillus sp. strain CK 11-4, which produces a strongly fibrinolytic enzyme, was screened from Chungkook-Jang, a traditional Korean fermented-soybean sauce. The fibrinolytic enzyme (CK) was purified from supernatant of Bacillus sp. strain CK 11-4 culture broth and showed thermophilic, hydrophilic, and strong fibrinolytic activity. The optimum temperature and pH were 70 degrees C and 10.5, respectively, and the molecular weight was 28,200 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 14 amino acids of the N-terminal sequence of CK are Ala-Gin-Thr-Val-Pro-Tyr-Gly-Ile-Pro-Leu-Ile-Lys-Ala-Asp. This sequence is identical to that of subtilisin Carlsberg and different from that of nattokinase, but CK showed a level of fibrinolytic activity that was about eight times higher than that of subtilisin Carlsberg. The amidolytic activity of CK increased about twofold at the initial state of the reaction when CK enzyme was added to a mixture of plasminogen and substrate (H-D-Val-Leu-Lys-pNA). A similar result was also obtained from fibrin plate analysis. PMID:8779587

  7. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  8. Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1.

    Science.gov (United States)

    Haddad, Namir I A; Wang, Ji; Mu, Bozhong

    2008-12-01

    Biosurfactant-producing bacteria were isolated from the production water of an oil field. Isolates were screened for biosurfactant production using surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Brevibacilis brevis HOB1. It has been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the broth to 29 mN/m on commercial sugar and maltose, and to 32 mN/m on glucose after 72 h of growth. The maximum amount of biosurfactant was obtained when nitrate ions were supplied as nitrogen source. Biosurfactant produced by Brevibacilis brevis HOB1 was confirmed as a lipopeptide class of biosurfactant using TLC test and mass spectra. Lipopeptide isoforms were isolated from cell-free supernatants by acid-precipitation followed by one step of chromatographic separation on solid-phase ODS C18 column. The separation was confirmed by HPLC and ESI Q-TOF MS spectroscopy. Comparing the mass data obtained and the mass numbers reported for the lipopeptide complexes from other strains, it can be concluded that the major lipopeptide product of Brevibacilis brevis HOB1 is the surfactin isoform. This lipopeptide showed strong antibacterial and antifungal activity. It is a candidate for the biocontrol of pathogens in agriculture and other industries.

  9. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  10. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  11. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  12. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    Science.gov (United States)

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant.

    Science.gov (United States)

    Płaza, Grażyna Anna; Chojniak, Joanna; Mendrek, Barbara; Trzebicka, Barbara; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Zboril, Radek; Paraszkiewicz, Katarzyna; Bernat, Przemysław

    2016-04-01

    In this study, culture supernatnats of Bacillus subtilis T-1 growing on brewery effluents and molasses was used for silver nanoparticles (Ag-NPs) synthesis. The biosurfactant production of B. subtilis T-1 was confirmed by the detection of genes in the genome and by the identification of the product in the supernatants. The genes for synthesis of surfactin (sfp, srfAA) and iturin (ituC) were noted by PCR reactions. Also, in examined culture supernatants the presence of C13, C14 and C15 surfactin homologues with the sodiated molecules [M + Na](+) at m/z 1030, 1044 and 1058 was confirmed using LC/MS/MS analysis. The formation of NPs in the culture supernatants was confirmed by UV-vis spectroscopy. The dynamic light scattering measurements and transmission electron microscopy images showed the nanometric sizes of the biosynthesised Ag-NPs which ranged from several nm to several tens of nm depending on the used culture supernatant. Biological properties of Ag-NPs were evaluated by binding of Ag-NPs with DNA isolated from the Escherichia coli ATCC 25922 and B. subtilis ATCC 6633. Biogenic Ag-NPs were actively bound to DNA in increased concentration which could be the one important mode of antibacterial action of the Ag-NPs.

  14. Optimization of biosurfactant production from Vibrio sp. BSM-30 isolated in tropical waters

    Science.gov (United States)

    Su, Zengjian; Li, Min; Zhang, Yuxiu

    2017-01-01

    The strain BSM-30 (Vibrio sp.), isolated from Chinese tropical waters, could be a biosurfactant producing bacteria according with results obtained by the oil spreading method. The culture conditions for biosurfactant production were tested respectively such as inoculation (2%,6%,10%,14% as setting), shaking speed(120 r/min,150 r/min,180 r/min as setting), temperature (25°C,30°C,35°C as setting), pH (7,8,9 as setting), salinity (1.5%, 2.5%, 3.0%, 4.5%, 5.5% as setting), which results showed that the best culture conditions for BS production were 10% inoculation quantity, 180 r/min, 25°C, pH 8, and 3.5% salinity. The optimization of carbon sources (20g/ of glucose, 20g/L of starch, 20g/L of paraffin oil 20g/L of diesel, 20g/L of oil as setting) and nitrogen sources (6g/L of NaNO3,7.1g/L of KNO3,5.6g/L of NH4NO3,9.3g/L of (NH4)2SO4, 4.2g/L of CO(NH2)2 as setting) were also tested, which results showed that the best nitrogen source and carbon source were (NH4) 2SO4 and soluble starch.

  15. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Science.gov (United States)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  16. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root.

    Science.gov (United States)

    Qiu, Fubin; Zhang, Xiaoxia; Liu, Lin; Sun, Lei; Schumann, Peter; Song, Wei

    2009-04-01

    Four alkaligenous, moderately halotolerant strains, designated ge09, ge10(T), ge14(T) and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10(T) formed one cluster and strains ge14(T) and ge15 formed another separate cluster within the genus Bacillus. 16S rRNA gene sequence similarities with type strains of other Bacillus species were less than 97 %. Levels of DNA-DNA relatedness among the four strains showed that strains ge09 and ge10(T) and strains ge14(T) and ge15 belonged to two separate species; the mean level of DNA-DNA relatedness between ge10(T) and ge14(T) was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus Bacillus. The DNA G+C contents of strains ge10(T) and ge14(T) were 49.9 and 49.6 mol%, respectively. Strains ge10(T) and ge14(T) showed the peptidoglycan type A4alpha l-Lys-d-Glu. The lipids present in strains ge10(T) and ge14(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C(15 : 0) (42.5 %), anteiso-C(15 : 0) (22.2 %), anteiso-C(17 : 0) (7.3 %) and C(16 : 1)omega7c alcohol (5.7 %) in ge10(T) and iso-C(15 : 0) (50.7 %) and anteiso-C(15 : 0) (20.1 %) in ge14(T). On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus Bacillus are proposed, Bacillus beijingensis sp. nov. (type strain ge10(T) =DSM 19037(T) =CGMCC 1.6762(T)) and Bacillus ginsengi sp. nov. (type strain ge14

  17. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267.

    Science.gov (United States)

    Kruijt, Marco; Tran, Ha; Raaijmakers, Jos M

    2009-08-01

    Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated. The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses. The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy

  18. Antifungal activity of indigenous bacillus sp. isolate Q3 against marshmallow mycobiota

    Directory of Open Access Journals (Sweden)

    Jošić Dragana Lj.

    2011-01-01

    Full Text Available Marshmallow is a host of a number of saprophytic and parasitic fungi in Serbia. The seeds of marshmallow are contaminated with fungi from different genera, especially Alternaria and Fusarium, which significantly reduced seed germination and caused seedling decay. In this study we investigate antagnonism of indigenous Bacillus sp. isolate Q3 against marshmallow mycopopulation. Bacillus sp. Q3 was isolated from maize rhizosphere, characterized by polyphasic approch and tested for plant growth promoting treats. Bacillus sp. Q3 produced antifungal metabolites with growth inhibition activity against numerous fungi in dual culture: 61.8% of Alternaria alternata, 74.8% of Myrothecium verrucaria and 33.6% of Sclerotinia sclerotiorum. That effect could be caused by different antifungal metabolites including siderophores, hydrolytic enzymes, organic acids and indole acetic acid (IAA. Suppression of natural marshmallow seed infection by Q3 isolate was observed. The seeds were immersed in different concentrations of bacterial suspension during 2h and their infections by phytopathogenic fungi were estimated. The results showed significant reduction of seed infection by Alternaria spp. The presented results indicate possible application of this isolate as promising biological agent for control of marshmallow seed pathogenic fungi.

  19. Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae.

    Science.gov (United States)

    Kügler, Johannes H; Muhle-Goll, Claudia; Kühl, Boris; Kraft, Axel; Heinzler, Raphael; Kirschhöfer, Frank; Henkel, Marius; Wray, Victor; Luy, Burkhard; Brenner-Weiss, Gerald; Lang, Siegmund; Syldatk, Christoph; Hausmann, Rudolf

    2014-11-01

    Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2' and 3' carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.

  20. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    Science.gov (United States)

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  1. Biosurfactants

    Science.gov (United States)

    Biosurfactants are surfactants whose common feature is biodegradability, which provides them with a major advantage over the majority of surfactants currently in the market. Biosurfactants are produced from a wide range of raw materials, and manufactured using chemical, enzymatic, microbial, and a c...

  2. Application of biosurfactant in oil spill management

    International Nuclear Information System (INIS)

    Juwarkar, A.; Babu, P.S.; Mishra, K.; Deshpande, M.

    1993-01-01

    Surfactants are surface active agents which reduce surface tension and interfacial tension between two immiscible phases and help in emulsification. Toxicity, nonbiodegradability, and limited structural types of chemical surfactants have initiated the need for effective substitutes. Biosurfactants, which are synthesized by specific microbial cultures, have surface active properties comparable to chemical surfactants. They are compounds that can help in oil spill cleanup operations without presenting the problem posed by chemical surfactants. Two bacterial cultures were isolated from oil-contaminated soil and were used for biosurfactant production. The biosurfactants produced by Bacillus licheniformis, BS1, and Pseudomonas aeruginosa, BS2, in mineral media containing glucose as the carbon source belong to the class of lipoprotein and glycolipid, respectively. They were found to reduce the surface and interfacial tension of water and water-hexadecane system from 72 dynes/cm and 40 dynes/cm to 28 to 30 dynes/cm and 1 to 3 dynes/cm, respectively. These results were comparable with chemical surfactants with respect to surface tension reduction (Slic Gone 34 dynes/ cm and Castrol 30 dynes/cm). The low interfacial tension allows the formation of stable emulsion. The two cultures were grown on different substrates, namely, glucose, mannitol, glycerol, hexadecane, oily sludge, and crude oil. Emulsion formation of hexadecane in water was tested with the cell-free broth containing biosurfactant from the respective substrate broths. Emulsions of 56% stability to 100% stability were obtained from these biosurfactant-containing broths. Both biosurfactants were able to emulsify crude oil. A surfactant's ability to form a stable emulsion is the first step in oil spill cleanup. The emulsified oil can then be acted upon very easily by the microorganism under study

  3. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    NARCIS (Netherlands)

    Kruijt, M.; Tran, H.; Raaijmakers, J.M.

    2009-01-01

    Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially

  4. Pectinase Production by Bacillus and Paenibacillus sp. Isolated from Decomposing Wood Residues in the Lagos Lagoon

    Directory of Open Access Journals (Sweden)

    Busayo Tosin Akinyemi

    2017-09-01

    Full Text Available Three wood decomposing bacteria isolated from the Lagos lagoon, Bacillus megaterium, Bacillus bataviensis and Paenibacillus sp. were screened for their pectinase producing abilities using pectin as substrate under submerged fermentation (SMF conditions. The results showed that all three isolates produced appreciable pectinolytic activities. Paenibacillus sp. showed the highest pectinase activity when compared with the other two isolates. The optimum pH for pectinase activity for both B. megaterium and B. bataviensis was 8.0 while it was 6.5 for Paenibacillus sp., B. bataviensis, and B. megaterium showed optimum pectinase activity at 60°C and Paenibacillus sp. at 40°C. Metal ions such as Na+ and K+ improved the activity of pectinase produced by the three isolates when compared to the effect of Zn2+ and Mn2+. The molecular weights of the enzymes were also estimated by gel filtration as 29,512 da, 32,359 da, and 25,119 da for Paenibacillus sp., B. megaterium and B. bataviensis respectively. The study has provided a platform for further investigation into the biochemical characterization of the enzyme, and optimization of culture conditions to scale up pectinase production for commercial exploitation.

  5. Role of Bacillus licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and its Application to the Food Industry

    Science.gov (United States)

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, V.; Park, Se Chang

    2017-01-01

    Multifarious applications of Bacillus licheniformis VS16-derived biosurfactant were explored. Labeo rohita fingerlings were injected intraperitoneally with 0.1 mL of phosphate-buffered saline (PBS) containing purified biosurfactant at 0 (control), 55 (S55), 110 (S110), 220 (S220), or 330 (S330) μg mL-1 concentrations. Various immunological parameters and the expression of immune-related genes were measured at 7, 14, and 21 days post-administration (dpa). At 21 dpa, fish were challenged with Aeromonas hydrophila and mortality was recorded for 14 days. Immune parameters such as lysozyme levels (39.29 ± 2.14 U mL-1), alternative complement pathway (61.21 ± 2.38 U mL-1), and phagocytic activities (33.37 ± 1.2%) were maximum (P Biosurfactant was effective in inhibiting biofilm formation up to 54.71 ± 1.27%. Moreover, it efficiently removed cadmium (Cd) from tested vegetables such as carrot, radish, ginger, and potato, with the highest removal efficiency (60.98 ± 1.29%) recorded in ginger contaminated with Cd. Collectively, these results suggest that isolated biosurfactant could be used in the aquaculture industry, in addition to its potential application to the food industry. PMID:28400765

  6. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  7. Efektivitas Bacillus thuringiensis dalam Pengendalian Larva Nyamuk Anopheles sp.

    Directory of Open Access Journals (Sweden)

    Citra Inneke Wibowo

    2017-08-01

    Full Text Available Nyamuk Anopheles sp adalah vektor penyakit malaria. Pengendalian vektor penyakit malaria dapat dilakukan secara biologis yaitu dengan menggunakan Bacillus thuringiensis. Tujuan penelitian adalah untuk mengetahui efektivitas konsentrasi Bacillus thuringiensis dalam pengendalian larva nyamuk Anopheles sp.Penelitian ini dilakukan secara eksperimental menggunakan Rancangan Acak Lengkap Faktorial (RAL Faktorial yang terdiri atas dua faktor yaitu konsentrasi Bacillus thuringiensis dan stadia larva Anopheles dengan pengulangan tiga kali.Perlakuan yang dicobakan adalahkonsentrasi Bacillus thuringiensis (A yang terdiri atas 5 taraf:A0: konsentrasi B.thuringiensis 0 CFU.mL-1, A1: konsentrasi B.thuringiensis 102 CFU.mL-1, A2: konsentrasi B.thuringiensis 104 CFU.mL-1, A3: konsentrasi B.thuringiensis 106CFU.mL-1, A4: konsentrasi B.thuringiensis 108CFU.mL-1. Perlakuan tahapan instar larva Anopheles sp. (B adalah sebagai berikut:B1: stadia larva instar I, B2: stadia larva instar II, B3: stadia larva instar III, B4: stadia larva instar IVsehingga terdapat 60 satuan percobaan. Hasil penelitian  menunjukkan konsentrasi B. thuringiensis isolat CK dan IPB CC yang paling berpengaruh dalam pengendalian larva Anopheles sp adalah 108 CFU.mL-1 . Instar larva yang paling peka terhadap B. thuringiensis isolat IPB CC adalah instar I dan II sedangkan instar yang peka terhadap isolat CK adalah instar II, Perlakuan konsentrasi isolat B. thuringiensis dan tingkat instar larva yang paling baik dalam pengendalian larva Anopheles sp. adalah 108 CFU.mL-1, dan instar I dan II.

  8. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10

    Directory of Open Access Journals (Sweden)

    Tri Handayani Kurniati

    2016-12-01

    Full Text Available Pyrene degradation and biosurfactant activity by a new strain identified as Gordonia cholesterolivorans AMP 10 were studied. The strain grew well and produced effective biosurfactants in the presence of glucose, sucrose, and crude oil. The biosurfactants production was detected by the decreased surface tension of the medium and emulsification activity.  Analysis of microbial growth parameters showed that AMP10 grew best at 50 µg mL-1 pyrene concentration, leading to 96 % degradation of pyrene within 7 days. The result of nested PCR analysis revealed that this isolate possessed the nahAc gene which encodes dioxygenase enzyme for initial degradation of Polycyclic Aromatic Hydrocarbon (PAH. Observation of both tensio-active and emulsifying activities indicated that biosurfactants which produced by AMP 10 when grown on glucose could lower the surface tension of medium from 71.3 mN/m to 24.7 mN/m and formed a stable emulsion in used lubricant oil with an emulsification index (E24 of 74%. According to the results, it is suggested that the bacterial isolates G. cholesterolivorans AMP10 are suitable candidates for bioremediation of PAH-contaminated environments.How to CiteKurniati, T. H.,  Rusmana, I. Suryani, A. & Mubarik, N. R. (2016. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika: Journal of Biology & Biology Education, 8(3, 336-343. 

  9. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu [University of Houston, Department of Civil and Environmental Engineering (United States); Cooper, Tim F. [University of Houston, Department of Biology and Biochemistry (United States); Vipulanandan, Geethanjali [University of Houston, Department of Biomedical Engineering (United States)

    2013-01-15

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  10. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    International Nuclear Information System (INIS)

    Liu Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model’s predictions agreed with the experimental results.

  11. Improvement of the nutritional value and growth of rotifer (Brachionus plicatilis by different enrichment period with Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Sutia Budi

    2011-01-01

    Full Text Available Brachionus plicatilis is a widely used as natural feed in hatchery. Characteristics of rotifers as biocapsule can improve the quality of rotifers in a practical way. Bacillus sp. is capable of improving the nutrition rotifers to produce vitamins, food detoxication or through enzymatic activity such as protease, lipase, and amylase. This research aimed at observing the influence of the enrichment length of Bacillus sp. on the quality of nutrition and growth of rotifers. The research container was a polyearbonate vessel of one ton volume which contained Nannochloropsis sp. with the density of 105 cell/mL, it was then scattered with rotifer with the density of 1,000 ind./mL. The types of bacteria used were Bacillus subtilis, B. pumilus and B. licheformis with the density of 2x1010 cfu/g. The experiments tried with different enrichment length were A = 0 hour, B = 5 hours, C = 10 hours and D = 10 hours with triplicate. As the comparing data, rotifer culture experiment was carried out with Nannochlorophsis sp.as the control. The number of containers were 24 which consists of 12 for threatment and 12 pieces as control. Variables measured were proximate to each treatment and the growth of rotifers. The result of the research revealed the enrichment length of rotifers with Bacillus sp. has significantly (P Key words: rotifers, Bacillus, enrichment period, proximate   ABSTRAK Brachionus plicatilis merupakan pakan alami yang banyak digunakan dalam pembenihan. Karakteristik rotifer sebagai biokapsul secara praktis dapat meningkatkan kualitas rotifer. Bacillus sp. mampu memperbaiki nutrisi rotifer dengan memproduksi vitamin, detoksikasi pangan maupun melalui aktivitas enzimatis seperti protease, lipase, dan amilase. Penelitian ini bertujuan untuk melihat pengaruh pengkayaan Bacillus sp. terhadap kualitas nutrisi dan pertumbuhan rotifer. Wadah penelitian menggunakan bak fiber volume 1 ton yang berisikan Nannochloropsis sp. dengan kepadatan 105 cell

  12. APPLICATIONS OF POTASSIUM FERTILIZER AND Bacillus sp. BIOPESTICIDE FOR INCREASING TOMATO RESISTANCE TO BACTERIAL WILT DISEASE

    Directory of Open Access Journals (Sweden)

    Nur Prihatiningsih

    2011-02-01

    Full Text Available Bacterial wilt on tomato caused by Ralstonia solanacearum is a crucial disease, because it can reduce yield until 50%. The aims of this research were: 1 to find out biopesticide formula for Bacillus sp.growth, 2 to test Bacillus sp. against R. solanacearum in vitro, 3 to test potassium fertilizer combined with Bacillus sp. for enhancing tomato resistance to the bacterial wilt disease. The research was conducted in 2 steps i.e to test the persistence of Bacillus sp. in biopesticide formula, and to test the best combination of both potassium and the Bacillus sp. biopesticide. The results showed that Bacillus B298 was the best isolate in its persistence on the biopesticide formula of organic growth medium+CaCO3+CMC 1%+mannitol 1%, and in inhibiting R. solanacearum. The best biopesticide formula for the Bacillus sp. persistence was growth organic media+ CaCO3+CMC 1%+mannitol 1%. Bacillus sp. was able to increase tomato resistance to the bacterial wilt disease from the category of susceptible to be tolerant and becoming resistant.

  13. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications.

    Science.gov (United States)

    Gargouri, Boutheina; Contreras, María Del Mar; Ammar, Sonda; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2017-02-01

    In this work, biosurfactant-producing microorganisms were isolated from hydrocarbon-contaminated water collected from Tunisian oilfield. After enrichment and isolation, different bacterial strains were preliminary studied for their biosurfactant/bioemulsifier properties when using crude oil as the unique carbon source. In particular, the isolate strain B-2, a Gram-negative, rod-shaped bacterium, efficiently emulsified crude oil. The extracellular biosurfactant product from this strain presented an emulsification activity above 70% and a hydrophobicity of 71%. In addition, a diameter of 6 cm was observed in the oil displacement test. The characterization of B-2 strain using 16S rDNA sequencing enables us to find a high degree of similarity with various members of the genus Stenotrophomonas (with a percentage of similarity of 99%). The emulsification activity of Stenotrophomonas biosurfactant B-2 was maintained in a wide range of pH (2 to 6), temperature (4 to 55 °C), and salinity (0 to 50 g L -1 ) conditions. It also enhanced the solubility of phenanthrene in water and could be used in the re-mobilization of hydrocarbon-contaminated environment. In addition, this biosurfactant exhibited antimicrobial and antioxidant properties. Infrared spectroscopy suggested potential lipidic and peptidic moieties, and mass spectrometry-based analyses showed that the biosurfactant contains mainly cyclic peptidic structures belonging to the class of diketopiperazines. Therefore, the B-2 strain is a promising biosurfactant-producing microorganism and its derived biosurfactant presents a wide range of industrial applications.

  14. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    Science.gov (United States)

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P 6A and Lactobacillus gasseri P 65 . The biosurfactants produced by L. jensenii P 6A and L. gasseri P 65 reduced the water surface tension from 72 to 43.2 mN m -1 and 42.5 mN m -1 as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL -1 , respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL -1 for the P 6A and P 65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P 6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P 65 . Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P 6A . Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL -1 , and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL -1 . The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P 6A biosurfactant), and E. coli (46

  15. Efforts to identify spore forming bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Zuleiha, M.S.; Hilmy, N. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans.

  16. Efforts to identify spore forming bacillus

    International Nuclear Information System (INIS)

    Zuleiha, M.S.; Hilmy, Nazly

    1982-01-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans. (author)

  17. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples.

    Science.gov (United States)

    Abbasi, Habib; Sharafi, Hakimeh; Alidost, Leila; Bodagh, Atefe; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2013-01-01

    A potent biosurfactant-producing bacterial strain isolated from spoiled apples was identified by 16S rRNA as Pseudomonas aeruginosa MA01. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages of lipid (66%, w/w) and carbohydrate (32%, w/w). The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mN m(-1) with critical micelle concentration (CMC) value of 10.1 mg L(-1). The Fourier transform infrared spectrum of extracted biosurfactant confirmed the glycolipid nature of this natural product. Response surface methodology (RSM) was employed to optimize the biosynthesis medium for the production of MA01 biosurfactant. Nineteen carbon sources and 11 nitrogen sources were examined, with soybean oil and sodium nitrate being the most effective carbon and nitrogen sources on biosurfactant production, respectively. Among the organic nitrogen sources examined, yeast extract was necessary as a complementary nitrogen source for high production yield. Biosurfactant production at the optimum value of fermentation processing factor (15.68 g/L) was 29.5% higher than the biosurfactant concentration obtained before the RSM optimization (12.1 g/L). A central composite design algorithm was used to optimize the levels of key medium components, and it was concluded that two stages of optimization using RSM could increase biosurfactant production by 1.46 times, as compared to the values obtained before optimization.

  18. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Singh Pooja

    2009-03-01

    Full Text Available Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. Results With an aim to gain more insight into hydrocarbon uptake mechanism, an efficient biosurfactant producing and n-hexadecane utilizing Pseudomonas sp was isolated from oil contaminated soil which was found to produce rhamnolipid type of biosurfactant containing a total of 13 congeners. Biosurfactant action brought about the dispersion of hexadecane to droplets smaller than 0.22 μm increasing the availability of the hydrocarbon to the degrading organism. Involvement of biosurfactant was further confirmed by electron microscopic studies. Biosurfactant formed an emulsion with hexadecane thereby facilitating increased contact between hydrocarbon and the degrading bacteria. Interestingly, it was observed that "internalization" of "biosurfactant layered hydrocarbon droplet" was taking place suggesting a mechanism similar in appearance to active pinocytosis, a fact not earlier visually reported in bacterial systems for hydrocarbon uptake. Conclusion This study throws more light on the uptake mechanism of hydrocarbon by Pseudomonas aeruginosa. We report here a new and exciting line of research for hydrocarbon uptake involving internalization of biosurfactant covered hydrocarbon inside cell for subsequent breakdown.

  19. Isolation and characterization of mesotrione-degrading Bacillus sp. from soil

    International Nuclear Information System (INIS)

    Batisson, Isabelle; Crouzet, Olivier; Besse-Hoggan, Pascale; Sancelme, Martine; Mangot, Jean-Francois; Mallet, Clarisse; Bohatier, Jacques

    2009-01-01

    Dissipation kinetics of mesotrione, a new triketone herbicide, sprayed on soil from Limagne (Puy-de-Dome, France) showed that the soil microflora were able to biotransform it. Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods. Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it. - A Bacillus sp. strain isolated from soil was able to completely and rapidly biotransform the triketone herbicide mesotrione

  20. Feather wastes digestion by new isolated strains Bacillus sp. in ...

    African Journals Online (AJOL)

    Feather wastes digestion by new isolated strains Bacillus sp. in Morocco. ... The most efficient isolated strain selected was compared with Bacillus subtilis ATCC 6633. Results showed ... African Journal of Biotechnology Vol.3(1) 2004: 67-70 ...

  1. Importance of the Long-Chain Fatty Acid Beta-Hydroxylating Cytochrome P450 Enzyme YbdT for Lipopeptide Biosynthesis in Bacillus subtilis Strain OKB105

    Directory of Open Access Journals (Sweden)

    Michael J. McInerney

    2011-03-01

    Full Text Available Bacillus species produce extracellular, surface-active lipopeptides such as surfactin that have wide applications in industry and medicine. The steps involved in the synthesis of 3-hydroxyacyl-coenzyme A (CoA substrates needed for surfactin biosynthesis are not understood. Cell-free extracts of Bacillus subtilis strain OKB105 synthesized lipopeptide biosurfactants in presence of L-amino acids, myristic acid, coenzyme A, ATP, and H2O2, which suggested that 3-hydroxylation occurs prior to CoA ligation of the long chain fatty acids (LCFAs. We hypothesized that YbdT, a cytochrome P450 enzyme known to beta-hydroxylate LCFAs, functions to form 3-hydroxy fatty acids for lipopeptide biosynthesis. An in-frame mutation of ybdT was constructed and the resulting mutant strain (NHY1 produced predominantly non-hydroxylated lipopeptide with diminished biosurfactant and beta-hemolytic activities. Mass spectrometry showed that 95.6% of the fatty acids in the NHY1 biosurfactant were non-hydroxylated compared to only ~61% in the OKB105 biosurfactant. Cell-free extracts of the NHY1 synthesized surfactin containing 3-hydroxymyristic acid from 3-hydroxymyristoyl-CoA at a specific activity similar to that of the wild type (17 ± 2 versus 17.4 ± 6 ng biosurfactant min−1·ng·protein−1, respectively. These results showed that the mutation did not affect any function needed to synthesize surfactin once the 3-hydroxyacyl-CoA substrate was formed and that YbdT functions to supply 3-hydroxy fatty acid for surfactin biosynthesis. The fact that YbdT is a peroxidase could explain why biosurfactant production is rarely observed in anaerobically grown Bacillus species. Manipulation of LCFA specificity of YbdT could provide a new route to produce biosurfactants with activities tailored to specific functions.

  2. Analysis of biosurfactants from industrially-viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect on emulsification property and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Palashpriya eDas

    2014-12-01

    Full Text Available Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL and di-rhamnolipid (DRL congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67 was found to be very efficacious based on its critical micelle concentration (CMC value and hydrocarbon emulsification property. Strikingly, antimicrobial and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography (TLC analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affect the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In consistent, rhamnolipids of IMP67 reduced the MIC of some antibiotics against bacteria, suggesting the potential of biosurfactant as antibiotics synergist.

  3. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  4. Antimicrobial effect of lactobacillus and bacillus derived ...

    African Journals Online (AJOL)

    This study focused on the screening, production, extraction of biosurfactants from Lactobacillus and Bacillus bacteria and their antimicrobial properties against causal microorganisms of food borne infections (food borne pathogens). The biosurfactants were investigated for potential antimicrobial activity using disk diffusion.

  5. Kinerja probiotik Bacillus sp. pada pendederan benih ikan lele Clarias sp. yang diinfeksi Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    , Sukenda

    2016-12-01

    Full Text Available ABSTRACT This experiment was conducted to assess performance of Bacillus sp. probiotic on catfish juvenile Clarias sp. infected by Aeromonas hydrophila. The probiotic content in the diets were 0% (K+ and K-, 1%, and 2% in duplicates. This experiment used randomized design with four treatments and two replications. Juveniles with average body weight of 3.22±0.15 g/fish were reared in the 1.5×2.8×0.5 m3 pond with density of 800 fish/pond. Fish were reared for 30 days and fed three times a day at rate 8% of  total body weight. At day 31, catfish were challenged by A. hydrophila 0.1 mL (106 cfu/mL. Post infection observation was carried out ten days with density 10 fish/aquaria. The result showed that fish fed diet containing 2% probiotic gave the best probiotic performance with survival rate of catfish 83.33% after challenged, spesific growth rate 5.40%, and 0,75 of feed conversion ratio. The results of the blood profile showed significantly better results in the treatment of probiotics compared to the positive control after challenge test A. hydrophila. Probiotic Bacillus sp. has given as much as 2% on feed provides better performance on catfish juvenile. Keywords: probiotic, Bacillus sp., A. hydrophila, catfish juvenille, growth  ABSTRAK Penelitian ini bertujuan untuk menguji kinerja probiotik Bacillus sp. dalam pakan pada pendederan benih ikan lele Clarias sp. yang diinfeksi bakteri Aeromonas hydrophila. Penelitian ini menggunakan rancangan acak lengkap dengan empat perlakuan yaitu kandungan probiotik dalam pakan perlakuan yaitu 0% (K+ dan K-, 1%,  dan 2%, masing-masing dengan dua ulangan. Ikan lele yang digunakan memiliki bobot rata-rata 3,22±0,15 g/ekor, dipelihara dalam kolam terpal berukuran 1,5×2,8×0,5 m3 dengan kepadatan 800 ekor/kolam. Ikan dipelihara selama 30 hari dengan frekuensi pemberian pakan tiga kali sehari sebanyak 8% dari bobot tubuh ikan. Hari ke-31 benih lele diinjeksi bakteri A. hydrophila dosis 0,1 m

  6. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    Science.gov (United States)

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  7. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Science.gov (United States)

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-01-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments. PMID:27077083

  8. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2016-06-01

    Full Text Available The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 “Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30” (Fulazzaky et al., 2015 [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  9. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.

    Science.gov (United States)

    Duarte, Cristina; Gudiña, Eduardo J; Lima, Cristovao F; Rodrigues, Ligia R

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l(-1) surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l(-1) BioEG for 48 h decreased cancer cells' viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein.

  10. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.

    Science.gov (United States)

    Sana, Santanu; Datta, Sriparna; Biswas, Dipa; Sengupta, Dipanjan

    2018-02-01

    Besides potential surface activity and some beneficial physical properties, biosurfactants express antibacterial activity. Bacterial cell membrane disrupting ability of rhamnolipid produced by Pseudomonas aeruginosa C2 and a lipopeptide type biosurfactant, BS15 produced by Bacillus stratosphericus A15 was examined against Staphylococcus aureus ATCC 25923 and Escherichia coli K8813. Broth dilution technique was followed to examine minimum inhibitory concentration (MIC) of both the biosurfactants. The combined effect of rhamnolipid and BS15 against S. aureus and E. coli showed synergistic activity by expressing fractional inhibitory concentration (FIC) index of 0.43 and 0.5. Survival curve of both the bacteria showed bactericidal activity after treating with biosurfactants at their MIC obtained from FIC index study as it killed >90% of initial population. The lesser value of MIC than minimum bactericidal concentration (MBC) of the biosurfactants also supported their bactericidal activity against both the bacteria. Membrane permeability against both the bacteria was supported by amplifying protein release, increasing of cell surface hydrophobicity, withholding capacity of crystal violet dye and leakage of intracellular materials. Finally cell membrane disruption was confirmed by scanning electron microscopy (SEM). All these experiments expressed synergism and effective bactericidal activity of the combination of rhamnolipid and BS15 by enhancing the bacterial cell membrane permeability. Such effect of the combination of rhamnolipid and BS15 could make them promising alternatives to traditional antibiotic in near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Environmental applications of biosurfactants: recent advances.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-18

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  12. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    Science.gov (United States)

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Mass spectrometric study of rhamnolipid biosurfactants and their interactions with cell membrane phospholipids

    Directory of Open Access Journals (Sweden)

    Pashynska V. A.

    2009-12-01

    Full Text Available Aim. To examine the formation of supramolecular complexes of biogenous rhamnolipids with membrane phospholipids that is considered as a molecular mechanism of the biosurfactants antimicrobial action. Method. In the present work rhamnolipid biosurfactant samples produced by Pseudomonas sp. PS-17 strain have been investigated by electrospray ionization mass spectrometry for the first time. Results. As a result of the study, characteristic mass spectra of the rhamnolipid samples were obtained, that can be used as reference spectra for mass spectrometric identification of the compounds in any biological or industrial samples. At the next stage of the experiments the pair systems, containing the biosurfactants and a membrane phospholipid dipalmitoylphosphatidylcholine, have been tested. The cationized noncovalent complexes of the rhamnolipids with the phospholipid were observed in the spectra. Conclusions. The results obtained testify to the consideration that rhamnolipids (similar to other membranotropic agents can form stable supramolecular complexes with membrane phospholipids that are able to evoke the biosurfactants antimicrobial action. A great potential of electrospray ionization mass spectrometry for the biosurfactants identification and study has been demonstrated in the work.

  14. Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5.

    Science.gov (United States)

    Qiao, N; Shao, Z

    2010-04-01

    Our goal was to identify a novel biosurfactant produced by a marine oil-degrading bacterium. Biosurfactants were produced by Alcanivorax dieselolei strain B-5(T) growing with diesel oil as the sole carbon and energy source. Culture supernatant was first extracted with chloroform/methanol (1:1, v/v), then further purified step by step with a normal phase silica gel column, a Sephadex LH20 gel column and a preparative thin layer plate. The main component was determined to be a lipopeptide; it was chemically characterized with nuclear magnetic resonance, liquid chromatography-quadrupole ion-trap mass spectrometry, amino acid analysis and GC-MS and was found to be a mixture of proline lipids. The monomers of the proline lipids were composed of a proline residue and a fatty acid (C(14:0), C(16:0) or C(18:0)). The critical micelle concentration of the mixed proline lipids was determined to be 40 mg l(-1). Moreover, activity variations in ranges of pH, temperature and salinity were also detected and showed reasonable stability. Alcanivorax dieselolei B-5 produced a novel linear lipoamino biosurfactant, characterized as a proline lipid. A proline lipid was characterized for the first time as a bacterial biosurfactant. This product has potential in both environmental and industrial applications.

  15. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production.

    Science.gov (United States)

    Henkel, Marius; Geissler, Mareen; Weggenmann, Fabiola; Hausmann, Rudolf

    2017-07-01

    Surfactants are an important class of industrial chemicals. Nowadays oleochemical surfactants such as alkyl polyglycosides (APGs) become increasingly important. This trend towards the utilization of renewable resources continues and consumers increasingly demand for environmentally friendly products. Consequently, research in microbial surfactants has drastically increased in the last years. While for mannosylerythritol lipids and sophorolipids established industrial processes exist, an implementation of other microbially derived surfactants has not yet been achieved. Amongst these biosurfactants, rhamnolipids synthesized by Pseudomonas aeruginosa and surfactin produced by Bacillus subtilis are so far the most analyzed biosurfactants due to their exceptional properties and the concomitant possible applications. In this review, a general overview is given regarding the current status of biosurfactants and benefits attributed to these molecules. Furthermore, the most recent research approaches for both rhamnolipids and surfactin are presented with respect to possible methods for industrial processes and the occurring drawbacks and limitations researchers have to address and overcome. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb.

    Science.gov (United States)

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.

  17. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53

    NARCIS (Netherlands)

    Rodrigues, LR; Teixeira, JA; van der Mei, HC; Oliveira, R

    2006-01-01

    Isolation and identification of key components of the crude biosurfactant produced by Lactococcus lactis 53 was studied. Fractionation was achieved by hydrophobic interaction chromatography which allowed the isolation of a fraction rich in glycoproteins. Molecular (by Fourier transform infrared

  18. Environmental Applications of Biosurfactants: Recent Advances

    Directory of Open Access Journals (Sweden)

    Swaranjit Singh Cameotra

    2011-01-01

    Full Text Available Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  19. Microbial biosurfactants: challenges and opportunities for future exploitation.

    Science.gov (United States)

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity.

    Science.gov (United States)

    Park, Jang Min; Oh, Baek-Rock; Kang, In Yeong; Heo, Sun-Yeon; Seo, Jeong-Woo; Park, Seung-Moon; Hong, Won-Kyung; Kim, Chul Ho

    2017-07-01

    A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L -1 . Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L -1 , showing a high theoretical yield of 92.3%.

  1. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  2. Biosurfactants and their role in oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, Michael J. [University of Oklahoma (United States)

    2011-07-01

    This paper presents the role of biosurfactants in oil recovery. Types of biosurfactants include, among others, lipopeptides, rhamnolipids, sophorolipids. The process of oil recovery and the involvement of microbes are explained. The objective is to know if lipopeptide biosurfactants lower interfacial tension. Fatty acid composition is important for lipopeptide biosurfactant activity and microbial surfactants are hydrophilic and Interfacial Tension (IFT) values are high. Examples of biosurfactants with lower IFT values with mixtures are also given. An experiment was conducted to determine whether lipopeptides recovery entrapped oil or not. The procedure and experimental setup are shown. It is seen that with higher concentration of biosurfactants, the percentage of residual oil recovery is higher. Another experiment was conducted to see if biosurfactants greater than 40 mg/l can be produced in oil reservoirs. The experimental design and the analysis with the results are given. It was seen that more oil was produced. Conclusions from the study were, among other findings, that, in situ biosurfactant production and inoculation are possible.

  3. Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production.

    Science.gov (United States)

    de Almeida Couto, Camila Rattes; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Azevedo Jurelevicius, Diogo; Seldin, Lucy

    2015-10-28

    Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. Fifty-two strains showed emulsification values of at least 30%, and they were grouped into 18 BOX groups. The stability of the emulsification values varied when the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20% NaCl. The presence of surfactin was demonstrated in one of the most promising strains. The environments studied can harbor endospore

  4. Production of Antagonistic Compounds by Bacillus sp. with Antifungal Activity against Heritage Contaminating Fungi

    Directory of Open Access Journals (Sweden)

    Mara Silva

    2018-03-01

    Full Text Available In recent years, the population has become acutely aware of the need to conserve the world’s resources. The study of new compounds produced by natural means is important in the search for alternative green solutions that act against biodeteriogenic fungi, which promote biodeterioration of built cultural heritage sites. The present paper reports new solutions, derived from Bacillus sp. CCLBH 1053 cultures, to produce lipopeptides (LPP that can act as green biocides to promote the safeguarding of stone artwork. In the stationary phases of bacteria growth, peptone supplementation and sub-lethal heat activation improve the second cycle of sporulation, greatly enhancing LPP production. The bioactive compounds produced by Bacillus cultures suppress biodeteriogenic fungi growth on stone materials, and, hence, provide an important contribution to the development of new biocides for cultural heritage rehabilitation.

  5. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  6. Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent Estudos sobre a estabilidade de uma protease de Bacillus sp. e sua compatibilidade com detergentes comerciais

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2006-09-01

    Full Text Available Enzymes, and particularly proteases, have become an important and indispensable part of industrial processes such as laundry detergents, pharmaceuticals and food products. Detergents such as Tide®, Ariel® and Biz® contain proteolytic enzymes, most of them produced by members of the genus Bacillus. This paper describes the compatibility of protease produced by the thermophilic Bacillus sp, with commercial laundry detergent. Stability studies indicated that this enzyme retained about 95% and 74% of its maximum activity after 1h at 60ºC in the presence of glycine in combination with MnSO4 and CaCl2, respectively. No inhibitory effect was observed at 1.0-5.0 mM of EDTA. Triton X-100 inhibited the enzyme in all the concentrations tested. The enzyme was unstable in a 5% (v/v concentration of peroxide solution. The protease retained more than 80% and 65% of its activity after 30 min incubation at 60ºC in the presence of Tide® and Cheer® detergents, respectively. After supplementation of CaCl2 (10 mM and glycine (1 mM, the enzyme in Tide® detergent retained more than 85% of its activity after 1h. Based on these findings, Bacillus sp. protease shows a good potential for application in laundry detergents.As enzimas, principalmente as proteases, têm uma participação importante e indispensável em muitos processos industriais tais como na indústria farmacêutica, de alimentos e de detergentes. Alguns detergentes como Tide®, Ariel® e Biz® contem enzimas proteolíticas em sua formulação, sendo a maioria produzida por bactérias do gênero Bacillus sp. Neste artigo, foi avaliada a compatibilidade de uma protease produzida por um microrganismo termofílico, Bacillus sp., com alguns detergentes comerciais. Estudos sobre a estabilidade mostraram que a enzima reteve cerca de 95% e 74% de sua máxima atividade após 1h a 60ºC na presença de glicina em combinação com MnSO4 e CaCl2 respectivamente. A enzima não foi inibida em presença de 1

  7. Biosurfactant production by Pseudomonas strains isolated from floral nectar.

    Science.gov (United States)

    Ben Belgacem, Z; Bijttebier, S; Verreth, C; Voorspoels, S; Van de Voorde, I; Aerts, G; Willems, K A; Jacquemyn, H; Ruyters, S; Lievens, B

    2015-06-01

    To screen and identify biosurfactant-producing Pseudomonas strains isolated from floral nectar; to characterize the produced biosurfactants; and to investigate the effect of different carbon sources on biosurfactant production. Four of eight nectar Pseudomonas isolates were found to produce biosurfactants. Phylogenetic analysis based on three housekeeping genes (16S rRNA gene, rpoB and gyrB) classified the isolates into two groups, including one group closely related to Pseudomonas fluorescens and another group closely related to Pseudomonas fragi and Pseudomonas jessenii. Although our nectar pseudomonads were able to grow on a variety of water-soluble and water-immiscible carbon sources, surface active agents were only produced when using vegetable oil as sole carbon source, including olive oil, sunflower oil or waste frying sunflower oil. Structural characterization based on thin layer chromatography (TLC) and ultra high performance liquid chromatography-accurate mass mass spectrometry (UHPLC-amMS) revealed that biosurfactant activity was most probably due to the production of fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof. Four biosurfactant-producing nectar pseudomonads were identified. The active compounds were identified as fatty acids (C16:0; C18:0; C18:1 and C18:2), and mono- and diglycerides thereof, produced by hydrolysis of triglycerides of the feedstock. Studies on biosurfactant-producing micro-organisms have mainly focused on microbes isolated from soils and aquatic environments. Here, for the first time, nectar environments were screened as a novel source for biosurfactant producers. As nectars represent harsh environments with high osmotic pressure and varying pH levels, further screening of nectar habitats for biosurfactant-producing microbes may lead to the discovery of novel biosurfactants with broad tolerance towards different environmental conditions. © 2015 The Society for Applied Microbiology.

  8. Diversity of Protease-Producing Bacillus spp. From Fresh Indonesian Tempeh Based on 16S rRNA Gene Sequence

    Directory of Open Access Journals (Sweden)

    Tati Barus

    2017-01-01

    Full Text Available Tempeh is a type of traditional fermented food in Indonesia. The fermentation can be performed by Rhizopus microsporus as a main microorganism. However, Bacillus spp. is found in abundance in tempeh production. Nevertheless, information regarding the diversity of Bacillus spp. in tempeh production has not been reported yet. Therefore, the aim of this investigation was to study the genetic diversity of Bacillus spp. in tempeh production based on the 16S ribosomal RNA sequence. In this study, about 22 of 24 fresh tempeh from Jakarta, Bogor, and Tangerang were used. A total of 52 protease-producing Bacillus spp. isolates were obtained. Based on 16S ribosomal RNA results, all 52 isolates were identified to be similar to B. pumilus, B. subtilis, B. megaterium, B. licheniformis, B. cereus, B. thuringiensis, B. amyloliquefaciens, Brevibacillus brevis, and Bacillus sp. All the identified isolates were divided into two large clusters: 1 a cluster of B. cereus, B. thuringiensis, Bacillus sp., and B. brevis and 2 a cluster of B. pumilus, B. subtilis, B. megaterium, B. licheniformis, and B. amyloliquefaciens. Information about the Bacillus spp. role in determining the quality of tempeh has not been reported and this is a preliminary study of Bacillus spp. from tempeh.

  9. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  10. An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand.

    Science.gov (United States)

    Saimmai, Atipan; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2013-01-01

    Biosurfactant-producing bacteria, isolate CT2, was isolated from mangrove sediment in the south of Thailand. The sequence of the 16S rRNA gene from isolate CT2 showed 100 % similarity with Selenomonas ruminantium. The highest biosurfactant production (5.02 g/l) was obtained when the cells were grown on minimal salt medium containing 15 g/l molasses and 1 g/l commercial monosodium glutamate supplemented with 1 g/l NaCl, 0.1 g/l leucine, 5 % (v/v) inoculum size at 30 °C and 150 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small CMC value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test, FT-IR, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  11. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.

    Science.gov (United States)

    Luong, T M; Ponamoreva, O N; Nechaeva, I A; Petrikov, K V; Delegan, Ya A; Surin, A K; Linklater, D; Filonov, A E

    2018-01-04

    Production of trehalolipid biosurfactants by Rhodococcus erythropolis S67 depending on the growth temperature was studied. R. erythropolis S67 produced glycolipid biosurfactants such as 2,3,4-succinoyl-octanoyl-decanoyl-2'-decanoyl trehalose and 2,3,4-succinoyl-dioctanoyl-2'-decanoyl trehalose during the growth in n-hexadecane medium at 26 and 10 °C, despite the different aggregate state of the hydrophobic substrate at low temperature. The surface tension of culture medium was found being reduced from 72 to 27 and 45 mN m -1 , respectively. Production of trehalolipid biosurfactants by R. erythropolis S67 at low temperature could be useful for the biodegradation of petroleum hydrocarbons at low temperatures by enhancing the bioremediation performance in cold regions.

  12. Growth temperature of different local isolates of Bacillus sp. in the solid state affects production of raw starch digesting amylases

    Directory of Open Access Journals (Sweden)

    Šokarda-Slavić Marinela

    2014-01-01

    Full Text Available Natural amylase producers, wild type strains of Bacillus sp., were isolated from different regions of Serbia. Strains with the highest amylase activity based on the starch-agar plate test were grown on solid-state fermentation (SSF on triticale. The influence of the substrate and different cultivation temperature (28 and 37°C on the production of amylase was examined. The tested strains produced α-amylases when grown on triticale grains both at 28 and at 37°C, but the activity of amylases and the number and intensity of the produced isoforms were different. Significant hydrolysis of raw cornstarch was obtained with the Bacillus sp. strains 2B, 5B, 18 and 24B. The produced α-amylases hydrolyzed raw cornstarch at a temperature below the temperature of gelatinization, but the ability for hydrolysis was not directly related to the total enzyme activity, suggesting that only certain isoforms are involved in the hydrolysis. [Projekat Ministarstva nauke Republike Srbije, br. 172048

  13. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment.

    Science.gov (United States)

    Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H

    2018-02-01

    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of biosurfactant from two strains of Pseudomonas on ...

    African Journals Online (AJOL)

    Two Pseudomonas strains isolated from oil-contaminated soil which produce biosurfactant were studied. The biosurfactant containing broth formed stable emulsions with liquid light paraffin, cooking medium vegetable oil and toluene. The strains under study produce extra cellular biosurfactant in the culture media.

  15. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  16. Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80.

    Science.gov (United States)

    Chiewpattanakul, Paramaporn; Phonnok, Sirinet; Durand, Alain; Marie, Emmanuelle; Thanomsub, Benjamas Wongsatayanon

    2010-12-01

    A new biosurfactant producer was isolated from palm-oilcontaminated soil and later identified through morphology and DNA sequencing as the yeast-like fungus Exophiala dermatitidis. Biosurfactant production was catalyzed by vegetable oil, supplemented with a basal medium. The culture conditions that provided the biosurfactant with the highest surface activity were found to be 5% palm oil with 0.08% NH4NO3, at a pH of 5.3, with shaking at 200 rpm, and a temperature of 30 degrees C for a 14-day period of incubation. The biosurfactant was purified, in accordance with surfactant properties, by solvent fractionation using silica gel column chromatography. The chemical structure of the strongest surface-active compound was elucidated through the use of NMR and mass spectroscopy, and noted to be monoolein, which then went on to demonstrate antiproliferative activity against cervical cancer (HeLa) and leukemia (U937) cell lines in a dose-dependent manner. Interestingly, no cytotoxicity was observed with normal cells even when high concentrations were used. Cell and DNA morphological changes, in both cancer cell lines, were observed to be cell shrinkage, membrane blebbling, and DNA fragmentation.

  17. Potential biosurfactant producing endophytic and epiphytic fungi ...

    African Journals Online (AJOL)

    João Marcelo Lima

    2016-06-15

    Jun 15, 2016 ... L., macrophytes collected from oil-contaminated waters, were studied to assess their potential for ... personal hygiene products and food processing, among ... Biosurfactant production was undertaken in 50 mL of culture.

  18. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G., E-mail: ganesansekaran@gmail.com [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Karthikeyan, S. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India); Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247 667 (India); Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Boopathy, R.; Maharaja, P. [Environmental Technology Division, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Adyar, Chennai-600 020 (India)

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 Degree-Sign C and at particle size 300 {mu}m. Enthalpy, free energy and entropy of immobilization were - 46.9 kJ mol{sup -1}, - 1.19 kJ mol{sup -1} and - 161.36 J K{sup -1} mol{sup -1} respectively at pH 7.0, temperature 20 Degree-Sign C and particle size 300 {mu}m. Higher values of {Delta}H{sup 0} indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 Multiplication-Sign 10{sup -2} min{sup -1}. Highlights: Black-Right-Pointing-Pointer Degradation on phenolic syntan using immobilized activated carbon as catalyst. Black-Right-Pointing-Pointer Bacillus sp. immobilized cell reactor removed all refractory organic loads. Black-Right-Pointing-Pointer The removal mechanism is due to co-metabolism between carbon and organisms. Black-Right-Pointing-Pointer The organics are completely metabolized rather than adsorption.

  19. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    Science.gov (United States)

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  20. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  1. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    Science.gov (United States)

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  2. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Gupta, V K; Boopathy, R; Maharaja, P

    2013-03-01

    Xenobiotic compounds are used in considerable quantities in leather industries besides natural organic and inorganic compounds. These compounds resist biological degradation and thus they remain in the treated wastewater in the unaltered molecular configurations. Immobilization of organisms in carrier matrices protects them from shock load application and from the toxicity of chemicals in bulk liquid phase. Mesoporous activated carbon (MAC) has been considered in the present study as the carrier matrix for the immobilization of Bacillus sp. isolated from Effluent Treatment Plant (ETP) employed for the treatment of wastewater containing sulphonated phenolic (SP) compounds. Temperature, pH, concentration, particle size and mass of MAC were observed to influence the immobilization behavior of Bacillus sp. The percentage immobilization of Bacillus sp. was the maximum at pH 7.0, temperature 20 °C and at particle size 300 μm. Enthalpy, free energy and entropy of immobilization were -46.9 kJ mol(-1), -1.19 kJ mol(-1) and -161.36 JK(-1)mol(-1) respectively at pH 7.0, temperature 20 °C and particle size 300 μm. Higher values of ΔH(0) indicate the firm bonding of the Bacillus sp. in MAC. Degradation of aqueous sulphonated phenolic compound by Bacillus sp. immobilized in MAC followed pseudo first order rate kinetics with rate constant 1.12 × 10(-2) min(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Characterization of Exopolysaccharides Produced by Bacillus cereus and Brachybacterium sp. Isolated from Asian Sea Bass (Lates calcarifer

    Directory of Open Access Journals (Sweden)

    Mohamed Orsod

    2012-09-01

    Full Text Available Aims: EPS extracted from marine bacteria, which associated with Asian sea bass has potential antimicrobial activities.Methodology and Results: Two marine Bacteria were isolated from Asian sea bass (Lates calcarifer obtained from aquaculture farm, located at Johor bahru Malaysia. 16S rRNA analysis for bacteria identity revealed that bacteria ors1 had 99 % identity to Bacillus cereus and ors2 had 96 % identity with Brachybacterium sp. All bacteria shared many similarities and variation in terms of biochemical reactions and microscopic observation. Exopolysaccharides (EPSs were extracted and purified from bacteria as they produced mucous colonies. Average analysis of EPS components showed 50 % carbohydrates, 26 % protein and 24 % fatty acids. The FTIR analysis confirmed the functional groups of the EPS. Screening for antimicrobial activities assays using Kirby-Bauer methods against both grams positive and negative had shown presence of inhibition zones.Conclusion, significance and impact of study: This study recommends that bacteria isolated from Asian sea bass are having antimicrobial activities and could be used as a potential source for the development of marine drugs.

  4. Introduction of Fusarium sp. UTMC 5039 as a potent fungal strain for biosurfactant production and evaluation of its potential for crude oil bioremediation

    Directory of Open Access Journals (Sweden)

    Hamid Moghimi

    2017-09-01

    Full Text Available Introduction: Biosurfactants are biological surface active agents which are used in many applications such as oil bioremediation of contaminated soils. Materials and methods: In this study, first soil samples were collected from crude oil contaminated regions of Iran. Fungal isolates were enriched in MSM medium supplemented with crude oil and purified and then all isolates were screened for biosurfactant activity. Then, the capacity of crude oil degradation in the selected isolate was measured using Total Petroleum Hydrocarbon (TPH assay by spectrophotometry and FT-IR analysis. Finally, morphological and molecular identification was carried out by sequencing amplification of beta-tubuline beta-tubulin and ITS gene. Results: Among 40 purified fungal isolated, the isolate SH-02 was selected as the best strain according to the oil spreading and parafilm M test., This isolate was purified from petroleum contaminated soil of Arak refinery. Morphological and molecular identification revealed that this isolate has 99% similarity to Fusarium redolens in ITS geneand was deposited in the University of Tehran Microorganisms Collection under the accession number, UTMC 5039. Measurement of surface tension reduction by Du Nouy Ring method showed that Fusarium sp. UTMC 5039 can reduce surface tension to 26.6 mN/m and this reduction amount is significant compared with the previous reports. According to the obtained results from TPH and FTIR assays,  60 % of crude oil was degraded biodegradation was measured for by  Fusarium sp. UTMC 5039. Discussion and conclusion: The current study results indicate that Fusarium sp. UTMC 5039 has a high capacity in biosurfactant production and introduced as a potent fungal strain for crude oil bioremediation.

  5. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    Science.gov (United States)

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  6. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18.

    Science.gov (United States)

    Saimmai, Atipan; Rukadee, Onkamon; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2012-10-01

    Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25 mN/m. In all 5.30 g of biosurfactant yield was obtained after 54 h of cultivation by using molasses and NaNO₃ as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8 mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  7. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi

    DEFF Research Database (Denmark)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis

    2013-01-01

    colonies produce a single major antibiotic, bacillaene A (1), which selectively inhibits known and putatively antagonistic fungi of Termitomyces. Comparative analyses of the genomes of symbiotic Bacillus strains revealed that they are phylogenetically closely related to Bacillus subtilis, their genomes...... have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic......The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis...

  8. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry

    Science.gov (United States)

    Kiran, George S.; Priyadharsini, Sethu; Sajayan, Arya; Priyadharsini, Gopal B.; Poulose, Navya; Selvin, Joseph

    2017-01-01

    Biosurfactants are smart biomolecules which have wide spread application in medicines, processed foods, cosmetics as well as in bioremediation. In food industry, biosurfactants are used as emulsion stabilizing agents, antiadhesives, and antimicrobial/antibiofilm agents. Nowadays biosurfactant demands in industries has increased tremendously and therefore new bacterial strains are being explored for large scale production of biosurfactants. In this study, an actinobacterial strain MSA31 was isolated from a marine sponge Fasciospongia cavernosa which showed high activity in biosurfactant screening assays such as drop collapsing, oil displacement, lipase and emulsification. Lipopeptide produced by MSA31 was found to be thermostable which was evident in differential scanning calorimetry analysis. The spectral data obtained in the Fourier transform infrared spectroscopy showed the presence of aliphatic groups combined with peptide moiety which is a characteristic feature of lipopeptides. The stability index of lipopeptide MSA31 revealed “halo-alkali and thermal tolerant biosurfactant” which can be used in the food industry. Microtiter plate assay showed 125 μg/ml of lipopeptide was effective in reducing the biofilm formation activity of pathogenic multidrug resistant Staphylococcus aureus. The confocal laser scanning microscopic images provided further evidences that lipopeptide MSA31 was an effective antibiofilm agent. The antioxidant activity of lipopeptide MSA31 may be due to the presence of unsaturated fatty acid present in the molecule. The brine shrimp cytotoxicity assay showed lipopeptide MSA31 was non-toxic and can be used as food additives. Incorporation of lipopeptide MSA31 in muffin showed improved organoleptic qualities compared to positive and negative control. This study provides a valuable input for this lipopeptide to be used in food industry as an effective emulsifier, with good antioxidant activity and as a protective agent against S. aureus. PMID

  9. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry

    Directory of Open Access Journals (Sweden)

    George S. Kiran

    2017-06-01

    Full Text Available Biosurfactants are smart biomolecules which have wide spread application in medicines, processed foods, cosmetics as well as in bioremediation. In food industry, biosurfactants are used as emulsion stabilizing agents, antiadhesives, and antimicrobial/antibiofilm agents. Nowadays biosurfactant demands in industries has increased tremendously and therefore new bacterial strains are being explored for large scale production of biosurfactants. In this study, an actinobacterial strain MSA31 was isolated from a marine sponge Fasciospongia cavernosa which showed high activity in biosurfactant screening assays such as drop collapsing, oil displacement, lipase and emulsification. Lipopeptide produced by MSA31 was found to be thermostable which was evident in differential scanning calorimetry analysis. The spectral data obtained in the Fourier transform infrared spectroscopy showed the presence of aliphatic groups combined with peptide moiety which is a characteristic feature of lipopeptides. The stability index of lipopeptide MSA31 revealed “halo-alkali and thermal tolerant biosurfactant” which can be used in the food industry. Microtiter plate assay showed 125 μg/ml of lipopeptide was effective in reducing the biofilm formation activity of pathogenic multidrug resistant Staphylococcus aureus. The confocal laser scanning microscopic images provided further evidences that lipopeptide MSA31 was an effective antibiofilm agent. The antioxidant activity of lipopeptide MSA31 may be due to the presence of unsaturated fatty acid present in the molecule. The brine shrimp cytotoxicity assay showed lipopeptide MSA31 was non-toxic and can be used as food additives. Incorporation of lipopeptide MSA31 in muffin showed improved organoleptic qualities compared to positive and negative control. This study provides a valuable input for this lipopeptide to be used in food industry as an effective emulsifier, with good antioxidant activity and as a protective agent

  10. Diesel degradation and biosurfactant production by Gram-positive ...

    African Journals Online (AJOL)

    The ability of Gram-positive bacteria to degrade diesel increased in a comparable trend as its biosurfactant production increased. The E24 index was highest at 87.6% for isolate D9. Isolates D2, D9 and D10, were identified as Paenibacillus sp. whilst isolate DJLB was found to belong to Stenotrophomonas sp. This study ...

  11. Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake in mine soil

    Science.gov (United States)

    This study was aimed at assessing the potential of allochthonous Bacillus sp. SKK11 and sesame oil cake extract for transformation of Pb in mine soil. The bacteria were isolated from a brackish environment and identified as Bacillus sp. based on partial 16S rDNA sequences. The isolate SKK11 exhibite...

  12. A Mutant of Bacillus Subtilis with High-Producing Surfactin by Ion Beam Implantation

    International Nuclear Information System (INIS)

    Liu Qingmei; Yuan Hang; Wang Jun; Gong Guohong; Zhou Wei; Fan Yonghong; Wang Li; Yao Jianming; Yu Zengliang

    2006-01-01

    In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6x10 15 N + /cm 2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain

  13. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    Directory of Open Access Journals (Sweden)

    Álvaro Silva Lima

    2009-04-01

    Full Text Available Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical. The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES, which was the time when oil was separated. The biosurfactant presented different stabilization properties for vegetable and mineral oil in water solution, despite the highest values of the ES occurring with vegetable oil. The biosurfactant presented smallest ES when compared to commercial surfactants; however, this biosurfactant was not purified.Os tensoativos de origem biológica são amplamente utilizados em diversas aplicações. O microrganismo Saccharomyces lipolytica CCT-0913 possui a habilidade de crescer em 5% (v/v óleo diesel a pH 5,0 e 32ºC e produzir biosurfactante. O caldo fermentado livre de células e produzido por S. lipolytica emulsiona e estabiliza emulsões óleo em água de acordo com uma cinética de primeira ordem. Os resultados mostram que o valor do pH inicial e a temperatura influenciam a estabilidade emulsificante (ES, que é medido pelo tempo que a quantidade de óleo. O biosurfactante apresenta diferentes valores de estabilidade emulsificante para óleos vegetais e minerais em emulsões óleo-água, os maiores valores de ES ocorrem nas emulsões utilizando óleo vegetal. O biosurfactante apresenta valores baixos de ES quando comparado com emulsificantes comerciais, entretanto sem sofrer nenhum processo de purificação.

  14. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam

    Science.gov (United States)

    Dang, Thi Cam Ha; Thang Nguyen, Dang; Thai, Hoang; Chinh Nguyen, Thuy; Thu Hien Tran, Thi; Le, Viet Hung; Huynh Nguyen, Van; Bach Tran, Xuan; Phuong Thao Pham, Thi; Giang Nguyen, Truong; Nguyen, Quang Trung

    2018-03-01

    Three different kinds of plastic bags HL, VHL, and VN1 with different chemical nature were degraded by a novel thermophilic bacterial strain isolated from composting agricultural residual in Vietnam in shaking liquid medium at 55 °C after 30 d. The new strain was classified in the Bacillus genus by morphological property and sequence of partial 16Sr RNA coding gene and named as Bacillus sp. BCBT21. This strain could produce extracellular hydrolase enzymes including lipase, CMCase, xylanase, chitinase, and protease with different level of activity in the same media. After a 30-d treatment at 55 °C with Bacillus sp. BCBT21, all characteristics including properties and morphology of treated plastic bags had been significantly changed. The weight loss, structure and surface morphology of these bags as well as the change in the average molecular weight of VHL bag were detected. Especially, the average molecular weight of VHL bag was significantly reduced from 205 000 to 116 760. New metabolites from the treated bags indicated biodegradation occurring with the different pathways. This finding suggests that there is high potential to develop an effective integrated method for plastic bags degradation by a combination of extracellular enzymes from bacteria and fungi existing in the composting process.

  15. Influence of Bacillus polymyxa on the growth and development of Fusarium oxysporum f. sp. tulipae

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2013-12-01

    Full Text Available Antagonistic effect of Bacillus polymyxa, strain S13, toward Fusarium oxysporum f. sp. tulipae was evaluated iii vitro and in vivo. The growth of the pathogen was greatly inhibited in dual cultures with Bacillus polymyxa on potato dextrose agar. Suspension of B. polymyxa and its filtrate substantially inhibited spore germination and development of Fusarium oxysporuum f. sp. tulipae on tulip bulbs.

  16. Cloning and expression of an amylase gene from Bacillus sp ...

    African Journals Online (AJOL)

    SAM

    2014-08-06

    Aug 6, 2014 ... Bacillus sp. isolated from an agricultural field in West. Bengal, India ... plants, even though, the competition is incipient (Sen,. 2007), and therefore ..... proteins: Engineering mesophilic–like activity and stability in a cold adapted ...

  17. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS.

    Science.gov (United States)

    Kim, Ji Seong; Lee, Jeong Eun; Nie, Hualin; Lee, Yong Jae; Kim, Sun Tae; Kim, Sun-Hyung

    2018-02-01

    In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.

  18. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Arvind [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India); Singh, Vidya Nand; Mehta, Bodh Raj [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016 (India); Khare, Sunil Kumar, E-mail: skhare@rocketmail.com [Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

    2011-08-30

    Highlights: {yields} An efficient process wherein remediated manganese is synthesized into nanoparticles. {yields} A microbial process for manganese nanoparticle synthesis from metal waste streams. {yields} Nanoparticles characterized as monodispersed, spherical and 4.62 {+-} 0.14 nm sized MnO{sub 2}. -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 {+-} 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  19. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation

    International Nuclear Information System (INIS)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-01-01

    Highlights: → An efficient process wherein remediated manganese is synthesized into nanoparticles. → A microbial process for manganese nanoparticle synthesis from metal waste streams. → Nanoparticles characterized as monodispersed, spherical and 4.62 ± 0.14 nm sized MnO 2 . -- Abstract: A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62 ± 0.14 nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329 nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles.

  20. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  1. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil.

    Science.gov (United States)

    Whang, Liang-Ming; Liu, Pao-Wen G; Ma, Chih-Chung; Cheng, Sheng-Shung

    2008-02-28

    This study investigated potential application of two biosurfactants, surfactin (SF) and rhamnolipid (RL), for enhanced biodegradation of diesel-contaminated water and soil with a series of bench-scale experiments. The rhamnolipid used in this study, a commonly isolated glycolipid biosurfactant, was produced by Pseudomonas aeruginosa J4, while the surfactin, a lipoprotein type biosurfactant, was produced by Bacillus subtilis ATCC 21332. Both biosurfactants were able to reduce surface tension to less than 30 dynes/cm from 72 dynes/cm with critical micelle concentration (CMC) values of 45 and 50 mg/L for surfactin and rhamnolipid, respectively. In addition, the results of diesel dissolution experiments also demonstrated their ability in increasing diesel solubility with increased biosurfactant addition. In diesel/water batch experiments, an addition of 40 mg/L of surfactin significantly enhanced biomass growth (2500 mg VSS/L) as well as increased diesel biodegradation percentage (94%), compared to batch experiments with no surfactin addition (1000 mg VSS/L and 40% biodegradation percentage). Addition of surfactin more than 40 mg/L, however, decreased both biomass growth and diesel biodegradation efficiency, with a worse diesel biodegradation percentage (0%) at 400 mg/L of SF addition. Similar trends were also observed for both specific rate constants of biomass growth and diesel degradation, as surfactin addition increased from 0 to 400 mg/L. Addition of rhamnolipid to diesel/water systems from 0 to 80 mg/L substantially increased biomass growth and diesel biodegradation percentage from 1000 to 2500 mg VSS/L and 40 to 100%, respectively. Rhamnolipid addition at a concentration of 160 mg/L provided similar results to those of an 80 mg/L addition. Finally, potential application of surfactin and rhamnolipid in stimulating indigenous microorganisms for enhanced bioremediation of diesel-contaminated soil was also examined. The results confirmed their enhancing capability

  2. Enhanced production of nattokinase from UV mutated Bacillus sp.

    Directory of Open Access Journals (Sweden)

    V Mohanasrinivasan

    2013-06-01

    Full Text Available In the recent years, nattokinase is one of the most-often employed among the several thrombolytic agents used clinically, particularly because of its lower cost comparing to other thrombolytic agents. In the present research work, Bacillus sp. was isolated from the heterogeneous microbial population present in the soil sample and screened for the production of nattokinase. The production of the enzyme was carried out using two different media (with and without shrimp shell substrate. Nattokinase activity (clot buster was determined by using a modified Holmstorm method. The production strain SFN01 was improved by random mutagenesis (UV radiation and the enzyme activity was checked with the enzyme produced by wild strain. The mutated strains had exhibited a higher clot lysis activity in which 1 unit of the enzyme completely lyses 1 mL of human blood when compared to the wild strain. Nattokinase produced by SFN showed a retention time of 10.6 min in RP-HPLC chromatogram.

  3. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T H; Sørensen, D; Tobiasen, C

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  4. Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam

    NARCIS (Netherlands)

    Tran, H.; Kruijt, M.; Raaijmakers, J.M.

    2008-01-01

    Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity

  5. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    Science.gov (United States)

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  6. Biosurfactant production using mixed cultures under non-aseptic conditions

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Ghurye, G.L.; Willson, R.C.

    1994-01-01

    The use of surfactants is of increasing interest for remediation of petroleum hydrocarbons in groundwater and soil. Surfactants increase the accessibility of adsorbed hydrocarbons and mobilize immiscible petroleum hydrocarbons for treatment. Biosurfactants have the advantage of biodegradability and non-toxicity over their synthetic counterparts, and can be produced from renewable sources. In this study the production of biosurfactant from molasses was investigated in continuously stirred batch reactors. The effects of substrate concentration, yeast extract and peptone on biomass accumulation and biosurfactant production were investigated. Biosurfactant production was quantified by surface tension reduction and critical micelle dilution (CMD). Biosurfactant production was directly correlated with biomass production, and was improved with the addition of yeast extract. Centrifugation of the whole broth reduced surface tension. The performance of the biosurfactant produced from molasses under non-aseptic condition is comparable to other published results

  7. Production and characterization of novel self-assembling biosurfactants from Aspergillus flavus.

    Science.gov (United States)

    Ishaq, U; Akram, M S; Iqbal, Z; Rafiq, M; Akrem, A; Nadeem, M; Shafi, F; Shafiq, Z; Mahmood, S; Baig, M A

    2015-10-01

    This work was conducted to produce, purify and characterize biosurfactants from Aspergillus flavus AF612 isolated from citrus fruit. Biosurfactant named 'Uzmaq' was isolated from A. flavus AF612. The chemical characterization of the biosurfactant was conducted. Biosurfactant Uzmaq produced by A. flavus, was composed of methoxy phenyl oxime glycosides. Two molecular forms of the biosurfactant, Uzmaq-A and Uzmaq-B were isolated. Biological properties (antifungal activity) were evaluated. The fractions of the biosurfactant were isolated and their surface properties were analysed. Uzmaq-A and Uzmaq-B had critical micelle concentration (CMC) around 170 and 80 mg l(-1) , and lowered surface tension of water up to 20 and 25 m Nm(-1) respectively. The biosurfactants were stable at pH 3-12 and temperature up to 80°C. Growth and biosurfactant production kinetics were also analysed. Novel biosurfactant Uzmaq was produced from A. flavus, which was composed of methoxy phenyl oxime glycosides. The surface activity of Uzmaq was better than the maximum values of synthetic chemical surfactants. The biosurfactant showed antifungal activity and self-assembling properties. Aspergillus flavus AF612 can be used for commercial production of Uzmaq that may be employed for controlled drug release applications and bioremediation. © 2015 The Society for Applied Microbiology.

  8. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  9. Isolation, identification and characterization of Bacillus amyloliquefaciens BZ-6, a bacterial isolate for enhancing oil recovery from oily sludge.

    Science.gov (United States)

    Liu, Wuxing; Wang, Xiaobing; Wu, Longhua; Chen, Mengfang; Tu, Chen; Luo, Yongming; Christie, Peter

    2012-06-01

    Over 100 biosurfactant-producing microorganisms were isolated from oily sludge and petroleum-contaminated soil from Shengli oil field in north China. Sixteen of the bacterial isolates produced biosurfactants and reduced the surface tension of the growth medium from 71 to treat oily sludge and the recovery efficiencies of oil from oily sludge were determined. The oil recovery efficiencies of different isolates ranged from 39% to 88%. Bacterial isolate BZ-6 was found to be the most efficient strain and the three phases (oil, water and sediment) were separated automatically after the sludge was treated with the culture medium of BZ-6. Based on morphological, physiological characteristics and molecular identification, isolate BZ-6 was identified as Bacillus amyloliquefaciens. The biosurfactant produced by isolate BZ-6 was purified and analyzed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry. There were four ion peaks representing four different fengycin A homologues. Copyright © 2012. Published by Elsevier Ltd.

  10. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  11. Bio sorption of strontium from aqueous solution by the new strain of bacillus sp. strain GT-83

    International Nuclear Information System (INIS)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Mazaheri, M.

    2009-01-01

    An attempt was made to isolate bacterial strains capable of removing strontium biologically. In this study ten different water samples collected from Neydasht spring in the north of Iran and then the bacterial species were isolated from the water samples. The initial screening of a total of 50 bacterial isolates resulted in selection of one strain.The isolated strain showed a maximum adsorption capacity with 55 milligrams strontium/g dry wt. It was tentatively identified as Bacillus sp. According to the morphological and biochemical properties, and called strain GT-83. Our studies indicated that Bacillus sp. GT-83 is able to grow aerobically in the presence of 50 mM SrCl 2 , but its growth was inhibited at high levels of strontium concentrations. The bio sorption capacity of Bacillus sp. GT-83 depends strongly on the p H solution. Hence the maximum strontium sorption capacity of Bacillus sp. GT-83 was obtained at pah 10, independent of absence or presence of MgCl 2 of different concentrations. Strontium-salt bio sorption studies were also performed at this p H values. The equilibrium bio sorption of strontium was elevated by increasing the strontium concentration, up to 250 milligrams/l for Bacillus sp. GT-83. The maximum bio sorption of strontium was obtained at temperatures in the range of 30-35 d eg C . The Bacillus sp. GT-83 bio sorbed 97 milligrams strontium/g dry wt at 100 milligrams/l initial strontium concentration without MgCl 2 . When MgCl 2 concentration increased to 15%(w/v), these values dropped to 23.6 milligrams strontium/g dry wt at the same conditions. Uptake of strontium within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter

  12. Effects of Probiotic Bacillus sp. on Food Convertion and Growth of Catfish Pangasius hypophthalmus

    Directory of Open Access Journals (Sweden)

    Dedi Jusadi

    2007-04-01

    Full Text Available A triplicate experiment was conducted to evaluate the addition of probiotic Bacillus sp. into the diet on feed convertion and growth of catfish Pangasius hypophthalmus. Twenty fish with an initial body weight of 1,85 ± 0,09 g were stocked in a 60-1 aquarium. During rearing period, fish were fed on the diet three times a day at satiation. Prior the feeding, probiotic (contained Bacillus sp. 4,2x106 CFU.ml-1 were added into the diet at a dosage of 0, 5, 15 or 25 ml.kg-1 diet. The probiotic were added once a day at the noon. The results showed that maximum protein retention, lipid retention, growth rate, and minimum feed convertion was found in the group of fish fed on the diet supplemented with 15 ml probiotic kg-1 diet. Irrespective to the dosage of probiotic, food consumption and survival rate of fish were the same among the treatments. Key words : Probiotic. Bacillus sp.. catfish Pangasius hypophthalmus.   ABSTRAK Penelitian ini bertujuan untuk mengetahui dosis yang optimal dari probiotik Bacillus sp. yang ditambahkan pada pakan komersil terhadap konversi pakan dan pertumbuhan benih ikan patin Pangasius hypophthalmus. Dua puluh ekor ikan patin dengan bobot rata-rata 1.85 ± 0,09 g ditebar dalam setiap akuarium frekuensi 50x40x35 cm yang diisi air 60 1. Selama 40 had masa pemeliharaan. ikan diberi pakan buatan berkadar protein 27% dengan frekwensi tiga kali sehari, at satiation. Sebelum diberikan ke ikan, pakan tersebut ditambah produk probiotik (mengandung Bacillus sp. 4,2 x 106 CFU/ml dengan dosis 0, 5, 15 atau 25 ml/kg pakan. Pakan yang mengandung probiotik hanya diberikan sekali setiap hari, yakni pada pukul 13.00. Hasil penelitian menunjukkan bahwa adanya penambahan probiotik dalam pakan sampai dosis 15 ml/kg pakan menyebabkan terjadinya peningkatan retensi protein, retensi lemak dan laju pertumbuhan harian ikan, serta menurunkan konversi pakan. Penambahan probiotik lebih lanjut (25 ml/kg pakan menurunkan kinerja pertumbuhan di atas

  13. Emulsification of Hydrocarbons by Biosurfactant: Exclusive Use of Agrowaste

    Directory of Open Access Journals (Sweden)

    Olusola Solomon Amodu

    2014-04-01

    Full Text Available Novel biosurfactant-producing strains were isolated from hydrocarbon-contaminated environments that exclusively utilize agro-waste as their primary carbon source for the expression of biosurfactants. These were quantified using various standardized methods. Among the agro-waste screened, Beta vulgaris (Beetroot proved to be the most suitable substrate, for which the biosurfactants produced by three bacterial isolates–B. licheniformis STK01, B. subtilis STK02, and P. aeruginosa STK03–lowered the surface tension of the culture media to 30.0, 32.98, and 30.37 mN/m, respectively. The biosurfactants achieved considerable emulsification activity, particularly for heavy hydrocarbons, with the highest emulsification indices being 65.5% and 95% for anthracene and lubricant oil, respectively. The emulsion formed with lubricant oil was thermally stable even up to 50 °C for 21 days. The results showed the proficiency of the novel bacterial isolates used, as well as the suitability of solid agro-waste for biosurfactant production, thus suggesting that exclusive utilization of solid agro-waste is a promising option for use in biosurfactant production for environmental remediation. The outstanding emulsification activity and thermal stability demonstrated by the biosurfactants produced showed their potential applications in enhancing bioavailability and bioremediation of recalcitrant and hydrophobic environmental contaminants.

  14. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION ... Nutrient broth (5 g peptone and 3 g meat extract, pH 7.0, Merck) was used as the common growth ... nitrate through nitrite. It was determined that ...

  15. Selective cultures for the isolation of biosurfactant producing bacteria: comparison of different combinations of environmental inocula and hydrophobic carbon sources.

    Science.gov (United States)

    Domingues, Patrícia M; Louvado, António; Oliveira, Vanessa; Coelho, Francisco J C R; Almeida, Adelaide; Gomes, Newton C M; Cunha, Angela

    2013-01-01

    The potential of estuarine microniches as reservoirs of biosurfactant-producing bacteria was evaluated by testing different combinations of inocula and hydrophobic carbon sources. Selective cultures using diesel, petroleum, or paraffin as hydrophobic carbon sources were prepared and inoculated with water from the surface microlayer, bulk sediments, and sediment of the rhizosphere of Halimione portulacoides. These inocula were compared regarding the frequency of biosurfactant-producing strains among selected isolates. The community structure of the selective cultures was profiled using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene fragments at the end of the incubation. The DGGE profiles corresponding to the communities established in selective cultures at the end of the incubation revealed that communities were different in terms of structural diversity. The highest diversity was observed in the selective cultures containing paraffin (H (') = 2.5). Isolates were obtained from the selective cultures (66) and tested for biosurfactant production by the atomized oil assay. Biosurfactant production was detected in 17 isolates identified as Microbacterium, Pseudomonas, Rhodococcus, and Serratia. The combination of estuarine surface microlayer (SML) water as inoculum and diesel as carbon source seems promising for the isolation of surfactant-producing bacteria. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  16. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils.

    Science.gov (United States)

    Yang, Zhihui; Shi, Wei; Yang, Weichun; Liang, Lifen; Yao, Wenbin; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-09-01

    Combining bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 and flocculation by poly aluminium chloride (PAC) was proposed to develop a potential environment-friendly and cost-effective technique to remediate the severely contaminated soils by heavy metals. The factors affecting soil bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 were optimized. The results showed the optimal removing efficiencies of Zn, Pb, Mn, Cd, Cu, and As by the Burkholderia sp. Z-90 leachate were 44.0, 32.5, 52.2, 37.7, 24.1 and 31.6%, respectively at soil liquid ratio of 1:20 (w/v) for 5 d, which were more efficient than that by 0.1% of rhamnolipid. The amounts of the bioleached heavy metals by the Burkholderia sp. Z-90 leachate were higher than that by other biosurfactants in the previous studies, although the removal efficiencies of the metals by the leachate were relatively lower. It was suggested that more heavy metals caused more competitive to chelate with function groups of the gross biosurfactants and the metal removal efficiencies by biosurfactants in natural soils were lower than in the artificially contaminated soils. Moreover, the Burkholderia sp. Z-90 leachate facilitated the metals to be transformed to the easily migrating speciation fractions. Additional, the results showed that PAC was efficient in the following flocculation to remove heavy metals in the waste bio-leachates. Our study will provide support for developing a bioleaching technique model to remediate the soils extremely contaminated by heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Biosurfactant production by hydrocarbon-degrading Brevibacterium and Vibrio isolates from the sea pen Pteroeides spinosum (Ellis, 1764).

    Science.gov (United States)

    Graziano, Marco; Rizzo, Carmen; Michaud, Luigi; Porporato, Erika Maria Diletta; De Domenico, Emilio; Spanò, Nunziacarla; Lo Giudice, Angelina

    2016-09-01

    Among filter-feeders, pennatulids are the most complex and polymorphic members of the cnidarian class Anthozoa. They display a wide distribution throughout all the oceans, constituting a significant component of the sessile megafauna from intertidal to abyssal depths. In this study, a total of 118 bacterial isolates from enrichment cultures, carried out with homogenates of the sea pen Pteroeides spinosum (Ellis, 1764), were screened for hydrocarbon utilization by using the 2,6-dichlorophenol indophenol assay. Among them, 83 hydrocarbon-oxidizing isolates were analyzed for biosurfactant production by standard screening tests (i.e., emulsifying activity, E24 detection, surface tension measurement, microplate assay). The 16S rRNA gene sequencing revealed the affiliation of the most promising isolates to the genera Brevibacterium and Vibrio. Biosurfactant production resulted strongly affected by salinity and temperature conditions, and occurred in the presence of diesel oil and/or crude oil, whereas no production was observed when isolates were grown on tetradecane. The strains resulted able to create stable emulsions, thus suggesting the production of biosurfactants. Further analyses revealed a glycolipidic nature of the biosurfactant extracted from Vibrio sp. PBN295, a genus that has been only recently reported as biosurfactant producer. Results suggest that pennatulids could represent a novel source for the isolation of hydrocarbon-oxidizing bacteria with potential in biosurfactant production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    sunny t

    benzo(a)pyrene using Bacillus sp. and Pseudomonas sp.: Biosurfactant/Beta vulgaris ... potential human mutagens and carcinogens (Grimmer,. 1983). Chemical and ...... of naphthalene on zeolite from aqueous solution. J. Colloid Interf. Sci.

  19. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.

    Science.gov (United States)

    Xia, Wen-Jie; Luo, Zhi-Bin; Dong, Han-Ping; Yu, Li; Cui, Qing-Feng; Bi, Yong-Qiang

    2012-03-01

    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0-8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI(24) ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.

  20. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil

    Directory of Open Access Journals (Sweden)

    Sabina Viramontes-Ramos

    2010-10-01

    Full Text Available Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus. Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m, and all formed stable emulsions with motor oil (76-93% E24. Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.

  1. Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility

    Directory of Open Access Journals (Sweden)

    Silvania A. Ladeira

    2015-03-01

    Conclusions: The properties presented by Bacillus sp. SMIA-2 suggest that this organism might become a potential source of lignocellulose-degrading enzymes for industrial applications such as in the detergent industry.

  2. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-08-01

    Full Text Available The aim of this work was to study the effect of some nutritional and environmental factors on the production of cellulases, in particular endoglucanase (CMCase and exoglucanases (FPase from Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from an Indian hot spring. The characterization study indicated that the optimum pH and temperature value was 6.5 to 7.0 and 50-55°C, respectively. Maximum cellulases production by both the isolates was detected after 60 h incubation period using wheat and rice straw. The combination of inorganic and organic nitrogen source was suitable for cellulases production. Overall, FPase production was much higher than CMCase production by both of the strains. Between the two thermophiles, the cellulolytic activity was more in B.licheniformis MVS1 than Bacillus sp. MVS3 in varying environmental and nutritional conditions.

  3. Individually and Synergistic Degradation of Hydrocarbons by Biosurfactant Producing Bacteria

    Directory of Open Access Journals (Sweden)

    Amirarsalan Kavyanifard

    2016-02-01

    Full Text Available Background: Increasing worldwide contamination with hydrocarbons has urged environmental remediation using biological agents such as bacteria. Our goal here was to study the phylogenetic relationship of two crude oil degrader bacteria and investigation of their ability to degrade hydrocarbons. Materials and Methods: Phylogenetic relationship of isolates was determined using morphological and biochemical characteristics and 16S rDNA gene sequencing. Optimum conditions of each isolate for crude oil degradation were investigated using one factor in time method. The rate of crude oil degradation by individual and consortium bacteria was assayed via Gas chromatography–mass spectrometry (GC-MS analysis. Biosurfactant production was measured by Du Noüy ring method using Krüss-K6 tensiometer. Results: The isolates were identified as Dietzia cinnamea KA1 and Dietzia cinnamea AP and clustered separately, while both are closely related to each other and with other isolates of Dietzia cinnamea. The optimal conditions for D. cinnamea KA1 were 35°C, pH9.0, 510 mM NaCl, and minimal requirement of 46.5 mM NH4Cl and 2.10 mM NaH2PO4. In the case of D. cinnamea AP, the values were 30°C, pH8.0, 170 mM NaCl, and minimal requirement of 55.8 mM NH4Cl and 2.10 mM NaH2PO4, respectively. Gas chromatography – Mass Spectroscopy (GC-MS analysis showed that both isolates were able to utilize various crude oil compounds, but D. cinnamea KA1 was more efficient individually and consortium of isolates was the most. The isolates were able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil and optimization of MSM conditions lead to increase in biosurfactant production. Conclusion: To the best of our knowledge this is the first report of synergistic relationship between two strains of D. cinnamea in biodegradation of crude oil components, including poisonous and carcinogenic compound in a short time.

  4. Biosurfactants production from cheese whey

    OpenAIRE

    Rodrigues, L. R.; Teixeira, J. A.

    2008-01-01

    Biosurfactants are molecules that exhibit pronounced surface and emulsifying activities, produced by a variety of microorganisms. A host of interesting features of biosurfactants, such as higher biodegradability, lower toxicity, and effectiveness at extremes of temperature, pH and salinity; have led to a wide range of potential applications in the fields of oil recovery, environmental bioremediation, food processing and medicine. In spite of the immense potential of...

  5. Efektivitas Pemberian Bacillus sp. D2.2 pada Media Teknis Molase terhadap Kualitas Air dan Performa Pertumbuhan Udang Vaname (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Ayu NOVITASARI

    2017-07-01

    Full Text Available Vanamei prawns have fast growth and can reared in high density. it has an impact on water quality deterioration and disruption of survival rates and growth. Various ways to cope has been done, one of them is with probiotic bacteria. The new strain of D2.2 bacteria is thought to be effective of ammonia utilization. Probiotics with local bacteria Bacillus sp. D2.2 is cultured on molasses technical medium to be applied semi-mass. The purpose of this study is to asses the efectivity of Bacillus sp. D2.2 inthe molasses technical medium on water quality and growth performance of vaname prawns (Litopenaeus vannamei. The research was used complete randomized design (RAL with four treatments, A (Control, B (Application of 5 ppm Bacillus sp. D2.2 cultured in molasses technical medium, C (Application of 10 ppm Bacillus sp. D2.2 cultured in molasses technical medium, D (Application of 15 ppm Bacillus sp. D2.2 cultured in molasses technical medium were repeated three times each. The results showed no effect on water quality and shrimp survival rate, but absolute growth (W, daily growth rate (GR and feed conversion ratio (FCR showed that B and C treatment had better  than control. Keywords: Vaname shrimp, growth, Bacillus sp. D2.2, molasses technical medium

  6. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source

    OpenAIRE

    Vijayendra, S. V. N.; Rastogi, N. K.; Shamala, T. R.; Anil Kumar, P. K.; Kshama, L.; Joshi, G. J.

    2007-01-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodol...

  7. Analysis of polyhydroxyalkanoates granuales in bacillus Sp. MFD11 and enterobacter Sp. SEL2

    International Nuclear Information System (INIS)

    Naheed, N.; Jamil, N.

    2016-01-01

    Bacillus sp. MFD11 (JF901809) and Enterobacter sp. SEL2 (JF901810) were isolated from agriculture waste contaminated sites. When fed with 2% glucose as a carbon source, these bacteria produced 75.26±0.45% and 76.61±0.28% PHA of their wet weight respectively. The accumulated PHA was extracted by direct addition of sodium dodysyl sulphate in the culture medium, which yielded 52.3±0.56 micro g/l and 136.21±0.45 micro g/l PHA respectively when assayed with Crotonic acid. The PHA detection medium (PDM) provided nutrient limitation condition which favored accumulation of PHA granules. A tremendous increase in cell size was observed when strain MFD11 was grown in PDM. The size of the granules as revealed by TEM micrographs spanned from 0.1 to 1.5 micro m which is quite large as compared to the size reported in the literature 0.2 to 0.5 micro m 18). (PHA polymer was analyzed by FTIR, GC/MS and proton Nuclear magnetic resonance. The intense absorption band in the spectrum at 1724-1740 cm -1 and 1215 cm -1 to 1280 corresponding to C=O and C-O stretching group, respectively, indicated that the both strains were PHA producers. GC/MS analysis indicated that the polymer produced were copolymers of PHB-co-PHV. NMR also suggested that the extracted PHA was not a homopolymer but was the blend of copolymers with 3HV in lower abundance. Differential calorimetric thermal analysis showed melting temperature of 163 and 169 degree C for PHA produced by both strains, respectively. However, the observed melting temperature was found to be lower than the standard PHB (Signa-aldrich). (author)

  8. Eficiencia de pseudomonas sp, rhodopseudomonas sp, micrococcus sp y bacillus sp empleados como cultivos individuales y en consorcio, en la degradación de petróleo diesel ii

    OpenAIRE

    Otiniano García, Nélida Milly Esther

    2010-01-01

    In order to evaluate the efficiency of Pseudomonas sp, Rhodopseudomonas sp, Micrococcus sp, Bacillus sp, and the consortium formed by these four microorganisms in the diesel II petroleum degradation, it was worked in 5 bioreactors of aerated and shaken tank of 1.5 litters of capacity, with speed agitation of 120 rpm, and air flow of 0.5 vvm; in which were placed; 940 mL of Minimum Broth of Davies pH 7.0; 50 mL of diesel II petroleum as source of carbon and 10 mL of a suspension of approx...

  9. Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis.

    Science.gov (United States)

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mohapatra, Purusottam; Kundu, Chanakya Nath; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2014-11-01

    Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml(-1), respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.

  10. Optimization and characterization of biosurfactant from Streptomyces griseoplanus NRRL-ISP5009 (MS1).

    Science.gov (United States)

    Elkhawaga, M A

    2018-03-01

    This work aimed to study, isolate, characterize and stabilize the biosurfactant isolated from actinomycetes found in petroleum contaminated soil. Optimized production of the biosurfactant from Streptomyces griseoplanus NRRL-ISP5009, SM1 was obtained on day 6 at 30°C, pH 7, 150 rev min -1 , in glycerol yeast extract broth medium supplemented with cellulose, yeast extract and 1% NaCl. The stability of the biosurfactant produced was studied at different temperatures, pH and different concentrations of NaCl. The produced biosurfactant was extracted and purified. Streptomyces griseoplanus NRRL-ISP5009, SM1 isolated from oil contaminated soil produced a biosurfactant exhibiting emulsification activity. The produced biosurfactant is a mixture of carbohydrate, lipid and protein. It has promising characteristics, including a higher stability at alkaline pH than at acidic pH, a salinity of 1-3% and stable in the temperature range from 0 and 100°C. Also, the potential antimicrobial activity of the purified biosurfactant was recorded. The research was focused on the isolation of a novel source of biosurfactants that have great importance in the manufacture of food, detergent, pharmaceutical and cosmetics. © 2017 The Society for Applied Microbiology.

  11. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3.

    Science.gov (United States)

    Liu, Xiangyang; Ren, Biao; Chen, Ming; Wang, Haibin; Kokare, Chandrakant R; Zhou, Xianlong; Wang, Jidong; Dai, Huanqin; Song, Fuhang; Liu, Mei; Wang, Jian; Wang, Shujin; Zhang, Lixin

    2010-08-01

    Marine microbes are a rich source of bioactive compounds, such as drugs, enzymes, and biosurfactants. To explore the bioactive compounds from our marine natural product library, an oil emulsification assay was applied to discover biosurfactants and bioemulsifiers. A spore-forming bacterial strain from sea mud was found to produce bioemulsifiers with good biosurfactant activity and a broad spectrum of antimicrobial properties. It was identified as Bacillus velezensis H3 using genomic and phenotypic data analysis. This strain was able to produce biosurfactants with an optimum emulsification activity at pH 6.0 and 2% NaCl by using starch as the carbon source and ammonium sulfate as the nitrogen source. The emulsification-guided isolation and purification procedure led to the discovery of the biosurfactant components, which were mainly composed of nC(14)-surfactin and anteisoC(15)-surfactin as determined by NMR and MS spectra. These compounds can reduce the surface tension of phosphate-buffered saline (PBS) from 71.8 to 24.8 mN/m. The critical micelle concentrations (CMCs) of C(14)-surfactin and C(15)-surfactin in 0.1 M PBS (pH 8.0) were determined to be 3.06 x 10(-5) and 2.03 x 10(-5) mol/L, respectively. The surface tension values at CMCs for C(14)-surfactin and C(15)-surfactin were 25.7 and 27.0 mM/m, respectively. In addition, the H3 biosurfactant exhibited antimicrobial activities against Staphyloccocus aureus, Mycobacterium, Klebsiella peneumoniae, Pseudomonas aeruginosa, and Candida albicans. Thus B. velezensis H3 is an alternative surfactin producer with potential application as an industrial strain for the lipopeptide production.

  12. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  13. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.

    Science.gov (United States)

    Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A

    2014-05-01

    The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. African Journal of Biotechnology - Vol 15, No 22 (2016)

    African Journals Online (AJOL)

    anthracene, benzo(a)pyrene using Bacillus sp. and Pseudomonas sp.: Biosurfactant/Beta vulgaris agrowaste effects · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Olusola S. Amodu, Tunde ...

  15. Characterization of effective bio-control agent Bacillus sp. SRB 27 ...

    African Journals Online (AJOL)

    Rhizoctonia solani and Alternaria solani was obtained from forest soil sample by carrying out in vitro and in vivo screening techniques. This study reports the identification and characterization of a Bacillus sp. SRB 27 that may be used as a bio-control agent against the plant diseases in crop plants. It was identified as ...

  16. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-01-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions.Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  17. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-04-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  18. Evaluation of emulsifier stability of biosurfactant produced by Saccharomyces lipolytica CCT-0913

    OpenAIRE

    Lima,Álvaro Silva; Alegre,Ranulfo Monte

    2009-01-01

    Surface-active compounds of biological origin are widely used for many industries (cosmetic, food, petrochemical). The Saccharomyces lipolytica CCT-0913 was able to grow and produce a biosurfactant on 5% (v/v) diesel-oil at pH 5.0 and 32ºC. The cell-free broth emulsified and stabilized the oil-in-water emulsion through a first order kinetics. The results showed that the initial pH value and temperature influenced the emulsifier stability (ES), which was the time when oil was separated. The bi...

  19. Draft Genome Sequence of Bacillus sp. FMQ74, a Dairy-contaminating Isolate from Raw Milk

    DEFF Research Database (Denmark)

    Okshevsky, Mira Ursula; Regina, Viduthalai R.; Marshall, Ian

    2017-01-01

    Representatives of the genus Bacillus are common milk contaminants that cause spoilage and flavor alterations of dairy products. Bacillus sp. FMQ74 was isolated from raw milk on a Danish dairy farm. To elucidate the genomic basis of this strain’s survival in the dairy industry, a high-quality draft...

  20. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    Science.gov (United States)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  1. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism

    International Nuclear Information System (INIS)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-01-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process. - Highlights: • We examined U (VI) biosorption by a bacterial strain isolated from Southwest China. • We studied the involved mechanisms between uranium and this bacterium. • U (VI) was intracellularly bioaccumulated as needlelike granules by this bacterium. • The biosorption mechanisms involved ion exchange, complexation and bioccumulation

  2. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  3. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    Science.gov (United States)

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  4. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol.

    Science.gov (United States)

    D'aes, Jolien; De Maeyer, Katrien; Pauwelyn, Ellen; Höfte, Monica

    2010-06-01

    Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  6. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation.

    Science.gov (United States)

    Balan, Shanmugasundaram Senthil; Kumar, C Ganesh; Jayalakshmi, Singaram

    2017-01-01

    Biosurfactants are microbial-derived amphiphilic molecules having hydrophobic and hydrophilic moieties produced by bacteria, fungi, yeasts and algae and are extracellular or cell wall-associated compounds. In an ongoing survey for bioactive microbial metabolites from microbes isolated from diverse ecological niches, a new lipopeptide biosurfactant was identified from a marine bacterium; Aneurinibacillus aneurinilyticus strain SBP-11, which was isolated from a marine diversity hotspot, Gulf of Mannar, India. A new lipopeptide biosurfactant was purified and characterized based on TLC, FT-IR, NMR, GC-MS, HPLC, MALDI-TOF-MS and tandem MS analysis as Stearic acid-Thr-Tyr-Val-Ser-Tyr-Thr (named as Aneurinifactin). The critical micelle concentration of Aneurinifactin was 26mgL -1 at a surface tension of 26mNm -1 . Further, the biosurfactant showed stable emulsification at a wide range of pH (2-9) and temperature up to 80°C. Aneurinifactin showed promising antimicrobial activity and concentration dependent efficient oil recovery. This is the first report on Aneurinifactin, a lipopeptide biosurfactant produced by a marine A. aneurinilyticus SBP-11, which could be explored as a promising candidate for use in various biomedical and industrial applications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies.

  8. Purification and Partial characterization of manganese peroxidase from Bacillus pumilus AND Paenibacillus sp.

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-12-01

    Full Text Available The production of manganese peroxidase (MnP from Bacillus pumilus and Paenibacillus sp. was studied under absence and presence of the inducers indulin AT, guayacol, veratryl alcohol, lignosulfonic acid and lignosulfonic acid desulfonated. Indulin AT increased the activity of B. pumilus MnP up to 31.66 U/L after 8 h, but no improve was observed for Paenibacillus sp., which reached maximum activity (12.22 U/L after 20 h. Both MnPs produced by these microorganisms were purified in phenyl sepharose resin and the proteins from crude extracts were eluted in two fractions. However, only the first fraction of each extract exhibited MnP activities. Tests in different pH and temperature values, from pH 5.0 to pH 10.0 and 30 ºC to 60 ºC, respectively, were carried out with the purified MnP. The maximum activity reached for B. pumilus and Paenibacillus sp. MnPs were 4.3 U/L at pH 8.0 and 25 ºC and 11.74 U/L at pH 9.0 and 35 ºC, respectively. The molar masses determined by SDS-PAGE gel eletrophoresis were 25 kDa and 40 kDa, respectively, for the purified enzyme from B. pumilus and Paenibacillus sp.

  9. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    Science.gov (United States)

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  10. Characterization of Emetic Bacillus weihenstephanensis, a New Cereulide-Producing Bacterium

    DEFF Research Database (Denmark)

    Thorsen, Line; Munk Hansen, Bjarne; Nielsen, Kristian Fog

    2006-01-01

    Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used for iden......Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used...

  11. Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant-producing Pseudomonas aeruginosa AK6U.

    Science.gov (United States)

    Ismail, Wael Ahmed; Mohamed, Magdy El-Said; Awadh, Maysoon N; Obuekwe, Christian; El Nayal, Ashraf M

    2017-11-01

    Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth-associated mode with a maximum crude biosurfactants yield of 10.1 g l -1 , which reduced the surface tension of the cell-free culture supernatant to 30.6 mN m -1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha-Rha-C 12 -C 12 dominated the congeners' profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high-boiling heavy fuel fraction (BP 426-565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315-426 °C). Analysis of the maltene fraction revealed compositional changes. The number-average (Mn) and weight-average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon-rich substrate for production of the high-value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Utilization of agroindustrial waste for biosurfactant production by native bacteria from chiapas

    Directory of Open Access Journals (Sweden)

    Yañez-Ocampo Gustavo

    2017-02-01

    Full Text Available In this work, two agro-industrial wastes, namely Waste Cooking Oil (WCO and Coffee Wastewater (CW have been used as the carbon source for the production of biosurfactants, due to their low cost and high availability. Biosurfactant-producing bacterial isolates from the Mexican state of Chiapas were used. The selected biosurfactant-producer strains were evaluated in a liquid medium with 2% (v/v of WCO as the carbon source. The assay was conducted in an Erlenmeyer flask containing 300 mL aliquots of mineral salt media (MSM + residue and incubated at 100 rpm at room temperature for 96 hours. The biosurfactant produced in the samples reduced the surface tension from 50 to 30-29 mN/m. Strains A and 83 showed the maximum emulsification index at 58-59%. Strain A showed the highest biosurfactant yield with a production of 3.7 g/L in comparison with strains B, 83 and Pseudomonas aeruginosa ATCC27853. Our results suggest that the biosurfactant produced by strain A has great potential in the treatment of wastewater with a high content of fatty acids, and of soils contaminated by pesticides or oil hydrocarbons.

  13. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  14. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source.

    Science.gov (United States)

    Vijayendra, S V N; Rastogi, N K; Shamala, T R; Anil Kumar, P K; Kshama, L; Joshi, G J

    2007-06-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5-25 g l(-1)), Na(2)HPO(4) 2H(2)O (2.2-6.2 g l(-1)), KH(2)PO(4) (0.5-2.5 g l(-1)), sucrose (5-55 g l(-1)) and inoculum concentration (1-25 ml l(-1)). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables.The optimum conditions for maximum PHB production were (g l(-1)): CSL-25, Na(2)HPO(4) 2H(2)O-2.2, KH(2)PO(4) - 0.5, sucrose - 55 and inoculum - 10 (ml l(-1)). After 72 h of fermentation, the amount of PHA produced was 8.20 g l(-1) (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.

  15. Assessment of four different methods for selecting biosurfactant ...

    African Journals Online (AJOL)

    ... and ease of use to screen biosurfactant producing six extremely halophilic bacteria isolated from saline soil of Chott El Hodna-M'sila (Algeria), which is considered as a thalassohaline environment. Results from screening methods revealed that, CH2 and CH5 strains are potential candidates for biosurfactant production.

  16. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  17. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    Science.gov (United States)

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites.

  18. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  19. Production and characterization of microbial biosurfactants for potential use in oil-spill remediation.

    Science.gov (United States)

    Marti, M E; Colonna, W J; Patra, P; Zhang, H; Green, C; Reznik, G; Pynn, M; Jarrell, K; Nyman, J A; Somasundaran, P; Glatz, C E; Lamsal, B P

    2014-02-05

    Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  1. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    Science.gov (United States)

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.

  2. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  3. EFEKTIVITAS Bacillus thuringiensis H-14 STRAIN LOKAL DALAM BUAH KELAPA TERHADAP LARVA Anopheles sp dan Culex sp di KAMPUNG LAUT KABUPATEN CILACAP

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P

    2013-07-01

    Full Text Available Abstrak Bacillus thuringiensis serotipe H-14 strain lokal adalah bakteri patogen bersifat target spesifiknya larva nyamuk, aman bagi mamalia dan lingkungan. Penelitian bertujuan menentukan efektivitas B. thuringiensis H-14 strain lokal yang dikembangbiakkan dalam buah kelapa untuk pengendalian larva Anopheles sp dan Culex sp. Rancangan eksperimental semu, terdiri dari kelompok perlakuan dan kontrol. Bacillus thuringiensis H-14 strain lokal dikembangbiakan dalam10 buah kelapa umur 6–8 bulan, dengan berat kira-kira 1 kg, telah berisi air kelapa sekitar 400-500 ml/buah kelapa yang diperoleh dari Desa Klaces, Kampung Laut, Kabupaten Cilacap. Diinkubasi selama 14 hari pada temperatur kamar dan ditebarkan di 6 kolam yang menjadi habitat perkembangbiakan larva nyamuk dengan luas berkisar 3–100 m2.Hasil yang diperoleh menunjukkan efektivitas B. thuringiensis H-14 strain lokal terhadap larva Anopheles sp dan Culex sp selama 1 hari sesudah penebaran kematian larva berturut-turut sebesar 80–100% dan 79,31–100%. Sedangkan pada hari ke-14 sebesar 69,30–76,71% dan 67,69–86,04%. Buah kelapa dapat digunakan sebagai media lokal alternatif untuk pengembangbiakan B. thuringiensis H-14 strain lokal Kata kunci: B. thuringiensis H-14,  strain  lokal, buah kelapa, pengendalian larva Abstract Bacillus thuringiensis serotype H-14 local strain is pathogenic bacteria which specific  target to mosquito larvae. It is safe for mammals and enviroment. The aims of this study was to determine the effectivity of B. thuringiensis H-14 local strain which culturing in thecoconut wates against Anopheles sp and Culex sp mosquito larvae. This research is quasi experiment which consist of treated  and control groups. Bacillus thuringiensis H-14 local strain was cultured in 10 coconuts with 6–8 months age with weight around 1 kg that contained were approximately 400-500 ml/coconut were taken from Klaces village, Kampung Laut. After that the coconuts incubated for 14

  4. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    Science.gov (United States)

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  5. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    Science.gov (United States)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  6. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    Science.gov (United States)

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  7. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    Directory of Open Access Journals (Sweden)

    Cherif Slim

    2011-11-01

    Full Text Available Abstract Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature.... Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C. The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry, was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment

  8. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Tolker-Nielsen, Tim

    2007-01-01

    Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy......, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase...... and facilitate migration-dependent structural development in the later phase. P. aeruginosa rhl4 mutants, deficient in synthesis of biosurfactants, were not capable of forming microcolonies in the initial phase of biofilm formation. Experiments involving two-color-coded mixed-strain biofilms showed that P...

  9. Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria).

    Science.gov (United States)

    Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Ferrioune, Imen; Khemili, Souad; Lenchi, Nesrine; Akmouci-Toumi, Sihem; Bouanane-Darenfed, Nabila Amel; Djelali, Nacer-Eddine

    2013-11-01

    A bacterial strain E21 was isolated from a sample of water collected in the salt lake located close to Ain Salah, Algeria. The analysis of 16S rRNA gene sequence had indicated that the strain had 93 % sequence similarity with the genus Natrialba sp. strain E21 (GenBank, FR750525.1) and was considered extremely halophilic. Production of biosurfactant by the strain E21 with free and entrapped cells was investigated using soluble starch in the saline conditions. Biosurfactant synthesis was followed by measuring the surface tension and emulsifying index 9 days under optimal conditions (40 °C, pH 7). Some diffusional limitations in alginate and agar beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. The minimum values of surface tension were 27 and 30 mN m(-1) achieved after 9 days with free and immobilized cells, respectively, while the corresponding maximum E24 values were 65.3 and 62.3 %, respectively. The re-use of bacterial cells along with the limited cell losses provided by the immobilized system might lead to significant reduction of the biosurfactant production cost.

  10. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T.H.; Sørensen, D.; Tobiasen, C.

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  11. Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Haytham M.M. Ibrahim

    2018-03-01

    Full Text Available Microbial surfactants are widely used for industrial, agricultural, food, cosmetics, pharmaceutical, and medical applications. In this study, two bacterial strains namely, Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2, previously isolated from used engine oil contaminated soil, and capable of producing biosurfactants, were used. Their cell-free culture broth showed positive results toward five screening tests (hemolysis in blood agar, drop collapse, oil displacement, emulsification activity (E24, and surface tension (ST reduction. They reduced the ST of growth medium (70 ± 0.9 to 30.8 ± 0.6 and 32.5 ± 1.3 mN/m, respectively. The biosurfactants were classified as anionic biomolecules. Based on TLC pattern and FT-IR analysis, they were designated as glycolipids (rhamnolipid. Waste frying oil was feasibly used as a cheap and dominant carbon source for biosurfactants production; 4.9 and 4.1 g/l were obtained after 96 h of incubation, respectively. Compared with non-irradiated cells, gamma-irradiated cells (1.5 kGy revealed enhanced biosurfactant production by 56 and 49% for HM-1 and HM-2, respectively. The biosurfactants showed good stability after exposure to extreme conditions [temperatures (50–100 °C for 30 min, pH (2–12 and salinity (2–10% NaCl], they retained 83 and 79.3% of their E24, respectively, after incubation for a month, under extreme conditions. Biosurfactants effectively recovered up to 70 and 67% of the residual oil, respectively, from oil-saturated sand pack columns. These biosurfactants are an interesting biotechnological product for many environmental and industrial applications. Keywords: Ochrobactrum anthropi, Citrobacter freundii, Biosurfactant, Characterization, Stability

  12. Biosurfactants: promising bioactive molecules for oral-related health applications.

    Science.gov (United States)

    Elshikh, Mohamed; Marchant, Roger; Banat, Ibrahim M

    2016-09-01

    Biosurfactants are naturally produced molecules that demonstrate potentially useful properties such as the ability to reduce surface tensions between different phases. Besides having similar properties to their artificial chemical counterparts, they are regarded as environmental friendly, biodegradable and less toxic, which make them desirable candidates for downstream applications. The structure-activity-related properties of the biosurfactants which are directly correlated with potency of the biosurfactants as antimicrobial agents, the ability of the biosurfactants to alter surface energies and their ability to increase bioavailability are particularly what attract researchers to exploit their potential use in the oral-related health applications. Current research into biosurfactant indicates significant future potential for use in cosmetic and therapeutic oral hygiene product formulations and related medical device treatments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    biogeographical distribution of hydrocarbon degrading and biosurfactant producing genes. Our principle results can be seen as an important step forward in the application of bioremediation techniques, by considering the biostimulation, optimization or manipulation of a starting microbial consortia from the areas with higher degradation and biosurfactant producing genetic diversity.

  14. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    Science.gov (United States)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  15. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  16. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria.

    Science.gov (United States)

    Bernat, Przemysław; Paraszkiewicz, Katarzyna; Siewiera, Paulina; Moryl, Magdalena; Płaza, Grażyna; Chojniak, Joanna

    2016-10-01

    Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I'1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I'1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I'1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC-MS, LC-MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I'1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I'1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased.

  17. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.

    Science.gov (United States)

    Díaz De Rienzo, Mayri A; Banat, Ibrahim M; Dolman, Ben; Winterburn, James; Martin, Peter J

    2015-12-25

    Biosurfactants are amphipathic, surface-active molecules of microbial origin which accumulate at interfaces reducing interfacial tension and leading to the formation of aggregated micellular structures in solution. Some biosurfactants have been reported to have antimicrobial properties, the ability to prevent adhesion and to disrupt biofilm formation. We investigated antimicrobial properties and biofilm disruption using sophorolipids at different concentrations. Growth of Gram negative Cupriavidus necator ATCC 17699 and Gram positive Bacillus subtilis BBK006 were inhibited by sophorolipids at concentrations of 5% v/v with a bactericidal effect. Sophorolipids (5% v/v) were also able to disrupt biofilms formed by single and mixed cultures of B. subtilis BBK006 and Staphylococcus aureus ATCC 9144 under static and flow conditions, as was observed by scanning electron microscopy. The results indicated that sophorolipids may be promising compounds for use in biomedical application as adjuvants to other antimicrobial against some pathogens through inhibition of growth and/or biofilm disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. PRODUCTION AND CHARACTERIZATION OF BIOSURFACTANT BY Pseudomonas fluorescens USING CASSAVA FLOUR WASTEWATER AS MEDIA

    Directory of Open Access Journals (Sweden)

    Venty Suryanti

    2013-12-01

    Full Text Available Biosurfactant with efficient emulsification properties could be produced by Pseudomonas flourescens using cassava flour wastewater (manipueira as media. The ability of P. flourescens to produce biosurfactant could suggest potential use in industrial and environmental applications. Media containing a mixture of natural manipueira and nutrient broth with 48 h fermentation was the optimum condition for the biosurfactant production. Based on UV-Vis and FT-IR spectra, the biosurfactant was indicated as rhamnolipids containing hydroxyl, ester, carboxylic and aliphatic carbon chain functional groups. Biosurfactant exhibited critical micelle concentration (CMC value of 715 mg/L and reduced the surface tension of the water from 80 mN/m to 59 mN/m. The biosurfactant was able to decrease the interfacial tension about 51-70% when benzyl chloride, palm oil and kerosene were used as water-immiscible compounds. The biosurfactant was able to form stable emulsion until 30 days when paraffin, soybean oil, lubricant oil and kerosene were used as water-immiscible compounds.

  19. Utilization of oleo-chemical industry by-products for biosurfactant production

    Science.gov (United States)

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  20. The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi

    Science.gov (United States)

    Sutariati, G. A. K.; Bande, L. O. S.; Khaeruni, A.; Muhidin; Mudi, L.; Savitri, R. M.

    2018-02-01

    Research was aimed to evaluate the bio-invigoration techniques using Bacillus sp. CKD061 in improving seed viability and vigor of local upland rice. The research is arranged in factorial with completely randomized design (CRD). The different upland rice cultivars as first factor that consists of 11 cultivars, namely: Pae Tinangge, Pae Rowu, Pae Uwa, Pae Tanta, Pae Waburi-Buri, Pae Mornene, Pae Indalibana, Pae Lawarangka, Pae Huko, Pae Wagamba and Pae Momea. The second factor is the seed bio-invigoration technique, consists of 5 treatments, namely: without seed bio-invigoration (B0), NaCl + Bacillus sp. CKD061 (B1), KNO3 + Bacillus sp. CKD061 (B2), Ground burned-rice husk + Bacillus sp. CKD061 (B3), and Ground brick + Bacillus sp. CKD061 (B4). The results showed that seed bio-invigoration using Bacillus sp. CKD061 gave effect on the seed viability and vigor. Interaction of the seed bio-invigoration and upland rice cultivars were able to improve seed viability and vigor. Seed bio-invigoration ttreatment using ground brick + Bacillus sp. CKD061 was the best treatment, which could improve the viability and vigor of Pae Waburi-Buri, Pae Mornene and Pae Indalibana. The treatment increased vigor index by 133% in Pae Waburi-Buri and 127% in Pae Mornene, and Pae Indalibana compared with control.

  1. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  2. Predicting the minimum liquid surface tension activity of pseudomonads expressing biosurfactants.

    Science.gov (United States)

    Mohammed, I U; Deeni, Y; Hapca, S M; McLaughlin, K; Spiers, A J

    2015-01-01

    Bacteria produce a variety of biosurfactants capable of significantly reducing liquid (aqueous) surface tension (γ) with a range of biological roles and biotechnological uses. To determine the lowest achievable surface tension (γMin ), we tested a diverse collection of Pseudomonas-like isolates from contaminated soil and activated sludge and identified those expressing biosurfactants by drop-collapse assay. Liquid surface tension-reducing ability was quantitatively determined by tensiometry, with 57 isolates found to significantly lower culture supernatant surface tensions to 24·5-49·1 mN m(-1) . Differences in biosurfactant behaviour determined by foaming, emulsion and oil-displacement assays were also observed amongst isolates producing surface tensions of 25-27 mN m(-1) , suggesting that a range of structurally diverse biosurfactants were being expressed. Individual distribution identification (IDI) analysis was used to identify the theoretical probability distribution that best fitted the surface tension data, which predicted a γMin of 24·24 mN m(-1) . This was in agreement with predictions based on earlier work of published mixed bacterial spp. data, suggesting a fundamental limit to the ability of bacterial biosurfactants to reduce surface tensions in aqueous systems. This implies a biological restriction on the synthesis and export of these agents or a physical-chemical restriction on their functioning once produced. Numerous surveys of biosurfactant-producing bacteria have been conducted, but only recently has an attempt been made to predict the minimum liquid surface tension these surface-active agents can achieve. Here, we determine a theoretical minimum of 24 mN m(-1) by statistical analysis of tensiometry data, suggesting a fundamental limit for biosurfactant activity in bacterial cultures incubated under standard growth conditions. This raises a challenge to our understanding of biosurfactant expression, secretion and function, as well as

  3. Effect of Indigenous Pseudomonas sp. and Bacillus sp. Strains on Yield and Main Chemical Growth Parameters of Radicchio

    Directory of Open Access Journals (Sweden)

    Stanojković-Sebić Aleksandra

    2018-03-01

    Full Text Available Pseudomonas sp. and Bacillus sp. belong to plant growth promoting rhizobacteria which are able to colonize the plants roots and stimulate growth. In this study, the effect of two indigenous plant growth promoting rhizobacterial strains Pseudomonas sp. Q4 and Bacillus sp. Q10 and their mixture (mix Q4+Q10 on content of the main chemical growth parameters (nitrogen, phosphorus, potassium, calcium and magnesium and the yield of dry biomass of radicchio (Cichorium spp. var. rossa di treviso aerial parts and root, was investigated. The study was carried out with stagnosol type of soil in pot experiments under semi-controlled conditions in the Institute of Soil Science (Belgrade, in the period from July to October in 2013. Phosphorus was determined by spectrophotometer, potassium - by flame emission photometry and total nitrogen and carbon - using elemental CNS analyzer, while calcium and magnesium were determined by AAS. The data on yield of both aerial parts and root dry biomass of radicchio showed that its treatment with Q4 and Q10 strains, as well as with their mixture, caused noticeably increase in this parameter in relation to the control, whereby the strain Q4 was more effective for aerial parts, while mix Q4+Q10 - for roots. The obtained data on the studied chemical parameters of radicchio root and aerial parts were in total accordance with their yield. Concluding, studied strains have a potential in promoting the biomass yield and main chemical growth parameters of both aerial parts and root of radicchio.

  4. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  5. Author Details

    African Journals Online (AJOL)

    Adeola, Bolaji Victoria. Vol 14, No 3 (2017) - Articles Antimicrobial effect of lactobacillus and bacillus derived biosurfactants on some food borne pathogens. Abstract · Vol 14, No 3 (2017) - Articles Isolation and characterization of lactobacillus and bacillus producing biosurfactants. Abstract. ISSN: 1596-8499. AJOL African ...

  6. Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes.

    Science.gov (United States)

    Liu, Cong; You, Yanting; Zhao, Ruofei; Sun, Di; Zhang, Peng; Jiang, Jihong; Zhu, Aihua; Liu, Weijie

    2017-11-01

    Dye dispersion and the interaction efficiency between azoreductases and dye molecules are rate-limiting steps for the decolorization of azo dyes. In this study, a biosurfactant-producing strain, Pseudomonas taiwanensis L1011, was isolated from crude oil. To increase the yield of the biosurfactant BS-L1011 from P. taiwanensis L1011, culture conditions were optimized including temperature, initial pH, carbon source, nitrogen source and C/N ratio. A maximum yield of 1.12g/L of BS-L1011 was obtained using D-mannitol as carbon source and yeast extract/urea as compound nitrogen source with C/N ratio of 10/4, pH 7.0 and 28°C. BS-L1011 exhibited a low critical micelle concentration (CMC) of 10.5mg/L and was able to reduce the surface tension of water to 25.8±0.1 mN/m. BS-L1011 was stable over a wide range of temperatures, pH values and salt concentrations. The biosurfactant is reported for the first time to accelerate chemical decolorization of Congo red by sodium hypochlorite, and biological decolorization of Amaranth by Bacillus circulans BWL1061, thus showing a potential in the treatment of dyeing wastewater. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Degradation of phenolic acids and relief of consecutive monoculture obstacle of rehmannia glutinosa by the combination of bacillus sp. and pichia pastoris

    International Nuclear Information System (INIS)

    Wang, R.; Miao, Y.; Kang, C.

    2017-01-01

    Rehmannia glutinosa (R. glutinosa) is a high demand traditional Chinese medicine, but it suffers serious consecutive monoculture obstacle (CMO). The disability of root swelling is one of the negative impacts caused by the R. glutinosa CMO and is related to allelopathy exudates, such as phenolic acids. It is thought that a microbe agent could improve plant health by eliminating the unfavorable effect of allelopathy exudates. In previous research, we isolated two phenolic acid-degrading microbes from rhizosphere soil surrounding R. glutinosa. These were Bacillus sp. and Pichia pastoris. This study found that Bacillus sp. combined with Pichia pastoris could degrade 97.19% ferulic acid and 98.73% hydroxybenzoic acid over 15 days. R. glutinosa takes a long growth time (7-8 months) under field conditions. We set up a modified tissue culture model to rapidly detect whether Bacillus sp. and Pichia pastoris combination could relieve the CMO. The results showed that our tissue culture model effectively simulated the R. glutinosa growing process in unplanted or second-year monoculture field. Furthermore, the combination of Bacillus sp. and Pichia pastoris can significantly relieve the CMO-induced suppression of root swelling. All these results suggested that: 1) The combination of Bacillus sp. and Pichia pastoris has considerable potential to degrade allelopathy exudates and alleviate the CMO of R. glutinosa; 2) Our tissue culture model could be used to quickly screen effective microbes that could alleviate CMO in plants. (author)

  8. Isolation of Bacillus sp Producing Polyhydroxyalkanoate (PHA from Isfahan Refinery Wastewater and Qualification of Production in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mahsa Keshavarz Azam

    2015-12-01

    Full Text Available Introduction: The aim of present study was isolation of polyhydroxybutyrate producing Bacillus species from oil refinery waste water, Isfahan, Iran and primarily optimization of production condition. Petroleum wastes are rich of carbon sources and have low amounts of nitrogen and phosphorus sources. AS the most important factor in production of intracellular inclusions is increasing the C/N ratio, it seemed that polyhydroxybutyrate producing microorganisms will be found in these wastes. Materials and methods: Bacillus species were isolated and purified from oil refinery wastewater. The polymer was verified using different staining procedures. Polymer was extracted by digestion method and the optimum production conditions were investigated in minimal salt medium with the organic carbon source by submerged fermentation. Production of polyhydroxybutyrate was studied using dry weight and optical density measurement. Results: Between various isolated Bacillus strains, two of them (B1 and B2 were polyhydroxybutyrate producers. Maximum PHA production based on dry weight and concentration were obtained for strain B1 after 72 hours incubation, at 31°C, in the presence of glucose as carbon source and yeast extract as nitrogen source, pH=7, and aeration in 120 rpm; and for strain B2 in the same condition, except optimal temperature which was 32°C. The most production amounts were 367 mg.ml-1 for B1 and 473 mg.ml-1 for B2 isolates. Also the most polymer percentage was 52/16 and 58.43 for B1 and B2 isolates respectively. Discussion and conclusion: The results showed that the production of polyhydroxybutyrate was increased by optimization of the conditions in both isolates. Using petroleum wastes as well as production of biodegradable plastics, leads to decontamination of theses wastes.

  9. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    Science.gov (United States)

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  10. Effective Biosurfactants Production by Pseudomonas aeruginosa and its Efficacy on Different Oils

    Directory of Open Access Journals (Sweden)

    Sarita Kumari

    2010-07-01

    Full Text Available A rhamnolipid producing bacterium, Pseudomonas aeruginosa was isolated from contaminated soil with oily wastes. The Pseudomonas aeruginosa grown with glucose and corn oil as a carbon source produced bio-surfactant. This biosurfactant was purified by procedures that included chloroform-ethanol extraction and 0.05M bicarbonate treatments. The active compound was identified as rhamnolipid by using thin layer chromatography. The emulsification activity of bio-surfactant, the coconut oil responded better than the olive oil, groundnut oil and sunflower oil and gave a maximum level of 1 cm.

  11. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    Science.gov (United States)

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution.

    Science.gov (United States)

    Decesaro, Andressa; Machado, Thaís Strieder; Cappellaro, Ângela Carolina; Reinehr, Christian Oliveira; Thomé, Antônio; Colla, Luciane Maria

    2017-09-01

    Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

  13. Physiological and Molecular Characterization of Biosurfactant Producing Endophytic Fungi Xylaria regalis from the Cones of Thuja plicata as a Potent Plant Growth Promoter with Its Potential Application

    Directory of Open Access Journals (Sweden)

    Mohd Adnan

    2018-01-01

    Full Text Available Currently, there is an absolute concern for all nations in agricultural productivity to meet growing demands of human population. In recent time, biosurfactants produced by diverse group of microorganisms are used to achieve such demands as it is known for its ecofriendly use in elimination of plant pathogens and for increasing the bioavailability of nutrients for plants. Endophytic fungi are the important source of secondary metabolites and novel bioactive compounds for different biological applications. In the present study, endophytic fungi Xylaria regalis (X. regalis recovered from the cones of Thuja plicata was evaluated for its biosurfactant producing ability and plant growth-promoting abilities through various screening methods and also via its antagonistic activity against phytopathogens like Fusarium oxysporum and Aspergillus niger. In addition, X. regalis was also tested in vivo for a various range of growth parameters in chilli under greenhouse conditions. Significant increase in shoot and root length, dry matter production of shoot and root, chlorophyll, nitrogen, and phosphorus contents of chilli seedlings was found, which reveals its ability to improve the growth of crop plants. Hence, this study suggests the possibility of biosurfactant producing endophytic fungi X. regalis as a source of novel green biosurfactant for sustainable agriculture to achieve growing demands.

  14. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei.

    Science.gov (United States)

    Kiran, George Seghal; Sabarathnam, Balu; Selvin, Joseph

    2010-08-01

    The antibiofilm activity of a glycolipid biosurfactant isolated from the marine actinobacterium Brevibacterium casei MSA19 was evaluated against pathogenic biofilms in vitro. The isolate B. casei MSA19 was a potential biosurfactant producer among the 57 stable strains isolated from the marine sponge Dendrilla nigra. The biosurfactant production was optimized under submerged fermentation. The purified glycolipid showed a broad spectrum of antimicrobial activity. Based on the minimum inhibitory concentration/minimum bactericidal concentration ratio, the glycolipid was determined as bacteriostatic. The glycolipid biosurfactant disrupted the biofilm formation under dynamic conditions. The disruption of the biofilm by the MSA19 glycolipid was consistent against mixed pathogenic biofilm bacteria. Therefore, the glycolipid biosurfactant can be used as a lead compound for the development of novel antibiofilm agents.

  15. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    Science.gov (United States)

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  16. Biosurfactants research trends and applications

    CERN Document Server

    Mulligan, Catherine N; Sharma, Sanjay K

    2014-01-01

    Green chemistry and Biosurfactant ResearchCatherine N. Mulligan, Sanjay K. Sharma, Ackmez Mudhoo,and Komal MakhijaniAmphiphilic Molecules of Microbial Origin: Classification, Characteristics, Genetic Regulations, and Pathways for BiosynthesisGunaseelan Dhanarajan and Ramkrishna SenRhamnolipids: Characteristics, Production, Applications, and AnalysisFereshteh Arab and Catherine N. MulliganSophorolipids: Characteristics, Production, and ApplicationsVivek K. Morya and Eun-Ki KimBiosurfactants and Bioemulsifiers from Marine SourcesRengathavasi Thavasi and Ibrahim M. BanatCharacterization, Production, and Applications of LipopeptidesCatherine N. MulliganBiosurfactants in the Food IndustryMarcia Nitschke and Siddhartha G.V.A.O. CostaTrehalose BiosurfactantsNelly Christova and Ivanka StoinevaBiosurfactant-Mediated Nanoparticle Synthesis: A Green and SustainableApproachVivek Rangarajan, Snigdha Majumder, and Ramkrishna SenEnhancement of Remediation Technologies with BiosurfactantsCatherine N. MulliganBiosurfactant Co...

  17. Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008.

    Science.gov (United States)

    Ponte Rocha, Maria Valderez; Gomes Barreto, Raphaela V; Melo, Vânia Maria M; Barros Gonçalves, Luciana Rocha

    2009-05-01

    Bacillus subtilis LAMI008 strain isolated from the tank of Chlorination at the Wastewater Treatment Plant on Campus do Pici in Federal University of Ceará, Brazil has been screened for surfactin production in mineral medium containing clarified cashew apple juice (MM-CAJC). Results were compared with the ones obtained using mineral medium with glucose PA as carbon source. The influence on growth and surfactin production of culture medium supplementation with yeast extract was also studied. The substrate concentration analysis indicated that B. subtilis LAMI008 was able to degrade all carbon sources studied and produce biosurfactant. The highest reduction in surface tension was achieved with the fermentation of MM-CAJC, supplemented with yeast extract, which decreased from 58.95 +/- 0.10 to 38.10 +/- 0.81 dyn cm(-1). The biosurfactant produced was capable of emulsifying kerosene, achieving an emulsification index of 65%. Surfactin concentration of 3.5 mg L(-1) was obtained when MM-CAJC, supplemented with yeast extract, was used, thus indicating that it is feasible to produce surfactin from clarified cashew apple juice, a renewable and low-cost carbon source.

  18. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  19. Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants

    Science.gov (United States)

    Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie

    2016-09-01

    A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producersbiosurfactant producersbiosurfactant production (45biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.

  20. Properties of an amylase from thermophilic Bacillus SP. Propriedades de uma amilase de um termofílico Bacillus sp

    Directory of Open Access Journals (Sweden)

    Raquel Vieira de Carvalho

    2008-03-01

    Full Text Available alpha-Amylase production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing soluble starch as a carbon source and supplemented with 0.05% whey protein and 0.2% peptone reached a maximum activity at 32 h, with levels of 37 U/mL. Studies on the amylase characterization revealed that the optimum temperature of this enzyme was 90ºC. The enzyme was stable for 1 h at temperatures ranging from 40-50ºC while at 90ºC, 66% of its maximum activity was lost. However, in the presence of 5 mM CaCl2, the enzyme was stable at 90ºC for 30 min and retained about 58% residual activity after 1 h. The optimum pH of the enzyme was found to be 8.5. After incubation of enzyme for 2 h at pH 9.5 and 11.0 was observed a decrease of about 6.3% and 16.5% of its original activity. At pH 6.0 the enzyme lost about 36% of its original activity. The enzyme was strongly inhibited by Co2+, Cu2+ and Ba2+, but less affected by Mg2+, Na+ and K+. In the presence of 2.0 M NaCl, 63% of amylase activity was retained after 2 h incubation at 45ºC. The amylase exhibited more than 70% activity when incubated for 1 h at 50ºC with sodium dodecyl sulphate. However, very little residual activity was obtained with sodium hypochlorite and with hydrogen peroxide the enzyme was completely inhibited. The compatibility of Bacillus sp SMIA-2 amylase with certain commercial detergents was shown to be good as the enzyme retained 86%, 85% and 75% of its activity after 20 min incubation at 50ºC in the presence of the detergent brands Omo®, Campeiro® and Tide®, respectively.A produção de alfa-amilase por um termofilico, Bacillus sp SMIA-2, cultivado em meio líquido contendo amido solúvel como fonte de carbono, alcançou uma atividade máxima de 37 U/mL em 32 horas. Estudos sobre a caracterização da amilase revelaram que a temperatura ótima desta enzima foi 90ºC. A enzima foi estável por 1 hora a temperaturas de 40 e 50ºC enquanto a 90ºC, 66% da atividade

  1. Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin.

    Science.gov (United States)

    Shimoni, E; Ravid, U; Shoham, Y

    2000-02-28

    Natural aroma compounds are of major interest to the flavor and fragrance industry. Due to the limited sources for natural aromas, there is a growing interest in developing alternative sources for natural aroma compounds, and in particular aromatic aldehydes. In several microbial species aromatic aldehydes are detected as intermediates in the degradation pathway of phenylpropanoids. Thus, bioconversion of phenylpropanoids is one possible route for the production of these aroma compounds. The present work describes the isolation of microbial strains, capable of producing vanillin from isoeugenol. Bacterial strains isolated from soil, were screened for their ability to transform isoeugenol to vanillin. One of these strains, strain B2, was found to produce high amounts of vanillin when grown in the presence of isoeugenol, and was also capable of growing on isoeugenol as the sole carbon source. Based on its fatty acids profile, strain B2 was identified as a Bacillus subtilis sp. The bioconversion capabilities of strain B2 were tested in growing cultures and cell free extracts. In the presence of isoeugenol, a growing cultures of B. subtilis B2 produced 0.61 g l-1 vanillin (molar yield of 12.4%), whereas cell free extracts resulted in 0.9 g l-1 vanillin (molar yield of 14%).

  2. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Science.gov (United States)

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  3. Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation.

    Science.gov (United States)

    Kwon, Soon-Wo; Lee, Seon-Young; Kim, Byung-Yong; Weon, Hang-Yeon; Kim, Jung-Bong; Go, Seung-Joo; Lee, Gil-Bok

    2007-08-01

    A group of five bacilli, designated strains 4T12, 4T19(T), 5M45, 5M53 and 5T52, isolated from cotton-waste composts for mushroom cultivation, were examined. These strains were Gram-positive, aerobic, motile, spore-forming rods. 16S rRNA gene sequence analyses revealed that the isolates belonged to the genus Bacillus, showing the highest levels of similarity (approx. 96.6-96.9 %) with respect to Bacillus herbersteinensis DSM 16534(T). The values for DNA-DNA hybridization (approx. 85-96 %) among these five strains revealed that they belong to the same species. The major menaquinone present was MK-7 and the predominant cellular fatty acids were anteiso-C(15 : 0) (approx. 24.5-33.9 %) and C(16 : 0) (approx. 15.1-34.1 %). The DNA G+C contents were 37.7-40.9 mol%. On the basis of physiological, biochemical, chemotaxonomic and comparative genomic analyses, the five isolates represent a novel species of the genus Bacillus, for which the name Bacillus niabensis sp. nov. is proposed. The type strain is 4T19(T) (=KACC 11279(T) =DSM 17723(T)).

  4. The effect of Bacillus sp. OSU-142 inoculation at various levels of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... The effect of Bacillus sp. OSU-142 inoculation at various levels of nitrogen fertilization on growth, tuber distribution and yield of potato (Solanum tuberosum L.) Zehra Ekin1*, Faruk Oğuz1, Murat Erman1 and Erdal Öğün2. 1Yüzüncü Yıl University, Faculty of Agriculture, Department of Field Crops, Van, ...

  5. New Cyclic Lipopeptides of the Iturin Class Produced by Saltern-Derived Bacillus sp. KCB14S006

    Directory of Open Access Journals (Sweden)

    Sangkeun Son

    2016-04-01

    Full Text Available Salterns, one of the most extreme natural hypersaline environments, are a rich source of halophilic and halotolerant microorganisms, but they remain largely underexplored ecological niches in the discovery of bioactive secondary metabolites. In continued efforts to investigate the metabolic potential of microbial populations from chemically underexplored sites, three new lipopeptides named iturin F1, iturin F2 and iturin A9 (1–3, along with iturin A8 (4, were isolated from Bacillus sp. KCB14S006 derived from a saltern. The structures of the isolated compounds were established by 1D-, 2D-NMR and HR-ESIMS, and their absolute configurations were determined by applying advanced Marfey’s method and CD spectroscopy. All isolates exhibited significant antifungal activities against various pathogenic fungi and moderate cytotoxic activities toward HeLa and srcts-NRK cell lines. Moreover, in an in vitro enzymatic assay, compound 4 showed a significant inhibitory activity against indoleamine 2,3-dioxygenase.

  6. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    Science.gov (United States)

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range. 2010 Elsevier Ltd. All rights reserved.

  7. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles.

    Science.gov (United States)

    Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method

    Directory of Open Access Journals (Sweden)

    Abdolrazagh Marzban

    2016-09-01

    Full Text Available An antimicrobial glycolipid biosurfactant (GBS, extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM with a central composite design (CCD for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7–8, temperature (20–60 and salinity (0%–3%. The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.

  9. Characteristics of an β-N-Acetylhexosaminidase from Bacillus sp. CH11, Including its Transglycosylation Activity.

    Science.gov (United States)

    Kurakake, Masahiro; Amai, Yukari; Konishi, Mizuki; Ikehira, Kaho

    2018-04-06

    β-N-Acetylhexosaminidase was identified from Bacillus sp. CH11 and found to have relatively high transferring activity. In this study, its enzymatic properties and transglycosylation activity including its acceptor specificity were investigated. Its molecular weight was estimated to be 90 kDa by SDS-PAGE and its optimal pH was approximately 7 with good stability from pH 6 to 8. Its optimal temperature was 40 °C, and its activity was stable at temperatures of up to 40 °C. To analyze its acceptor specificity for transglycosylation, N, N'-diacetylchitobiose was used as a donor substrate and alcohols, sugar alcohols, sugars and polyphenols were used as acceptors. Dialcohols, which have 2 hydroxyl groups on the outside of the carbon chains, were good acceptors. The molecular size of the acceptor did not influence the transglycosylation up to at least 1,5-pentanediol (carbon number: C5). Glycerin (C3), erythritol (C4), and xylitol (C5), all small molecular weight sugar alcohols, had high acceptor specificity. Transglycosylation to mono- and disaccharides and polyphenols was not observed except for L-fucose. For the β-N-acetylhexosaminidase-catalyzed transglycosylation of chitin oligosaccharides and xylitol, the transfer product was identified as 1-O-β-D-N-acetylglucosaminyl xylitol. The optimal ratio of xylitol was 24% to 2% N, N'-diacetylchitobiose and 226 mg per 1 g N, N'-diacetylchitobiose was produced. CH11 β-N-acetylhexosaminidase efficiently produced 1-O-β-D-N-acetylglucosaminyl xylitol via transglycosylation. The new transfer products including 1-O-β-D-N-acetylglucosaminyl xylitol are attractive compounds for their potential physiological functions. 1-O-β-D-N-Acetylglucosaminyl xylitol was produced effectively from chitin-oligosaccharides and xylitol by β-N-acetylhexosaminidase from Bacillus sp. CH11. This enzyme may be useful for the development of food materials for health-related applications such as oligosaccharides with intestinal functions and

  10. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.

    Science.gov (United States)

    Colla, Luciane Maria; Rizzardi, Juliana; Pinto, Marta Heidtmann; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-11-01

    Lipases and biosurfactants are compounds produced by microorganisms generally involved in the metabolization of oil substrates. However, the relationship between the production of lipases and biosurfactants has not been established yet. Therefore, this study aimed to evaluate the correlation between production of lipases and biosurfactants by submerged (SmgB) and solid-state bioprocess (SSB) using Aspergillus spp., which were isolated from a soil contaminated by diesel oil. SSB had the highest production of lipases, with lipolytic activities of 25.22U, while SmgB had 4.52U. The production of biosurfactants was not observed in the SSB. In the SmgB, correlation coefficients of 91% and 87% were obtained between lipolytic activity and oil in water and water in oil emulsifying activities, respectively. A correlation of 84% was obtained between lipolytic activity and reduction of surface tension in the culture medium. The surface tension decreased from 50 to 28mNm(-1) indicating that biosurfactants were produced in the culture medium. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Removal of PAH using electrokinetic transport of biosurfactants in clayey soil

    Energy Technology Data Exchange (ETDEWEB)

    Maria, E.; Lin, J. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    The electrokinetic introduction of non-toxic, biodegradable surfactants (produced ex-situ) to remediate PAH-contaminated soil was investigated. The lab tests demonstrated the possibility of removal of organic contaminants from clayey soil without hazardous impact to the environment. The rhamnolipids (biosurfactants), produced by Pseudomonas aeruginosa to increase the solubility of PAHs into the aqueous phase, were used in the enhancement of electrokinetic remediation. This study determined the potential on-site production of biosurfactants that was directly introduced to soil by means of electrokinetics. The average removal of phenanthrene achieved 74% in the presence of biosurfactants above CMC. The remaining compounds are left for biodegradation. These results contribute to the development of a new remediation technology - bioelectrokinetics. (orig.)

  12. Biosurfactant Production by Pseudomonas aeruginosa and Burkholderia gladioli Isolated from Mangrove Sediments Using Alternative Substrates

    Directory of Open Access Journals (Sweden)

    Karla Maria Catter

    2016-10-01

    Full Text Available Biosurfactants are surface-active agents produced by a variety of microorganisms. To make biosurfactant production economically feasible, several alternative carbon sources have been proposed. This study describes biosurfactant production by strains of Pseudomonas aeruginosa and Burkholderia gladioli isolated from mangrove sediments in Northeastern Brazil and cultured in mineral media enriched with waste cooking oil. The biosurfactants were tested for drop collapse, emulsion formation and stability and surface tension. P. aeruginosa performed better both at lowering the surface tension (from 69 to 28 mN/m and at forming stable emulsions (approximately 80% at 48 hours of culture. The strains tested in this study were found to be efficient biosurfactant producers when cultured on substrates enriched with vegetable oil. DOI: http://dx.doi.org/10.17807/orbital.v8i5.771

  13. Antimicrobial activity of surfactants produced by Bacillus subtilis R14 against multidrug-resistant bacteria Atividade antimicrobiana de surfactantes produzidos por Bacillus subtilis R14 frente a bacterias multidroga-resistentes

    Directory of Open Access Journals (Sweden)

    Paulo André Vicente Fernandes

    2007-12-01

    Full Text Available Lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. The genus Bacillus is a producer of these active compounds, and among them B. subtilis produces surfactin, the most potent biosurfactant known. These compounds can act as antibiotics, antivirals, antitumorals, immunomodulators and enzyme inhibitors. In this work, the antimicrobial activity of biosurfactants obtained by cultivation of B. subtilis R14 was investigated against multidrug-resistant bacteria. During cultivation in defined medium, the surface tension of the medium was reduced from 54 mN/m in the beginning of the microbial growth to 30 mN/m after 20 hours. A crude surfactant concentration of 2.0 g/L was obtained after 40 hours of cultivation. A preliminary characterization suggested that two surfactants were produced. The evaluation of the antimicrobial activity of these compounds was carried out against 29 bacteria. Enterococcus faecalis (11 strains, Staphylococcus aureus (6 strains and Pseudomonas aeruginosa (7 strains and Escherichia coli CI 18 (1 strain displayed a profile of well defined drug resistance. All strains were sensitive to the surfactants, in particular Enterococcus faecalis. The results demonstrated that lipopeptides have a broad spectrum of action, including antimicrobial activity against microorganisms with multidrug-resistant profiles.Os lipopeptídeos representam uma classe de surfactantes microbiológicos com crescente interesse científico, terapêutico e biotecnológico. O gênero Bacillus é um dos maiores produtores destes compostos ativos. Dentre as espécies produtoras de biossurfactante, B. subtilis produz surfactina um dos mais conhecidos. Estes compostos atuam como antibióticos, antivirais, agente antitumorais, imunomoduladores e inibidores enzimáticos. O objetivo deste trabalho foi determinar a atividade antimicrobiana de biossurfactantes, obtidos pelo cultivo de B. subtilis R

  14. Synthesis of biosurfactants and their advantages to microorganisms and mankind.

    Science.gov (United States)

    Cameotra, Swaranjit Singh; Makkar, Randhir S; Kaur, Jasminder; Mehta, S K

    2010-01-01

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures--lipopeptides, glycolipids, neutral lipids and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. The low water solubility of these hydrophobic compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential applications in bioremediation. Not only are the biosurfactants useful in a variety of industrial processes, they are also of vital importance to the microbes in adhesion, emulsification, bioavailability, desorption and defense strategy. These interesting facts are discussed in this chapter.

  15. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens.

    Science.gov (United States)

    Vecino, X; Rodríguez-López, L; Ferreira, D; Cruz, J M; Moldes, A B; Rodrigues, L R

    2018-04-01

    The antimicrobial and anti-adhesive activities of the cell-bound biosurfactants, produced by Lactobacillus pentosus (PEB), characterized as glycolipopeptide macromolecules, were evaluated against several microorganisms present in the skin microflora, envisaging its potential use as a "natural" ingredient in cosmetic and personal care formulations. Their performance was compared with another cell-bound biosurfactants also characterized as glycolipopeptides produced by Lactobacillus paracasei (PAB). At concentrations of 50mg/mL, the PEB showed an important antimicrobial activity against Pseudomonas aeruginosa (85% when extracted with phosphate buffer (PB) and 100% when extracted with phosphate buffer saline (PBS)), Streptococcus agalactiae (100% for both extracts), Staphylococcus aureus (67% when extracted with PBS and 100% when extracted with PB), Escherichia coli (72% when extracted with PB and 89% when extracted with PBS), Streptococcus pyogenes (about 85% for both extracts) and Candida albicans (around 70% for both extracts), comparable with that obtained for the PAB. However, at lower concentrations the PAB exhibited in general higher antimicrobial activities. Biosurfactants produced by both microorganisms also showed significant anti-adhesive properties against all the microorganisms under study, except for E. coli and C. albicans (less than 30%). Overall, these cell-bound biosurfactants could be used as potential antimicrobial and anti-adhesive agents in cosmetic and pharmaceutical formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2015-11-01

    Full Text Available Bacillus niameyensis sp. nov. strain SIT3T (= CSUR P1266 = DSM 29725 is the type strain of B. niameyensis sp. nov. This Gram-positive strain was isolated from the digestive flora of a child with kwashiorkor and is a facultative anaerobic rod and a member of the Bacillaceae family. This organism is hereby described alongside its complete genome sequence and annotation. The 4  286  116 bp long genome (one chromosome but no plasmid contains 4130 protein-coding and 66 RNA genes including five rRNA genes.

  17. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Cedenir Pereira de Quadros

    2011-03-01

    Full Text Available In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1. In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05.

  19. Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production

    Science.gov (United States)

    Biosurfactants are diverse molecules with numerous biological functions and industrial applications. A variety of environments were examined for biosurfactant-producing bacteria using a versatile new screening method. The utility of an atomized oil assay was assessed for a large number of bacteria...

  20. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    Science.gov (United States)

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  1. Rhamnolipid biosurfactant against Fusarium sacchari--the causal organism of pokkah boeng disease of sugarcane.

    Science.gov (United States)

    Goswami, Debahuti; Handique, Pratap Jyoti; Deka, Suresh

    2014-06-01

    Pokkah boeng disease on sugarcane caused by the fungus Fusarium sacchari results considerable damage to the crop leading to top rot, the most serious and advanced stage of pokkah boeng, where the growing point is killed and the entire top of the plant dies. In the present study, the effect of rhamnolipid biosurfactant as an antifungal agent against F. sacchari to control pokkah boeng disease was investigated. On the basis of surface tension reduction, 12 bacterial isolates were selected as potent biosurfactant producers and eight of them showed antagonistic effect against F. sacchari. Among the eight, the isolate DS9 was found as the effective inhibitor of the fungus in vitro which was further evaluated using its biosurfactant present in whole culture, cell-free culture supernatant and crude biosurfactant at various concentrations. Reductions of fungal growths were found more with crude biosurfactant. By sequencing 16S rRNA, DS9 was identified as P. aeruginosa and the produced biosurfactant was characterized as rhamnolipid by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. The rhamnolipid biosurfactant inhibits phytopathogenic fungi F. sacchari and therefore seems to be a good biocontrol agent to control pokkah boeng disease of sugarcane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on mechanisms of biosurfactant-enhanced composting technology for waste management

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.Y.; Huang, G.H.; Chen, B.; Xi, B.D.; Maqsood, I. [Regina Univ., SK (Canada)

    2003-07-01

    Composting is increasingly being used for solid waste treatment. The efficiency of solid waste composting might be enhanced using biosurfactants produced by microbial activities. This study was conducted to characterize the effect of biosurfactant on solid waste biodegradation throughout the composting process. The method employed involves shredding solid waste, followed by a treatment in an 8-litre (L) batch reactor. Biosurfactant production was monitored daily along with characteristics and maturity degree. Surface tension and emulsification capacity were of particular concern. The measurement of indices such as humic acid carbon (CHA) and fulvic acid carbon (CFA) were used to evaluate the maturity degree. The results indicated that the highest level of biosurfactant concentration was achieved on the third day, and within two days, related emulsification capacity reached its peak. This study confirmed the presence of biosurfactants and their function during the composting process. 16 refs., 2 tabs., 4 figs.

  3. Biosurfactants for microbubble preparation and application

    Science.gov (United States)

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes the type of biosurfactants based on their origin. Some of the widely used biosurfactants are introduced. The current statues and future trends in the production of biosurfactants are discus...

  4. The sponge-associated bacterium Bacillus licheniformis SAB1: A source of antimicrobial compounds

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wahidullah, S.; Rodrigues, C.; DeSouza, L.

    investigation. Analysis of the nucleotide sequence of the 16S rDNA gene of Bacillus sp. SAB1 showed a strong similarity (100%) with the 16S rDNA gene of Bacillus licheniformis HNL09. The bioactive compounds produced by B. licheniformis SAB1 (GenBank accession...

  5. Infrared spectroscopy for studying structure and aging effects in rhamnolipid biosurfactants

    OpenAIRE

    Kiefer, Johannes; Radzuan, Mohd Nazren; Winterburn, James

    2017-01-01

    Biosurfactants are produced by microorganisms and represent amphiphilic compounds with polar and non-polar moieties; hence they can be used to stabilize emulsions, e.g. in the cosmetic and food sectors. Their structure and its changes when exposed to light and elevated temperature are yet to be fully understood. In this study, we demonstrate that attenuated total reflection infrared (ATR-IR) spectroscopy is a useful tool for the analysis of biosurfactants, using rhamnolipids produced by ferme...

  6. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases.

    Science.gov (United States)

    Franco Marcelino, Paulo Ricardo; da Silva, Vinícius Luiz; Rodrigues Philippini, Rafael; Von Zuben, Cláudio José; Contiero, Jonas; Dos Santos, Júlio César; da Silva, Silvio Silvério

    2017-01-01

    Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.

  7. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor.

    Science.gov (United States)

    Cassidy, D P; Hudak, A J

    2001-06-29

    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were maintained in 8l vessels for 180 days to treat a soil contaminated with diesel fuel (DF). Concentrations of Candida tropicalis, Brevibacterium casei, Flavobacterium aquatile, Pseudomonas aeruginosa, and Pseudomonas fluorescens were determined using fatty acid methyl ester (FAME) analysis. DF removal (biological and volatile) and biosurfactant concentrations were measured. The SS-SBR encouraged the growth of biosurfactant-producing species relative to the CSTR. Counts of biosurfactant-producing species (C. tropicalis, P. aeruginosa, P. fluorescens) relative to total microbial counts were 88% in the SS-SBR and 23% in the CSTR. Biosurfactants were produced in the SS-SBR to levels of nearly 70 times the critical micelle concentration (CMC) early in the cycle, but were completely degraded by the end of each cycle. No biosurfactant production was observed in the CSTR. DF biodegradation rates were over 40% greater and DF stripping was over five times lower in the SS-SBR than the CSTR. However, considerable foaming occurred in the SS-SBR. Reversing the mode of operation in the reactors on day 80 caused a complete reversal in microbial consortia and reactor performance by day 120. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  8. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    Science.gov (United States)

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  9. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste.

    Science.gov (United States)

    Bhange, Khushboo; Chaturvedi, Venkatesh; Bhatt, Renu

    2016-06-01

    The present study is an attempt to optimize simultaneous production of keratinolytic protease, amylase and biosurfactant from feather meal, potato peel and rape seed cake in a single media by response surface methodology to evaluate their biochemical properties for detergent additive. The optimization was carried out using 20 run, 3 factor and 5-level of central composite design on design expert software which resulted in a 1.2, 0.84 and 2.28 fold increase in protease, amylase and biosurfactant production. The proteolytic activity was found to be optimum at pH 9.0 and 60 °C while optimum amylolytic activity was recorded at pH 6.0 and 70 °C respectively. Both enzymes were found to be stable in the presence of organic solvents, ionic and commercial detergent and oxidizing agents. The biosurfactant was extracted with chloroform and was found to be stable at varying pH and temperature; however a reduction in the activity was observed at temperature higher than 70 °C. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.

  10. Production of biosurfactant by Pseudomonas spp. isolated from industrial waste in Turkey

    OpenAIRE

    KAYA, Tayfun; ASLIM, Belma; KARİPTAŞ, Ergin

    2014-01-01

    In this study, 26 Pseudomonas spp. were isolated from a stream polluted by factory waste and from petroleum-contaminated soil. The surface tension (ST) of the cultures was used as a criterion for the primary isolation of biosurfactant-producing bacteria. Biosurfactant production was quantified by ST reduction, critical micelle concentration (CMC), emulsification capacity (EC), and cell surface hydrophobicity (CSH). Two of the isolates, P. aeruginosa 78 and 99, produced rhamnolipid biosurfacta...

  11. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Directory of Open Access Journals (Sweden)

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  12. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. AÇÃO ANTIFÚNGICA in vitro DE ISOLADOS DE Bacillu s sp. SOBRE Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    ODENILSON DE DEUS RIBEIRO LIMA

    2014-01-01

    Full Text Available This study aimed to evaluate antagonism and metabolites produced by different species of Ba- cillus in the inhibition of mycelial growth in vitro against F. oxysporum f. sp . lycopersici . For evaluating the antagonism of Bacillus spp. F. oxysporum f. sp . lycopersici was performed pairing of fungus and bacteria by the method of the circle. In the method for detection for the quality for thermostable metabolites liquids. Media BD were used for growth of the isolated Bacillus sp. And incubated for 15 days. After this period, was added 3 g of agar in each flask, and autoclaved broth and poured into Petri dishes. In the center of the plates were placed discs culture of the pathogen. The experimental design was completely randomized with 11 treatments and six repetitions in both experiments. Statistical difference was found between the isolate and the control. Special mention to strains B12 ( Bacillus sp., B41 ( B. cereus , B22' ( B.pentothenticus , B45 ( B. cereus , B47 ( B. cereus that exhibited the lowest average diameter of the colony. To study the inhibition of mycelial growth of F. oxysporum f. sp. lycopersici by thermostatable metabolites five differ statistically from the control they are: B35 ( B. pumilus , B47 ( B. cereus , B22' ( B. pentothenticus , B12 ( Bacillus sp. and B41 ( B. cereus the latter two treatments showed the best results of the pathogen colony diameters and 3.81 to 2.89 cm, respective- ly. B12 and B41 Isolates showed that their antibiotic products were able to inhibit 67.88 % and 57,66 % of F. oxysporum f. sp. lycopersici . These results highlight the possibility of using isolates of the genus Bacillus in the fight against fusarium wilt in tomato.

  15. Effect of aflatoxin B1 on growth and enzymatic activity of a native strain of Bacillus sp Efecto de la aflatoxina B1 sobre el crecimiento y actividad proteolítica de una cepa nativa de Bacillus sp

    Directory of Open Access Journals (Sweden)

    Márquez Edna Judith

    2004-07-01

    Full Text Available The effect of different aflatoxin B1 (AFAB1 concentrations on alkaline protease growth and enzymatic activity was evaluated; a native strain of alkalophilic Bacillus sp cultivated in CSL (Corn Steep Liquor was used. It was found that the effect of AFAB1 on the strain inhibited its growth and enzymatic activity to 1 ppm, showing that the strain is highly sensible to AFAB1, meaning that medium obtained f rom Colombian corn contaminated with this mycotoxin cannot be easily used. Concentrations less than 0.1 ppm did not affect growth and enzymatic activity. Key words: Bacillus, aflatoxin, alkaline proteases.Se evaluó el efecto de diferentes concentraciones de aflatoxina B1 (AFAB1 sobre el crecimiento y actividad enzimática de proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico cultivada en LAM (Licor Agotado de Maíz. Se encontró que la cepa inhibe su crecimiento y actividad enzimática a 1 ppm, lo que demuestra una alta sensibilidad de la cepa evaluada a la AFAB1 e imposibilita utilizar fácilmente medios obtenidos de maíz nacional contaminado con esta micotoxina. Las concentraciones inferiores a 0.1 ppm no tienen ningún efecto sobre el crecimiento y la actividad enzimática. Palabras clave: Bacillus, aflatoxina, proteasas alcalinas.

  16. Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Das, Nilanjana

    2013-11-28

    Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindanecontaminated environments.

  17. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed. Copyright © 2015. Published by Elsevier B.V.

  18. In vitro and in vivo effects of Pseudomonas spp. and Bacillus sp. on Fusarium acuminatum, Botrytis cinerea and Aspergillus niger infecting cucumber

    Directory of Open Access Journals (Sweden)

    Jasmina Zdravković

    2015-09-01

    Full Text Available Cucumber (Cucumis sativus L is an important member of the Cucurbitaceae family. Production of healthy nursery is necessary for high-quality production of this crop in greenhouses and in fields. With the idea of minimizing the use of pesticides and mineral fertilizers to preserve soil quality, we investigated the effects of plant growth promoting bacteria (PGPB on growth promotion and protection of cucumber plants from phytopathogenic fungi. The effects of Pseudomonas spp. strains with different antifungal activities and Bacillus sp. Q10 strain with PGP activity were tested on cucumber plants. Antagonistic activity of Pseudomonas spp. against the growth of several phytopathogenic fungi isolated from cucumber: F. acuminatum, B. cinerea and A. niger, was observed. The influences of overnight cultures, supernatants and heat-stable antifungal factors were tested on the phytopathogenic fungi in vitro. Pseudomonas sp. K35 and K24 strains were more effective than P. chlororaphis Q16 and Pseudomonas sp. K27, showing 70-80% of fungal growth inhibition regardless of culture or fraction applied. The good antagonists that belong to pseudomonads and Bacillus sp. Q10 strain were used as mixtures for estimation of plant growth and health promoting effects on cucumber plants. Growth dynamics differed depending on the applied strain of Pseudomonas sp. The M3 treatment (a mixture of Bacillus sp. Q10 and P. chlororaphis Q16 stimulated the initial phase of growth, while M4 (a mixture of Bacillus sp. Q10 and Pseudomonas sp. K24 resulted in the maximal height at the final measurement. Significant differences in leaf and plant weight (M4, and leaf weight (M5, containing K35 strain were found after the treatments. No significant differences in chlorophyll and NBI level were observed in any of the tested combinations. The obtained results suggested that M3 was suitable for stimulation of the early phase of cucumber growth, while the mixtures M4 and M5 improved plant

  19. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates

    NARCIS (Netherlands)

    Velraeds, MMC; vanderMei, HC; Reid, G; Busscher, HJ

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from Lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were

  20. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  1. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  2. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  3. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  4. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... A new strain of Bacillus sp. was isolated from alkaline soil, which was able to produce extracellular alkaline ... rice and dates (Khosravi-Darani et al., 2008), protein by- products from lather ..... Pigeon pea waste as a novel ...

  5. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.

    Science.gov (United States)

    Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2017-02-01

      The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.

  6. Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well.

    Science.gov (United States)

    Najafi, A R; Rahimpour, M R; Jahanmiri, A H; Roostaazad, R; Arabian, D; Soleimani, M; Jamshidnejad, Z

    2011-01-01

    The potential of an indigenous bacterial strain isolated from an Iranian oil field for the production of biosurfactant was investigated in this study. After isolation, the bacterium was characterized to be Paenibacillus alvei by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to lower the surface tension of media to 35 mN/m. Accordingly, thin layer chromatography (TLC) and FT-IR has been carried out to determine compositional analysis of the produced biosurfactant. After all the tests related to characterization of the biosurfactant produced by the isolated bacterium, it was characterized as lipopeptide derivative. The combination of central composite rotatable design (CCRD) and response surface methodology (RSM) was exploited to optimize biosurfactant production. Therefore, variations of four impressive parameters, pH, temperature, glucose and salinity concentrations were selected for optimization of growth conditions. The empirical model developed through RSM in terms of effective operational factors mentioned above was found to be adequate to describe the biosurfactant production. A maximum reduction in surface tension was obtained under the optimal conditions of 13.03 g/l glucose concentration, 34.76 °C, 51.39 g/l total salt concentration and medium pH 6.89. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  8. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Paulo Ricardo Franco Marcelino

    Full Text Available Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24 of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50 of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.

  9. Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste.

    Science.gov (United States)

    Venkateswar Reddy, M; Mawatari, Yasuteru; Yajima, Yuka; Seki, Chigusa; Hoshino, Tamotsu; Chang, Young-Cheol

    2015-09-01

    In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Estudo da produção de biossurfactante em caldo de fermentação Study on the production of biosurfactant fermentation broth

    Directory of Open Access Journals (Sweden)

    Silvia Messias Bueno

    2010-01-01

    Full Text Available A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2% had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.

  11. Effect of Different Carbon Sources on Biosurfactants' Production by Three Strains of Lactobacillus spp.

    Science.gov (United States)

    Mouafo, Tene Hippolyte; Mbawala, Augustin; Ndjouenkeu, Robert

    2018-01-01

    The potential of three indigenous bacterial strains ( Lactobacillus delbrueckii N2, Lactobacillus cellobiosus TM1, and Lactobacillus plantarum G88) for the production of biosurfactants using sugar cane molasses or glycerol as substrates was investigated through emulsifying, surface tension, and antimicrobial activities. The different biosurfactants produced with molasses as substrate exhibited high surface tension reduction from 72 mN/m to values ranged from 47.50 ± 1.78 to 41.90 ± 0.79 mN/m and high emulsification index ranging from 49.89 ± 5.28 to 81.00 ± 1.14%. Whatever the Lactobacillus strain or the substrate used, the biosurfactants produced showed antimicrobial activities against Candida albicans LV1, some pathogenic and/or spoilage Gram-positive and Gram-negative bacteria. The yields of biosurfactants with molasses (2.43 ± 0.09 to 3.03 ± 0.09 g/L) or glycerol (2.32 ± 0.19 to 2.82 ± 0.05 g/L) were significantly ( p biosurfactants reveals that they are mainly glycoproteins and glycolipids with molasses and glycerol as substrate, respectively. Therefore, sugar cane molasses or glycerol can effectively be used by Lactobacillus strains as low-cost substrates to increase their biosurfactants production.

  12. Effect of biosurfactants on crude oil desorption and mobilization in a soil system

    Energy Technology Data Exchange (ETDEWEB)

    Kuyukina, M.S.; Ivshina, I.B. [Ural Branch of the Russian Academy of Sciences, Perm (Russian Federation). Institute of Ecology and Genetics of Microorganisms; Makarov, S.O.; Litvinenko, L.V. [Perm State University, Perm (Russian Federation); Cunningham, C.J. [University of Edinburgh (United Kingdom). Contaminated Land Assessment and Remediation Research Centre; Philp, J.C. [Napier University, Edinburgh (United Kingdom). School of Life Sciences

    2005-02-01

    Microbially produced biosurfactants were studied to enhance crude oil desorption and mobilization in model soil column systems. The ability of biosurfactants from Rhodococcus ruber to remove the oil from the soil core was 1.4-2.3 times greater than that of a synthetic surfactant of suitable properties, Tween 60. Biosurfactant-enhanced oil mobilization was temperature-related, and it was slower at 15{sup o}C than at 22-28{sup o}C. Mathematical modelling using a one-dimensional filtration model was applied to simulate the process of oil penetration through a soil column in the presence of (bio)surfactants. A strong positive correlation (R{sup 2} = 0.99) was found between surfactant penetration through oil-contaminated soil and oil removal activity. Biosurfactant was less adsorbed to soil components than synthetic surfactant, thus rapidly penetrating through the soil column and effectively removing 65-82% of crude oil. Chemical analysis showed that crude oil removed by biosurfactant contained a lower proportion of high-molecular-weight paraffins and asphaltenes, the most nonbiodegradable compounds, compared to initial oil composition. This result suggests that oil mobilized by biosurfactants could be easily biodegraded by soil bacteria. Rhodococcus biosurfactants can be used for in situ remediation of oil-contaminated soils. (author)

  13. Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Zhou, Xing-Kui; Guo, Jian-Wei; Xiao, Min; Wang, Hong-Fei; Wang, Yun; Bobodzhanova, Khursheda; Li, Wen-Jun

    2018-02-01

    A Gram-stain-positive, alkaliphilic bacterium, designated EGI 80668 T , was isolated from a Tamarix cone soil in Xinjiang, north-west China. Cells were facultatively anaerobic, terminal endospore-forming and motile by means of peritrichous flagella. Colonies were yellowish and the cells showed oxidase-negative and catalase-positive reactions. Strain EGI 80668 T grew at pH 8.0-10.0 and with 0-10 % (w/v) NaCl (optimally at pH 9.0 and with 1-2 % NaCl) on marine agar 2216. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The cellular polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 38.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80668 T was affiliated to the genus Bacillus. The highest 16S rRNA gene sequence similarity between strain EGI 80668 T and a member of the genus Bacillus was 96.83 % with Bacillus cellulosilyticus JCM 9156 T . A polyphasic taxonomic study based on morphological, physiological, biochemical and phylogenetic data indicated that strain EGI 80668 T represents a novel species of the genus Bacillus, for which the name Bacillus tamaricis sp. nov. (type strain EGI 80668 T =KCTC 33703 T =CGMCC 1.15917 T ) is proposed.

  14. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  15. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Pepi, Milva; Borra, Marco [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Tamburrino, Stella [Consiglio Nazionale delle Ricerche, Istituto per l' Ambiente Marino Costiero UOS Capo Granitola, Palermo (Italy); Saggiomo, Maria [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Viola, Alfio [Università di Catania, Corso Italia 57, I-95129 Catania (Italy); Biffali, Elio; Balestra, Cecilia [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy); Sprovieri, Mario [Consiglio Nazionale delle Ricerche, Istituto per l' Ambiente Marino Costiero UOS Capo Granitola, Palermo (Italy); Casotti, Raffaella, E-mail: raffaella.casotti@szn.it [Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy)

    2016-08-15

    A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48 mmol l{sup −1} were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8 mmol l{sup −1} and is also resistant to Cd(II) and Mn(II) with MIC of 2.22 mmol l{sup −1} and 18.20 mmol l{sup −1}, respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48 mmol l{sup −1} or 1.20 mmol l{sup −1} Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ. - Highlights: • The strain is able to sequester Pb by biosorption in a biofilm. • A Pb-resistant Bacillus sp. isolated from marine polluted sediments. • The strain is proposed as a tool for bioremediation of Pb-polluted marine sediments.

  16. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II)

    International Nuclear Information System (INIS)

    Pepi, Milva; Borra, Marco; Tamburrino, Stella; Saggiomo, Maria; Viola, Alfio; Biffali, Elio; Balestra, Cecilia; Sprovieri, Mario; Casotti, Raffaella

    2016-01-01

    A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48 mmol l −1 were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8 mmol l −1 and is also resistant to Cd(II) and Mn(II) with MIC of 2.22 mmol l −1 and 18.20 mmol l −1 , respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48 mmol l −1 or 1.20 mmol l −1 Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ. - Highlights: • The strain is able to sequester Pb by biosorption in a biofilm. • A Pb-resistant Bacillus sp. isolated from marine polluted sediments. • The strain is proposed as a tool for bioremediation of Pb-polluted marine sediments.

  17. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514

    Directory of Open Access Journals (Sweden)

    Sreethar Swaathy

    2014-12-01

    Full Text Available The present study emphasizes the biosurfactant mediated anthracene degradation by a marine alkaliphile Bacillus licheniformis (MTCC 5514. The isolate, MTCC 5514 degraded >95% of 300 ppm anthracene in an aqueous medium within 22 days and the degradation percentage reduced significantly when the concentration of anthracene increased to above 500 ppm. Naphthalene, naphthalene 2-methyl, phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the degradation process. Encoding of genes responsible for biosurfactant production (licA3 as well as catabolic reactions (C23O made with suitable primers designed. The study concludes in situ production of biosurfactant mediates the degradation of anthracene by B. licheniformis.

  18. Biosurfactants for Microbubble Preparation and Application

    OpenAIRE

    Takeo Shiina; Zengshe Liu; Mitsutoshi Nakajima; Qingyi Xu

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular im...

  19. Mechanism of Biosorption of Nickel Ions from Polluted Effluent by Bacillus sp. Strain MGL-75

    Directory of Open Access Journals (Sweden)

    Salman Ahmadi Asbchin

    2013-08-01

    Full Text Available The aim of this work was to investigate Bacillus sp. strain MGL-75 as biosorbent, for the fixation of Ni ion in batch reactor. Pollution of the environment by toxic metals is a major environmental concern. In a first step, biosorption kinetics and isotherms have been performed at pH 7. The equilibrium time was about 5 min and the adsorption equilibrium data were well described by the Langmuir`s equation. The point of zero net proton charge (PZNPC was found close to pH 5.7. Using the single extrapolation method, three kinds of acidic functional groups with three intrinsic pka were determined at 4.4, 6.9 and 11.2. The maximum capacity has been extrapolated to 0/52 mmol/g. Finally the effect of autoclave, 2, 4 Dinitrophenol (DNF and Na-Azid (NaN3, and the effect of pH values, were studied. These results indicated that the Bacillus sp. strain MGL-75 is an excellent candidate for use in reactor to remove Nickel ions from polluted aqueous effluents.

  20. Proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico Proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico

    Directory of Open Access Journals (Sweden)

    A. Sáez Vega

    2006-06-01

    Full Text Available Se evaluó el efecto de cuatro fuentes de nitrógeno sobre la actividad enzimática de proteasas alcalinas, secretadas por una cepa nativa de Bacillus sp Alcalofílico, cultivada a diferentes concentraciones de LMF (Licor de Maíz Fermentado. El crecimiento de la cepa no es afectado por los pH de inoculación de 7,0; 8,5 y 9,5; en contraste con la actividad enzimática y producción de proteína verdadera, que tuvieron sus mejores resultados a pH inicial de 8,5. A este pH se evaluaron dos fuentes de nitrógeno orgánico (extracto de levadura y peptona y dos inorgánicos (NH4Cl y NaNO3The effect of four nitrogen sources on the enzymatic activity of alkaline proteases from a wild strain of Alkalophilic Bacillus sp cultivated to different concentrations from CSL (Corn Steep Liquor. was evaluated. The growth of the strain is not affected by pH of inoculation of 7,0, 8,5 and 9,5, in contrast to the enzymatic activity and true protein production, that had their better results to initial pH of 8,5. To this initial pH of 8,5; two organic nitrogen sources (yeast extract and peptone and two inorganic ones were evaluated (NH4Cl and NaNO3. With peptone the best enzymatic activity to a relation appeared to molar C/N between 1 and 2 was found. For the studied interval of % CSL (0,5 to 2% p/v the concentration of the CSL does not affect the enzymatic activity.

  1. Produção de biossurfactante por levedura Biosurfactants production by yeasts

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2008-01-01

    Full Text Available Biosurfactants are molecules extracellularly produced by bacteria, yeast and fungi that have significant interfacial activity properties. This review focuses on relevant parameters that influence biosurfactant production by yeasts. Many works have investigated the optimization of yeast biosurfactant production, mainly within the last decade, revealing that the potential of such microorganisms is not well explored in the industrial field. The main points to increase the process viability lays on the reduction of the production costs and enhancement of biosynthesis efficiency through optimization the culture conditions (carbon and nitrogen source, pH, aeration, speed agitation and the selection of inexpensive medium components.

  2. Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium

    Directory of Open Access Journals (Sweden)

    Jixian Mo

    2015-05-01

    Conclusion: In this work, the key factors affected by the fermentation of DMP-degrading strain Bacillus sp. QD14 were optimized by PBD, SAM and BBD (RSM; the yield was increased by 57,11% in the conditions in our study. We propose that the conditions optimized in the study can be applied to the fermentation for commercialization production.

  3. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal

    Directory of Open Access Journals (Sweden)

    Graziela Jardim Pacheco

    2010-10-01

    Full Text Available The influence of different nutrients on biosurfactant production by Rhodococcus erythropolis was investigated. Increasing the concentration of phosphate buffer from 30 up through 150 mmol/L stimulated an increase in biosurfactant production, which reached a maximum concentration of 285 mg/L in shaken flasks. Statistical analysis showed that glycerol, NaNO3,MgSO4 and yeast extract had significant effects on production. The results were confirmed in a batchwise bioreactor, and semi-growth-associated production was detected. Reduction in the surface tension, which indicates the presence of biosurfactant, reached a value of 38 mN/m at the end of 35 hours. Use of the produced biosurfactant for washing crude oil-contaminated soil showed that 2 and 4 times the critical micellar concentration (CMC were able to remove 97 and 99% of the oil, respectively, after 1 month of impregnation.

  4. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  5. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  7. Growth and Cultivation of the Unusual Generalized Transducing Bacillus Bacteriophage SP-15

    Science.gov (United States)

    Taylor, Martha J.; Goldberg, Ivan D.

    1971-01-01

    Additional properties of SP-15, a generalized transducing bacteriophage notable for the ability to transfer an unusually large fragment of deoxyribonucleic acid (DNA) to Bacillus subtilis and B. licheniformis, are presented together with improved methods that enhance its utility. Simple means have been found to provide the rigid control over moisture that is necessary for the assay of plaque-forming units (PFU). Reproducible procedures for propagating transducing phage, which depend upon an appropriate mixing of PFU with uninfected bacteria, have replaced less reliable methods that utilized infected spores. Transduction of B. subtilis W-23 increased linearly when MgSO4 in recipient cell-SP-15 mixtures was increased from 0.005 to 0.03 m. Methods have been developed that protect SP-15 from the damaging effects of CsCl and of osmotic shock subsequent to dilution. Evidence that the PFU and transducing particles of lysates decay at the same slow rate during extended storage suggests that the decay is a result of damage to protein rather than to DNA. One-step growth experiments, in which SP-15 was propagated on B. subtilis W-23-Sr/1 mg, indicated a latent period of 100 min, a rise period of 60 min, and a burst size of 25 to 34 PFU per infected cell. These findings suggest explanations for some of the technical difficulties SP-15 has presented. PMID:4999971

  8. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Dagbert, Catherine; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle

    2008-01-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  9. Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Dagbert, Catherine [ECP-LGPM, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)], E-mail: catherine.dagbert@ecp.fr; Meylheuc, Thierry; Bellon-Fontaine, Marie-Noelle [INRA, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France); AGROPARISTECH, UMR 763 Bioadhesion et Hygiene des Materiaux, F-91300 Massy (France)

    2008-12-01

    Today, it is widely established that the surface tension of water can be reduced by some microorganisms capable of synthesizing surface-active compounds called biosurfactants (BS). BS characteristics depend on the microorganism that produces them and therefore, on the microorganism culture conditions. Some studies on chemical surfactants have shown that the adsorption of surface-active compounds plays a major role in corrosion; indeed they are used as a good corrosion inhibition tool. The purpose of this study was first, to estimate the importance and behavior of the stainless steels passive film on the adsorption of BS, produced by the Gram negative bacteria Pseudomonas fluorescens, and secondly, to study the impact of these treatments on the pitting corrosion. In this paper, the galvanostatic polarization technique, used as accelerated method for determining the characteristic pit potentials on stainless steels, is examined. Pit growth, shape and cover formation were also observed. The surface topography of the corroded specimens was investigated using field emission scanning electron microscopy (FESEM)

  10. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry.

    Science.gov (United States)

    Favaro, Gabriella; Bogialli, Sara; Di Gangi, Iole Maria; Nigris, Sebastiano; Baldan, Enrico; Squartini, Andrea; Pastore, Paolo; Baldan, Barbara

    2016-10-30

    The plant endophyte Bacillus licheniformis, isolated from leaves of Vitis vinifera, was studied to individuate and characterize the presence of bioactive lipopeptides having amino acidic structures. Crude extracts of liquid cultures were analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. Chromatographic conditions were optimized in order to obtain an efficient separation of the different isobaric lipopeptides, avoiding merged fragmentations of co-eluted isomeric compounds and reducing possible cross-talk phenomena. Composition of the amino acids was outlined through the interpretation of the fragmentation behavior in tandem high-resolution mass spectrometry (HRMS/MS) mode, which showed both common-class and peculiar fragment ions. Both [M + H](+) and [M + Na](+) precursor ions were fragmented in order to differentiate some isobaric amino acids, i.e. Leu/Ile. Neutral losses characteristic of the iso acyl chain were also evidenced. More than 90 compounds belonging to the classes of surfactins and lichenysins, known as biosurfactant molecules, were detected. Sequential LC/HRMS/MS analysis was used to identify linear and cyclic lipopeptides, and to single out the presence of a large number of isomers not previously reported. Some critical issues related to the simultaneous selection of different compounds by the quadrupole filter were highlighted and partially solved, leading to tentative assignments of several structures. Linear lichenysins are described here for the first time. The approach was proved to be useful for the characterization of non-target lipopeptides, and proposes a rationale MS experimental scheme aimed to investigate the difference in amino acid sequence and/or in the acyl chain of the various congeners, when standards are not available. Results expanded the knowledge about production of linear and cyclic bioactive compounds from Bacillus licheniformis, clarifying the

  11. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexandecane

    Energy Technology Data Exchange (ETDEWEB)

    Vasileva-Tonkova, E.; Galabova, D. [Bulgarian Academy of Sciences, Dept. of Microbial Biochemistry, Sofia (Bulgaria); Stoimenova, E.; Lalchev, Z. [Dept. of Biochemistry, Sofia Univ. ' ' St. Kliment Ohridski' ' , Sofia (Bulgaria)

    2006-07-15

    The newly isolated from industrial wastewater Pseudomonas fluorescens strain HW-6 produced glycolipid biosurfactants at high concentrations (1.4-2.0 g 1{sup -1}) when grown on hexadecane as a sole carbon source. Biosurfactants decreased the surface tension of the air/water interface by 35 mN m{sup -1} and possessed a low critical micelle concentration value of 20 mg 1{sup -1}, which indicated high surface activity. They efficiently emulsified aromatic hydrocarbons, kerosene, n-paraffins and mineral oils. Biosurfactant production contributed to a significant increase in cell hydrophobicity correlated with an increased growth of the strain on hexadecane. The results suggested that the newly isolated strain of Ps. fluorescens and produced glycolipid biosurfactants with effective surface and emulsifying properties are very promising and could find application for bioremediation of hydrocarbon-polluted sites. (orig.)

  12. Evaluation of the Synergistic Effect of Mixed Cultures of White-Rot Fungus Pleurotus ostreatus and Biosurfactant-Producing Bacteria on DDT Biodegradation.

    Science.gov (United States)

    Purnomo, Adi Setyo; Ashari, Khoirul; Hermansyah, Farizha Triyogi

    2017-07-28

    DDT (1,1,1-trichloro-2,2- bis (4-chlorophenyl) ethane) is one of the organic synthetic pesticides that has many negative effects for human health and the environment. The purpose of this study was to investigate the synergistic effect of mixed cutures of white-rot fungus, Pleurotus ostreatus , and biosurfactant-producing bacteria, Pseudomonas aeruginosa and Bacillus subtilis , on DDT biodegradation. Bacteria were added into the P. ostreatus culture (mycelial wet weight on average by 8.53 g) in concentrations of 1, 3, 5, and 10 ml (1 ml ≈ 1.25 × 10 9 bacteria cells/ml culture). DDT was degraded to approximately 19% by P. ostreatus during the 7-day incubation period. The principal result of this study was that the addition of 3 ml of P. aeruginosa into P. ostreatus culture gave the highest DDT degradation rate (approximately 86%) during the 7-day incubation period. This mixed culture combination of the fungus and bacteria also gave the best ratio of optimization of 1.91. DDD (1,1-dichloro-2,2- bis (4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2- bis (4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2- bis (4-chlorophenyl) ethylene) were detected as metabolic products from the DDT degradation by P. ostreatus and P. aeruginosa . The results of this study indicate that P. aeruginosa has a synergistic relationship with P. ostreatus and can be used to optimize the degradation of DDT by P. ostreatus .

  13. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    Younis, F.; Lodhi, A.F.; Raza, G.

    2009-01-01

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  14. Effect of aflatoxin B1 on growth and enzymatic activity of a native strain of Bacillus sp

    Directory of Open Access Journals (Sweden)

    Alex Sáez Vega

    2004-01-01

    Full Text Available The effect of different aflatoxin B1 (AFAB1 concentrations on alkaline protease growth and enzymatic activity was evaluated; a native strain of alkalophilic Bacillus sp cultivated in CSL (Corn Steep Liquor was used. It was found that the effect of AFAB1 on the strain inhibited its growth and enzymatic activity to 1 ppm, showing that the strain is highly sensible to AFAB1, meaning that medium obtained f rom Colombian corn contaminated with this mycotoxin cannot be easily used. Concentrations less than 0.1 ppm did not affect growth and enzymatic activity. Key words: Bacillus, aflatoxin, alkaline proteases.

  15. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    Science.gov (United States)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  16. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation.

    Science.gov (United States)

    Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad

    2017-10-01

    Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.

  17. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  18. Biosurfactant production by Pseudomonas aeruginosa MSIC02 in cashew apple juice using a 24 full factorial experimental design

    Directory of Open Access Journals (Sweden)

    Rocha Maria Valderez Ponte

    2014-01-01

    Full Text Available In this work, the production of biosurfactants from cashew apple juice by P. aeruginosa MSIC02 was investigate by carrying out a 24 full factorial experimental design, using temperature, glucose concentration from cashew apple juice, phosphorous concentration and cultivation time as variables. The response variable was the percentage of reduction in surface tension in the cell-free culture medium, since it indicates the surface-active agent production. Maximum biosurfactant production, equivalent to a 58% reduction in surface tension, was obtained at 37°C, with glucose concentration of 5.0 g/L and no phosphorous supplementation. Surface tension reduction was significant, since low values were observed in the cell-free medium (27.50 dyne/cm, indicating that biosurfactant was produced. The biosurfactant emulsified different hydrophobic sources and showed stability in the face of salinity, exposure to high temperatures and extreme pH conditions. These physiochemical properties demonstrate the potential for using biosurfactants produced by P. aeruginosa MSIC02 in various applications.

  19. Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato

    Directory of Open Access Journals (Sweden)

    Raheem Shahzad

    2017-03-01

    Full Text Available Fungal pathogenic attacks are one of the major threats to the growth and productivity of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-promoting bacterial endophytes has been considered intriguingly eco-friendly in nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root zone. The results showed that the growth attributes and biomass were significantly enhanced by endophytic-inoculation during disease incidence as compared to F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the RWL-1-applied plants showed increased amino acid metabolism of cell wall related (e.g., aspartic acid, glutamic acid, serine (Ser, and proline (Pro as compared to diseased plants. In case of endogenous phytohormones, significantly lower amount of jasmonic acid (JA and higher amount of salicylic acid (SA contents was recorded in RWL-1-treated diseased plants. The phytohormones regulation in disease incidences might be correlated with the ability of RWL-1 to produce organic acids (e.g., succinic acid, acetic acid, propionic acid, and citric acid during the inoculation and infection of tomato plants. The current findings suggest that RWL-1 inoculation promoted and rescued plant growth by modulating defense hormones and regulating amino acids. This suggests that bacterial endophytes could be used for possible control of F. oxysporum f. sp. lycopersici in an eco-friendly way.

  20. Utilization of sophorolipids as biosurfactants for postemergence herbicides

    Science.gov (United States)

    Sophorolipids are carbohydrate-based, amphiphilic biosurfactants produced by several species of the Starmerella yeast clade. Most sophorolipids are partially acetylated sophorose sugars O-ß-glycosidically linked to 17-L-hydroxy-delta9-octadecenoic acid, where typically the acyl carboxyl group forms...

  1. From lab to market: An integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola.

    Science.gov (United States)

    Van Renterghem, Lisa; Roelants, Sophie L K W; Baccile, Niki; Uyttersprot, Katrijn; Taelman, Marie Claire; Everaert, Bernd; Mincke, Stein; Ledegen, Sam; Debrouwer, Sam; Scholtens, Kristel; Stevens, Christian; Soetaert, Wim

    2018-05-01

    Glycolipid microbial biosurfactants, such as sophorolipids (SLs), generate high industrial interest as 100% biobased alternatives for traditional surfactants. A well-known success story is the efficient SL producer Starmerella bombicola, which reaches titers well above 200 g/L. Recent engineering attempts have enabled the production of completely new types of molecules by S. bombicola, e.g. the bolaform SLs. Scale-up of bolaform SL production was performed at 150 L scale. The purified product was evaluated in detergent applications, as classic SLs are mostly applied in eco-friendly detergents. In this paper, we show that they can be used as green and non-irritant surfactants in for example (automatic) dishwashing applications. However, due to the presence of an ester function in the biosurfactant molecule a limited chemical stability at higher pH values (>6.5) was noticed, (therefore called 'non-symmetrical' (nsBola)) which, is a major drawback that will most likely inhibit market introduction. An integrated bioprocess design (IBPD) strategy was thus applied to resolve this issue. The strategy was to replace the fed fatty acids with fatty alcohols, to generate so-called "symmetrical bolaform (sBola) sophorosides (SSs)," containing two instead of one glycosidic bond. Next to a change in feeding strategy, the blocking of the fatty alcohols from metabolizing/oxidizing through the suggested ω-oxidation pathway was necessary. For the latter, two putative fatty alcohol oxidase genes (fao1 and fao2) were identified in the S. bombicola genome and deleted in the bolaform SL producing strain (ΔatΔsble). Shake flask experiments for these new strains (ΔatΔsbleΔfao1 and ΔatΔsbleΔfao2) were performed to evaluate if the fed fatty alcohols were directly implemented into the SL biosynthesis pathway. Indeed, sBola sophorosides (SSs) production up to 20 g/L was observed for the ΔatΔsbleΔfao1 strain. Unexpectedly, the ΔatΔsbleΔfao2 strain only produced minor

  2. Extracellular production of avicelase by the thermophilic soil bacterium Bacillus sp. SMIA-2

    Directory of Open Access Journals (Sweden)

    Luciana Ribeiro Coutinho Oliveira

    2014-05-01

    Full Text Available Nowadays, the isolation of new bacterial strains that produce enzymes with novel properties is a subject of great relevance to the scientific community. This study, in order to search for producers of new cellulase strains, investigated the avicelase production by thermophilic Bacillus sp. strain SMIA-2. The best avicelase activity was observed in a culture medium containing 0.5% (w v-1 avicel and 0.5% (w v-1 corn steep liquor with initial pH 7.5-8.0 incubated at 50oC. When avicel was replaced in the medium by the treated sugarcane bagasse (0.5%, w v-1 the avicelase activity levels were not affected. Studies on the avicelase characterization revealed that the optimum pH of the enzyme was found to be 8.5 and the enzyme retained more than 80% of its activity after incubation at room temperature for 2h at pH 6.5-8.5. The optimum temperature of this enzyme was 70oC and the enzyme retained 67% of the original activity after 20 min. of heat treatment at 70oC. Avicelase was stimulated by Mn2+ and Co2+, whereas Hg2+ greatly inhibited the enzyme activity

  3. Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Bacillus sp. LG-502.

    Science.gov (United States)

    Wang, Liming; Chen, Yan

    2017-12-01

    Cycloastragenol (CA), an exclusive telomerase activator, was derived from the Astragali Radix which is widely distributed in Turkey. Until now, there is no report to produce CA with effective and environment-friendly methods. Biotransformation is considered to be a promising technology. Thus, the present study was aimed to establish a biotransformation technology that could efficiently produce CA. In this paper, a microorganism, LG-502, was used to successfully transform astragaloside IV (ASI) to CA by analysis of thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The phylogenetic analysis of the 16S rRNA indicated that this strain belongs to Bacillus sp. Three metabolites were separated during the fermentation and characterized to be cyclogaleginoside B, CA, and 20R, 24S-epoxy-6α, 16β, 25-trihydroxy-9, 19-cycloartan-3-one based on NMR and MS spectroscopic analyses. The conversion rate of ASI and yield rate of CA were achieved as high as 89 and 84%, respectively, under optimized conditions. Enzymatic analysis showed that the glycosidases were mainly located inside the bacterial body, and the activities of glucosidases were much higher than the xylosidases under the experimental conditions. This study provides a feasible, effective, and eco-friendly way to prepare CA from ASI, which might greatly contribute to the applications of ASI.

  4. Isolation and characterization of lipase-producing Bacillus strains ...

    African Journals Online (AJOL)

    Bacillus strains (B1 - B5) producing extra cellular lipase were isolated from the soil sample of coconut oil industry. The strains were identified by morphological and biochemical characters. Growth of the organisms and lipase production were measured with varying pH (4 - 9) temperature (27, 37 and 47ºC) and various ...

  5. Aroma characteristics of Moutai-flavour liquor produced with Bacillus licheniformis by solid-state fermentation.

    Science.gov (United States)

    Zhang, R; Wu, Q; Xu, Y

    2013-07-01

    The potential of Bacillus licheniformis as a starter culture for aroma concentration improvement in the fermentation of Chinese Moutai-flavour liquor was elucidated. The volatile compounds produced by B. licheniformis were identified by GC-MS, in which C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds were the main ingredients. The strains B. licheniformis (MT-6 and MT-15) produced more volatile compound concentrations, mainly C4 compounds, than the type strain of B. licheniformis (ATCC 14580) at the fermentation temperature of 55°C. Meanwhile, more volatile compound concentrations were produced by B. licheniformis in solid-state fermentation than in submerged state fermentation. Thus, the strains MT-6 and MT-15 were used as the Bacillus starter culture for investigating Moutai-flavour liquor production. The distilled liquor inoculated with Bacillus starter culture was significantly different from the liquor without inoculum. This was particularly evident in the fore-run part of the distilled sample which was inoculated with Bacillus starter culture, where volatile compounds greatly increased compared to the control. Furthermore, the distilled liquor with Bacillus starter culture showed improved results in sensory appraisals. These results indicated that B. licheniformis was one of the main species influencing the aroma characteristics of Moutai-flavour liquor. This is the first report of an investigation into the effect of Bacillus starter cultures on the flavour features of Moutai-flavour liquor, which verified that Bacillus licheniformis can enhance aroma concentration in Moutai-flavour liquor. Bacillus starter culture brought C4 compounds, pyrazines, volatile acids, aromatic and phenolic compounds to the liquor, which gave a better result in sensory appraisals. © 2013 The Society for Applied Microbiology.

  6. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation.

    Science.gov (United States)

    Kiran, G Seghal; Thomas, T Anto; Selvin, Joseph

    2010-06-15

    Considering the need of potential biosurfactant producers and economic production processes using industrial waste, the present study aims to develop solid-state culture (SSC) of a marine actinobacterium for biosurfactant production. A potential biosurfactant producer Nocardiopsis lucentensis MSA04 was isolated from the marine sponge Dendrilla nigra. Among the substrates screened, wheat bran increased the production significantly (E(24) 25%) followed by oil seed cake and industrial waste such as tannery pretreated sludge, treated molasses (distillery waste) and pretreated molasses. Enhanced biosurfactant production was achieved under SSC conditions using kerosene as carbon source, beef extract as nitrogen source and wheat bran as substrate. The maximum production of biosurfactant by MSA04 occurred at a C/N ratio of 0.5 envisaging that a higher amount of nitrogen source is required by the strain compared to that of the carbon source. The kerosene and beef extract interactively increase the production and a stable production was attained with the influence of both factors independently. A significant interactive influence of secondary control factors such as copper sulfate and inoculum size was validated in response surface methods-based experiments. The surface active compound produced by MSA04 was characterized as glycolipid with a hydrophobic non-polar hydrocarbon chain (nonanoic acid methyl ester) and hydrophilic sugar, 3-acetyl 2,5 dimethyl furan. In conclusion, the strain N. lucentensis MSA04 was a potential source of glycolipid biosurfactant, could be used for the development of bioremediation processes in the marine environment. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Enhanced Productivity of Serine Alkaline Protease by Bacillus sp. Using Soybean as Substrate

    Directory of Open Access Journals (Sweden)

    Saurabh, S.

    2007-01-01

    Full Text Available The growth and protease production by Bacillus sp. (SBP-29 was examined for poultry processing industries. The maximum protease activity was 3028 U/mL using 1.5% (w/v of soybean meal as substrate. Soybean meal is an inexpensive and readily available, thus it can be used as the cost effective crude material for the production of an extracellular protease. Inorganic nitrogen sources proved to be less favorable, for protease production as strong catabolic repression was observed with ammonium ions. A maximum of 3208 U/mL of protease was produced in 18 h in a 10L bioreactor. The enzyme has temperature and pH optima of 60°C and 9.5 respectively. However, the temperature stability range is from 20-90 °C and pH stability range is from 6.0–12.0. The protease was completely inhibited by phenylmethylsulfonyl fluoride (PMSF and diodopropyl fluorophosphate (DFP, with little increase (10-15% in the production of upon addition of Ca++ and Mg++.

  8. Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond.

    Science.gov (United States)

    Albuquerque, Luciana; Tiago, Igor; Taborda, Marco; Nobre, M Fernanda; Veríssimo, António; da Costa, Milton S

    2008-01-01

    A low-G+C, Gram-positive isolate, designated strain CVS-8(T), was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. This organism was found to be a catalase- and oxidase-positive, non-motile, spore-forming, aerobic, curved rod-shaped organism with an optimum growth temperature of about 35-37 degrees C and an optimum pH between 7.5 and 8.0. Optimal growth occurred in media containing 4-6% (w/v) NaCl and no growth occurred in medium without NaCl. The cell-wall peptidoglycan was of the A1gamma type with meso-diaminopimelic acid, the major respiratory quinone was MK-7, the major fatty acids were iso-15:0, 16:0, anteiso-15:0 and iso-16:0 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminoglycophospholipid. The G+C content of the DNA was 37.9 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain CVS-8(T) represented a novel species of the genus Bacillus, the highest levels of sequence similarity (mean pairwise similarity values of approximately 97.5 %) being found with respect to the type strains of Bacillus shackletonii and Bacillus acidicola. On the basis of the phylogenetic, physiological and biochemical data, strain CVS-8(T) represents a novel species of the genus Bacillus, for which the name Bacillus isabeliae sp. nov. is proposed. The type strain is CVS-8(T) (=LMG 22838(T)=CIP 108578(T)).

  9. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

    Science.gov (United States)

    Sharma, Deepansh; Singh Saharan, Baljeet

    2014-01-01

    Lactic acid bacteria (LAB) are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5 min at 100°C). Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient. PMID:24669225

  10. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  11. Integral use of amaranth starch to obtain cyclodextrin glycosyltransferase, by Bacillus megaterium, to produce β-cyclodextrin.

    Directory of Open Access Journals (Sweden)

    María Belem Arce-Vázquez

    2016-09-01

    Full Text Available Cyclodextrin glycosyltransferase (CGTase is an enzyme that produces cyclodextrins (CDs from starch and related carbohydrates, producing a mixture of α-, β-, and γ-CDs in different amounts. CGTase production, mainly by Bacillus sp., depends on fermentation conditions such as pH, temperature, concentration of nutrients, carbon and nitrogen sources, among others. Bacillus megaterium CGTase produces those three types of CDs, however, β-CD should prevail. Although waxy corn starch (CS is used industrially to obtain CGTase and CDs because of its high amylopectin content, alternative sources such as amaranth starch (AS could be used to accomplish those purposes. AS has high susceptibility to the amylolytic activity of CGTase because of its 80% amylopectin content. Therefore, the aim of this work was evaluate the AS as carbon source for CGTase production by B. megaterium in a submerged fermentation. Afterwards, the CGTase was purified partially and its activity to synthesize α-, β- and γ-CDs was evaluated using 1% AS as substrate. B. megaterium produced a 66 kDa CGTase (Topt=50°C; pHopt=8.0, from the early exponential growth phase which lasted 36 h. The maximum CGTase specific activity (106.62±8.33 U/mg protein was obtained after 36 h of culture. CGTase obtained with a Km=0.152 mM and a Vmax=13.4 µM/min yielded 40.47% total CDs using AS which was roughly twice as much as that of corn starch (CS; 24.48%. High costs to produce CDs in the pharmaceutical and food industries might be reduced by using AS because of its higher α-, β- and γ-CDs production (12.81%, 17.94% and 9.92%, respectively in a shorter time than that needed for CS.

  12. Pseudomonas Lipopeptide Biosurfactants

    DEFF Research Database (Denmark)

    Bonnichsen, Lise

    Pseudomonas lipopetide biosurfactants are amphiphilic molecules with a broad range of natural functions. Due to their surface active properties, it has been suggested that Pseudomonas lipopetides potentially play a role in biodegradation of hydrophobic compounds and have essential functions...... lipopetide biosurfactants in pollutant biodegradation and natural roles in biofilm formation. The work presented is a combination of environmental microbiology and exploiting genetic manipulation of pure cultures to achieve insightinto the effects and mechanisms of lipopeptides on microbial processes...

  13. The Sponge-associated Bacterium Bacillus licheniformis SAB1: A Source of Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Prabha Devi

    2010-04-01

    Full Text Available Several bacterial cultures were isolated from sponge Halichondria sp., collected from the Gujarat coast of the Indo Pacific region. These bacterial cultures were fermented in the laboratory (100 mL and the culture filtrate was assayed for antibiotic activity against 16 strains of clinical pathogens. Bacillus sp. (SAB1, the most potent of them and antagonistic to several clinically pathogenic Gram-positive, Gram-negative bacteria and the fungus Aspergillus fumigatus was chosen for further investigation. Analysis of the nucleotide sequence of the 16S rDNA gene of Bacillus sp. SAB1 showed a strong similarity (100% with the 16S rDNA gene of Bacillus licheniformis HNL09. The bioactive compounds produced by Bacillus licheniformis SAB1 (GenBank accession number: DQ071568 were identified as indole (1, 3-phenylpropionic acid (2 and a dimer 4,4′-oxybis[3-phenylpropionic acid] (3 on the basis of their Fourier Transform Infrared (FTIR, Nuclear Magnetic Resonance (NMR and Electrospray Ionization Mass Spectrometer (ESI-MS data. There is a single reference on the natural occurrence of compound 3 from the leaves of a terrestrial herb Aptenia cordifolia in the literature, so to the best of our knowledge, this is a first report of its natural occurrence from a marine source. The recovery of bacterial strains with antimicrobial activity suggests that marine-invertebrates remain a rich source for the isolation of culturable isolates capable of producing novel bioactive secondary metabolites.

  14. The extracytoplasmic function sigma factor SigY is important for efficient maintenance of the Spβ prophage that encodes sublancin in Bacillus subtilis.

    Science.gov (United States)

    Mendez, Rebecca; Gutierrez, Alba; Reyes, Jasmin; Márquez-Magaña, Leticia

    2012-06-01

    Many strains of the soil bacterium Bacillus subtilis are capable of producing and being resistant to the antibiotic sublancin because they harbor the Spβ prophage. This 135 kb viral genome is integrated into the circular DNA chromosome of B. subtilis, and contains genes for the production of and resistance to sublancin. We investigated the role of SigY in sublancin production and resistance, finding that it is important for efficient maintenance of the Spβ prophage. We were unable to detect the prophage in mutants lacking SigY. Additionally, these mutants were no longer able to produce sublancin, were sensitive to killing by this factor, and displayed a delay in sporulation. Wild-type cells with normal SigY activity were found to partially lose the Spβ prophage during growth and early sporulation, suggesting a mechanism for the bistable outcome of sibling cells capable of killing and of being killed. The appropriate regulation of SigY appears to be essential for growth as evidenced by the inability to disrupt the gene for its putative antisigma. Our results confirm a role for SigY in antibiotic production and resistance, as has been found for other members of the extracytoplasmic function sigma factor family in B. subtilis, and shows that this role is achieved by affecting maintenance of the Spβ prophage.

  15. Keratinase from newly isolated strain of thermophilic Bacillus for chicken feed modification

    Science.gov (United States)

    Larasati, Ditya; Tsurayya, Nur; Koentjoro, Maharani Pertiwi; Prasetyo, Endry Nugroho

    2017-06-01

    Keratinase producing bacteria were isolated from Dieng crater and Mojokerto chicken farm. The screening was done by clear zone method. The strains were selected as they produced clear zones suggesting the presence of keratinolytic activity. The clear zone on FM media depended on both the source and activity of keratinase produced by keratinolytic bacteria. Based on keratinase production and activity, Bacillus sp. SLII-1 was selected for further studies. Keratinase produced by Bacillus sp. SLII-1 capable of producing crude keratinase with 2.08 (mg/second)/ml enzyme activity which able to increase digestibility of feather meal until 22.06% based on soluble protein level. Broiler chicken (Gallus domesticus) that consumed feed containing 5% feather meal indicated production performance of 1194.8 gram/head of feed consumption, 567 gram/head of addition of weight, and 2.1 of feed conversion ratio. An enzymatic engineered chicken feathers waste showed the performance of broiler chicken that is better than soybean meal as conventional sources of protein but could not yet substitute the use of conventional protein sources of fishmeal.

  16. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  17. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    Science.gov (United States)

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.

  18. Production, purification and characterization of thermostable α-amylase from soil isolate Bacillus sp. strain B-10

    Directory of Open Access Journals (Sweden)

    Ravindra Nath Singh

    2016-04-01

    Full Text Available A bacterial strain B-10 that produces α-amylase was isolated from compost and kitchen waste receiving agricultural soil. Based on microbiological and biochemical tests the isolate B-10 was identified as Bacillus sp. Alpha-amylase produced by this isolate was purified by (NH42SO4 precipitation and DEAE cellulose ion-exchange chromatography showing 15.91 and 48.21 fold purification, respectively. SDS-PAGE of the purified enzyme confirmed the purification and monomeric nature of the enzyme. The purified α-amylase showed maximum activity at pH 7 and temperature 50°C. The enzyme was significantly active in the temperature range of 30-60°C for the studied period of 2 h. During the incubation of purified enzyme at pH ranging from 5 to 10 for 24 h the maximum stability was observed at pH 7 followed by pH 8, whereas at extreme pH, the stability was very poor. Km and Vmax were found to be 1.4 mg/mL and 6.2 U/mL, respectively.

  19. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery.

    Science.gov (United States)

    Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M

    2018-02-01

    Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.

  20. Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances.

    Science.gov (United States)

    Kim, Young-Sook; Song, Ja-Gyeong; Lee, In-Kyoung; Yeo, Woon-Hyung; Yun, Bong-Sik

    2013-09-01

    A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

  1. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  2. Identification and production of bioflocculants by Enterobacter sp. and Bacillus sp. and their characterization studies.

    Science.gov (United States)

    Muthulakshmi, L; Nellaiah, H; Kathiresan, T; Rajini, N; Christopher, Fenila

    2017-05-28

    In this work, two bioflocculants, namely, EB-EPS and B1-EPS, were derived from Enterobacter sp. and Bacillus sp., respectively, and analyzed with regard to their production and characterization. About 0.9 and 0.16 g of purified EB and B1 were obtained from I L of fermentation broth. Chemical analysis showed the contents of purified EB and B1 mainly as 88.7 and 92.8% (w/w) of carbohydrate, and 11.3 and 21.8% (w/w) protein, respectively. Fourier-transform infrared spectrometry analysis revealed the presence of hydroxyl, amide, and carboxyl groups in the identified bioflocculant. Thermogravimetric analysis (TGA) results exhibited enhanced thermal stability with a minimum mass loss of 50% while 25% were found to have occurred at higher temperatures (>400°C) for microbe-derived compounds EB and B1 leading to the possibility of using these compounds as fillers or for fabricating composite films for high-temperature applications. Further, the compounds from both the bacteria exhibited good antibacterial characteristics against pathogenic Escherichia coli. Degradability study of bioflocculant-embedded composite films shows the possibility of attaining eco-friendly bioremediation. Accordingly, experimental results revealed the suitability of developed composite films as a suitable alternative for food packaging and biomedical applications.

  3. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  4. Produção de biossurfactantes por microrganismos isolados de solo contaminado com óleo diesel

    Directory of Open Access Journals (Sweden)

    Andressa Decesaro

    2013-01-01

    Full Text Available The aim of this work was to produce biosurfactants through submerged fermentation using microorganisms isolated from soil contaminated with diesel. Microorganisms were isolated, characterized by the production of biosurfactants, and used to study the influence of type, induction and concentration of ammonium sulfate as a nitrogen source in the culture medium. The microorganisms that showed best results, in terms of production of biosurfactants, were identified as being of the genus Pseudomonas and Bacillus. The biosurfactants produced proved capable of reducing the surface tension of the media to 39 mN/m and 34 mN/m, respectively. Higher biosurfactant production was obtained in the medium containing 1% soybean oil without ammonium sulfate.

  5. High-quality genome sequence and description of Bacillus ndiopicus strain FF3T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF3T was isolated from the skin-flora of a 39-year-old healthy Senegalese man. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not allow any identification. This strain exhibited a 16S rRNA sequence similarity of 96.8% with Bacillus massiliensis, the phylogenetically closest species with standing nomenclature. Using a polyphasic study made of phenotypic and genomic analyses, strain FF3T was Gram-positive, aeroanaerobic and rod shaped and exhibited a genome of 4 068 720 bp with a G+C content of 37.03% that coded 3982 protein-coding and 67 RNA genes (including four rRNA operons. On the basis of these data, we propose the creation of Bacillus ndiopicus sp. nov.

  6. Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.

    Science.gov (United States)

    Perfumo, Amedea; Banat, Ibrahim M; Marchant, Roger

    2018-03-01

    Approximately 80% of the Earth's biosphere is cold, at an average temperature of 5°C, and is populated by a diversity of microorganisms that are a precious source of molecules with high biotechnological potential. Biosurfactants from cold-adapted organisms can interact with multiple physical phases - water, ice, hydrophobic compounds, and gases - at low and freezing temperatures and be used in sustainable (green) and low-energy-impact (cold) products and processes. We review the biodiversity of microbial biosurfactants produced in cold habitats and provide a perspective on the most promising future applications in environmental and industrial technologies. Finally, we encourage exploring the cryosphere for novel types of biosurfactants via both culture screening and functional metagenomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Purification and Characterization of Organic Solvent and Detergent Tolerant Lipase from Thermotolerant Bacillus sp. RN2

    Directory of Open Access Journals (Sweden)

    Tadahiko Kajiwara

    2010-09-01

    Full Text Available The aim of this study was to characterize the organic solvent and detergent tolerant properties of recombinant lipase isolated from thermotolerant Bacillus sp. RN2 (Lip-SBRN2. The isolation of the lipase-coding gene was achieved by the use of inverse and direct PCR. The complete DNA sequencing of the gene revealed that the lip-SBRN2 gene contains 576 nucleotides which corresponded to 192 deduced amino acids. The purified enzyme was homogeneous with the estimated molecular mass of 19 kDa as determined by SDS-PAGE and gel filtration. The Lip-SBRN2 was stable in a pH range of 9–11 and temperature range of 45–60 °C. The enzyme was a non metallo-monomeric protein and was active against pNP-caprylate (C8 and pNP-laurate (C12 and coconut oil. The Lip-SBRN2 exhibited a high level of activity in the presence of 108% benzene, 102.4% diethylether and 112% SDS. It is anticipated that the organic solvent and detergent tolerant enzyme secreted by Bacillus sp. RN2 will be applicable as catalysts for reaction in the presence of organic solvents and detergents.

  8. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    Science.gov (United States)

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  9. Effect of two types of biosurfactants on phenanthrene availability to the bacterial bioreporter Burkholderia sartisoli strain RP037

    NARCIS (Netherlands)

    Tecon, R.; Van der Meer, J.R.

    2010-01-01

    Biosurfactants are tensio-active agents that have often been proposed as a means to enhance the aqueous solubility of hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs). Biosurfactant-producing bacteria such as those belonging to the genus Pseudomonas might therefore

  10. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    Science.gov (United States)

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-06-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.

  11. Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells

    Directory of Open Access Journals (Sweden)

    Arezoo Tahmourespour

    2011-03-01

    Full Text Available Streptococcus mutans (S. mutans, harboring biofilm formation, considered as a main aetiological factor of dental caries. Gtf genes play an important role in S. mutans biofilm formation. The purpose of this study was to investigate the effect of Lactobacillus acidophilus-derived biosurfactant on S. mutans biofilm formation and gtfB/C expression level (S. mutans standard strain ATCC35668 and isolated S. mutans strain (22 from dental plaque. The Lactobacillus acidophilus (L. acidophilus DSM 20079 was selected as a probiotic strain to produce biosurfactant. The FTIR analysis of its biosurfactant showed that it appears to have a protein-like component. Due to the release of such biosurfactants, L. acidophilus was able to interfere in the adhesion and biofilm formation of the S. mutans to glass slide. It also could make streptococcal chains shorter. Using realtime RT-PCR quantitation method made it clear that gtfB and gtfC gene expression were decreased in the presence of L. acidophilus-derived biosurfactant fraction. Several properties of S. mutans cells (the surface properties, biofilm formation, adhesion ability and gene expression were changed after L. acidophilus-derived biosurfactant treatment. It is also concluded that biosurfacant treatment can provide an optional way to control biofilm development. On the basis of our findings, we can suggest that the prepared biosurfactant may interfere with adhesion processes of S. mutans to teeth surfaces, provided additional evaluation produce satisfactory results.

  12. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    OpenAIRE

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BS) are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop c...

  13. Degradation of 3-phenoxybenzoic acid by a Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available 3-Phenoxybenzoic acid (3-PBA is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L(-1 3-PBA within 72 h in mineral salt medium (MSM. Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM. The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q(max, K(s and K(i of 0.8615 h(-1, 626.7842 mg·L(-1 and 6.7586 mg·L(-1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t(1/2 for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.

  14. Bacillus subtilis as potential producer for polyhydroxyalkanoates.

    Science.gov (United States)

    Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C

    2009-07-20

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  15. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    OpenAIRE

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E....

  16. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  17. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Science.gov (United States)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  18. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent Emprego de Bacillus pumilus CBMAI 0008 e Paenibacillus sp. CBMAI 868 para remoção da cor do efluente da indústria papeleira

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2009-06-01

    Full Text Available Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour.Bacillus pumilus e Paenibacillus sp. foram aplicados separadamente no efluente da indústria papeleira a pH 7,0, 9,0 e 11,0, para verificação da remoção da cor e da DQO. As remoções da cor real e DQO após 48h a pH 9,0 foram, respectivamente, de 41,87% e 22,08% após o tratamento com B. pumilus e 42,30% e 22,89% após tratamento com Paenibacillus sp. As massas molares dos compostos presentes no efluente não tratado e tratado foram determinadas por cromatografia de permeação em gel. O emprego dos microrganismos reduziu os compostos responsáveis pela cor do efluente da indústria papeleira.

  19. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization.

    Science.gov (United States)

    Shrinivas, Dengeti; Savitha, Gunashekaran; Raviranjan, Kumar; Naik, Gajanan Ramchandra

    2010-11-01

    A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0-10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K (m) and V (max) of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 µM min(-1) mg(-1), respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.

  20. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn