WorldWideScience

Sample records for bioreactor mixing efficiency

  1. Modeling of mixing in stirred bioreactors 4. mixing time for aerated bacteria, yeasts and fungus broths

    Directory of Open Access Journals (Sweden)

    Cascaval Dan

    2004-01-01

    Full Text Available The mixing time for bioreactors depends mainly on the rheoiogicai properties of the broths, the biomass concentration and morphology, mixing system characteristics and fermentation conditions. For quantifying the influence of these factors on the mixing efficiency for stirred bioreactors, aerated broths of bacteria (P. shermanii, yeasts (S. cerevisiae and fungi (P. chrysogenum, free mycelia and mycelial aggregates of different concentrations have been investigated using a laboratory bioreactor with a double turbine impeller. The experimental data indicated that the influence of the rotation speed, aeration rate and stirrer positions on the mixing intensity strongly differ from one system to another and must be correlated with the microorganism characteristics, namely: the biomass concentration and morphology. Moreover, compared with non-aerated broths, variations of the mixing time with the considered parameters are very different, due to the complex flow mechanism of gas-liquid dispersions. By means of the experimental data and using a multiregression analysis method some mathematical correlations for the mixing time of the general form: tm = a1*Cx2+a2*Cx+a3*IgVa+a4-N2+a5-N+a6/a7*L2+a8*L+a9 were established. The proposed equations offer good agreement with the experiments, the average deviation being ±6.7% - ±9.4 and are adequate for the flow regime Re < 25,000.

  2. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.

    Science.gov (United States)

    Song, Hocheol; Yim, Gil-Jae; Ji, Sang-Woo; Neculita, Carmen Mihaela; Hwang, Taewoon

    2012-11-30

    Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD

    DEFF Research Database (Denmark)

    Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina

    2017-01-01

    Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...

  4. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors

    KAUST Repository

    Xiong, Yanghui

    2017-12-11

    This study investigated the impact of varying concentrations of tetracycline on the performance of mixed microalgae-bacteria photo-bioreactors. Photo-bioreactors were assessed for their ability to remove carbon dioxide (CO2) from the biogas of anaerobic membrane bioreactor (anMBR), and nutrients from the anaerobic effluent. The varying concentrations of tetracycline had no impact on the removal of CO2 from biogas. 29% v/v of CO2 was completely removed to generate >20% v/v of oxygen (O2) in all reactors. Removal of nutrients and biomass was not affected at low concentrations of tetracycline (≤150μg/L), but 20mg/L of tetracycline lowered the biomass generation and removal efficiencies of phosphate. Conversely, high chlorophyll a and b content was observed at 20mg/L of tetracycline. High tetracycline level had no impact on the diversity of 18S rRNA gene-based microalgal communities but adversely affected the 16S rRNA gene-based microbial communities. Specifically, both Proteobacteria and Bacteroidetes phyla decreased in relative abundance but not phylum Chloroplast. Additionally, both nitrogen-fixing (e.g. Flavobacterium, unclassified Burkholderiales and unclassified Rhizobiaceae) and denitrifying groups (e.g. Hydrogenophaga spp.) were significantly reduced in relative abundance at high tetracycline concentration. Phosphate-accumulating microorganisms, Acinetobacter spp. and Pseudomonas spp. were similarly reduced upon exposure to high tetracycline concentration. Unclassified Comamonadaceae, however, increased in relative abundance, which correlated with an increase in the abundance of tetracycline resistance genes associated with efflux pump mechanism. Overall, the findings demonstrate that antibiotic concentrations in municipal wastewaters will not significantly affect the removal of nutrients by the mixed microalgae-bacteria photo-bioreactors. However, utilizing such photo-bioreactors as a polishing step for anMBRs that treat wastewaters with high tetracycline

  5. Production of diosgenin from Dioscorea zingiberensis with mixed culture in a new tray bioreactor

    Directory of Open Access Journals (Sweden)

    Yutong Cheng

    2016-01-01

    Full Text Available A new tray bioreactor was developed for the production of diosgenin from Dioscorea zingiberensis with Trichoderma reesei and Aspergillus fumigatus. The influence of initial moisture content, temperature, tray bed depth and mixing times was investigated. The best fermentation condition is initial moisture content of 75%, bioreactor temperature of 35°C, solid bed depth of 1.5 cm and three mixings carrying out on the first, third and fifth day. Under the optimized fermentation conditions, after 144 h incubation, maximum diogenin concentration of 68.2 μmol/g was detected.

  6. Genetic Algorithmic Optimization of PHB Production by a Mixed Culture in an Optimally Dispersed Fed-batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Pratap R. Patnaik

    2009-10-01

    Full Text Available Poly-β-hydroxybutyrate (PHB is an energy-storage polymer whose properties are similar to those of chemical polymers such as polyethylene and polypropylene. Moreover, PHB is biodegradable, absorbed by human tissues and less energy-consuming than synthetic polymers. Although Ralstonia eutropha is widely used to synthesize PHB, it is inefficient in utilizing glucose and similar sugars. Therefore a co-culture of R. eutropha and Lactobacillus delbrueckii is preferred since the latter can convert glucose to lactate, which R. eutropha can metabolize easily. Tohyama et al. [24] maximized PHB production in a well-mixed fed-batch bioreactor with glucose and (NH42SO4 as the primary substrates. Since production-scale bioreactors often deviate from ideal laboratory-scale reactors, a large bioreactor was simulated by means of a dispersion model with the kinetics determined by Tohyama et al. [24] and dispersion set at an optimum Peclet number of 20 [32]. The time-dependent feed rates of the two substrates were determined through a genetic algorithm (GA to maximize PHB production. This bioreactor produced 22.2% more PHB per liter and 12.8% more cell mass than achieved by Tohyama et al. [24]. These results, and similar observations with other fermentations, indicate the feasibility of enhancing the efficiency of large nonideal bioreactors through GA optimizations.

  7. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    Science.gov (United States)

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  8. Effect of Mixing on Microorganism Growth in Loop Bioreactors

    Directory of Open Access Journals (Sweden)

    A. M. Al Taweel

    2012-01-01

    Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.

  9. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    Science.gov (United States)

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  10. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  11. A CFD model for determining mixing and mass transfer in a high power agitated bioreactor

    DEFF Research Database (Denmark)

    Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.

    performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...

  12. Modelling and characterization of an airlift-loop bioreactor

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and

  13. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  15. Construction of a Simple Multipurpose Airlift Bioreactor and its ...

    African Journals Online (AJOL)

    BSN

    The aim of the present research is to develop a simple airlift bioreactor which can be operated even ... compression metal. The bioreactor is mixed ... the method developed by (Bailey and Olis, .... (Ed) Concise Encyclopedia of Bio-resources.

  16. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  17. Development of a compartment model based on CFD simulations for description of mixing in bioreactors

    Directory of Open Access Journals (Sweden)

    Crine, M.

    2010-01-01

    Full Text Available Understanding and modeling the complex interactions between biological reaction and hydrodynamics are a key problem when dealing with bioprocesses. It is fundamental to be able to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. CFD can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of "Compartment" or "Multi-zone" models which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. Therefore, the aim of this study is to develop a methodology in order to propose a compartment model based on CFD simulations of a bioreactor. The flow rate between two compartments can be easily computed from the velocity fields obtained by CFD. The difficulty lies in the definition of the zones in such a way they can be considered as perfectly mixed. The creation of the model compartments from CFD cells can be achieved manually or automatically. The manual zoning consists in aggregating CFD cells according to the user's wish. The automatic zoning defines compartments as regions within which the value of one or several properties are uniform with respect to a given tolerance. Both manual and automatic zoning methods have been developed and compared by simulating the mixing of an inert scalar. For the automatic zoning, several algorithms and different flow properties have been tested as criteria for the compartment creation.

  18. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  19. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  20. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  1. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  2. Effect of sudden addition of PCE and bioreactor coupling to ZVI filters on performance of fluidized bed bioreactors operated in simultaneous electron acceptor modes.

    Science.gov (United States)

    Moreno-Medina, C U; Poggi-Varaldo, Hector M; Breton-Deval, L; Rinderknecht-Seijas, N

    2017-11-01

    The present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance. Simultaneous electron acceptors refer to the simultaneous presence of two compounds operating as final electron acceptors in the biological respiratory chain (e.g., use of either O 2 or NO 3 - in combination with a methanogenic environment) in a bioreactor or environmental niche. Four lab-scale, mesophilic, fluidized bed bioreactors (bioreactors) were implemented. Two bioreactors were operated as simultaneous methanogenic-denitrifying (MD) units, whereas the other two were operated in partially aerated methanogenic (PAM) mode. In the first period, all bioreactors received a wastewater with 1 g chemical oxygen demand of methanol per liter (COD-methanol/L). In a second period, all the bioreactors received the wastewater plus 80 mg perchloroethylene (PCE)/L; at the start of period 2, one MD and one PAM were coupled to side sand-zero valent iron filters (ZVI). All bioreactors were inoculated with a microbial consortium not acclimated to PCE. In this work, the performance of the full period 1 and the first 60 days of period 2 is reported and discussed. The COD removal efficiency and the nitrate removal efficiency of the bioreactors essentially did not change between period 1 and period 2, i.e., upon PCE addition. On the contrary, specific methanogenic activity in PAM bioreactors (both with and without coupled ZVI filter) significantly decreased. This was consistent with a sharp fall of methane productivity in those bioreactors in period 2. During period 2, PCE removals in the range 86 to 97 % were generally observed; the highest removal corresponded to PAM bioreactors along with the

  3. Study on the efficiency of the two phase partitioning stirred tank bioreactor on the toluene filtration from the airstream by Pseudomonas putida via

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: There are different methods for controlling gaseous pollutants formed from air pollution sources that one of the most economical and efficient of them, is bio-filtration. The purpose of this study is Toluene removal from airstream by using the pure Pseudomonas putida bacteria as a fluidized bed in a two phase partitioning stirred tank bioreactor.Toluene ( Metyle benzene is one of the aromatic compounds which uses as a chemical solvent.low to moderate concentration of Toluene causes fatigue, dizziness, weakness,unbalance behaviour, memory loss, insomnia, loss of appetite, loss of vision and hearing. .Material and Method: In this experimental study at first, pure Pseudomonas putida in an aqueous phase containing nutrients and trace elements solution was duplicated and accustomed with Toluene. then solution contained microorganisms with 10% silicon oil was entered to bioreactor. The amount of CO2 and pollutant concentrations in the entrance and exhaust of bioreactor containing Pseudomonas putida was studied during 17 days for each variable. .Result: Experimental findings showed that in the 0.06 m3/h and 0.12 m3/h flow rate, the efficiency of bioreactor containing Pseudomonas putida in the concentration ranges of 283 Mg/m3 to 4710 Mg/m3 was at least 97% and 25% respectively. Statistical analysis (ANOVA showed that in two flow rates of 0.06 m3/h and 0.12 m3/h removal efficiency and mineralization percentage had significant differences .(Pvalue =0.01. .Conclusion: Achieving high efficiencies in pollutants removal was because of the prepared optimum conditions for Pseudomonas putida in the two phase partitioning stirred tank bioreactor with 10% organic phase.

  4. The efficiency of a membrane bioreactor in drinking water denitrification

    Directory of Open Access Journals (Sweden)

    Petrovič Aleksandra

    2015-01-01

    Full Text Available The membrane bioreactor (MBR system was investigated regarding its nitrate removal capacity from drinking water. The performance of a pilot-scale MBR was tested, depending on the operational parameters, using sucrose as a carbon source. Drinking water from the source was introduced into the reactor in order to study the influence of flow-rate on the nitrate removal and denitrification efficiency of drinking water. The content of the nitrate was around 70 mg/L and the C/N ratio was 3:1. Nitrate removal efficiencies above 90% were obtained by flow-rates lower than 4.8 L/h. The specific denitrification rates varied between 0.02 and 0.16 g/L NO3/ (g/L MLSS•d. The efficiencies and nitrate removal were noticeably affected by the flow-rate and hydraulic retention times. At the maximum flow-rate of 10.2 L/h still 68% of the nitrate had been removed, whilst the highest specific denitrification rate was achieved at 0.2738 g/L NO3/ (g/L MLSS•d. The maximum reactor removal capacity was calculated at 8.75 g NO3/m3•h.

  5. Treatment of dairy wastewater with a membrane bioreactor

    Directory of Open Access Journals (Sweden)

    L. H. Andrade

    2013-12-01

    Full Text Available Among the food industries, the dairy industry is considered to be the most polluting one because of the large volume of wastewater generated and its high organic load. In this study, an aerobic membrane bioreactor (MBR was used for the treatment of wastewater from a large dairy industry and two hydraulic retention times (HRT, 6 and 8 hours, were evaluated. For both HRTs removal efficiencies of organic matter of 99% were obtained. Despite high permeate flux (27.5 L/h.m², the system operated fairly stablely. The molecular weight distribution of feed, permeate and mixed liquor showed that only the low molecular weight fraction is efficiently degraded by biomass and that the membrane has an essential role in producing a permeate of excellent quality.

  6. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An evaluation of different bioreactor configurations for continuous bio-ethanol production

    International Nuclear Information System (INIS)

    Ntihuga, Jean Nepomuscene; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard

    2013-01-01

    Highlights: • Two bioreactor configurations were constructed and compared. • Continuous bioethanol production was performed in both bioreactors. • Plate heat exchanger bioreactor was the best for solid mash fermentation. • Operational power costs of both bioreactors were different in small scale levels. • Further study needed for both bioreactors with optimized parameters. - Abstract: In this preliminary investigation, a so-called Blenke cascade and plate heat exchanger bioreactor configuration were compared in terms of mixing characteristics, contamination free process, operational power costs and overall performance. At room temperature, fermentation was initially started as batch run and switched to continuous operation, when the residual sugars within the reactor were detected to be C ⩽ 1% (g/L). Samples from both configurations were taken and analyzed for ethanol and residual sugar content, as well as for any infection of the fermentation and lactic acid content, respectively. Mixing characteristics were studied by the residence time distribution method. Both geometries behaved as a finite number n of continuous stirred tanks in series, behaving as a plug flow with superimposed axial dispersion. The number of tanks in series n obtained in the plate heat exchanger configuration was 1.5–3 times larger than those in the Blenke cascade. The average ethanol productivity was Q p = 3.07 (g/L h) and Q p = 2.31 (g/L h) for cascade and plate exchanger configuration, respectively. The analysis of operational power costs indicates relevant differences between the two reactors at laboratory scale; however, systems with different types of pumps and viscosities are compared. From an industrial scale point of view, specific operational costs decrease with scale-up, as no mechanical mixing is needed in the fermenters

  8. Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

    Directory of Open Access Journals (Sweden)

    Izabela Major Barbosa

    2016-04-01

    Full Text Available This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD5 and Total Organic Carbon (TOC. Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

  9. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  10. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Performance of the mixed LED light quality on the growth and energy efficiency of Arthrospira platensis.

    Science.gov (United States)

    Mao, Ruixin; Guo, Shuangsheng

    2018-06-01

    The effect of mixed light quality with red, blue, and green LED lamps on the growth of Arthrospira platensis was studied, so as to lay the theoretical and technical basis for establishing a photo-bioreactor lighting system for application in space. Meanwhile, indexes, like morphology, growth rate, photosynthetic pigment compositions, energy efficiency, and main nutritional components, were measured respectively. The results showed that the blue light combined with red light could decrease the tightness of filament, and the effect of green light was opposite. The combination of blue light or green light with red light induced the filaments to get shorter in length. The 8R2B treatment could promote the growth of Arthrospira platensis significantly, and its dry weight reached 1.36 g L -1 , which was 25.93% higher than the control. What's more, 8R2B treatment had the highest contents of carbohydrate and lipid, while 8R2G was rich in protein. 8R0.5G1.5B had the highest efficiency of biomass production, which was 161.53 mg L -1  kW -1  h -1 . Therefore, the combination of red and blue light is more conducive to the growth of Arthrospira platensis, and a higher biomass production and energy utilization efficiency can be achieved simultaneously under the mixed light quality with the ratio of 8R0.5G1.5B.

  12. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    Science.gov (United States)

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Efficacy of Bioremediation of Agricultural Runoff Using Bacterial Communities in Woodchip Bioreactors.

    Science.gov (United States)

    Mortensen, Z. H.; Leandro, M.; Silveus, J. M.

    2016-12-01

    California's agricultural sector is fundamental in the State's economic growth and is responsible for supplying a large portion of the country's produce. In order to meet the market's demand for crop production the region's agrarian landscape requires an abundance of nutrient rich irrigation. The resultant agricultural effluent is a source of increased nutrient content in California's watershed and groundwater systems, promoting eutrophication and contributing to negative impacts on local ecosystems and human health. Previous studies have examined the denitrification potential of woodchip bioreactors. However, research has been deficient regarding specific variables that may affect the remediation process. To evaluate the efficacy of woodchip bioreactors in remediating waters containing high nitrate concentrations, denitrification rates were examined and parameters such as temperature, laminar flow, and hydraulic residence times were measured to identify potential methods for increasing denitrification efficiency. By measuring the rate of denitrification in a controlled environment where potentially confounding factors can be manipulated, physical components affecting the efficiency of woodchip bioreactors were examined to assess effects. Our research suggests the implementation of woodchip bioreactors to treat agricultural runoff would significantly reduce the concentration of nitrate in agricultural effluent and contribute to the mitigation of negative impacts associated with agricultural irrigation. Future research should focus on the ability of woodchip bioreactors to successfully remediate other agricultural pollutants, such as phosphates and pesticides, to optimize the efficiency of the bioremediation process.

  15. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  16. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  17. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-10-15

    The temperature effect (37-65 C) on H{sub 2} production from glucose in an open-mixed culture bioreactor using an enrichment culture from a hot spring was studied. The dynamics of microbial communities was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At 45 and 60 C the H{sub 2} production was the highest i.e. 1.71 and 0.85 mol H{sub 2}/mol glucose, respectively. No H{sub 2} was produced at temperatures 50 and 55 C. At 37-45 C, H{sub 2} production was produced by butyrate type fermentation while fermentation mechanism changed to ethanol type at 60 C. Clostridium species were dominant at 37-45 C while at 50-55 C and 60 C the culture was dominated by Bacillus coagulans and Thermoanaerobacterium, respectively. In the presence of B. Coagulans the metabolism was directed to lactate production. The results show that the mixed culture had two optima for H{sub 2} production and that the microbial communities and metabolic patterns promptly changed according to changing temperatures. (author)

  18. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor.

    Science.gov (United States)

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk

    2015-01-01

    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  19. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  20. Numerical Simulation of Mixing in a Micro-well Scale Bioreactor by Computational Fluid Dynamics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The introduction of the multi-well plate miniaturisation technology with its associated automated dispensers, readers and integrated systems coupled with advances in life sciences has a propelling effect on the rate at which new potential drug molecules are discovered. The translation of these discoveries to real outcome now demands parallel approaches which allow large numbers of process options to be rapidly assessed. The engineering challenges in achieving this provide the motivation for the proposed work. In this work we used computational fluid dynamics(CFD) analysis to study flow conditions in a gas-liquid contactor which has the potential to be used as a fermenter on a multi-well format. The bioreactor had a working volume of 6.5 mL with the major dimensions equal to those of a single well of a 24-well plate. The 6.5 mL bioreactor was mechanically agitated and aerated by a single sparger placed beneath the bottom impeller. Detailed numerical procedure for solving the governing flow equations is given. The CFD results are combined with population balance equations to establish the size of the bubbles and their distribution in the bioreactor, Power curves with and without aeration are provided based on the simulated results.

  1. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.

    Science.gov (United States)

    Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri

    2010-06-01

    In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Do efficiency scores depend on input mix?

    DEFF Research Database (Denmark)

    Asmild, Mette; Hougaard, Jens Leth; Kronborg, Dorte

    2013-01-01

    In this paper we examine the possibility of using the standard Kruskal-Wallis (KW) rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix of the observations. Since the DEA frontier...... is estimated, many standard assumptions for evaluating the KW test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, unlike existing approaches...... the assumption of mix independence is rejected the implication is that it, for example, is impossible to determine whether machine intensive project are more or less efficient than labor intensive projects....

  3. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    Science.gov (United States)

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  4. Functional study on two artificial liver bioreactors with collagen gel

    Directory of Open Access Journals (Sweden)

    XU Bing

    2014-10-01

    Full Text Available ObjectiveTo improve the hollow fiber bioreactor of artificial liver. MethodsRat hepatocytes mixed with collagen solution were injected into the external cavity of a hollow fiber reactor to construct a bioreactor of hepatocytes suspended in collagen gel (group Ⅰ. Other rat hepatocytes suspended in solution were injected into the external cavity of a hollow fiber reactor with a layer of collagen on the wall of the external cavity to construct a bioreactor of collagen layer and hepatocytes (group Ⅱ. For each group, the culture solution circulated through the internal cavity of the hollow fiber bioreactor; the bioreactor was put in a culture box for 9 d, and the culture solution in the internal cavity was exchanged for new one every 24 h; the concentrations of albumin (Alb, urea, and lactate dehydrogenase (LDH in the culture solution samples were measured to examine the hepatocyte function of the bioreactor. Statistical analysis was performed using SPSS 130. Continuous data were expressed as mean±SD, and comparison between groups was made by paired t test. ResultsFor groups Ⅰ and Ⅱ, Alb levels reached peak values on day 3 of culture (1.41±0.08 g/L and 0.65±0.05 g/L; from day 3 to 9, group I had a significantly higher Alb level than group Ⅱ (t>7.572, P<0.01. For groups Ⅰ and Ⅱ, urea levels reached peak values on days 3 and 5 of culture (1.73±0.14 mmol/L and 1.56±0.18 mmol/L; from days 5 to 9, group I had a significantly higher urea level than group Ⅱ (t>8.418, P<0.01. For groups Ⅰ and Ⅱ, LDH levels reached peak values on day 9 of culture (32.03±9.13 U/L and 70.17±25.28 U/L; from days 1 to 9, group I had a significantly lower LDH level than group Ⅱ(t>5.633, P<0.01. Therefore, the bioreactor of hepatocytes suspended in collagen gel (group Ⅰ showed a better hepatocyte function and less hepatic enzyme leakage compared with the bioreactor of collagen layer and hepatocytes (group Ⅱ. Conclusion

  5. Towards a continuous two-phase partitioning bioreactor for xenobiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M.Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7 L 3N6 (Canada)

    2016-11-05

    Highlights: • A prototype of a continuous two-phase partitioning bioreactor was investigated. • The bioreactor contained coiled tubing of a selected extruded polymer, Hytrel 8206. • Mass transfer and removal of a xenobiotic, 4-cholorophenol, were investigated. • Removal efficiencies in the tubing wastewater stream were always ≥ 96%. • Presence of polymer tubing buffered increasing in organic load to the hybrid system. - Abstract: The removal of a xenobiotic (4-chlorophenol) from contaminated water was investigated in a simulated continuous two-phase partitioning bioreactor (C-TPPB), fitted with coiled tubing comprised of a specifically-selected extruded polymer, Hytrel 8206. Wastewater flowed inside the tubing, the pollutant diffused through the tubing wall, and was removed in the aqueous bioreactor phase at typical biological removal rates in the C-TTPB simulated by varying aqueous phase throughput to the reactor. Operating over a range of influent substrate concentrations (500–1500 mg L{sup −1}) and hydraulic retention times in the tubing (4–8 h), overall mass transfer coefficients were 1.7–3.5 × 10{sup −7} m s{sup −1}, with the highest value corresponding to the highest tubing flow rate. Corresponding mass transfer rates are of the same order as biological removal rates, and thus do not limit the removal process. The C-TPPB showed good performance over all organic and hydraulic loading ranges, with removal efficiencies of 4CP in the tubing wastewater stream always ≥96%. Additionally, the presence of the Hytrel tubing was able to buffer increases in organic loading to the hybrid system, enhancing overall process stability. Biological testing of the C-TPPB confirmed the abiotic test results demonstrating even higher 4-chlorophenol removal efficiency (∼99%) in the tubing stream.

  6. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Department of Bioengineering, Istanbul Medeniyet University, Goeztepe, Istanbul (Turkey); Kilic, Adem [Department of Environmental Engineering, Harran University, Osmanbey Campus, 63000 Sanliurfa (Turkey); Altun, Muslum [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Department of Mineral Resources Engineering, Technical University of Crete, 73100 Chania (Greece); Lens, Piet N.L. [Unesco-IHE Institute for Water Education, Westvest 7, Delft 2611 AX (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Elemental sulfur can be used as electron acceptor for sulfide production. Black-Right-Pointing-Pointer Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). Black-Right-Pointing-Pointer Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. Black-Right-Pointing-Pointer Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28-30 Degree-Sign C for more than 250 days under varying influent Cr(VI) concentrations (5.0-50.0 mg/L) and hydraulic retention times (HRTs, 0.36-1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  7. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    mechanical forces. For example, cartilage constructs have been cultured in spinner flasks under mixed or unmixed conditions, in simulated and in real microgravity. In these mixing studies, however, it is difficult to definitively quantify the effects of mixing-induced mechanical forces from those of convection-enhanced transport of nutrients to and of catabolites away from the cells. At the state of the art, the presence of a more controlled mechanical environment may be the condition required in order to study the biochemical and mechanical response of these biological systems. Such a controlled environment could lead to an advanced fluid dynamic design of the culture chamber that could both enhance the local mass transfer phenomena and match the needs of specific macroscopic mechanical effects in tissue development. The bioreactor is an excellent example of how the skills and resources of two distinctly different fields can complement each other. Microgravity can be used to enhance the formation of tissue like aggregates in specially designed bioreactors. Theoretical and experimental projects are under way to improve cell culture techniques using microgravity conditions experienced during space flights. Bioreactors usable under space flight conditions impose constructional principles which are different from those intended solely for ground applications. The Columbus Laboratory as part of the International Space Station (ISS) will be an evolving facility in low Earth orbit. Its mission is to support scientific, technological, and commercial activities in space. A goal of this research is to design a unique bioreactor for use sequentially from ground research to space research. One of the particularities of the simulated microgravity obtained through time averaging of the weight vector is that by varying the rotational velocity the same results can be obtained with a different value of g. One of the first applications of this technique in space biology was in fact the

  8. Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-01-01

    In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.

  9. Anaerobic dynamic membrane bioreactors for high strength wastewater treatment

    NARCIS (Netherlands)

    Ersahin, M.E.; Gimenez Garcia, J.B.; Ozgun, H.; Tao, Y.; Van Lier, J.B.

    2013-01-01

    A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater was operated to assess the effect of gas sparging velocity and organic loading rate on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in gas sparging

  10. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion.

    Science.gov (United States)

    Neumann, Anne; Lavrentieva, Antonina; Heilkenbrinker, Alexandra; Loenne, Maren; Kasper, Cornelia

    2014-11-27

    Recruitment of mesenchymal stromal cells (MSC) into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use) disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC) were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  11. Characterization and Application of a Disposable Rotating Bed Bioreactor for Mesenchymal Stem Cell Expansion

    Directory of Open Access Journals (Sweden)

    Anne Neumann

    2014-11-01

    Full Text Available Recruitment of mesenchymal stromal cells (MSC into the field of tissue engineering is a promising development since these cells can be expanded vivo to clinically relevant numbers and, after expansion, retain their ability to differentiate into various cell lineages. Safety requirements and the necessity to obtain high cell numbers without frequent subcultivation of cells raised the question of the possibility of expanding MSC in one-way (single-use disposable bioreactors. In this study, umbilical cord-derived MSC (UC-MSC were expanded in a disposable Z 2000 H bioreactor under dynamic conditions. Z was characterized regarding residence time and mixing in order to evaluate the optimal bioreactor settings, enabling optimal mass transfer in the absence of shear stress, allowing an reproducible expansion of MSC, while maintaining their stemness properties. Culture of the UC-MSC in disposable Z 2000 H bioreactor resulted in a reproducible 8-fold increase of cell numbers after 5 days. Cells were shown to maintain specific MSC surface marker expression as well as trilineage differentiation potential and lack stress-induced premature senescence.

  12. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ultra-micro aqua bioreactor systems for modifying edible oils and fats; Shokuyo yushi kaishitsuyo chobisuikei bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Kurashige, J. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-10-20

    Practical solvent-free bioreactor systems using immobilized lipases have been constructed to convert palm oil to high quality foodstuff oil without quality deterioration through hydrolysis of triglycerides in oil. To avoid hydrolysis, moisture level of substrate oil has to be maintained at less than the solubility level of water in oil, which we call ultra-micro aqueous level. On the other hand, lipase is well known to manifest its activities mostly at the interface between oil and water phases. To make lipase manifest its activities at the ultra-micro aqueous oil phase, the novel bioreactor systems with the new immobilizing method of lipase together with activator on-to hydrophylic carriers, and without a drying procedure have been developed. These biochemical accomplishments show high promises for efficient convention of edible fats and oils to highly valuable foodstuff, which can not be attained by means of chemical or physical methods. 29 refs., 9 figs., 4 tabs.

  15. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    Lee, Y. H.; Lee, S.

    2009-01-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  16. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  17. Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions.

    Science.gov (United States)

    Núñez-Ramírez, Diola Marina; Medina-Torres, Luis; Valencia-López, José Javier; Calderas, Fausto; López Miranda, Javier; Medrano-Roldán, Hiram; Solís-Soto, Aquiles

    2012-11-01

    Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi.

  18. Recycle bioreactor for bioethanol production from wheat starch. 1. Cold enzyme hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.; Hill, G.A.; MacDonald, D.G. [Department of Chemical Engineering, Saskatchewan (Canada)

    2001-06-01

    A 5 L membrane bioreactor system has been designed and operated at low temperature to hydrolyze starch granules directly to sugars using barley {alpha}-amylase. The system includes a temperature and pH controlled, well-mixed bioreactor; microfilters to separate and recycle granules; and ultrafilters to separate and recycle enzyme molecules. Operation in batch mode demonstrated similar kinetics and low productivity observed earlier in shake flasks, whereas continuous flow operation was not successful due to enzyme inhibition and degradation. Sequential batch mode operation, involving filtration after each batch hydrolysis, produced optimum productivity measured at 0.16 grams of starch granules hydrolyzed per gram of enzyme per hour for more than 100 hours of operation. (author)

  19. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  20. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of different leachate/acetate ratios in a submerged anaerobic membrane bioreactor (SAnMBR)

    Energy Technology Data Exchange (ETDEWEB)

    Taskan, Ergin [Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazig (Turkey); Hasar, Halil [Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazig (Turkey); National Research Center on Membrane Technologies, Maslak, Istanbul (Turkey)

    2012-05-15

    Leachate treatment using a membrane bioreactor is an effective method. This study presents a configuration including an anaerobic bioreactor and a membrane module, called submerged anaerobic membrane bioreactor (SAnMBR), for treating influent with leachate/acetate rations (L/A), that were kept to be 10, 25, 50, 75, and 100% at a constant SRT (100 days). COD removal decreased from 85 to 75% when the L/A ratio increased from 10 to 100. To prevent membrane fouling, a SAnMBR was operated in the case of circulation of mixed liquor under continuous and intermittent suction. The average fluxes were 2.60 and 0.40 L/m{sup 2} h at the periods of intermittent and continuous suction, respectively. The methane production varied between 0.25 and 0.32 L CH{sub 4}/g COD{sub removed}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  3. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  4. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    Science.gov (United States)

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  5. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry.

    Science.gov (United States)

    Poyatos, José M; Molina-Muñoz, Marisa; Moreno, Begoña; González-López, Jesús; Hontoria, Ernesto

    2007-06-01

    The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate.

  6. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khondee, Nichakorn; Tathong, Sitti [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok (Thailand); Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Pinyakong, Onruthai [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand); Powtongsook, Sorawit [Center of Excellence for Marine Biotechnology (c/o Department of Marine Science, Chulalongkorn University), National Center for Genetic Engineering and Biotechnology, Pathum Thani (Thailand); Chatchupong, Thawach; Ruangchainikom, Chalermchai [Environmental Research and Management Department, PTT Research and Technology Institute, Ayutthaya (Thailand); Luepromchai, Ekawan, E-mail: ekawan.l@chula.ac.th [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Sphingobium sp. P2 effectively degraded various lubricant samples. Black-Right-Pointing-Pointer Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. Black-Right-Pointing-Pointer High removal efficiency was due to both sorption and degradation processes. Black-Right-Pointing-Pointer The immobilized bacteria (4 g L{sup -1}) were applied in internal loop airlift bioreactor. Black-Right-Pointing-Pointer The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80-90% of the 200 mg L{sup -1} total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L{sup -1} immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 {+-} 5% TPH and 73 {+-} 11% chemical oxygen demand (COD) from the carwash wastewater with 25-200 mg L{sup -1} amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  7. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    International Nuclear Information System (INIS)

    Khondee, Nichakorn; Tathong, Sitti; Pinyakong, Onruthai; Powtongsook, Sorawit; Chatchupong, Thawach; Ruangchainikom, Chalermchai; Luepromchai, Ekawan

    2012-01-01

    Highlights: ► Sphingobium sp. P2 effectively degraded various lubricant samples. ► Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. ► High removal efficiency was due to both sorption and degradation processes. ► The immobilized bacteria (4 g L −1 ) were applied in internal loop airlift bioreactor. ► The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80–90% of the 200 mg L −1 total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L −1 immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 ± 5% TPH and 73 ± 11% chemical oxygen demand (COD) from the carwash wastewater with 25–200 mg L −1 amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  8. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor.

    Science.gov (United States)

    Zhang, Jian; Chu, Deqiang; Huang, Juan; Yu, Zhanchun; Dai, Gance; Bao, Jie

    2010-03-01

    The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. (c) 2009 Wiley Periodicals, Inc.

  9. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.

    Science.gov (United States)

    Talò, G; Turrisi, C; Arrigoni, C; Recordati, C; Gerges, I; Tamplenizza, M; Cappelluti, A; Riboldi, S A; Moretti, M

    2018-02-01

    Bioreactors are essential enabling technologies for the translation of advanced therapies medicinal products from the research field towards a successful clinical application. In order to speed up the translation and the spread of novel tissue engineering products into the clinical routine, tissue engineering bioreactors should evolve from laboratory prototypes towards industrialized products. In this work, we thus challenged the industrialization process of a novel technological platform, based on an established research prototype of perfusion bioreactor, following a GMP-driven approach. We describe how the combination of scientific background, intellectual property, start-up factory environment, wise industrial advice in the biomedical field, design, and regulatory consultancy allowed us to turn a previously validated prototype technology into an industrial product suitable for serial production with improved replicability and user-friendliness. The solutions implemented enhanced aesthetics, ergonomics, handling, and safety of the bioreactor, and they allowed compliance with the fundamental requirements in terms of traceability, reproducibility, efficiency, and safety of the manufacturing process of advanced therapies medicinal products. The result is an automated incubator-compatible device, housing 12 disposable independent perfusion chambers for seeding and culture of any perfusable tissue. We validated the cell seeding process of the industrialized bioreactor by means of the Design of Experiment approach, whilst the effectiveness of perfusion culture was evaluated in the context of bone tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Hydraulic Behavior in The Downflow Hanging Sponge Bioreactor

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-12-01

    Full Text Available Performance efficiency in a Downflow Hanging Sponge (DHS bioreactor is associated with the amount of time that a wastewater remains in the bioreactor. The bioreactor is considered as a plug flow reactor and its hydraulic residence time (HRT depends on the void volume of packing material and the flow rate. In this study, hydraulic behavior of DHS bioreactor was investigated by using tracer method. Two types of sponge module covers, cylindrical plastic frame (module-1 and plastic hair roller (module-2, were investigated and compared. A concentrated NaCl solution used as an inert tracer and input as a pulse at the inlet of DHS bioreactor. Analysis of the residence time distribution (RTD curves provided interpretation of the index distribution or holdup water (active volume, the degree of short-circuiting, number of tanks in series (the plug flow characteristic, and the dispersion number. It was found that the actual HRT was primarily shorter than theoretical HRT of each test. Holdup water of the DHS bioreactor ranged from 60% to 97% and 36% to 60% of module-1 and module-2, respectively. Eventhough module-1 has higher effective volume than module-2, result showed that the dispersion numbers of the two modules were not significant difference. Furthermore, N-values were found larger at a higher flow rate. It was concluded that a DHS bioreactor design should incorporated a combination of water distributor system, higher loading rate at startup process to generate a hydraulic behavior closer to an ideal plug flow.ABSTRAKEfisiensi unjuk kerja bioreactor Downflow Hanging Sponge (DHS berkaitan dengan lamanya waktu tinggal limbah berada di dalam bioreaktor tersebut. Bioreaktor DHS dianggap sebagai seuatu reaktor aliran sumbat (plug flow dimana waktu tinggal hidraulik (HRT tergantung pada volume pori material isian dan laju alir. Dua jenis modul digunakan dalam penelitian ini, yang diberi nama dengan module-1 dan module-2 untuk melihat pengaruh jenis modul

  11. Measuring mixing efficiency in experiments of strongly stratified turbulence

    Science.gov (United States)

    Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.

    2017-12-01

    Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.

  12. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    Science.gov (United States)

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  13. Treatment of Synthetic Wastewater by Aerobic¬-anaerobic Bioreactor with Granular Sludge Developed for Removal of Nutrients

    Directory of Open Access Journals (Sweden)

    Malihe Amini

    2014-05-01

    Full Text Available The excessive accumulation of nutrient (C, N, and P discharge to surface water can pose serious ecological problems that affect the health of aquatic life and consequently that of human and animals. It is, therefore, necessary to remove these substances from wastewaters for reducing their harm to environments. A novel upflow aerobic/anoxic flocculated sludge bioreactor (UAASB will be establish and apply as a single treatment unit for carbon, nitrogen and phosphorus removal. In this study, nutrients (C, N and P removal efficiency in a time-based control UAASB reactor has studied. Analyze of nutrients removal efficiency were investigated from wastewater using optimization of factors and effects of variables: COD/N/P ratio and flow rate. Results of experiments showed that COD/N/P ratio 1000/250/2 and Q 7 L/h in HRT 6 h, F/M 0.054 kg COD/kg MLVSS.h and OLR 0.15 kg/m3.h were desirable for removal of nutrients from wastewater in aerobic/anaerobic bioreactor. In these conditions SVI 53.12 mL/g, COD removal efficiency 86% and PO43- removal efficiency 97.5% were showed. According all results of responses for best nutrient removal, UAASB bioreactor is desirable for removal efficiency of C and P.

  14. Bacterial study of the anaerobic bioreactor for distillery effluent

    International Nuclear Information System (INIS)

    Shah, F. A.; Pathan, M. I.

    2006-01-01

    This study relates with anaerobic bioreactors of Habib Sugar Mills, Nawabshah. Bacterial growth was studied through microscope along with its effect on the production of methane gas (Biogas) at all HRTs (Hydraulic Retention Times) between 15 and 28 days. The bacterium has the efficiency to convert 12% glucose within 24 hours to final product and cell mass. The acetogenic organisms also show their maximum growth on glucose in BGP-1 and BPG-2 at both the corks, where as Methanogenic organisms have shown their zero shown their zero growth on glucose. The efforts have been taken to determine the methanogenic, acetogenic and syntrophomonas sp. data of anaerobic bioreactors of BGP (Biogas Plant) I and II, when these samples were cultured on acetate, methanol, formate, butyrate, propionate and glucose. (author)

  15. Application of a membrane bioreactor for winery wastewater treatment.

    Science.gov (United States)

    Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F

    2010-01-01

    Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.

  16. Application of a stir-tank bioreactor for perfusion culture and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-18

    Jan 18, 2010 ... The bioreactor we used could be an efficient cell culture system and demonstrates industrial potential. ... overcoming the harmful effects of browning have no conclusive .... solvent under reduced pressure, the ethanol extract liquids was re- ... was detected in the exhaust medium with a perfusion rate of more ...

  17. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  18. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of attapulgite addition on the biological performance and microbial communities of submerged dynamic membrane bioreactor

    Directory of Open Access Journals (Sweden)

    Wensong Duan

    2017-12-01

    Full Text Available A submerged dynamic membrane bioreactor (sDMBR was developed to test the influence of attapulgite (AT addition on the treatment performances and the microbial community structure and function. The batch experimental results displayed the highest UV254 and dissolved organic carbon (DOC removal efficiencies with 5% AT/mixed liquid suspended solids addition dosage. The continuous sDMBR results showed that the removal efficiencies of chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus significantly increased in the AT added sDMBR. Excitation emission matrix analysis demonstrated that the protein-like peaks and fulvic acid-like peaks were significantly decreased in both in the mixed liquid and the effluent of the AT added reactor. The obligate anaerobes were observed in the sDMBR with AT addition, such as Bacteroidetes and Gamma proteobacterium in the dynamic membrane, which played an important role in the process of sludge granulation. Bacterial community richness significantly increased after AT addition with predominated phyla of Proteobacteria and Bacteroidetes. Similarly, species abundance significantly increased in the AT added sDMBR. Further investigations with cluster proved that AT was a favorite biological carrier for the microbial ecology, which enriched microbial abundance and community diversity of the sDMBR.

  20. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  1. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system

    International Nuclear Information System (INIS)

    Johnson, D. Barrie; Hallberg, Kevin B.

    2005-01-01

    revealed new insights into the operation of compost bioreactors used to remediate mine waters and has shown that, when operated under appropriate conditions, they can be highly efficient at generating alkalinity and removing metals from extremely acidic, metal-rich AMD

  2. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system.

    Science.gov (United States)

    Johnson, D Barrie; Hallberg, Kevin B

    2005-02-01

    revealed new insights into the operation of compost bioreactors used to remediate mine waters and has shown that, when operated under appropriate conditions, they can be highly efficient at generating alkalinity and removing metals from extremely acidic, metal-rich AMD.

  3. The kinetics of crossflow dynamic membrane bioreactor | Li | Water SA

    African Journals Online (AJOL)

    Crossflow dynamic membrane bioreactor (CDMBR) kinetics was investigated by treating caprolactam wastewater over a period of 180 d. The removal efficiencies of organic substances and nitrogen averaged over 99% and 80%, respectively. The observed sludge yield was only 0.14 g SS·g-1 COD·d-1 at an SRT of 30 d ...

  4. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  5. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  6. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Sobri Hussein; Rusli Ibrahim; Abdul Rahim Harun; Azhar Mohamad; Hawa Abdul Aziz; Wan Nazirah Wan Ali

    2010-01-01

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  7. A submerged tubular ceramic membrane bioreactor for high strength wastewater treatment.

    Science.gov (United States)

    Sun, D D; Zeng, J L; Tay, J H

    2003-01-01

    A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.

  8. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

    Science.gov (United States)

    Lorah, Michelle M.; Walker, Charles; Graves, Duane

    2015-01-01

    Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

  9. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    Science.gov (United States)

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  10. Process technology of luwak coffee through bioreactor utilization

    Science.gov (United States)

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  11. Removal of linear alkylbenzene sulfonate (LAS) and its intermediate, sulfophenylalkanoates (spa) using a bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ku [Seoul National Univ., Seoul (Korea, Republic of); Kim, Ji Hyeon; Yoo, Young Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Hwa Yong [Seoul National Univ., Seoul (Korea, Republic of)

    1995-12-01

    A fluidized-bed bioreactor was used to treat the industrial wastewater containing linear alkylbenzene sulfonate(LAS). Microorganism obtained by acclimation showed low growth rate and substrate inhibition at relatively high substrate concentration. It was found from the experiment using fluidized-bed bioreactor that 64 {mu}m-thick biofilm was made after 15 days. The 93.4% LAS removal efficiency in the reactor was obtained at 120 mg/L of initial LAS concentration, while the removal efficiency of sulfophenylalkannoates(SPA) which is a representative intermediate of biodegradation of LAS was 60-88% depending on the initial concentration of LAS. When sodium benzoate was added to the second reactor, the remaining SPA became lowered by 40% compared to the control experiment. And when activated carbon was added to the reactor, the removal efficiency of SPA was 96.2% and that of LAS was 100% when initial inflowing concentration of LAS was 350 mg/L. 13 refs., 4 tabs., 8 figs.

  12. Mixing and Mass Transfer in Industrial Bioreactors

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....

  13. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  15. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  16. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  17. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiue-Lin; Chao, Yu-Chieh; Wang, Yu-Hsuan; Hsiao, Chia-Jung; Bai, Ming-Der [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Whang, Liang-Ming; Wang, Yung-Fu; Cheng, Sheng-Shung [Department of Environmental Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Tseng, I.-Cheng [Sustainable Environment Research Center (SERC), National Cheng-Kung University, No. 1, University Road, Tainan 701 (China); Department of Life Science, National Cheng-Kung University, No. 1, University Road, Tainan 701 (China)

    2010-01-15

    This study evaluated anaerobic hydrogenation performance and microbial ecology in bioreactors operated at different hydraulic retention time (HRT) conditions and fed with glucose-peptone (GP) and starch-peptone (SP). The maximum hydrogen production rates for GP- and SP-fed bioreactors were found to be 1247 and 412 mmol-H{sub 2}/L/d at HRT of 2 and 3 h, respectively. At HRT > 8 h, hydrogen consumption due to peptone fermentation could occur and thus reduced hydrogen yield from carbohydrate fermentation. Results of cloning/sequencing and denaturant gradient gel electrophoresis (DGGE) indicated that Clostridium sporogenes and Clostridium celerecrescens were dominant hydrogen-producing bacteria in the GP-fed bioreactor, presumably due to their capability on protein hydrolysis. In the SP-fed bioreactor, Lactobacillus plantarum, Propionispira arboris, and Clostridium butyricum were found to be dominant populations, but the presence of P. arboris at HRT > 3 h might be responsible for a lower hydrogen yield from starch fermentation. As a result, optimizing HRT operation for bioreactors was considered an important asset in order to minimize hydrogen-consuming activities and thus maximize net hydrogen production. The limitation of simple parameters such as butyrate to acetate ratio (B/A ratio) in predicting hydrogen production was recognized in this study for bioreactors fed with multiple substrates. It is suggested that microbial ecology analysis, in addition to chemical analysis, should be performed when complex substrates and mixed cultures are used in hydrogen-producing bioreactors. (author)

  18. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Tonci; Santek, Bozidar; Rezić, Iva; Hann, Stephan; Stingeder, Gerhard

    2012-10-02

    Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.

  19. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    Science.gov (United States)

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium. © 2014 Wiley Periodicals, Inc.

  20. Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber

    Science.gov (United States)

    Yang, Yanxia; Li, Jing

    2018-05-01

    A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and ɛ =0.3. For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.

  1. Application of semifluidized bed bioreactor as novel bioreactor ...

    African Journals Online (AJOL)

    The conventional bioreactors such as pond digester, anaerobic filtration, up-flow anaerobic sludge blanket (UASB), up-flow anaerobic sludge fixed-film (UASFF), continuous stirred tank reactor (CSTR), anaerobic contact digestion and fluidized bed, used over the past decades are largely operated anaerobically. They have ...

  2. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  3. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.

    Science.gov (United States)

    Liu, Xuefei; Wang, Yuan; Waite, T David; Leslie, Greg

    2015-05-15

    A CFD model, incorporating an empirically determined rheology model and a porous media model, was developed to simulate bubble induced surface shear in membrane bioreactors configured with hollow fibre membranes with outer diameters ranging from 1.3 to 2.4 mm, arranged in vertically orientated modules with packing density from 200 to 560 m(2)/m(3). The rheology model was developed for mixed liquor suspended solids (MLSS) concentrations of 3 to 16 gL(-1) in the presence and absence of coagulant (generated by addition of a ferrous salt) for shear rates ranging from 0 to 500 s(-1). Experimentally determined particle relaxation times for the biological flocs in the mixed liquor, both in the absence and presence of iron, were negligible, consistent with an environment where positive buoyancy forces were greater than negative settling forces thereby allowing the sludge mixture to be modelled as a single continuous phase. The non-Newtonian behaviour of the mixed liquor was incorporated into the CFD simulations using an Ostwald-de Waele rheology model. Interactions between mixed liquor and hollow fibre membranes of different fibre size and packing density were described using a porous media model that was calibrated by empirical measurement of inertial loss coefficients over a range of viscosities (0.8 × 10(-3) to 2.1 × 10(-3) Pa.s) and velocities (0 to 0.35 m/s) typically encountered in full scale MBRs. Experimental results indicated that addition of iron salts resulted in an increase in MLSS and sludge viscosity. Shear stress is affected by both velocity and viscosity. The increase in sludge viscosity resulted in an increase in resistance to flow through the hollow fibre membrane bundles and, as a result, decreased the liquid flow velocities. CFD simulations provided insight on the effects of point of coagulant addition and MLSS concentration on bubble-induced shear over a range of industrially relevant conditions. A 12% increase in shear stress was observed when

  4. Application of an aerobic fixed bed bioreactor for treatment of petroleum refinery wastewaters; Aplicacao de um bio-reator aerobio de leito fixo para tratamento de efluentes do refino de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Vendramel, Simone M.; Dezzotti, Marcia; Sant' Anna Junior, Geraldo L. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica

    2004-07-01

    The motivation of this work was to investigate a biological treatment system, which requires low installation area and presents high flexibility. Thus, a laboratory scale aerated submerged fixed-film bioreactor was applied to the treatment of a petroleum refinery wastewater and its performance was monitored. The reactor was continuously operated during 260 days and submitted to different organic loadings in the range of 0.5 to 2.4 kgCOD.m{sup -3}.d{sup -1}. The following removal efficiencies were attained: COD (75 - 91%), TSS and TVS (60 - 92%) and DOC (56 - 91%) and turbidity (71 - 95%). The reactor presented a high level of mixing and showed to be stable when submitted to different hydraulic and organic loadings. Loss of biofilm was negligible and medium clogging problems were not observed. The support medium (PVC plates) showed to be very adequate for microbial adhesion and growth, resulting in stable bioreactor operation. (author)

  5. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  6. Aerobic granular biomass: a novel biomaterial for efficient uranium removal

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Joshi, H.M.; Mohan, T.V.K.; Venugopalan, V.P.; Narasimhan, S.V.

    2006-01-01

    Aerobic microbial granules, self-immobilized microbial consortia cultured in aerobically operated bioreactors, primarily consist of mixed species of bacteria ensconced in an extracellular polymeric matrix of their own creation. Such aerobically grown microbial granules have attracted considerable research interest in environmental biotechnology. In recent times, it has been demonstrated that the granules could be used for efficient degradation of recalcitrant organic compounds and for the treatment of a growing number of wastes. The objective of this study was to investigate whether aerobic granules could be used as novel biomass material for biosorption of uranium from aqueous solutions

  7. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  8. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    Science.gov (United States)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  9. Comparison between a conventional membrane bioreactor (C-MBR and a biofilm membrane bioreactor (BF-MBR for domestic wastewater treatment

    Directory of Open Access Journals (Sweden)

    E. L. Subtil

    2014-09-01

    Full Text Available In this paper, the influence of biofilm carriers in a MBR on the performance of organic matter and nitrogen removal and the influence on membrane fouling were evaluated. The configurations studied included a Conventional Membrane Bioreactor (C-MBR and a Biofilm Membrane Bioreactor (BF-MBR operated in parallel, both fed with domestic wastewater. Regarding organic matter removal, no statistically significant differences were observed between C-MBR and BF-MBR, producing an effluent with a Soluble COD concentration of 27 ± 9.0 mgO2/L and 26 ±1.0 mgO2/L and BOD concentration of 6.0 ± 2.5 mgO2/L and 6.2 ± 2.1 mgO2/L, respectively. On the other hand, the BF-MBR produced a permeate with lower ammonia and total nitrogen concentrations, which resulted in a removal efficiency of 98% and 73%, respectively. It was also observed that the fouling rate was about 35% higher in the C-MBR than that for the BF-MBR, which also presented a reduction of total membrane resistance, about 29%, and increased operational cycle length around 7 days, compared to C-MBR.

  10. Biological treatment of concentrated hazardous, toxic, and radionuclide mixed wastes without dilution

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel

  11. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    Science.gov (United States)

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  12. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: Importance of attached biomass.

    Science.gov (United States)

    Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang

    2017-03-15

    This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Hancher, C.W.; Taylor, P.A.; Napier, J.M.

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m 3 ; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO 3 - )/day-m 3 using feed with a nitrate concentration of 1800 g/m 3 . Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30 0 C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  14. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  15. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    Science.gov (United States)

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Scale-up of bioreactors: The concept of bioreactor number and its relation to the physiology of industrial microorganisms at different scales

    Energy Technology Data Exchange (ETDEWEB)

    De Ford, D

    1988-01-01

    The objective of this research is to provide a novel approach to the problem of scale-up of fermentations. The work subscribes the idea that two regions appear in bioreactors as the volume increases. The first is where high oxygen transfer occurs and the second is where low oxygen transfer occurs. It is assumed that organisms grown in a stirred tank fermenter travel in a cyclical manner through these two regions. A dimensionless factor is developed, the bioreactor number. Using this number the performance of any stirred tank fermenter can be described as a function of its geometry, operating conditions and physical properties of media. A mathematical model for the prediction of the physiological response of aerobic micro-organisms (specific growth rate, final cell concentration and product synthesis) as a function of the bioreactor number is also developed. It was adjusted by using the results of fermentations performed in a specially designed experimental rig allowing the simulation of fermenters with various bioreactor numbers. If the bioreactor and physiological models are linked it is possible to predict how micro-organisms respond when geometry, operating conditions or media properties are changed in a bioreactor. This approach is a tool for decision making in the design and operation of fermenters.

  17. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  18. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB

    Directory of Open Access Journals (Sweden)

    Sarzyński Rafał

    2017-01-01

    Full Text Available The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ∼200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution through packing (polypropylene Ralu rings covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2. The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 – 84 gm-3 h -1, styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  19. Comparison of membrane bioreactor technology and conventional ...

    African Journals Online (AJOL)

    The purpose of this paper was to review the use of membrane bioreactor technology as an alternative for treating the discharged effluent from a bleached kraft mill by comparing and contrasting membrane bioreactors with conventional activated sludge systems for wastewater treatment. There are many water shortage ...

  20. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  1. A flexible well-mixed milliliter-scale reactor with high oxygen transfer rate for microbial cultivations

    DEFF Research Database (Denmark)

    Bolic, Andrijana; Larsson, Hilde Kristina; Hugelier, Siewert

    2016-01-01

    solution and replacement for existing microtiter plates, shaken flasks and bench scale bioreactors. In this work, a new design of a milliliter-scale bioreactor system is presented and characterized. The entire system consists of a platform with gas connections, heater, temperature sensor and optical fibers...... on the one side and a bioreactor with special designed magnetic stirrer and non-invasive optical sensors for measurement of pH, dissolved oxygen and optical density on the other side. The system has a high level of flexibility in terms of volume (0.5–2 mL), aeration (sparging and surface aeration) and mixing...

  2. Technical Efficiency and Organ Transplant Performance: A Mixed-Method Approach

    Science.gov (United States)

    de-Pablos-Heredero, Carmen; Fernández-Renedo, Carlos; Medina-Merodio, Jose-Amelio

    2015-01-01

    Mixed methods research is interesting to understand complex processes. Organ transplants are complex processes in need of improved final performance in times of budgetary restrictions. As the main objective a mixed method approach is used in this article to quantify the technical efficiency and the excellence achieved in organ transplant systems and to prove the influence of organizational structures and internal processes in the observed technical efficiency. The results show that it is possible to implement mechanisms for the measurement of the different components by making use of quantitative and qualitative methodologies. The analysis show a positive relationship between the levels related to the Baldrige indicators and the observed technical efficiency in the donation and transplant units of the 11 analyzed hospitals. Therefore it is possible to conclude that high levels in the Baldrige indexes are a necessary condition to reach an increased level of the service offered. PMID:25950653

  3. Cake formation and consolidation: main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewater

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2007-01-01

    A laboratory scale anaerobic submerged membrane bioreactor (AnSMBR) was operated for over 200 days, with a volatile fatty acid mixture as substrate. Gas sparging was used for mixing and to provide membrane surface shear. Results show that cake formation was entirely governing the applicable flux.

  4. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  5. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  6. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  7. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  8. Removal of Cr(VI) from aqueous solutions by a bacterial biofilm supported on zeolite: optimisation of the operational conditions and Scale-Up of the bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, M. [IBB - Instituto de Biotecnologia e Bioengenharia, Centro de Engenharia Biologica, Universidade do Minho, Braga (Portugal); Departamento de Ingenieria Quimica, Universidade de Vigo, Vigo (Spain); Branco, M.; Tavares, T. [IBB - Instituto de Biotecnologia e Bioengenharia, Centro de Engenharia Biologica, Universidade do Minho, Braga (Portugal); Neves, I.C. [Departamento de Quimica, Centro de Quimica, Universidade do Minho, Braga (Portugal); Sanroman, M.A. [Departamento de Ingenieria Quimica, Universidade de Vigo, Vigo (Spain)

    2010-12-15

    The aim of this study was to investigate the feasibility of a bioreactor system and its scale-up to remove Cr(VI) from solution. The bioreactor is based on an innovative process that combines bioreduction of Cr(VI) to Cr(III) by the bacterium Arthrobacter viscosus and Cr(III) sorption by a specific zeolite. Batch studies were conducted in a laboratory-scale bioreactor, taking into account different operating conditions. Several variables, such as biomass concentration, pH and zeolite pre-treatment, were evaluated to increase removal efficiency. The obtained results suggest that the Cr removal efficiency is improved when the initial biomass concentration is approximately 5 g L{sup -1} and the pH in the system is maintained at an acidic level. Under the optimised conditions, approximately 100 % of the Cr(VI) was removed. The scale-up of the developed biofilm process operating under the optimised conditions was satisfactorily tested in a 150-L bioreactor. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  10. MELiSSA third compartment: Nitrosomonas europaea and Nitrobacter winogradskyi axenic cultures in bioreactors

    Science.gov (United States)

    Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles

    Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the

  11. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what......Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...

  12. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sibrell, Philip L; Penn, Chad; Summerfelt, Steven T

    2017-09-15

    Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6-59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25-133 versus 8.8-48 g P removed m -3 filter media d -1 , respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0-18 g N removed m -3 woodchips d -1 ; N removal efficiencies: 18-95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite. Copyright © 2017 The Conservation Fund. Published by Elsevier Ltd.. All rights reserved.

  13. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping

    Science.gov (United States)

    Christianson, Laura E.; Lepine, Christine; Sibrell, Philip; Penn, Chad J.; Summerfelt, Steven T.

    2017-01-01

    Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6–59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25–133 versus 8.8–48 g P removed m−3 filter media d−1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0–18 g N removed m−3 woodchips d−1; N removal efficiencies: 18–95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.

  14. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kijjanapanich, Pimluck, E-mail: som_cheng00@hotmail.com [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands); Do, Anh Tien [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Annachhatre, Ajit P. [Environmental Engineering and Management, Asian Institute of Technology, PO Box 4, Klongluang, Pathumthani 12120 (Thailand); Esposito, Giovanni [Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino (Italy); Yeh, Daniel H. [Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Lens, Piet N.L. [Pollution Prevention and Resource Recovery Chair Group, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft (Netherlands)

    2014-03-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L{sup −1}) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L{sup −1} did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems.

  15. Biological sulfate removal from construction and demolition debris leachate: Effect of bioreactor configuration

    International Nuclear Information System (INIS)

    Kijjanapanich, Pimluck; Do, Anh Tien; Annachhatre, Ajit P.; Esposito, Giovanni; Yeh, Daniel H.; Lens, Piet N.L.

    2014-01-01

    Highlights: • Novel biological technique for gypsum removal from CDD. • CDDS leachate treatment performed using different sulfate reducing bioreactors. • Gypsum in CDD can be used as a source of sulfate for sulfate reducing bacteria. • High calcium concentration (1000 mg L −1 ) did not affect the bioreactor performance. - Abstract: Due to the contamination of construction and demolition debris (CDD) by gypsum drywall, especially, its sand fraction (CDD sand, CDDS), the sulfate content in CDDS exceeds the posed limit of the maximum amount of sulfate present in building sand (1.73 g sulfate per kg of sand for the Netherlands). Therefore, the CDDS cannot be reused for construction. The CDDS has to be washed in order to remove most of the impurities and to obtain the right sulfate content, thus generating a leachate, containing high sulfate and calcium concentrations. This study aimed at developing a biological sulfate reduction system for CDDS leachate treatment and compared three different reactor configurations for the sulfate reduction step: the upflow anaerobic sludge blanket (UASB) reactor, inverse fluidized bed (IFB) reactor and gas lift anaerobic membrane bioreactor (GL-AnMBR). This investigation demonstrated that all three systems can be applied for the treatment of CDDS leachate. The highest sulfate removal efficiency of 75–85% was achieved at a hydraulic retention time (HRT) of 15.5 h. A high calcium concentration up to 1000 mg L −1 did not give any adverse effect on the sulfate removal efficiency of the IFB and GL-AnMBR systems

  16. A Combined Algorithm for Optimization: Application for Optimization of the Transition Gas-Liquid in Stirred Tank Bioreactors

    Directory of Open Access Journals (Sweden)

    Mitko Petrov

    2005-12-01

    Full Text Available A combined algorithm for static optimization is developed. The algorithm includes a method for random search of optimal an initial point and a method based on fuzzy sets theory, combined in order to be found for the best solution of the optimization problem. The application of the combined algorithm eliminates the main disadvantage of the used fuzzy optimization method, namely decreases the number of discrete values of control variables. In this way, the algorithm allows problems with larger scale to be solved. The combined algorithm is used for optimization of gas-liquid transition in dependence on some constructive and regime parameters of a laboratory scale stirred tank bioreactor. After the application of developed optimization algorithm significant increase of mass-transfer effectiveness, aeration and mixing processes in the bioreactor are observed.

  17. Level-set dynamics and mixing efficiency of passive and active scalars in DNS and LES of turbulent mixing layers

    NARCIS (Netherlands)

    Geurts, Bernard J.; Vreman, Bert; Kuerten, Hans; Luo, Kai H.

    2001-01-01

    The mixing efficiency in a turbulent mixing layer is quantified by monitoring the surface-area of level-sets of scalar fields. The Laplace transform is applied to numerically calculate integrals over arbitrary level-sets. The analysis includes both direct and large-eddy simulation and is used to

  18. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  19. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  20. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  1. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  2. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  3. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    Science.gov (United States)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;pdetergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a function of groundwater temperature for all treatments

  4. Anaerobic treatment of agro-industrial wastewaters for COD removal in expanded granular sludge bed bioreactor

    Directory of Open Access Journals (Sweden)

    Abumalé Cruz-Salomón

    2017-12-01

    Full Text Available Untreated agro-industrial wastewaters are undesirable in the aquatic environment due to the presence of high organic matter contents. However, they may constitute a large potential for biogas production. The present investigation is focused on three laboratory-scale anaerobic expanded granular sludge bed (EGSB bioreactors, continuously operated for 60 d under mesophilic condition with the aim of exploring the feasibility of treating three most significant agro-industrial wastewaters in Chiapas, Mexico (i.e., cheese whey, vinasse, and coffee-processing wastewater. The EGSB bioreactors were operated with a hydraulic retention time (HRT of 6 d under stable conditions (i.e., buffer index (BI of 0.31, 0.34, and 0.03, generating a maximum chemical oxygen demand (COD removal efficiency of 91, 74, and 96% with an average methane production of 340, 245, and 300 mL/g COD∙d for cheese whey, vinasse, and coffee-processing wastewater, respectively. According to the obtained results, the EGSB bioreactors could be a sustainable alternative to simultaneously solve the environmental problems and to produce bioenergy.

  5. Flow analysis for efficient design of wavy structured microchannel mixing devices

    Science.gov (United States)

    Kanchan, Mithun; Maniyeri, Ranjith

    2018-04-01

    Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.

  6. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  7. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  8. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181.

    Science.gov (United States)

    Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de

    2013-08-01

    Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    International Nuclear Information System (INIS)

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs

  11. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  12. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  13. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  14. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  15. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    Science.gov (United States)

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  16. Scale up of diesel oil biodegradation in a baffled roller bioreactor.

    Science.gov (United States)

    Nikakhtari, Hossein; Song, Wanning; Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2010-05-01

    Diesel oil is a suitable substance to represent petroleum contamination from accidental spills in operating and transportation facilities. Using a microbial culture enriched from a petroleum contaminated soil, biodegradation of diesel oil was carried out in 2.2, 55, and 220 L roller baffled bioreactors. The effects of bioreactor rotation speed (from 5 to 45 rpm) and liquid loading (from 18% to 73% of total volume) on the biodegradation of diesel oil were studied. In the small scale bioreactor (2.2L), the maximum rotation speed of 45 rpm resulted in the highest biodegradation rate with a first order biodegradation kinetic constant of 0.095 d(-1). In the larger scale bioreactors, rotation speed did not affect the biodegradation rate. Liquid loadings higher than 64% resulted in reduced biodegradation rates in the small scale bioreactor; however, in the larger roller bioreactors liquid loading did not affect the biodegradation rate. Biodegradation of diesel oil at 5 rpm and 73% loading is recommended for operating large scale roller baffled bioreactors. Under these conditions, high diesel oil concentrations up to 50 gL(-1) can be bioremediated at a rate of 1.61 gL(-1)d(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization.

    Science.gov (United States)

    Georgiev, Milen I; Weber, Jost

    2014-07-01

    Mass production of value-added molecules (including native and heterologous therapeutic proteins and enzymes) by plant cell culture has been demonstrated as an efficient alternative to classical technologies [i.e. natural harvest and chemical (semi)synthesis]. Numerous proof-of-concept studies have demonstrated the feasibility of scaling up plant cell culture-based processes (most notably to produce paclitaxel) and several commercial processes have been established so far. The choice of a suitable bioreactor design (or modification of an existing commercially available reactor) and the optimization of its internal environment have been proven as powerful tools toward successful mass production of desired molecules. This review highlights recent progress (mostly in the last 5 years) in hardware configuration and optimization of bioreactor culture conditions for suspended plant cells.

  18. Performance of Submerged Membrane Bioreactor Combined with Powdered Activated Carbon Addition for the Treatment of an Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Tri Widjaja

    2010-02-01

    Full Text Available Membrane technology is one of the alternative solutions to overcome industrial wastewater treatment developed nowadays. The addition of PAC (Powdered Activated Carbon in the activated sludge using Submerged Membrane Adsorption Hybrid Bioreactor (SMAHBR is expected to increase the organic material removal. The purpose of this study was to determine the performance of submerged membrane bioreactor and activated carbon adsorption capacity of organic materials in wastewater. This study used SIER (Surabaya Industrial Estate Rungkut – Surabaya, Indonesia waste as activated sludge operated at Mixed Liquor Suspended Solid (MLSS concentrations of 8000 and 15000 mg/l, and Chemical Oxygen Demand (COD concentrations of 1500, 2500 mg/l, Sludge Retention Time (SRT of 10;20; and 30 days and activated carbon variables of 0%; 2.5%; 5%; 7.5%; 10%. The results showed that the fouling potential occurred at high MLSS where the COD removal occurred at PAC addition of 10% reaching 91.86%. High Soluble Microbial Product (SMP accumulation (± 10 mg/l occurred in short SRT and high MLSS concentration. PAC addition resulted in decreased microorganisms in the reactor and better effluent of SMAHBR, as a result, the performance of the submerged membrane bioreactor would be restored.

  19. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor

    NARCIS (Netherlands)

    Raven, N.; Rasche, F.; Kuehn, C.; Anderlei, T.; Klöckner, W.; Schuster, F.; Henquet, M.G.L.; Bosch, H.J.; Büchs, J.; Fischer, R.; Schillberg, S.

    2015-01-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is

  20. Use of a Packed-Column Bioreactor for Isolation of Diverse Protease-Producing Bacteria from Antarctic Soil

    Science.gov (United States)

    Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.

    2003-01-01

    Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829

  1. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  2. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    well-being (loss of muscle and skeletal tissues [15-17]) and gene- and cell-level responses to the mechanical environment [13,14,18]. All five of the spaceflight bioreactor studies described above utilized three-dimensional cell culture systems in which the cells were associated with biodegradable polymer scaffolds [17], collagen gel [16], or microcarrier beads [13-15,18] in order to promote the expression of differentiated cell function. In four of the five spaceflight bioreactor studies [15-18], cells were cultured in perfused vessels (cartridges or rotating bioreactors) within recirculating loops designed to maintain medium composition within target ranges by a combination of gas exchange and fresh medium supply. Future spaceflight studies of cells and tissues are likely to involve a three-dimensional culture system, to promote cellular differentiation, and perfusion with or without rotation, to provide a gravity-independent mechanism for fluid mixing and mass transport. Previous spaceflight studies have guided the ongoing development of NASA flight hardware for the ISS (e.g. the EDU-2 and the CCU). This next generation of hardware will have extended operational capabilities including on-line microscopy, in-line sensors for the monitoring and control of metabolic parameters, modular design for replicate cultures, and, perhaps most importantly of all, compatibility with the ISS centrifuge. The latter will permit in-flight, 1 g control cultures, and thereby allow the experimental variable to be gravity itself rather than the more general "spaceflight environment". Technical limitations of spaceflight studies (e.g. allowable size, mass, and power) continue to motivate a creative approach to system design and to result in "spin-off" technologies (e.g. the STLV) for ground-based cell and tissue culture research. The increasing scientific and medical relevance of this work is evidenced by the growing number of publications in which advanced bioreactors are used for in

  3. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors.

    Directory of Open Access Journals (Sweden)

    Cinzia Pezzella

    Full Text Available Endocrine disrupting chemicals (EDCs are environmental contaminants causing increasing concerns due to their toxicity, persistence and ubiquity. In the present study, degradative capabilities of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium to act on five EDCs, which represent different classes of chemicals (phenols, parabens and phthalate and were first applied as single compounds, were assessed. T. versicolor was selected due to its efficiency against target EDCs and its potentialities were exploited against a mixture of EDCs in a cost-effective bioremediation process. A fed-batch approach as well as a starvation strategy were applied in order to reduce the need for input of 'fresh' biomass, and avoid the requirement for external nutrients. The fungus was successfully operated in two different bioreactors over one week. Semi-batch cultures were carried out by daily adding a mixture of EDCs to the bioreactors in a total of five consecutive degradation cycles. T. versicolor was able to efficiently remove all compounds during each cycle converting up to 21 mg L-1 day-1 of the tested EDCs. The maintained ability of T. versicolor to remove EDCs without any additional nutrients represents the main outcome of this study, which enables to forecast its application in a water treatment process.

  4. Bioreactors with Light-Beads Fluidized Bed: The Voidage Function and its Expression

    Directory of Open Access Journals (Sweden)

    Iliev Vasil

    2014-12-01

    Full Text Available Light-beads fluidized bed bioreactors with gel particles are an attractive alternative for the implementation of a system with immobilized cells. They have a number of advantages: soft operating conditions, ability to work in an ideal mixing regime, intensification of heat- and mass transfer processes in the fermentation system. The expansion characteristics of the fluidized bed were investigated in the present work. The fluidized bed expansion was described using the voidage function. It was found that the voidage can be described by nonlinear regression relationships and the regression coefficients were a function of the particles parameters.

  5. Plantform Bioreactor for Mass Micropropagation of Date Palm.

    Science.gov (United States)

    Almusawi, Abdulminam H A; Sayegh, Abdullah J; Alshanaw, Ansam M S; Griffis, John L

    2017-01-01

    A novel protocol for the commercial production of date palm through micropropagation is presented. This protocol includes the use of a semisolid medium alternation or in combination with a temporary immersion system (TIS, Plantform bioreactor) in date palm micropropagation. The use of the Plantform bioreactor for date palm results in an improved multiplication rate, reduced micropropagation time, and improved weaning success. It also reduces the cost of saleable units and thus improves economic return for commercial micropropagation. The use of the Plantform bioreactor successfully addresses other hindrances that can occur during the scale-up of date palm micropropagation, including asynchrony of somatic embryos, limited maturation of somatic embryos, and highly variable germination frequencies of embryos.

  6. Extractive fermentation of xylanase from Aspergillus tamarii URM 4634 in a bioreactor.

    Science.gov (United States)

    da Silva, Anna Carolina; Soares de França Queiroz, Alana Emília; Evaristo dos Santos Nascimento, Talita Camila; Rodrigues, Cristine; Gomes, José Erick Galindo; Souza-Motta, Cristina Maria; Porto de Souza Vandenberghe, Luciana; Valente de Medeiros, Erika; Moreira, Keila Aparecida; Herculano, Polyanna Nunes

    2014-08-01

    Of the many reported applications for xylanase, its use as a food supplement has played an important role for monogastric animals, because it can improve the utilisation of nutrients. The aim of this work was to produce xylanase by extractive fermentation in an aqueous two-phase system using Aspergillus tamarii URM 4634, increasing the scale of production in a bioreactor, partially characterising the xylanase and evaluating its influence on monogastric digestion in vitro. Through extractive fermentation in a bioreactor, xylanase was obtained with an activity of 331.4 U mL(-1) and 72% yield. The xylanase was stable under variable pH and temperature conditions, and it was optimally active at pH 3.6 and 90 °C. Xylanase activity potentiated the simulation of complete monogastric digestion by 6%, and only Mg2+ inhibited its activity. This process provides a system for efficient xylanase production by A. tamarii URM 4634 that has great potential for industrial use.

  7. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.

    Science.gov (United States)

    Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong

    2018-01-01

    This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stability of immobilized Rhizomucor miehei lipase for the synthesis of pentyl octanoate in a continuous packed bed bioreactor

    Directory of Open Access Journals (Sweden)

    E. Skoronski

    2014-09-01

    Full Text Available The enzymatic synthesis of organic compounds in continuous bioreactors is an efficient way to obtain industrially important chemicals. However, few works have focused on the study of the operational conditions and the bioprocess performance. In this work, the aliphatic ester pentyl octanoate was obtained by direct esterification using a continuous packed bed bioreactor containing the immobilized enzyme Lipozyme® RM IM as catalyst. Enzymatic deactivation was evaluated under different conditions for the operational parameters substrate/enzyme ratio (5.00, 1.67, 0.83 and 0.55 mmol substrate∙min-1∙g-1enzyme and temperature (30, 40, 50 and 60 °C. The optimal condition was observed at 30 ºC, which gave the minimum enzymatic deactivation rate and the maximum conversion to the desired product, yielding approximately 60 mmols of ester for an enzyme loading of 0.5 g into the bioreactor. A first-order deactivation model showed good agreement with the experimental data.

  9. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  10. Influence of SiO2 and graphene oxide nanoparticles on efficiency of biological removal process.

    Science.gov (United States)

    Esmaeili-Faraj, Seyyed Hamid; Nasr Esfahany, Mohsen

    2017-11-01

    The effects of the presence of synthesized silica (SS) and exfoliated graphene oxide (EGO) on the removal of sulfide ion with activated sludge (AS) are experimentally investigated. The maximum removal efficiency of sulfide ion for AS without nanoparticles, and the samples with SS and EGO nanoparticles were 81%, 88% and 79%, respectively. Moreover, the maximum elimination capacity (EC max ) for the bioreactor with SS-nanoparticles is 7542 mg/L s, while the EC max of AS and EGO samples were 7075 and 6625 mg/L s, respectively. Two filamentous microbial strains as Gram-negative and Gram-positive bacteria are discerned that removed sulfide ion in the presence of nanoparticles. The measurement of mixture liquor volatile suspended solid that indicates the biomass growth rate during the test shows that the bioreactor containing SS-nanoparticles has more biomass content than the other samples. Our findings indicate that SS-nanoparticles with 0.1% wt. concentration in the bioreactor have no negative effects on the efficiency of the biological removal of sulfide and the presence of SS-nanoparticles even enhances the performance of the bioreactor. On the other side, a bioreactor with EGO nanosheets, as highly antibacterial nanoparticles, with 0.02% wt. concentration significantly influences the microbial growth and reduces sulfide removal efficiency.

  11. Study on the ownership balance and the efficiency of mixed ownership enterprises from the perspective of heterogeneous shareholders.

    Science.gov (United States)

    Yin, Zhujia; Liu, Lijuan; Wang, Haidong; Wen, Fengming

    2018-01-01

    Based on the database data of Chinese industrial enterprises from 2000 to 2007 and the LP method, this paper measures the total factor productivity of enterprises and investigates the effect of different mixed ownership forms on enterprises' efficiency and the effect of heterogeneous ownership balance on the mixed ownership enterprises' efficiency. The state-owned enterprise and mixed ownership enterprise are identified by the enterprise's paid-up capital. The results show that, on the whole, for the mixed ownership enterprise, the higher the diversification degree of the shareholders is, the higher the efficiency becomes, and in different types of industries, the mixed forms of shareholders have different effects on the efficiency of enterprises. The heterogeneous ownership balance and the enterprise efficiency show nonlinear U-type relationships. Both the higher and lower heterogeneous ownership balance degrees will promote the enterprise's efficiency. However, when the ownership balance degree is in the range of [0.2 0.5], the increase in ownership balance will lead to the decline of enterprise efficiency. Therefore, when introducing non-state-owned capital, state-owned enterprises should take full account of their own characteristics by rationally controlling the shareholding ratio of non-state-owned capital and play the positive role of a mixed ownership structure in corporate governance with appropriate ownership balances.

  12. Staying alive! Sensors used for monitoring cell health in bioreactors.

    Science.gov (United States)

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    Science.gov (United States)

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  14. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and alpha-pinene.

    Science.gov (United States)

    Rene, Eldon R; Jin, Yaomin; Veiga, María C; Kennes, Christian

    2009-11-01

    Biological treatment systems have emerged as cost-effective and eco-friendly techniques for treating waste gases from process industries at moderately high gas flow rates and low pollutant concentrations. In this study, we have assessed the performance of a two-stage bioreactor, namely a biotrickling filter packed with pall rings (BTF, 1st stage) and a perlite + pall ring mixed biofilter (BF, 2nd stage) operated in series, for handling a complex mixture of hydrogen sulphide (H2S), methanol (CH3OH) and alpha-pinene (C10H16). It has been reported that the presence of H2S can reduce the biofiltration efficiency of volatile organic compounds (VOCs) when both are present in the gas mixture. Hydrogen sulphide and methanol were removed in the first stage BTF, previously inoculated with H2S-adapted populations and a culture containing Candida boidinii, an acid-tolerant yeast, whereas, in the second stage, alpha-pinene was removed predominantly by the fungus Ophiostoma stenoceras. Experiments were conducted in five different phases, corresponding to inlet loading rates varying between 2.1 and 93.5 g m(-3) h(-1) for H2S, 55.3 and 1260.2 g m(-3) h(-1) for methanol, and 2.8 and 161.1 g m(-3) h(-1) for alpha-pinene. Empty bed residence times were varied between 83.4 and 10 s in the first stage and 146.4 and 17.6 s in the second stage. The BTF, working at a pH as low as 2.7 as a result of H2S degradation, removed most of the H2S and methanol but only very little alpha-pinene. On the other hand, the BF, at a pH around 6.0, removed the rest of the H2S, the non-degraded methanol and most of the alpha-pinene vapours. Attempts were originally made to remove the three pollutants in a single acidophilic bioreactor, but the Ophiostoma strain was hardly active at pH elimination capacities (ECs) reached by the two-stage bioreactor for individual pollutants were 894.4 g m(-3) h(-1) for methanol, 45.1 g m(-3) h(-1) for H2S and 138.1 g m(-3) h(-1) for alpha-pinene. The results from this

  15. Mixing and scale affect moving bed biofilm reactor (MBBR) performance

    NARCIS (Netherlands)

    Kamstra, Andries; Blom, Ewout; Terjesen, Bendik Fyhn

    2017-01-01

    Moving Bed Biofilm Reactors (MBBR) are used increasingly in closed systems for farming of fish. Scaling, i.e. design of units of increasing size, is an important issue in general bio-reactor design since mixing behaviour will differ between small and large scale. Research is mostly performed on

  16. Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingmei Sun; Jiangxiu Rong; Lifeng Dai; Baoshan Liu; Wenting Zhu

    2011-01-01

    Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR).Control of membrane foulin can extend the membrane life and reduce water treatment cost effectively.A pilot scale anoxic/aerobic-membrane bioreactor (A/O MBR,40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin,China.Impact factors including mixed liquid sludge suspension (MLSS),sludge viscosity (μ),microorganisms,extracellular polymeric substances (EPS),aeration intensity and suction/suspended time on membrane fouling and pollution control were studied.The relationships among various factors associated with membrane fouling were analyzed.Results showed that there was a positive correlation among MLSS,sludge viscosity and trans-membrane pressure (TMP).Considering water treatment efficiency and stable operation of the membrane module,MLSS of 5 g/L was suggested for the process.There was a same trend among EPS,sludge viscosity and TMP.Numbers and species of microorganisms affected membrane fouling.Either too high or too low aeration intensity was not conducive to membrane fouling control.Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process.A long suction time caused a rapid increase in membrane resistance.However,long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface.The suction/suspended time of 12 min/3 min was selected for the process.The interaction of various environmental factors and operation conditions must be considered synthetically.

  17. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    Science.gov (United States)

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  18. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  19. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  20. Bioreactor configurations for ex-situ treatment of perchlorate: a review.

    Science.gov (United States)

    Sutton, Paul M

    2006-12-01

    The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.

  1. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada); Frazee, James [E and Q Consulting and Associates Limited, Wolfville, NS, Canada B4P 2R1 (Canada); Tong, Anthony Z., E-mail: anthony.tong@acadiau.ca [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada)

    2013-11-15

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.

  2. PERFORMANCE OF NEWLY CONFIGURED SUBMERGED MEMBRANE BIOREACTOR FOR AEROBIC INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    I Gede Wenten

    2012-02-01

    Full Text Available The application of membrane to replace secondary clarifier of conventional activated sludge, known as membrane bioreactor, has led to a small footprint size of treatment with excellent effluent quality. The use of MBR eliminates almost all disadvantages encountered in conventional wastewater treatment plant such as low biomass concentration and washout of fine suspended solids. However, fouling remains as a main drawback. To minimize membrane fouling, a new configuration of submerged membrane bioreactor for aerobic industrial wastewater treatment has been developed. For the new configuration, a bed of porous particle is applied to cover the submerged ends-free mounted ultrafiltration membrane. Membrane performance was assessed based on flux productivity and selectivity. By using tapioca wastewater containing high organic matter as feed solution, reasonably high and stable fluxes around 11 l/m2.h were achieved with COD removal efficiency of more than 99%. The fouling analysis also shows that the newly configured ends-free membrane bioreactor exhibits lower irreversible resistance compared with the submerged one. In addition, the performance of pilot scale system, using a membrane module  with 10 m2 effective area and reactor tank with 120 L volume, was also assessed. The flux achieved from the pilot scale system around 8 l/m2.h with COD removal of more than 99%. Hence, this study has demonstrated the feasibility of the newly configured submerged ends-free MBR at larger scale.

  3. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    International Nuclear Information System (INIS)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian; Frazee, James; Tong, Anthony Z.

    2013-01-01

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate

  4. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing.

    Science.gov (United States)

    Brecht, René

    2009-01-01

    Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

  5. Mixed Contaminants Removal Efficiency Using Bio-FeS Nanoparticles.

    Science.gov (United States)

    Seo, Hyunhee; Roh, Yul

    2018-02-01

    Advances in nanotechnology has provided diverse industrial applications including an environmental remediation field. In particular, bio-nanotechnology gives extended eco-friendly remediation practice. Among diverse bio-nanoparticles synthesized by microorganisms, the iron based nanoparticles (NPs) are of great interest because of their availability, low cost and toxicity to human health and the environment. In this study, iron based nanoparticles were biologically synthesized and mineralogically identified. Also, the removal efficiency of mixed contaminants, high As(III)-low Cr(VI) and high As(V)-low Cr(VI), using these bio-nanoparticles were conducted. As a result, biologically synthesized NPs were identified as FeS complex and their catalytic capacity showed highly effective to immobilize more than 97% of mixed contaminants by adsorption/mineralization.

  6. A REVIEW ON SEWAGE TREATMENT AND POLISHING USING MOVING BED BIOREACTOR (MBBR

    Directory of Open Access Journals (Sweden)

    JAMAL ALI KAWAN

    2016-08-01

    Full Text Available Effluent treatment and polishing using moving bed bioreactors (MBBRs are advanced technique in biological treatment operations become increasing widely and popular use all over the world to treat various types of effluents with very different operating status. It is a combination of two separate processes suspended and attached growth systems for the treatment in order to minimize the concentrations of the contaminated parameters at the required level for reuse or final destination. The MBBR has been proved to be effective in great removing biochemical oxygen demand (BOD and chemical oxygen demand (COD with nutrients (N and P from the effluent stream simultaneously. It provides additional capacity of wastewater treatment technology with high treatment efficiency; low capital, operational, maintenance and replacement cost; single reliable and robust operation procedure. This process can be used for new sewage treatment works or for modifying (upgrading existing wastewater treatment plants as it is efficient, compact and easy to operate. The efficiency of MBBR depends on the filling percent of biofilm carriers to be provided inside the tank, surface area of the biocarrier, diffused aeration supply and the organic loading. The aim of this paper is reviewing the sewage treatment and polishing using moving bed bioreactor MBB technology as an alternative and successful method. It presents the advantages of the MBBR compared to conventional waste water treatment. The review also includes many relevant researches carried out at the laboratory andpilot scales plants that could improve these systems by enhancing performance and reducing costs.

  7. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    Science.gov (United States)

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  8. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  9. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors.

    Science.gov (United States)

    Liu, Ning; Ouyang, Anli; Li, Yan; Yang, Shang-Tian

    2013-01-01

    The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells. © 2013 American Institute of Chemical Engineers.

  10. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin.

    Directory of Open Access Journals (Sweden)

    Penghua Yang

    Full Text Available Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79 x 10(-2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale.

  11. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  12. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  13. Density effect on the mixing efficiency and flow modes in T-shaped micromixers

    Directory of Open Access Journals (Sweden)

    Lobasov Alexander

    2017-01-01

    Full Text Available Flow patterns and mixing of liquids with different densities in T-shaped micromixers are numerically investigated at Reynolds number range from 1 to 250. The density ratio of the mixing media varies from 1 to 2; its effect on the flow structure and the mixing is studied. The dependences of the mixing efficiency and the pressure difference in this mixer on the density ratio and the Reynolds number are obtained. It is shown that the density ratio has a considerable effect on the flow structure, especially before the transition from the symmetric to the asymmetric flow pattern.

  14. Temperature control in a continuously mixed bioreactor for solid-state fermentation

    NARCIS (Netherlands)

    Nagel, F.J.J.I.; Tramper, J.; Bakker, M.S.N.; Rinzema, A.

    2001-01-01

    A continuously mixed, aseptic paddle mixer was used successfully for solid-state fermentation (SSF) with Aspergillus oryzae on whole wheat kernels. Continuous mixing improved temperature control and prevented inhomogeneities in the bed. Respiration rates found in this system were comparable to those

  15. High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Lou, Yanhui; Naka, Shigeki; Okada, Hiroyuki

    2010-01-01

    Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq 3 ), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m 2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq 3 :α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m 2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.

  16. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Performance of Aspergillus niger Cultivation in Geometrically Dissimilar Bioreactors Evaluated on the Basis of Morphological Analyses

    Directory of Open Access Journals (Sweden)

    M. A. Priede

    2002-01-01

    Full Text Available The growth of Aspergillus niger, citric acid production and mycelia morphology changes were compared under different mixing conditions in bioreactors with two types of stirrers: Rushton turbine stirrers (RTS1 or RTS2 and axial counterflow stirrers (ACS1 or ACS2. The characteristics of growth, productivity and morphology varied with the mixing system and the applied agitation regime. In the first series of experiments, the flow characteristics of Aspergillus niger broth under different mixing conditions were analysed in a model bioreactor using RTS1 and ACS1. The kinetic energy E of flow fluctuations was measured in gassed and ungassed water and fermentation broth systems using a stirring intensity measuring device (SIMD-f1. The difference of energy E values at different points was more pronounced in the bioreactor with RTS1 than in the case of ACS1. High viscous A. niger broths provided higher energy E values in comparison with water. It was observed that the Aspergillus niger growth rate and citric acid synthesis rate decreased at very high energy E values, the behaviour obviously being connected with the influence of the irreversible shear stress on the mycelial morphology. In the second series of experiments, a higher citric acid yield was achieved in the case of ACS2 at a power input approximately twice lower than in the case of RTS2. Morphological characterization of A. niger pellets was carried out by the image analysis method. ACS2 provided the development of morphology, where pellets and cores had larger area, perimeter and diameter, and the annular region of pellets was looser and more »hairy« in comparison with the case of RTS2. The pellets from the fermentation with RTS2 were smaller, denser, with shorter hyphae in the annular region of pellets, and the broth was characterized by a higher percentage of diffuse mycelia. Power input studies of RTS2 and ACS2 were made at different agitator rotation speeds and gas flow rates using water

  18. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    Science.gov (United States)

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  19. Investigation of aeration rate on Uranium bio leaching in internal airlift bioreactor

    International Nuclear Information System (INIS)

    Zolala, M. R.; Safdari, S. J.; Haghighi Asl, A.; Rashidi, A.

    2012-01-01

    Uranium is leached from the uranium ore of the second anomaly of Saghand by the Acidithiobacillus ferroxidans bacteria in an internal airlift bio-reactor. This study has been made to find the effect of aeration rate as well as its optimal value. The experiments have been carried out at 4 aeration rates to find the best recovery results in the least possible time duration. The results showed that the most percentage of the uranium recovery is in the superficial gas velocity of 0.010 m/s. The recovery at this aeration rate has an efficiency of more than 95 p ercent i n 11 days. Also, the best range for aeration study in the airlift bio-reactor is calculated with a minimum value of 0.0065 m/s which is the critical value of the uranium particle suspension as well as the maximum value of 0.015 m/s. The stress on the bacteria increases the recovery time process in velocities of more than 0.015 m/s.

  20. Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.

    Science.gov (United States)

    Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan

    2017-02-01

    Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.

  1. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hydrogel/poly-dimethylsiloxane hybrid bioreactor facilitating 3D cell culturing

    NARCIS (Netherlands)

    Schurink, B.; Luttge, R.

    2013-01-01

    The authors present a hydrogel/poly-dimethylsiloxane (PDMS) hybrid bioreactor. The bioreactor enables a low shear stress 3D culture by integrating a hydrogel as a barrier into a PDMS casing. The use of PDMS allows the reversible adhesion of the device to a commercially available microelectrode

  3. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.

    Science.gov (United States)

    Mohebbi-Kalhori, Davod; Behzadmehr, Amin; Doillon, Charles J; Hadjizadeh, Afra

    2012-09-01

    The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.

  4. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    International Nuclear Information System (INIS)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-01-01

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l -1 to 8 mg TPH l -1 . Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  5. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents

    Energy Technology Data Exchange (ETDEWEB)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des Bioprocedes Environnementaux, Pole d' Excellence Regional AUF-LBPE, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1117, 3018 Sfax (Tunisia)

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l{sup -1} to 8 mg TPH l{sup -1}. Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries.

  6. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Neculita, C.M.; Vigneaul, B.; Zagury, G.J. [Ecole Polytechnic, Montreal, PQ (Canada)

    2008-08-15

    Sulfate-reducing passive bioreactors treat acid mine drainage (AMD) by increasing its pH and alkalinity and by removing metals as metal sulfide precipitates. In addition to discharge limits based on physicochemical parameters, however, treated effluent is required to be nontoxic. Acute and sublethal toxicity was assessed for effluent from 3.5-L column bioreactors filled with mixtures of natural organic carbon sources and operated at different hydraulic retention times (HRTs) for the treatment of a highly contaminated AMD. Effluent was first tested for acute (Daphnia magna and Oncorhynchus mykiss) and sublethal (Pseudokirchneriella subcapitata, Ceriodaphnia dabia, and Lemna minor) toxicity. Acute toxicity was observed for D. magna, and a toxicity identification evaluation (TIE) procedure was then performed to identify potential toxicants. Finally, metal speciation in the effluent was determined using ultrafiltration and geochemical modeling for the interpretation of the toxicity results. The 10-d HRT effluent was nonacutely lethal for 0. mykiss but acutely lethal for D. magna. The toxicity to D. magna, however, was removed by 2 h of aeration, and the TIE procedure suggested iron as a cause of toxicity. Sublethal toxicity of the 10-d HRT effluent was observed for all test species, but it was reduced compared to the raw AMD and to a 7.3-d HRT effluent. Data regarding metal speciation indicated instability of both effluents during aeration and were consistent with the toxicity being caused by iron. Column bioreactors in operation for more than nine months efficiently improved the physicochemical quality of highly contaminated AMD at different HRTs.

  7. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    Science.gov (United States)

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  8. Conversion efficiency in the process of copolarized spontaneous four-wave mixing

    International Nuclear Information System (INIS)

    Garay-Palmett, Karina; U'Ren, Alfred B.; Rangel-Rojo, Raul

    2010-01-01

    We study the process of copolarized spontaneous four-wave mixing in single-mode optical fibers, with an emphasis on an analysis of the conversion efficiency. We consider both the monochromatic-pump and pulsed-pump regimes, as well as both the degenerate-pump and nondegenerate-pump configurations. We present analytical expressions for the conversion efficiency, which are given in terms of double integrals. In the case of pulsed pumps we take these expressions to closed analytical form with the help of certain approximations. We present results of numerical simulations, and compare them to values obtained from our analytical expressions, for the conversion efficiency as a function of several key experimental parameters.

  9. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor.

    Science.gov (United States)

    Baruah, Rwivoo; Deka, Barsha; Kashyap, Niharika; Goyal, Arun

    2018-01-01

    Weissella cibaria RBA12 produced a maximum of 9 mg/ml dextran (with 90% efficiency) using shake flask culture under the optimized concentration of medium components viz. 2% (w/v) of each sucrose, yeast extract, and K 2 HPO 4 after incubation at optimized conditions of 20 °C and 180 rpm for 24 h. The optimized medium and conditions were used for scale-up of dextran production from Weissella cibaria RBA12 in 2.5-l working volume under batch fermentation in a bioreactor that yielded a maximum of 9.3 mg/ml dextran (with 93% efficiency) at 14 h. After 14 h, dextran produced was utilized by the bacterium till 18 h in its stationary phase under sucrose depleted conditions. Dextran utilization was further studied by fed-batch fermentation using sucrose feed. Dextran on production under fed-batch fermentation in bioreactor gave 35.8 mg/ml after 32 h. In fed-batch mode, there was no decrease in dextran concentration as observed in the batch mode. This showed that the utilization of dextran by Weissella cibaria RBA12 is initiated when there is sucrose depletion and therefore the presence of sucrose can possibly overcome the dextran hydrolysis. This is the first report of utilization of dextran, post-sucrose depletion by Weissella sp. studied in bioreactor.

  10. Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods.

    Science.gov (United States)

    Li, Liang; Liu, Na; Xu, Ziqi; Chen, Qi; Wang, Xindong; Zhou, Huanping

    2017-09-26

    Mixed anion/cation perovskites absorber has been recently implemented to construct highly efficient single junction solar cells and tandem devices. However, considerable efforts are still required to map the composition-property relationship of the mixed perovskites absorber, which is essential to facilitate device design. Here we report the intensive exploration of mixed-cation perovskites in their compositional space with the assistance of a rational mixture design (MD) methods. Different from the previous linear search of the cation ratios, it is found that by employing the MD methods, the ternary composition can be tuned simultaneously following simplex lattice designs or simplex-centroid designs, which enable significantly reduced experiment/sampling size to unveil the composition-property relationship for mixed perovskite materials and to boost the resultant device efficiency. We illustrated the composition-property relationship of the mixed perovskites in multidimension and achieved an optimized power conversion efficiency of 20.99% in the corresponding device. Moreover, the method is demonstrated to be feasible to help adjust the bandgap through rational materials design, which can be further extended to other materials systems, not limited in polycrystalline perovskites films for photovoltaic applications only.

  11. A Solution of the Convective-Diffusion Equation for Solute Mass Transfer inside a Capillary Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2010-01-01

    Full Text Available This paper presents an analytical model of substrate mass transfer through the lumen of a membrane bioreactor. The model is a solution of the convective-diffusion equation in two dimensions using a regular perturbation technique. The analysis accounts for radial-convective flow as well as axial diffusion of the substrate specie. The model is applicable to the different modes of operation of membrane bioreactor (MBR systems (e.g., dead-end, open-shell, or closed-shell mode, as well as the vertical or horizontal orientation. The first-order limit of the Michaelis-Menten equation for substrate consumption was used to test the developed model against available analytical results. The results obtained from the application of this model, along with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for enzyme production in an MBR.

  12. Unified Analysis of Multi-Chamber Contact Tanks and Mixing Efficiency Evaluation Based on Vorticity Field. Part II: Transport Analysis

    Directory of Open Access Journals (Sweden)

    Ender Demirel

    2016-11-01

    Full Text Available Mixing characteristics of multi-chambered contact tank are analyzed employing the validated three-dimensional numerical model developed in the companion paper. Based on the flow characterization, novel volumetric mixing efficiency definitions are proposed for the assessment of the hydrodynamic and chemical transport properties of the contact tank and its chambers. Residence time distribution functions are analyzed not only at the outlet of each chamber but also inside the chambers using the efficiency definitions for both Reynolds averaged Navier–Stokes (RANS and large eddy simulation (LES results. A novel tracer mixing index is defined to characterize short circuiting and mixing effects of the contact system. Comparisons of the results of these indexes for RANS and LES solutions indicate that mixing characteristics are stronger in LES due to the unsteady turbulent eddy mixing even though short circuiting effects are also more prominent in LES results. This result indicates that the mixing analysis based on the LES results simulates the mixing characteristics instantaneously, which is more realistic than that in RANS. Since LES analysis can capture turbulent eddy mixing better than RANS analysis, the interaction of recirculation and jet zones are captured more effectively in LES, which tends to predict higher turbulent mixing in the contact system. The analysis also shows that the mixing efficiency of each chamber of the contact tank is different, thus it is necessary to consider distinct chemical release and volumetric designs for each chamber in order to maximize the mixing efficiency of the overall process in a contact tank system.

  13. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  14. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  15. Mixing and In situ product removal in micro-bioreactors

    NARCIS (Netherlands)

    Li, X.

    2009-01-01

    Summary Of the thesis :’ Mixing and In-situ product removal in micro bioreactors’ by Xiaonan Li The work presented in this thesis is a part of a large cluster project, which was formed between DSM, Organon, Applikon and two university groups (TU Delft and University of Twente), under the ACTS and

  16. Forecasting the settlement of a bioreactor landfill based on gas pressure changes.

    Science.gov (United States)

    Qiu, Gang; Li, Liang; Sun, Hongjun

    2013-10-01

    In order to study the influence of settlement under gas pressure in bioreactor landfill, the landfill is simplified as a one-way gas seepage field, combining Darcy's Law, the gas equation of state, and the principle of effective stress and fluid dynamics of porous media theory. First assume that the bioreactor landfill leachate is fully recharged on the basis of gas mass conservation, then according to the changes in gas pressure (inside the landfill and surrounding atmosphere) during the gas leakage time and settlement in the landfill, establish a numerical model of bioreactor landfill settlement under the action of the gas pressure, and use the finite difference method to solve it. Through a case study, the model's improved prediction of the settlement of bioreactor landfill is demonstrated.

  17. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  18. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  19. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  20. Bioreactors as Engineering Support to Treat Cardiac Muscle and Vascular Disease

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2013-01-01

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements.

  1. Biogas Production and Removal COD – BOD and TSS from Wastewater Industrial Alcohol (Vinasse by Modified UASB Bioreactor

    Directory of Open Access Journals (Sweden)

    Utami Isni

    2016-01-01

    Full Text Available Biogas production and decreased organic loading of vinasse using a modified UASB bioreactor has been done successfully. Vinasse is waste from the ethanol industry which contains COD: 9.360 mg / L , BOD : 4.013 mg/L, and TSS: 317.5 mg/L. The purpose of this research was to study the performance of bioreactors Upflow Anaerobic Sludge Blanket (UASB to decompose the vinasse into biogas or methane. UASB operating principle is to distribute wastewater in the bioreactor to flow upward through the sludge blanket by setting the hidrolic retention time (HRT. Four UASB bioreactor columns were used in this experiment wherein each with a capacity of 50 L in volume; 23 cm inside diameter, and 120 cm. The variations of hydraulic capacity followed the variations of HRT in the range of 72-36 hours. Modifications were carried out on the top of column UASB with the aim of preventing gas losses and increasing the flowrate of gas out from the top of the column. The results showed that HRT increased from 36 h to 72 h followed by an increase in COD removal efficiency of 55.64% to 66.81%; BOD5 from 67.85% to 74.58%; and TSS from 66.69% to 84.19%. The maximum volume of biogas produced was in the range of 5.826 L / day (42.89% methane to 7.930 L / day (methane 58.06%.

  2. Mixed-ligand Al complex—a new approach for more high efficient OLEDs

    International Nuclear Information System (INIS)

    Petrova, Petia K.; Tomova, Reni L.; Stoycheva-Topalova, Rumiana T.; Kaloyanova, Stefka S.; Deligeorgiev, Todor G.

    2012-01-01

    The mixed-ligand Aluminum bis(8-hydroxyquinoline) acetylacetonate (Alq 2 Acac) complex was presented and its performance as electroluminescent and electron transporting layer for OLED was studied. The photophysical properties of the novel complex were investigated and compared with the properties of the parent Alq 3 . Highly efficient OLED based on the mixed-ligand Al complex was developed with two times higher luminescence and efficiency compared to the identical OLED based on the conventional Alq 3 The better performance of the devices make the novel Al complex a very promising material for OLEDs. - Highlights: ► A novel electroluminescent Alq 2 Acac complex is presented as material for OLED. ► Electroluminescent emission of Alq 2 Acac is very similar to that of commercial Alq 3 . ► Devices with Alq 2 Acac show better characteristics compared to those with Alq 3 .

  3. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    Science.gov (United States)

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  4. Does the Distribution of Efficiency Scores Depend on the Input Mix?

    DEFF Research Database (Denmark)

    Asmild, Mette; Leth Hougaard, Jens; Kronborg, Dorte

    for evaluating the test statistic are violated. Therefore, we propose to explore its statistical properties by the use of simulation studies. The simulations are performed conditional on the observed input mixes. The method, as shown here, is applicable for models with multiple inputs and one output......In this paper we examine the possibility of using the standard Kruskal-Wallis rank test in order to evaluate whether the distribution of efficiency scores resulting from Data Envelopment Analysis (DEA) is independent of the input (or output) mix. Recently, a general data generating process (DGP......) suiting the DEA methodology has been formulated and some asymptotic properties of the DEA estimators have been established. In line with this generally accepted DGP, we formulate a conditional test for the assumption of mix independence. Since the DEA frontier is estimated, many standardl assumptions...

  5. Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner.

    Science.gov (United States)

    Kino-Oka, Masahiro; Ogawa, Natsuki; Umegaki, Ryota; Taya, Masahito

    2005-01-01

    A novel bioreactor system was designed to perform a series of batchwise cultures of anchorage-dependent cells by means of automated operations of medium change and passage for cell transfer. The experimental data on contamination frequency ensured the biological cleanliness in the bioreactor system, which facilitated the operations in a closed environment, as compared with that in flask culture system with manual handlings. In addition, the tools for growth prediction (based on growth kinetics) and real-time growth monitoring by measurement of medium components (based on small-volume analyzing machinery) were installed into the bioreactor system to schedule the operations of medium change and passage and to confirm that culture proceeds as scheduled, respectively. The successive culture of anchorage-dependent cells was conducted with the bioreactor running in an automated way. The automated bioreactor gave a successful culture performance with fair accordance to preset scheduling based on the information in the latest subculture, realizing 79- fold cell expansion for 169 h. In addition, the correlation factor between experimental data and scheduled values through the bioreactor performance was 0.998. It was concluded that the proposed bioreactor with the integration of the prediction and monitoring tools could offer a feasible system for the manufacturing process of cultured tissue products.

  6. Alcohol production from sterilized and non-sterilized molasses by Saccharomyces cerevisiae immobilized on brewer's spent grains in two types of continuous bioreactor systems

    International Nuclear Information System (INIS)

    Kopsahelis, Nikolaos; Bosnea, Loulouda; Bekatorou, Argyro; Tzia, Constantina; Kanellaki, Maria

    2012-01-01

    In this work an integrated cost effective system for continuous alcoholic fermentation of a cheap raw material (molasses) is described, involving yeast immobilized by a simple method on brewer's spent grains, able to ferment in the temperature range 30–40 °C, and two types of bioreactors, a Multistage Fixed Bed Tower (MFBT) and a Packed Bed reactor (PB). The MFBT bioreactor gave better results regarding ethanol concentration, productivity and conversion. Furthermore, the use of sterilized and non-sterilized molasses, fed in two similar MFBT bioreactors, showed that ethanol concentration (kg m −3 ) was significantly (p −3 at 35 °C and 44.2–48.2 kg m −3 at 40 °C), compared to sterilized molasses, where ethanol concentration ranged from 35.6 to 46.6 kg m −3 at 35 °C and 30.8–44.2 kg m −3 at 40 °C. During 32 days of continuous operation using non-sterilized molasses no contamination was observed. Industrialization of the proposed system seems to have a potential, mainly due to its high fermentation efficiency and the obtained high operational stability. -- Highlights: ► An integrated cost effective system for continuous alcoholic fermentation. ► Efficient conversion of non-sterilized molasses to ethanol. ► No need for additional treatments to prevent contamination. ► Results showed high fermentation efficiency and high operational stability.

  7. Commissioning of Research Bioreactor made in Korea with Malaysian Environment Adaptation

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Mohd Azmi Sidid Omar

    2011-01-01

    Bioreactor is equipment used by researcher in Agrotechnology and Biosciences department (BAB) as a scientific approach to get a scale up of product. Headed by one of the senior researcher in the department, an effort has been made to upscale the project by using MTDC fund. The technology platform has been acquired from South Korea. Some modification has to be made to cater for the need of a research bioreactor to be established for Nuclear Malaysia Agency. This research bioreactor is to emulate a tissue culture product in a bigger scale bio processing, pharmaceutical biotechnology and industrial production. (author)

  8. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge

    2012-12-01

    The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.

  10. STUDY ON USING A TRICKLE-BED BIOREACTOR FOR REDUCING VOLATILE ORGANIC COMPOUNDS IN WASTEWATER TREATMENT PLANT OPERATED BY PKN ORLEN S.A.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kamiński

    2017-08-01

    Full Text Available The results of studies conducted by Ekoinwentyka sp. z o.o. concerning the possibility of using a trickle-bed bioreactor for reducing of volatile organic compounds (VOCs emitted by PKN ORLEN S.A. wastewater treatment plant were presented and discussed. During the one-month trial, inlet and outlet concentrations of VOCs, H2S and NH3 were analysed and the efficiency of bio-purification process was determined on their basis. The obtained results confirmed the effectiveness of the applied technology under the given conditions, simultaneously demonstrating the validity of conducting further technological analysis to derive the design assumptions of the bioreactor on the industrial scale.

  11. A Comparison of Simple Rheological Parameters and Simulation Data for Zymomonas mobilis Fermentation Broths with High Substrate Loading in a 3-L Bioreactor

    Science.gov (United States)

    Um, Byung-Hwan; Hanley, Thomas R.

    Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 °C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing highsolids slurries.

  12. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO2 Nanoparticles as Photoanode

    Directory of Open Access Journals (Sweden)

    Yi-Hua Fan

    2017-01-01

    Full Text Available Dye-sensitized solar cell (DSSC is a potential candidate to replace conventional silicon-based solar cells because of high efficiency, cheap cost, and lower energy consumption in comparison with silicon chip manufacture. In this report, mixed-phase (anatase and rutile nanoparticles TiO2 photoanode was synthesized to investigate material characteristics, carriers transport, and photovoltaic performance for future DSSC application. Field-emission scanning electron microscope (SEM, X-ray diffraction (XRD, photoluminescence (PL, and UV-visible spectroscopy were used to characterize mixed TiO2 particles. Subsequently, various mixed-phase TiO2 anodes in DSSC devices were measured by electrical impedance spectra (EIS and energy efficiency conversion. The overall energy conversion efficiency of DSSC chip was improved as a result of the increase of rutile phase of TiO2 (14% in anatase matrix. Synergistic effects including TiO2 crystallization, reduction of defect density level in energy band, longer lifetime of photoexcited electrons, and lower resistance of electron pathway all contributed to high efficiency of light energy conversion.

  13. Mixing efficiency inside micro-droplets coalesced by two components in cross-structure

    Science.gov (United States)

    Ren, Yanlin; Liu, Zhaomiao; Pang, Yan

    2017-11-01

    The mixing of micro-droplets is used in analytical chemistry, medicine production and material synthesis owing to its advantages including the encapsulation and narrow time residence distribution. In this work, droplets are coalesced by two dispersed phase with different flow rates, generated in cross-structure and mixed in planar serpentine structure. The mixing efficiency of micro-droplets under control characters including the width of entrance and the flow rate of dispersed phases have been investigated by experiments and numerical simulations. The UDS (user-defined scalar) as dimensionless concentration of the solution is adopted in simulation, and is used to calculate the concentration and the mixing effect. By changing the flow rates and the entrances` width, the changing rules of the mixing characters have been obtained. The asymmetry distributions of components make rapid mixing process in half part of each droplet when travel through a straight channel. Increasing of the ratio of entrance width result into larger droplet and weaken the chaotic mixing effect. Meanwhile, the coalesced mechanism can be performed by ranging the ratio of flow rates, the ranges are also determined by the widths of entrances. The authors gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 11572013).

  14. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal.

    Science.gov (United States)

    Luo, Wenhai; Phan, Hop V; Xie, Ming; Hai, Faisal I; Price, William E; Elimelech, Menachem; Nghiem, Long D

    2017-02-01

    This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor

    Science.gov (United States)

    Detalina, M.; Pradanawati, S. A.; Widyarani; Mamat; Nilawati, D.; Sintawardani, N.

    2018-03-01

    Fixed-bed reactors are commonly used as bioreactors for various applications, including chemicals production and organic wastewater treatment. Bioreactors are fixed with packing materials for attaching microorganisms. Packing materials should have high surface area and enable sufficient fluid flow in the reactor. Natural materials e.g. rocks and fibres are often used as packing materials. Commercially, packing materials are also produced from polymer with the advantage of customizable shapes. The objective of this research was to study the mixing pattern in a packed-bed reactor using bamboo as packing material. Bamboo was selected for its pipe-like and porous form, as well as its abundant availability in Indonesia. The cut bamboo sticks were installed in a reactor in different configurations namely vertical, horizontal, and random. Textile dye was used as a tracer. Our results show that the vertical configuration gave the least liquid resistant flow. Yet, the random configuration was the best configuration during mixing process.

  16. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  17. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management.

    Science.gov (United States)

    Goeller, Brandon C; Febria, Catherine M; Harding, Jon S; McIntosh, Angus R

    2016-05-01

    Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Evaluating the efficiency of two phase partitioning stirred tank bio-reactor for treating xylene vapors from the airstreamthrough a bed of Pseudomonas Putida

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    Conclusion: Overall, the results of the present research revealed that the application of two phase stirred tank bioreactors (TPPBs containing pure strains of Pseudomonas putida was successful for treatment of air streams with xylene.

  19. Performance of Denitrifying Bioreactors at Reducing  Agricultural Nitrogen Pollution in a Humid  Subtropical Coastal Plain Climate

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2017-02-01

    Full Text Available Denitrifying bioreactors are an agricultural best management practice developed in the  midwestern United States to treat agricultural drainage water enriched with nitrate‐nitrogen (NO3N. The practice is spreading rapidly to agricultural regions with poor water quality due to nutrient  enrichment. This makes it imperative to track bioreactor NO3‐N reduction efficiency as this practice  gets deployed to new regions. This study evaluated the application and performance of denitrifying  bioreactors in the humid subtropical coastal plain environment of the Chesapeake Bay catchment to  provide data about regionally specific NO3‐N reduction efficiencies. NO3‐N samples were taken  before  and  after  treatment  at  three  denitrifying  bioreactors,  in  addition  to  other  nutrients  (orthophosphate‐phosphorus,  PO4‐P;  ammonium‐nitrogen,  NH4‐N;  total  nitrogen,  TN;  total  phosphorus,  TP  and  water  quality  parameters  (dissolved  oxygen,  DO;  oxidation  reduction  potential,  ORP;  pH;  specific  conductance,  SPC.  Total  removal  ranged  drastically  between  bioreactors from 10 to 133 kg N, with removal efficiencies of 9.0% to 62% and N removal rates of  0.21 to 5.36 g N removed per m3 of bioreactor per day. As the first bioreactor study in the humid  subtropical coastal plain, this data provides positive proof of concept that denitrifying bioreactor is  another tool for reducing N loads in agricultural tile drainage in this region.

  20. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  1. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  2. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    B.K. Mignone; J.L. Sarmiento; R.D. Slater; A. Gnanadesikan [Princeton University, Princeton, NJ (United States). Department of Geosciences

    2003-07-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here an ocean general circulation model (OGCM) is used to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. It was found that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgases in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, a first attempt is made at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnoclineis is estimated. Combining these model results with available tracer data allows a narrowing of the range of allowable mixing in the model, which in turn places important constraints on sequestration efficiency. 35 refs., 1 fig.

  3. Simulation of three-phase fluidized bioreactors for denitrification

    International Nuclear Information System (INIS)

    Hamza, A.V.; Dolan, J.F.; Wong, E.W.

    1981-03-01

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO 3 - /K/sub s/ + NO 3 - ) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m 3 -min (% biomass) and a K/sub s/ of 163 g/m 3 for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued

  4. Method and Apparatus for a Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Kleis, Stanley J. (Inventor); Geffert, Sandra K. (Inventor); Gonda, Steve R. (Inventor)

    2015-01-01

    A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.

  5. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  6. Generation of Neural Progenitor Spheres from Human Pluripotent Stem Cells in a Suspension Bioreactor.

    Science.gov (United States)

    Yan, Yuanwei; Song, Liqing; Tsai, Ang-Chen; Ma, Teng; Li, Yan

    2016-01-01

    Conventional two-dimensional (2-D) culture systems cannot provide large numbers of human pluripotent stem cells (hPSCs) and their derivatives that are demanded for commercial and clinical applications in in vitro drug screening, disease modeling, and potentially cell therapy. The technologies that support three-dimensional (3-D) suspension culture, such as a stirred bioreactor, are generally considered as promising approaches to produce the required cells. Recently, suspension bioreactors have also been used to generate mini-brain-like structure from hPSCs for disease modeling, showing the important role of bioreactor in stem cell culture. This chapter describes a detailed culture protocol for neural commitment of hPSCs into neural progenitor cell (NPC) spheres using a spinner bioreactor. The basic steps to prepare hPSCs for bioreactor inoculation are illustrated from cell thawing to cell propagation. The method for generating NPCs from hPSCs in the spinner bioreactor along with the static control is then described. The protocol in this study can be applied to the generation of NPCs from hPSCs for further neural subtype specification, 3-D neural tissue development, or potential preclinical studies or clinical applications in neurological diseases.

  7. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  8. Mixed-ligand Al complex-a new approach for more high efficient OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, Petia K., E-mail: petia@clf.bas.bg [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G Bonchev st., bl. 109, 1113 Sofia (Bulgaria); Tomova, Reni L.; Stoycheva-Topalova, Rumiana T. [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G Bonchev st., bl. 109, 1113 Sofia (Bulgaria); Kaloyanova, Stefka S.; Deligeorgiev, Todor G. [Applied Organic Chemistry, Faculty of Chemistry, University of Sofia, Sofia 1164 (Bulgaria)

    2012-02-15

    The mixed-ligand Aluminum bis(8-hydroxyquinoline) acetylacetonate (Alq{sub 2}Acac) complex was presented and its performance as electroluminescent and electron transporting layer for OLED was studied. The photophysical properties of the novel complex were investigated and compared with the properties of the parent Alq{sub 3}. Highly efficient OLED based on the mixed-ligand Al complex was developed with two times higher luminescence and efficiency compared to the identical OLED based on the conventional Alq{sub 3} The better performance of the devices make the novel Al complex a very promising material for OLEDs. - Highlights: Black-Right-Pointing-Pointer A novel electroluminescent Alq{sub 2}Acac complex is presented as material for OLED. Black-Right-Pointing-Pointer Electroluminescent emission of Alq{sub 2}Acac is very similar to that of commercial Alq{sub 3}. Black-Right-Pointing-Pointer Devices with Alq{sub 2}Acac show better characteristics compared to those with Alq{sub 3}.

  9. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    Science.gov (United States)

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review.

    Science.gov (United States)

    Pace, Romina; Pluye, Pierre; Bartlett, Gillian; Macaulay, Ann C; Salsberg, Jon; Jagosh, Justin; Seller, Robbyn

    2012-01-01

    Systematic literature reviews identify, select, appraise, and synthesize relevant literature on a particular topic. Typically, these reviews examine primary studies based on similar methods, e.g., experimental trials. In contrast, interest in a new form of review, known as mixed studies review (MSR), which includes qualitative, quantitative, and mixed methods studies, is growing. In MSRs, reviewers appraise studies that use different methods allowing them to obtain in-depth answers to complex research questions. However, appraising the quality of studies with different methods remains challenging. To facilitate systematic MSRs, a pilot Mixed Methods Appraisal Tool (MMAT) has been developed at McGill University (a checklist and a tutorial), which can be used to concurrently appraise the methodological quality of qualitative, quantitative, and mixed methods studies. The purpose of the present study is to test the reliability and efficiency of a pilot version of the MMAT. The Center for Participatory Research at McGill conducted a systematic MSR on the benefits of Participatory Research (PR). Thirty-two PR evaluation studies were appraised by two independent reviewers using the pilot MMAT. Among these, 11 (34%) involved nurses as researchers or research partners. Appraisal time was measured to assess efficiency. Inter-rater reliability was assessed by calculating a kappa statistic based on dichotomized responses for each criterion. An appraisal score was determined for each study, which allowed the calculation of an overall intra-class correlation. On average, it took 14 min to appraise a study (excluding the initial reading of articles). Agreement between reviewers was moderate to perfect with regards to MMAT criteria, and substantial with respect to the overall quality score of appraised studies. The MMAT is unique, thus the reliability of the pilot MMAT is promising, and encourages further development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Efficient and reproducible mammalian cell bioprocesses without probes and controllers?

    Science.gov (United States)

    Tissot, Stéphanie; Oberbek, Agata; Reclari, Martino; Dreyer, Matthieu; Hacker, David L; Baldi, Lucia; Farhat, Mohamed; Wurm, Florian M

    2011-07-01

    Bioprocesses for recombinant protein production with mammalian cells are typically controlled for several physicochemical parameters including the pH and dissolved oxygen concentration (DO) of the culture medium. Here we studied whether these controls are necessary for efficient and reproducible bioprocesses in an orbitally shaken bioreactor (OSR). Mixing, gas transfer, and volumetric power consumption (P(V)) were determined in both a 5-L OSR and a 3-L stirred-tank bioreactor (STR). The two cultivation systems had a similar mixing intensity, but the STR had a lower volumetric mass transfer coefficient of oxygen (k(L)a) and a higher P(V) than the OSR. Recombinant CHO cell lines expressing either tumor necrosis factor receptor as an Fc fusion protein (TNFR:Fc) or an anti-RhesusD monoclonal antibody were cultivated in the two systems. The 5-L OSR was operated in an incubator shaker with 5% CO(2) in the gas environment but without pH and DO control whereas the STR was operated with or without pH and DO control. Higher cell densities and recombinant protein titers were obtained in the OSR as compared to both the controlled and the non-controlled STRs. To test the reproducibility of a bioprocess in a non-controlled OSR, the two CHO cell lines were each cultivated in parallel in six 5-L OSRs. Similar cell densities, cell viabilities, and recombinant protein titers along with similar pH and DO profiles were achieved in each group of replicates. Our study demonstrated that bioprocesses can be performed in OSRs without pH or DO control in a highly reproducible manner, at least at the scale of operation studied here. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  13. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

    International Nuclear Information System (INIS)

    Costa, Pedro F; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-01-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications. (paper)

  14. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  15. Highly Efficient Four-Wave Mixing in an AlGaAs-On-Insulator (AlGaAsOI) Nano-Waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump......We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump...

  16. A Mixed Traffic Assignment Problem and Its Upper Bound of Efficiency Loss

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yu

    2014-01-01

    Full Text Available A variational inequality (VI formulation of a mixed traffic assignment problem associated with user equilibrium (UE player and altruistic players (UE-AP is developed. The users governed by the UE player use the paths with minimum actual travel cost, while the users governed by altruistic players use the paths with minimum perceived travel cost, which is a linear combination of the actual and marginal travel costs. A nonlinear programming method is adopted to derive the efficiency loss of the UE-AP mixed equilibrium with polynomial cost function. Finally, numerical examples are given to verify our analytical results.

  17. Trace organics removal using three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR.

    Science.gov (United States)

    de la Torre, T; Alonso, E; Santos, J L; Rodríguez, C; Gómez, M A; Malfeito, J J

    2015-01-01

    Seventeen pharmaceutically active compounds and 22 other trace organic pollutants were analysed regularly in the influent and permeate from a semi-real plant treating municipal wastewater. The plant was operated during 29 months with different configurations which basically differed in the type of biomass present in the system. These processes were the integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR), which combined suspended and attached biomass, the moving bed membrane bioreactor (MBMBR) (only attached biomass) and the MBR (only suspended biomass). Moreover, removal rates were compared to those of the wastewater treatment plant (WWTP) operating nearby with conventional activated sludge treatment. Reverse osmosis (RO) was used after the pilot plant to improve removal rates. The highest elimination was found for the IFAS-MBR, especially for hormones (100% removal); this was attributed to the presence of biofilm, which may lead to different conditions (aerobic-anoxic-anaerobic) along its profile, which increases the degradation possibilities, and also to a higher sludge age of the biofilm, which allows complete acclimation to the contaminants. Operating conditions played an important role, high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) being necessary to achieve these high removal rates. Although pharmaceuticals and linear alkylbenzene sulfonates showed high removal rates (65-100%), nonylphenols and phthalate could only be removed to 10-30%. RO significantly increased removal rates to 88% mean removal rate.

  18. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  19. The efficiency of MMPI-2 validity scales in detecting malingering of mixed anxiety-depressive disorder

    OpenAIRE

    Kopf, Tamara; Galić, Slavka; Matešić, Krunoslav

    2016-01-01

    The aim of this study was to examine the efficiency of the validity scales (F, Fb, Fp, F-K, K, L, S, VRIN and TRIN) of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) in the detection of malingering mixed anxiety-depressive disorder and the possibility of differentiating between groups of persons with mixed anxiety-depressive disorder and persons instructed to malinger the mixed anxiety-depressive disorder on the basis of basic and content scales. The participants in the study were...

  20. Woodchip bioreactors effectively treat aquaculture effluent

    Science.gov (United States)

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  1. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  2. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.

    Science.gov (United States)

    Lam, Alan Tin-Lun; Li, Jian; Toh, Jessica Pei-Wen; Sim, Eileen Jia-Hui; Chen, Allen Kuan-Liang; Chan, Jerry Kok-Yen; Choolani, Mahesh; Reuveny, Shaul; Birch, William R; Oh, Steve Kah-Weng

    2017-03-01

    Large numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency. After cell expansion, the cells that covered MCs can be directly implanted in vivo without the need for cell harvesting or use of scaffold. Poly-ε-caprolactone (PCL) is known as a biocompatible and biodegradable material. However, it cannot be used for generation of MCs because its high density (1.14 g/cm 3 ) would exclude its applicability for suspension MCs in stirred reactors. In this article, we describe expansion and potency of MSCs propagated on low-density (1.06 g/cm 3 ) porous PCL MCs coated with extracellular matrices (LPCLs) in suspended stirred reactors. Using these LPCLs, cell yields of about 4 × 10 4 cells/cm 2 and 7- to 10-fold increases were obtained using four different MSC lines (bone marrow, cord blood, fetal and Wharton's jelly). These yields were comparable with those obtained using non-degradable MCs (Cytodex 3) and higher than two-dimensional monolayer (MNL) cultures. A fed-batch process, which demonstrated faster cell expansion (4.5 × 10 4 cells/cm 2 in 5 days as compared with 7 days in batch culture) and about 70% reduction in growth media usage, was developed and scaled up from 100-mL spinner flask to 1-L controlled bioreactor. Surface marker expression, trilineage differentiation and clonogenic potential of the MSCs expanded on LPCL were not affected. Cytokine secretion kinetics, which occurred mostly during late logarithmic phase, was usually comparable with

  3. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  4. Osmotic stress on nitrification in an airlift bioreactor

    International Nuclear Information System (INIS)

    Jin Rencun; Zheng Ping; Mahmood, Qaisar; Hu Baolan

    2007-01-01

    The effect of osmotic pressure on nitrification was studied in a lab-scale internal-loop airlift-nitrifying reactor. The reactor slowly adapted to the escalating osmotic pressure during 270 days operation. The conditions were reversed to the initial stage upon full inhibition of the process. Keeping influent ammonium concentration constant at 420 mg N L -1 and hydraulic retention time at 20.7 h, with gradual increase in osmotic pressure from 4.3 to 18.8 x 10 5 Pa by adding sodium sulphate, the ammonium removal efficiencies of the nitrifying bioreactor were maintained at 93-100%. Further increase in osmotic pressure up to 19.2 x 10 5 Pa resulted in drop of the ammonium conversion to 69.2%. The osmotic pressure caused abrupt inhibition of nitrification without any alarm and the critical osmotic pressure value causing inhibition remained between 18.8 and 19.2 x 10 5 Pa. Nitrite oxidizers were found more sensitive to osmotic stress as compared with ammonia oxidizers, leading to nitrite accumulation up to 61.7% in the reactor. The performance of bioreactor recovered gradually upon lowering the osmotic pressure. Scanning and transmission electron microscopy indicated that osmotic stress resulted in simplification of the nitrifying bacterial populations in the activated sludge as the cellular size reduced; the inner membrane became thinner and some unknown inclusions appeared within the cells. The microbial morphology and cellular structure restored upon relieving the osmotic pressure. Addition of potassium relieved the effect of osmotic pressure upon nitrification. Results demonstrate that the nitrifying reactor possesses the potential to treat ammonium-rich brines after acclimatization

  5. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  6. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  7. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Science.gov (United States)

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  9. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  10. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  11. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  12. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    supply and EBCT on compost biofilter performance were also investigated. The bioreactor maintained greater than 95% removal efficiency for over 40 days without an additional supply of nutrients when a 10X concentrated HCMM was mixed with the compost packing at the beginning of the experiments. Results also suggest that an EBCT greater than 30 seconds is required to maintain high BTEX removal efficiencies in the compost biofilter system.

  13. Shock resistance characteristic of a spiral symmetry stream anaerobic bio-reactor.

    Science.gov (United States)

    Chen, Xiaoguang; Dai, Ruobin; Xiang, Xinyi; Li, Gang; Xu, Zhengqi; Hu, Tao; Abdelgadir, Awad

    2016-01-01

    The shock resistance characteristic (SRC) of an anaerobic bioreactor characterizes the ability of the anaerobic community in the reactor to withstand violent change in the living environment. In comparison with an upflow anaerobic sludge blanket reactor (UASBR), the SRC of a spiral symmetry stream anaerobic bio-reactor (SSSAB) was systematically investigated in terms of removal efficiency, adsorption property, settling ability, flocculability and fluctuations in these parameters. A quantitative assessment method for SRC was also developed. The results indicated that the SSSAB showed better SRC than the UASBR. The average value (m value) of chemical oxygen demand removal rates of the SSSAB was 86.0%. The contact angle of granules in the SSSAB present gradient distribution, that is the m value of contact angle increasing from bottom (84.5°) to top (93.9°). The m value of the density at the upper and lower sections of the SSSAB were 1.0611 g·cm(-3) and 1.0423 g·cm(-3), respectively. The surface mean diameter of granules in the SSSAB increased from 1.164 to 1.292 mm during operation. The absolute m value of zeta potential of granular sludge at the upper and lower sections of the SSSAB were 40.4 mV and 44.9 mV, respectively. The weighted mean coefficient variance (C̅V̅) value indicated SSSAB was more stable than the UASBR.

  14. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  15. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  16. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes.

    Science.gov (United States)

    Santos, C A; Ferreira, M E; da Silva, T Lopes; Gouveia, L; Novais, J M; Reis, A

    2011-08-01

    This paper describes the association of two bioreactors: one photoautotrophic and the other heterotrophic, connected by the gas phase and allowing an exchange of O(2) and CO(2) gases between them, benefiting from a symbiotic effect. The association of two bioreactors was proposed with the aim of improving the microalgae oil productivity for biodiesel production. The outlet gas flow from the autotrophic (O(2) enriched) bioreactor was used as the inlet gas flow for the heterotrophic bioreactor. In parallel, the outlet gas flow from another heterotrophic (CO(2) enriched) bioreactor was used as the inlet gas flow for the autotrophic bioreactor. Aside from using the air supplied from the auto- and hetero-trophic bioreactors as controls, one mixotrophic bioreactor was also studied and used as a model, for its claimed advantage of CO(2) and organic carbon being simultaneously assimilated. The microalga Chlorella protothecoides was chosen as a model due to its ability to grow under different nutritional modes (auto, hetero, and mixotrophic), and its ability to attain a high biomass productivity and lipid content, suitable for biodiesel production. The comparison between heterotrophic, autotrophic, and mixotrophic Chlorella protothecoides growth for lipid production revealed that heterotrophic growth achieved the highest biomass productivity and lipid content (>22%), and furthermore showed that these lipids had the most suitable fatty acid profile in order to produce high quality biodiesel. Both associations showed a higher biomass productivity (10-20%), when comparing the two separately operated bioreactors (controls) which occurred on the fourth day. A more remarkable result would have been seen if in actuality the two bioreactors had been inter-connected in a closed loop. The biomass productivity gain would have been 30% and the lipid productivity gain would have been 100%, as seen by comparing the productivities of the symbiotic assemblage with the sum of the two

  18. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  19. Broadband and Efficient Dual-Pump Four-Wave Mixing in AlGaAs-On-Insulator Nano-Waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa

    2016-01-01

    We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as -8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth.......We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as -8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth....

  20. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Science.gov (United States)

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  1. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream.

    Science.gov (United States)

    Lin, Jian; Li, Lin; Ding, Wenjie; Zhang, Jingying; Liu, Junxin

    2015-11-01

    Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds. Copyright © 2015. Published by Elsevier B.V.

  2. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M; Pilloton, R [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M; Mignogna, G; Fortunato, A; Beone, F

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  3. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  4. Change Best: Task 2.3. Analysis of policy mix and development of Energy Efficiency Services

    International Nuclear Information System (INIS)

    Boonekamp, P.; Vethman, P.

    2010-04-01

    The aim of the Change Best project is to promote the development of an energy efficiency service (EES) market and to give good practice examples of changes in energy service business, strategies, and supportive policies and measures in the course of the implementation of Directive 2006/32/EC on Energy End-Use Efficiency and Energy Services. This report addresses task 2.3: Analysis of policy mix and development of Energy Efficiency Services.

  5. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  6. Construction and characterization of a novel vocal fold bioreactor.

    Science.gov (United States)

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  7. Efficient and robust estimation for longitudinal mixed models for binary data

    DEFF Research Database (Denmark)

    Holst, René

    2009-01-01

    This paper proposes a longitudinal mixed model for binary data. The model extends the classical Poisson trick, in which a binomial regression is fitted by switching to a Poisson framework. A recent estimating equations method for generalized linear longitudinal mixed models, called GEEP, is used...... as a vehicle for fitting the conditional Poisson regressions, given a latent process of serial correlated Tweedie variables. The regression parameters are estimated using a quasi-score method, whereas the dispersion and correlation parameters are estimated by use of bias-corrected Pearson-type estimating...... equations, using second moments only. Random effects are predicted by BLUPs. The method provides a computationally efficient and robust approach to the estimation of longitudinal clustered binary data and accommodates linear and non-linear models. A simulation study is used for validation and finally...

  8. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2018-03-01

    Full Text Available The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP (p < 0.05 and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP (p < 0.0001, indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP (p < 0.05, suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  9. Microscale 3D Liver Bioreactor for In Vitro Hepatotoxicity Testing under Perfusion Conditions.

    Science.gov (United States)

    Freyer, Nora; Greuel, Selina; Knöspel, Fanny; Gerstmann, Florian; Storch, Lisa; Damm, Georg; Seehofer, Daniel; Foster Harris, Jennifer; Iyer, Rashi; Schubert, Frank; Zeilinger, Katrin

    2018-03-15

    The accurate prediction of hepatotoxicity demands validated human in vitro models that can close the gap between preclinical animal studies and clinical trials. In this study we investigated the response of primary human liver cells to toxic drug exposure in a perfused microscale 3D liver bioreactor. The cellularized bioreactors were treated with 5, 10, or 30 mM acetaminophen (APAP) used as a reference substance. Lactate production significantly decreased upon treatment with 30 mM APAP ( p < 0.05) and ammonia release significantly increased in bioreactors treated with 10 or 30 mM APAP ( p < 0.0001), indicating APAP-induced dose-dependent toxicity. The release of prostaglandin E2 showed a significant increase at 30 mM APAP ( p < 0.05), suggesting an inflammatory reaction towards enhanced cellular stress. The expression of genes involved in drug metabolism, antioxidant reactions, urea synthesis, and apoptosis was differentially influenced by APAP exposure. Histological examinations revealed that primary human liver cells in untreated control bioreactors were reorganized in tissue-like cell aggregates. These aggregates were partly disintegrated upon APAP treatment, lacking expression of hepatocyte-specific proteins and transporters. In conclusion, our results validate the suitability of the microscale 3D liver bioreactor to detect hepatotoxic effects of drugs in vitro under perfusion conditions.

  10. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  11. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Improvement of biological nitrogen removal with nitrate-dependent Fe(II) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Xiaoxin; Li, Ang; Szewzyk, Ulrich; Ma, Fang

    2016-11-01

    Aquabacterium parvum strain B6 exhibited efficient nitrate-dependent Fe(II) oxidation ability using nitrate as an electron acceptor. A continuous up-flow bioreactor that included an aerobic and an anoxic section was constructed, and strain B6 was added to the bioreactor as inocula to explore the application of microbial nitrate-dependent Fe(II) oxidizing (NDFO) efficiency in wastewater treatment. The maximum NRE (anoxic section) and TNRE of 46.9% and 79.7%, respectively, could be obtained at a C/N ratio of 5.3:1 in the influent with HRT of 17. Meanwhile, the taxonomy composition of the reactor was assessed, as well. The NDFO metabolism of strain B6 could be expected because of its relatively dominant position in the anoxic section, whereas potential heterotrophic nitrification and aerobic denitrification developed into the prevailing status in the aerobic section after 50days of continuous operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  14. Periodically operated bioreactors for the treatment of soils and leachates

    International Nuclear Information System (INIS)

    Irvine, R.L.; Cassidy, D.P.

    1995-01-01

    Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rate and renders solid-phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. Periodic aeration during solid-phase bioremediation has the potential to lower treatment costs relative to continuous aeration. A biological treatment system consisting of slurrying followed by periodic aeration in solid-phase sequencing batch reactors (SP-SBRs) was developed and tested in the laboratory using a silty loam contaminated predominantly with the plasticizer bis(2-ethylhexyl)phthalate (BEHP) or (DEHP) and a silty clay loam contaminated with diesel fuel. The first experiment evaluated the effect of water content and mixing time during slurrying on subsequent treatment in continuously aerated solid-phase bioreactors. The second experiment compared treatment of slurried soil in SP-SBRs using three different periodic aeration strategies with continuous aeration

  15. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Mi-Sun Kim; You-Kwan Oh; Young-Su Yun; Dong-Yeol Lee

    2006-01-01

    Continuous H 2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H 2 -producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H 2 production rate increased but the H 2 production yield to glucose decreased gradually. The H 2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH 4 was detected during the operation. The maximal volumetric H 2 production rate and H 2 yield to glucose were 1714 mmol H 2 /L.d and 1.1 mol H 2 /mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H 2 production. (authors)

  16. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  17. Membrane bioreactors' potential for ethanol and biogas production: a review.

    Science.gov (United States)

    Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J

    2013-01-01

    Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.

  18. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  19. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    Science.gov (United States)

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  20. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    Science.gov (United States)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  1. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.

    Science.gov (United States)

    Colon, G; Sager, J C

    2001-01-01

    The CELSS resource recovery system, which is a waste-processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass, by means of culture of rumen bacteria, generates organic compounds such as volatile fatty acids (VFA) (acetic, propionic, butyric) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure-driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments was carried out using a 10,000 molecular weight cutoff (MWCO) tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as: the permeate flux, VFA and nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicated that the permeate flux, VFA, and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 and 1.0 m/s, applied pressure when these are lower than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 and 34,880 mg/L. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrane surface. It was also found that the

  2. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  3. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  4. Broadband and efficient dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa

    2016-01-01

    We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as −8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth.......We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides and demonstrate an output conversion efficiency as high as −8.5 dB at 155-mW pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth....

  5. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available Dynamic membrane (DM formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.

  6. Tylosin production by Streptomyces fradiae using raw cornmeal in airlift bioreactor.

    Science.gov (United States)

    Choi, Dubok; Choi, On You; Shin, Hyun-Jae; Chung, Dong-Ok; Shin, Dae-Yewn

    2007-07-01

    Using a 50-l airlift bioreactor, for the effective production of tylosin from Streptomyces fradiae TM-224 using raw cornmeal as the energy source, various environmental factors were studied in flask cultures. The maximum tylosin concentration was obtained at 32 degrees C and pH between 7.0 and 7.5. When seed was inoculated after 24 h of culture, the maximum tylosin concentration, 5.7 g/l, was obtained after 4 days of culture. Various concentrations of raw cornmeal were tested to investigate the optimum initial concentration for the tylosin production. An initial raw cornmeal concentration of 80 g/l gave the highest tylosin concentration, 5.8 g/l, after 5 days of culture. Of the various nitrogen sources, soybean meal and fish meal were found to be the most effective for the production of tylosin. In particular, with the optimal mixing ratio, 12 g/l of soybean meal to 14 g/l of fish meal, 7.2 g/l of tylosin was obtained after 5 days of culture. To compare raw cornmeal and glucose for the production oftylosin in the 50-1 airlift bioreactor for 10 days, fed-batch cultures were carried out under the optimum culture conditions. When raw corn meal was used as the energy source, the tylosin production increased with increasing culture time. The maximum tylosin concentration after 10 days of culture was 13.5 g/l, with a product yield from raw cornmeal of 0.123 g/g of consumed carbon source, which was about 7.2 times higher than that obtained when glucose was used as the carbon source.

  7. An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies.

    Science.gov (United States)

    Noorman, Henk

    2011-08-01

    For industrial bioreactor design, operation, control and optimization, the scale-down approach is often advocated to efficiently generate data on a small scale, and effectively apply suggested improvements to the industrial scale. In all cases it is important to ensure that the scale-down conditions are representative of the real large-scale bioprocess. Progress is hampered by limited detailed and local information from large-scale bioprocesses. Complementary to real fermentation studies, physical aspects of model fluids such as air-water in large bioreactors provide useful information with limited effort and cost. Still, in industrial practice, investments of time, capital and resources often prohibit systematic work, although, in the end, savings obtained in this way are trivial compared to the expenses that result from real process disturbances, batch failures, and non-flyers with loss of business opportunity. Here we try to highlight what can be learned from real large-scale bioprocess in combination with model fluid studies, and to provide suitable computation tools to overcome data restrictions. Focus is on a specific well-documented case for a 30-m(3) bioreactor. Areas for further research from an industrial perspective are also indicated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  9. Differentiation of cartilaginous anlage in entire embryonic mouse limbs cultured in a rotating bioreactor.

    Science.gov (United States)

    Duke, P.; Oakley, C.; Montufar-Solis, D.

    The embryonic mammalian limb is sensitive both in vivo and in vitro to changes in gravitational force. Hypergravity of centrifugation and microgravity of space decreased size of elements due to precocious or delayed chondrogenesis respectively. In recapitulating spaceflight experiments, premetatarsals were cultured in suspension in a low stress, low sheer rotating bioreactor, and found to be shorter than those cultured in standard culture dishes, and cartilage development was delayed. This study only measured length of the metatarsals, and did not account for possible changes in width and/or in form of the skeletal elements. Shorter cartilage elements in limbbuds cultured in the bioreactor may be due to the ability of the system to reproduce a more in vivo 3D shape than traditional organ cultures. Tissues subjected to traditional organ cultures become flattened by their own weight, attachment to the filter, and restrictions imposed by nutrient diffusion. The purpose of the current experiment was to determine if entire limb buds could be successfully cultured in the bioreactor, and to compare the effects on 3D shape with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were placed either in the bioreactor, in Trowell culture, or fixed as controls. Limbbuds were cultured for six days, fixed, and processed either as whole mounts or embedded for histology. Qualitative analysis revealed that the Trowell culture specimens were flattened, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections of limbbuds from both types of cultures had excellent cartilage differentiation, with apparently more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Morphometric quantitation of the cartilaginous elements for comparisons of the two culture systems was complicated due to some limb buds fusing together during culture. This problem was especially noticeable in the younger limbs, and

  10. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  12. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  13. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  14. ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The operation of submerged anaerobic membrane bioreactors (SAnMBRs for domestic wastewaters treatment was studied in laboratory scale, with the objective to define sustainable filtration conditions of the suspensions along the process. During continuous experiments, the organic matter degradation by anaerobic way showed an average DQOT removal of 85% and 93%. Indeed, the degradation generated biogas after 12 days of operation and its relative methane composition was of 60% after 25 days of operation. Additionally, the comparison between membrane bioreactors (MBRs performance in aerobic and anaerobic conditions in filterability terms, reported that both systems behave similarly once reached the stationary state.

  15. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  16. Bioremediation potential of toxics by manipulation of deep terrestrial subsurface ecosystems

    International Nuclear Information System (INIS)

    Phelps, T.J.

    1990-01-01

    Mixed physiological types of bacteria in consortia recovered from subsurface contaminated sediments degrade mixed organic wastes containing carbon-rich (benzene, xylene, toluene) and halogenated hydrocarbon substrates (chlorobenzene, trichloroethylene, dichloroethylenes, vinyl chloride) in column bioreactors when provided with oxygen and methane and/or propane substrates. In expanded bed bioreactors degradation proceeds to 99% completion for several organic and chlorocarbon contaminants (60% for tetrachloroethylene) to carbon dioxide on repeated cycles in 21 days with little loss of volatiles in the control bioreactor except for a 70% loss of vinyl chloride in the control. Biodegradation is most efficient when the microbial consortia is maintained in a suboptimal nutritional state which can be monitored by ratios of endogenous storage lipid (poly beta-hydroxy alkanoic acid, PHA) to total phospholipid ester-linked fatty acids (PLFA). Under the best conditions the efficiency of biodegradation was 50-65 moles substrate (propane or propane + methane)/mole of TEC degraded. The microbial communities showed a rich diversity of microbes based on PLFA biomarkers. The effects of adding methane and/or propane in inducing specific subsets of the microbial community can readily be detected in the PLFA biomarker. Despite the presence of carbon rich substrates (benzene, toluene, xylene) in the mixed wastes, no evidence of plugging of interstitial spaces by exopolysaccharide was detected

  17. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul M.; Hirasaki, George J.

    2002-01-28

    The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

  19. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.

  20. Clofibric acid and gemfibrozil removal in membrane bioreactors.

    Science.gov (United States)

    Gutierrez-Macias, Tania; Nacheva, Petia Mijaylova

    2015-01-01

    The removal of two blood lipid regulators, clofibric acid (CLA) and gemfibrozil (GFZ), was evaluated using two identical aerobic membrane bioreactors with 6.5 L effective volume each. Polysulfone ultrafiltration hollow fiber membranes were submerged in the reactors. Different operating conditions were tested varying the organic load (F/M), hydraulic residence time (HRT), biomass concentration measured as total suspended solids in the mixed liquor (MLTSS) and the sludge retention time (SRT). Complete GFZ removal was obtained with F/M of 0.21-0.48 kg COD kgTSS⁻¹ d⁻¹, HRT of 4-10 hours, SRT of 10-32 d and MLTSS of 6-10 g L⁻¹. The GFZ removal can be attributed to biodegradation and there was no accumulation of the compound in the biomass. The CLA removals improved with the SRT and HRT increase and F/M decrease. Average removals of 78-79% were obtained with SRT 16-32 d, F/M of 0.21-0.34 kgCOD kgTSS⁻¹ d⁻¹, HRT of 7-10 hours and MLTSS of 6-10 g L⁻¹. Biodegradation was found to be the main removal pathway.

  1. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    Science.gov (United States)

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  2. Efficient color mixing through étendue conservation using freeform optics

    Science.gov (United States)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benitez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-08-01

    Today's SSL illumination market shows a clear trend to high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness. Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. The diameter of this so-called Shell-Mixer was 3 times that of the chip array footprint. A new version of the Shell-Mixer, based on the Edge Ray Principle and conservation of etendue, where neither the outer shape of the cap nor the surfaces of the lenses are constrained to spheres or 2D Cartesian ovals will be shown in this work. The new shell is freeform, only twice as large as the original chip-array and equals the original model in terms of color uniformity, brightness and efficiency.

  3. A Systemic and Systematic Approach to the Development of a Policy Mix for Material Resource Efficiency

    Directory of Open Access Journals (Sweden)

    Tomas Ekvall

    2016-04-01

    Full Text Available Increasing material use efficiency is important to mitigate future supply risks and minimize environmental impacts associated with the production of the materials. The policy mix presented in this paper aims to contribute to reducing the use of virgin metals in the EU by 80% by 2050 without significant shifting of burdens to other material resources, environmental impacts, or parts of the world. We used a heuristic framework and a systems perspective for designing the policy mix that combines primary instruments designed to increase material efficiency, recycling and substitution of materials (a materials tax, the extended producer responsibility, technical regulations, and environmental taxes and supportive instruments aimed to reduce barriers to implementing the primary instruments and to contribute towards the policy objectives (e.g., research and development support, and advanced recycling centers. Furthermore, instruments were designed so as to increase political feasibility: e.g., taxes were gradually increased as part of a green fiscal reform, and border-tax adjustments were introduced to reduce impacts on competitiveness. However, even in such a policy mix design ongoing ex-ante assessments indicate that the policy mix will be politically difficult to implement—and also fall short of achieving the 80% reduction target. Nonetheless, we suggest combining primary and supportive instruments into coherent and dynamic policy mixes as a promising step towards system reconfigurations for sustainability.

  4. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2013-11-15

    Highlights: • We investigate absorptive polymers for ex-situ soil bioremediation. • We compare the performance of the novel technology with a slurry bioreactor. • The polymer is very effective in decontaminating the soil (77% removal in 4 h). • The polymer is readily regenerated in a two phase partitioning bioreactor. -- Abstract: The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24 h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4 h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NP h{sup −1} L{sup −1} was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  5. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  6. Use of G3-DHS Bioreactor for Secondary Treatment of Septic Tank Desludging Wastewater

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-01-01

    Full Text Available Study was done for the use of the third-generation of downflow hanging sponge (G3-DHS bioreactor for secondary treatment of septic tank desludging wastewater. The main objective of this study was to evaluate the prospective system of G3-DHS bioreactor to be applied in Indonesia. During experiment, the G3-DHS bioreactor kept a relatively high dissolved oxygen concentration under natural aeration. At a relatively short hydraulic retention (HRT of 3 h, the G3-DHS bioreactor could remove up to 21% (SD 15% of total COD, 21% (SD = 7% of filtered-COD, 58% (SD = 24% of unfiltered-BOD, and 33% (SD = 24% of ammonium removal. The final effluent had an unfiltered-BOD of only 46 mg.L-1 (SD = 20 mg.L-1 that it was below the Indonesian standard (unfiltered-BOD = 100 mg.L-1 for thresholds of domestic wastewater treatment plants effluent.

  7. Biotic transformation of anticoccidials in soil using a lab-scale bio-reactor as a precursor-tool

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Krogh, Kristine A

    2012-01-01

    incubated for 200 h with a mixed culture of soil bacteria. Samples were analyzed by LC-MS/MS and potential transformation products were tentatively identified. Salinomycin was degraded under aerobic conditions and traces could be found after 200 h, however, seems more persistent under anaerobic conditions....... Four transformation products of salinomycin were discovered. Robenidine was degraded under aerobic and anaerobic conditions, however, traces of robenidine were observed after 200 h. Five biotic transformation products of robenidine were discovered.......Two anticoccidial agents, salinomycin and robenidine, heavily used in the worldwide veterinary meat production, were investigated for their potential biotic degradation by cultured soil bacteria. The degradation-study was performed in lab-scale bio-reactors under aerobic and anaerobic conditions...

  8. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  9. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  10. Neural Network-Based State Estimation for a Closed-Loop Control Strategy Applied to a Fed-Batch Bioreactor

    Directory of Open Access Journals (Sweden)

    Santiago Rómoli

    2017-01-01

    Full Text Available The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i time-varying parameters, (ii uncertain nonlinearities, and (iii unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.

  11. Mixing and mass transfer in a pilot scale U-loop bioreactor

    DEFF Research Database (Denmark)

    Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay

    2017-01-01

    A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...

  12. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...

  13. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Science.gov (United States)

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  14. Experiments as to the influence of heat recovery from a bioreactor on sewage sludge disinfecting

    Energy Technology Data Exchange (ETDEWEB)

    Tarjanyi, J.; Strauch, D.; Philipp, W.

    The influence of heat recovery on the disinfecting effect of composting of sewage sludge in a bio-reactor (in-vessel-composting) was investigated in a reactor type Weiss-system Kneer. As test agents 3 different serovars of salmonella, Parvo- and Poliovirus and eggs of Ascaris suum were used. The experiments were done in a reactor which was fed with dewatered municipal sewage sludge mixed with waste-paper as C-carrier for better composting. Even under winter conditions the test agents were inactivated within the time which is characteristic for the passage of the composting material through the plug-flow reactor. These results cannot simply be applied without further investigation to other reactors of the same type but with different ways of operation. (orig.)

  15. Photobiological hydrogen production : photochemical efficiency and bioreactor design

    NARCIS (Netherlands)

    Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H.

    2002-01-01

    Biological production of hydrogen can be carried out by photoautotrophic or photoheterotrophic organisms. Here, the photosystems of both processes are described. The main drawback of the photoautotrophic hydrogen production process is oxygen inhibition. The few efficiencies reported on the

  16. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    Science.gov (United States)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  18. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  19. Efficient four-wave mixing by usage of resonances in mercury; Effizientes Vierwellenmischen durch Ausnutzen von Resonanzen in Quecksilber

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Daniel

    2011-05-05

    A continuous, coherent radiation source in the vacuum ultraviolet spectral region is presented. It is based on four-wave-mixing in mercury vapor with fundamental beams at 253.7 nm, 407.9 nm und 545.5 nm wavelength. The fundamental beams are produced by frequency doubling and quadrupling of beams from solid-state laser-systems respectively. Due to the 6{sup 1}S-7{sup 1}S two-photon resonance and additionally the 6{sup 1}S-6{sup 3}P one-photon resonance the efficiency can be increased compared to former sources. A near one-photon resonance reduces the optimal phasematching temperature of the four-wave-mixing process. This leads to smaller Doppler and pressure broadening resulting in a higher four-wave-mixing efficiency. A maximum power of 0.3 nW at 121.56 nm wavelength, the 1S-2P Lyman-{alpha} transition in hydrogen, can be obtained. This Lyman-{alpha} source is needed for future laser cooling of antihydrogen. Apart from the Lyman-{alpha} generation, four-wave-mixing with a slightly different third fundamental wavelength results in radiation near a one-photon resonance in the VUV at the 6{sup 1}S-12{sup 1}P transition in mercury. Due to this additional one-photon resonance the nonlinear susceptibility, responsible for the four-wave-mixing, can be strongly increased without an influence on the phasematching. With such a mixing process the efficiency can be enlarged by three orders of magnitude and powers up to 6 {mu}W in the VUV could be realised. This is an improvement of a factor of 30 to former laser sources in this VUV regime. Furthermore the two-photon resonance of mercury could be investigated in detail. We observed a velocity-selective double resonance at small Rabi frequencies of the fundamental beams, which has the same origin as dark resonances in {lambda}-systems. At high Rabi frequencies excitation to the two-photon level can be high enough to initiate a laser process on the 7{sup 1}S-6{sup 1}P transition. This process could be observed with continuouswave

  20. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  1. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    Directory of Open Access Journals (Sweden)

    Maarten Sonnaert

    Full Text Available The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  2. Low-Temperature (10?C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    OpenAIRE

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10?C was investigated in a high height?:?diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5?2?kg?COD?m?3?d?1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2?kg?COD?m?3?d?1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduc...

  3. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design

    Directory of Open Access Journals (Sweden)

    Clare Selden

    2018-04-01

    Full Text Available Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.

  4. Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings.

    Science.gov (United States)

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2012-02-15

    This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  6. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    Science.gov (United States)

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Preparation of kombucha from winter savory (Satureja Montana L. in the laboratory bioreactor

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoljub D.

    2005-01-01

    Full Text Available The possibility of obtaining kombucha from winter savory tea has been tested in the laboratory bioreactor by applying starter cultures and traditional way of inoculation. On the basis of the obtained results, it can be concluded that applying the inoculating method with the beverage from the previous process of biotransformation yielded kombucha beverage (capacity 15 I from winter savory tea in the laboratory bioreactor. The application of defined starter culture from the isolate of yeast and acetic acid bacteria of local tea in the glass jar (capacity 5 I gave 3 litres of kombucha beverage, which is acceptable according to the basic parameters and sensory characteristics. However, the application of the same starter culture in the laboratory bioreactor did not result in synchronized activity of yeast and bacteria.

  8. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  9. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    Science.gov (United States)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds

  10. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  11. Degradation behaviour and excess sludge production of mixed biocoenoses in membrane bioreactors; Abbauverhalten und Ueberschussschlammproduktion von Mischbiozoenosen in Membranbioreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Szewzyk, U. [Technische Univ. Berlin (Germany). Fachgebiet Oekologie und Mikroorganismen

    1999-07-01

    In three different membrane bioreactors (technical scale and pilot scale), process engineering and microbiological studies were carried out over a period of up to three years. The sewage used was sugar-beet molasses slop and municipal sewage. All three plants exhibited stable COD degradation rates of 87 % (molasses slop) and 95 % (municipal sewage). They could be operated during the test period without regular removal of excess sludge. (orig.) [German] An drei unterschiedlichen Membranbioreaktoren (Technikums- und Pilotmassstab) wurden ueber einen Zeitraum von bis zu 3 Jahren verfahrenstechnische und mirkobiologische Untersuchungen durchgefuehrt. Als Abwasser wurde Zuckerrueben-Melasseschlempe und kommunales Abwasser eingesetzt. Alle drei Anlagen zeigten stabile CSB-Abbaugrade von 87% (Melasseschlempe) und 95% (kommunale Abwasser). Sie konnten ueber den Vesuchszeitraum ohne regelmaessigen Abzug von Ueberschussschlamm betrieben werden. (orig.)

  12. A simple method for estimation of coagulation efficiency in mixed aerosols. [environmental pollution control

    Science.gov (United States)

    Dimmick, R. L.; Boyd, A.; Wolochow, H.

    1975-01-01

    Aerosols of KBr and AgNO3 were mixed, exposed to light in a glass tube and collected in the dark. About 15% of the collected material was reduced to silver upon development. Thus, two aerosols of particles that react to form a photo-reducible compound can be used to measure coagulation efficiency.

  13. Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell

    Science.gov (United States)

    Singh, Ranbir; Suranagi, Sanjaykumar R.; Kumar, Manish; Shukla, Vivek Kumar

    2017-12-01

    The morphology of the spin-coated photoactive layer is one of the major factors affecting the performance of perovskite solar cells. In this work, we have employed a mixed-solvent strategy to obtain a high quality MAPbI3 (MA = CH3NH3) perovskite film, without pinholes and reduced grain boundaries. Perovskite films formed with single and mixed-solvents are systematically characterized for their optical, structural, and morphological properties using UV-vis absorption, photoluminescence (PL), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) tools. The power conversion efficiency (PCE) of the devices fabricated using the mixed-solvent showed better performance than the devices made using the single solvent. The best-optimized mixed-solvent perovskite film exhibited a PCE of 15.2% with uniform film coverage on the substrate, better charge generation, and a high hole mobility of 1.16 × 10-4cm2/V s. The disparities in photovoltaic properties have been analyzed with the intensity dependent current density-voltage (J-V), transient photovoltage (TPV), and relationship between photocurrent (Jph) and effective voltage (Veff).

  14. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    Science.gov (United States)

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  15. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  16. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  17. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.

    Science.gov (United States)

    Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li

    2015-05-01

    An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Differentiation of cartilaginous anlagen in entire embryonic mouse limbs cultured in a rotating bioreactor

    Science.gov (United States)

    Montufar-Solis, D.; Oakley, C. R.; Jefferson, Y.; Duke, P. J.

    2003-10-01

    Mechanisms involved in development of the embryonic limb have remained the same throughout eons of genetic and environmental evolution under Earth gravity (lg). During the spaceflight era it has been of interest to explore the ancient theory that form of the skeleton develops in response to gravity, and that changes in gravitational forces can change the developmental pattern of the limb. This has been shown in vivo and in vitro, allowing the hypergravity of centrifugation and microgravity of space to be used as tools to increase our knowledge of limb development. In recapitulations of spaceflight experiments, premetatarsals were cultured in suspension in a bioreactor, and found to be shorter and less differentiated than those cultured in standard culture dishes. This study only measured length of the metatarsals, and did not account for possible changes due to the skeletal elements having a more in vivo 3D shape while in suspension vs. flattened tissues compressed by their own weight. A culture system with an outcome closer to in vivo and that supports growth of younger limb buds than traditional systems will allow studies of early Hox gene expression, and contribute to the understanding of very early stages of development. The purpose of the current experiment was to determine if entire limb buds could be cultured in the bioreactor, and to compare the growth and differentiation with that of culturing in a culture dish system. Fore and hind limbs from E11-E13 ICR mouse embryos were cultured for six days, either in the bioreactor or in center-well organ culture dishes, fixed, and embedded for histology. E13 specimens grown in culture dishes were flat, while bioreactor culture specimens had a more in vivo-like 3D limb shape. Sections showed excellent cartilage differentiation in both culture systems, with more cell maturation, and hypertrophy in the specimens cultured in the bioreactor. Younger limb buds fused together during culture, so an additional set of El 1

  19. Evaluation of Hollow Fiber And Miniperm Bioreactors as An Alternative to Murine Ascites for Small Scale Monoclonal Antibody Production

    International Nuclear Information System (INIS)

    Abedalla, O. M.

    2007-01-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, miniPERM bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, miniPERM bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1X10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and miniPERM) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg; vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in miniPERM. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and miniPERM bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (< 1 g) monoclonal antibody production.

  20. Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.

    Science.gov (United States)

    Knöspel, Fanny; Freyer, Nora; Stecklum, Maria; Gerlach, Jörg C; Zeilinger, Katrin

    2016-01-01

    Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale-up of stem cell culture is necessary. Bioreactors for dynamic three-dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow-fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 10(6) mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 10(6) mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four-compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers.

  1. Submerged membrane bioreactor for domestic wastewater treatment and reuse

    International Nuclear Information System (INIS)

    Feki; Firas; Jraou, Mouna; Loukil, Slim; Kchaou, Sonia; Sayadi, Sami; Arnolt, Tom

    2009-01-01

    The Mediterranean basin (and particularly North African countries) is one of the poorest regions in the world in terms of water resources. In Tunisia, treated municipal wastewater is becoming one of the main alternative sources of water. Indeed, in 2007, 99 municipal wastewater treatment plants (WWTP) has treated a quantity of 215 millions of m 3 from which more than 30 pour cent are reused. The treated volume in 2011 is expected to be 266 millions m 3 , whereas the reused wastewaters should reach more than 50 pour cent. However, especially in the eastern and northern Mediterranean regions, wastewaters are inefficiently treated and re-used for irrigation or sanitary purposes, serving as a carrier for diseases or causing water pollution when discharged to water bodies. In the last decade, several water treatment technologies have been used in the region with little success in pathogen removal. Membrane bioreactor (MBR) technology is a very promising alternative to those conventional water treatments as membranes act as a barrier against bacteria and viruses achieving a high degree of water purification. However, most membrane bioreactors currently in use have very high running costs because of the high pressure drop and high air-flushing rate required for their operation. The objective of this PURATREAT FP 6 EU project was to study a new approach to the operation of membrane bioreactors. This study was included a comparison of three leading membrane technologies. The operating procedure to be studied is expected to yield very low energy consumption and reduced maintenance costs. After the start up period, the MBR3 was operated with a MLSS concentration of 4.5 and 9 g/L, respectively. Different fluxes as 16, 18, 20 and 22 Lh -1 m -2 were tested. When the flux increase from 16 to 22 Lh -1 m -2 , the treatment energy consumption decreased from 7 to 5 kWh/m 3 . However the increases of MLSS concentration from 4.5 and 9 g/L raise the membrane fouling frequency from 1

  2. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).

    Science.gov (United States)

    Fernandez-Rojo, L; Héry, M; Le Pape, P; Braungardt, C; Desoeuvre, A; Torres, E; Tardy, V; Resongles, E; Laroche, E; Delpoux, S; Joulian, C; Battaglia-Brunet, F; Boisson, J; Grapin, G; Morin, G; Casiot, C

    2017-10-15

    Passive water treatments based on biological attenuation can be effective for arsenic-rich acid mine drainage (AMD). However, the key factors driving the biological processes involved in this attenuation are not well-known. Here, the efficiency of arsenic (As) removal was investigated in a bench-scale continuous flow channel bioreactor treating As-rich AMD (∼30-40 mg L -1 ). In this bioreactor, As removal proceeds via the formation of biogenic precipitates consisting of iron- and arsenic-rich mineral phases encrusting a microbial biofilm. Ferrous iron (Fe(II)) oxidation and iron (Fe) and arsenic removal rates were monitored at two different water heights (4 and 25 mm) and with/without forced aeration. A maximum of 80% As removal was achieved within 500 min at the lowest water height. This operating condition promoted intense Fe(II) microbial oxidation and subsequent precipitation of As-bearing schwertmannite and amorphous ferric arsenate. Higher water height slowed down Fe(II) oxidation, Fe precipitation and As removal, in relation with limited oxygen transfer through the water column. The lower oxygen transfer at higher water height could be partly counteracted by aeration. The presence of an iridescent floating film that developed at the water surface was found to limit oxygen transfer to the water column and delayed Fe(II) oxidation, but did not affect As removal. The bacterial community structure in the biogenic precipitates in the bottom of the bioreactor differed from that of the inlet water and was influenced to some extent by water height and aeration. Although potential for microbial mediated As oxidation was revealed by the detection of aioA genes, removal of Fe and As was mainly attributable to microbial Fe oxidation activity. Increasing the proportion of dissolved As(V) in the inlet water improved As removal and favoured the formation of amorphous ferric arsenate over As-sorbed schwertmannite. This study proved the ability of this bioreactor

  3. MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    Science.gov (United States)

    The presentation focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that,...

  4. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  5. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    Science.gov (United States)

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    Science.gov (United States)

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  7. Cost effective dry anaerobic digestion in textile bioreactors: Experimental and economic evaluation.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-12-01

    The aim of this work was to study dry anaerobic digestion (dry-AD) of manure bedded with straw using textile-based bioreactor in repeated batches. The 90-L reactor filled with the feedstocks (22-30% total solid) and inoculum without any further treatment, while the biogas produced were collected and analyzed. The digestate residue was also analyzed to check its suitability as bio-fertilizer. Methane yield after acclimatization increased from 183 to 290NmlCH 4 /gVS, degradation time decreased from 136 to 92days and the digestate composition point to suitable bio-fertilizer. The results then used to carry out economical evaluation, which shows dry-AD in textile bioreactors is a profitable method of handling the waste with maximum payback period of 5years, net present value from $7,000 to $9,800,000 (small to large bioreactors) with internal rate of return from 56.6 to 19.3%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    Science.gov (United States)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  9. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  10. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  11. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jiemin [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Xuemei; Li, Yuguang [101 Institute, Ministry of Civil Affairs, Beijing 100070 (China); Xing, Jianmin, E-mail: jmxing@ipe.ac.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190 (China)

    2015-09-15

    Highlights: • Bacterial communities of haloalkaliphilic bioreactors were investigated. • MiSeq was first used in analysis of communities of haloalkaliphilic bioreactors. • Electron donors had significant effect on bacterial communities. - Abstract: Biological technology used to treat flue gas is useful to replace conventional treatment, but there is sulfide inhibition. However, no sulfide toxicity effect was observed in haloalkaliphilic bioreactors. The performance of the ethanol-fed bioreactor was better than that of lactate-, glucose-, and formate-fed bioreactor, respectively. To support this result strongly, Illumina MiSeq paired-end sequencing of 16S rRNA gene was applied to investigate the bacterial communities. A total of 389,971 effective sequences were obtained and all of them were assigned to 10,220 operational taxonomic units (OTUs) at a 97% similarity. Bacterial communities in the glucose-fed bioreactor showed the greatest richness and evenness. The highest relative abundance of sulfate-reducing bacteria (SRB) was found in the ethanol-fed bioreactor, which can explain why the performance of the ethanol-fed bioreactor was the best. Different types of SRB, sulfur-oxidizing bacteria, and sulfur-reducing bacteria were detected, indicating that sulfur may be cycled among these microorganisms. Because high-throughput 16S rRNA gene paired-end sequencing has improved resolution of bacterial community analysis, many rare microorganisms were detected, such as Halanaerobium, Halothiobacillus, Desulfonatronum, Syntrophobacter, and Fusibacter. 16S rRNA gene sequencing of these bacteria would provide more functional and phylogenetic information about the bacterial communities.

  12. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  13. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    Science.gov (United States)

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  14. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1

    2018-05-01

    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.

  15. Long Term Performance of an Arsenite-Oxidizing-Chlorate-Reducing Microbial Consortium in an Upflow Anaerobic Sludge Bed (UASB) Bioreactor

    Science.gov (United States)

    Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A.

    2011-01-01

    A chlorate (ClO3−) reducing microbial consortium oxidized arsenite (As(III)) to arsenate (As(V)) in an upflow anaerobic sludge-bed bioreactor over 550 d operation. As(III) was converted with high conversion efficiencies (>98%) at volumetric loadings ranging from 0.45 to 1.92 mmol As/(Lreactor d). The oxidation of As(III) was linked to the complete reduction of ClO3− to Cl− and H2O, as demonstrated by a molar ratio of approximately 3.0 mol As(III) oxidized per mole of Cl− formed and by the greatly lowered ClO3−-reducing capacity without As(III) feeding. An autotrophic enrichment culture was established from the bioreactor biofilm. A 16S rRNA gene clone library indicated that the culture was dominated by Dechloromonas, and Stenotrophomonas as well as genera within the family Comamonadaceae. The results indicate that the oxidation of As(III) to less mobile As(V) utilizing ClO3− as a terminal electron acceptor provides a sustainable bioremediation strategy for arsenic contamination in anaerobic environments. PMID:21333531

  16. Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm

    International Nuclear Information System (INIS)

    Campos-Diaz, K. E.; Limas-Ballesteros, R.

    2009-01-01

    Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)

  17. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  18. Ultrahigh performance composting of sludge from food industry-comparative study of fermentation in sawdust and paper mixing methods

    International Nuclear Information System (INIS)

    Hassan, A.; Masanori, M.; Mizuho, M.; Hiroe, K.; Shahjahan, M.M.; Tohru, H.; Hori, H.

    2005-01-01

    We succeeded to develop an ultra high performance composting system for food industrial sludge by employing paper mixing method. Sludge was mixed with cut pieces (3 x 12 mm) of waste paper, like newspapers, in the range of 10-20 % (w/w) in an electric mixer to enhance the porosity and reduce water content of the mass. We followed conventional way of sawdust mixing as control. The mixture was subjected to aeration at room temperature with an electric blower at 86 L/min/m/sup 2/ bottom area of bio-reactor. The composting process completed in 10 days, in contrast to the conventional cases where it takes 60 to 90 days to complete composting, thereby reducing the time course 6 to 9 fold. Chemical analyses of the compost showed concentration nitrogen (N) 5.0%, phosphorus (P) 4.9% and potassium (K) 0.6% while all heavy metal contents were below the standard required level. The compost showed pH 7.1, EC 5.6 and C/N ratio 8. We analyzed for nitrogen release into the soil and efficacy on the germination and growth of Brassica Tapa L. the compost showed markedly good effect on the growth of the plantlets. The present study demonstrated that the paper-mixed composting method is highly efficient and energy saving. In addition, this method can lead to design a reactor which is compact but with very high capacity to convert municipal organic waste to compost. (author)

  19. Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor

    Directory of Open Access Journals (Sweden)

    Izabela Grzegorczyk

    2011-01-01

    Full Text Available The study focused on the production of compounds with antioxidant activity in hairy root and shoot cultures of Salvia officinalis grown in laboratory-scale sprinkle nutrient bioreactors. HPLC analysis showed that production of rosmarinic acid in transformed roots (34.65 ±1.07 mg l-1 was higher that in shoot culture (26.24 ±0.48 mg l-1. In the latter diterpenoids: carnosic acid (1.74 ±0.02 mg l-1 and carnosol (1.34 ±0.01 mg l-1 were also found. Biomass accumulation after a growth period in the bioreactor was also studied. An 18-fold increase in hairy root biomass was recorded after 40 days of culture. In sage shoot culture, biomass increased 43 times after 21 days of bioreactor run. The current operating conditions of the bioreactor were not suitable for the propagation of Salvia officinalis mainly due to the hyperhydricity problem of leaves and stems.

  20. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    Science.gov (United States)

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of hollow fiber and mini perm bioreactors as an alternative to murine ascites for small scale monoclonal antibody production

    International Nuclear Information System (INIS)

    Abdalla, O. M.

    2006-12-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, mini perm bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, mini perm bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1x10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and mini perm) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg, vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in mini perm. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and mini perm bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (<1mg) monoclonal antibody production.(Author)

  2. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  3. Development and application of a milliliter-scale bioreactor for continuous microbial cultivations

    DEFF Research Database (Denmark)

    Bolic, Andrijana

    measurementwhere light was sent through the MSBR bottom and sample to a mirror-like surface in the MSBR and returned back to a fiber bundle. Aerobic and anaerobic batch cultivations were performed with Saccharomyces cerevisiae and Lactobacillus paracasei, respectively. A high evaporation rate was experienced...... bioreactor functionality usually comes in regular lab size, which then transforms a smallscale bioreactor platform to a regular size experimental set up. To address this issue, effort was placed in developing 2 push/pull pumps that were able to deliver gas and medium ina controlled manner as a part...

  4. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  5. COUPLING OF MEMBRANE BIOREACTOR AND OZONATION FOR REMOVAL OF ANTIBIOTICS FROM HOSPITAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    Bui Xuan Thanh

    2016-02-01

    Full Text Available Antibiotic residues in the environment and their potential toxic effects have been considered as one of the emerging research area in the environmental field. Their continuous introduction in our environment may increase their negative impacts on human health.  In this study, the eliminations of antibiotic such as Norfloxacin (NOR, Ciprofloxacin (CIP, Ofloxacin (OFL and Sulfamethoxazole (SMZ in wastewater of hospital were processed by membrane bioreactor (MBR coupled with ozonation process. In particular, the MBR was applied for the antibiotic removals followed by ozonation process as a post-treatment stage to create an adequate integration to enhance removal efficiency. Achieved results after MBR treatment showed that the removal efficiency of NOR, CIP, OFL and SMZ were 90 ± 4.0% , 83 ± 13% , 81 ± 13 % and  39 ± 6%, respectivley. In addition, those antibiotic matters were continously removed by ozonation process with the removal efficiency of 87±9.0% , 83±1.0% , 81±2.3% and 66±2.3% for NOR, CIP, OFL and SMZ, respectively. In summary, antibiotics could be basically limited by the combination of MBR and ozonation before discharging in aquatic environment.

  6. The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge

    Directory of Open Access Journals (Sweden)

    A. J. Morais Barros

    2006-06-01

    Full Text Available This work on the process of biosorption of nickel and chromium in an ascendant continuous-flow, fixed packed-bed bioreactor of sanitary sewage sludge was conducted in a search for solutions to the environmental problem caused by heavy metals. Analysis of the results demonstrated that the absorbent had an extraordinary capacity for biosorption of the heavy metals studied at about 9.0 pH of the effluent, with a removal percentage of over 90.0% for the two metals. Chemometric study results demonstrated that 20 days of the experimental system function were sufficient for achieving the maximum efficiency of sorption of the heavy metals studied by the sanitary sewage sludge employed.

  7. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    Science.gov (United States)

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2018-01-01

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Nonlinear adaptive optimization of biomass productivity in continuous bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Sauvaire, P; Mellichamp, D A; Agrawal, P [California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering

    1991-11-01

    A novel on-line adaptive optimization algorithm is developed and applied to continuous biological reactors. The algorithm makes use of a simple nonlinear estimation model that relates either the cell-mass productivity or the cell-mass concentration to the dilution rate. On-line estimation is used to recursively identify the parameters in the nonlinear process model and to periodically calculate and steer the bioreactor to the dilution rate that yields optimum cell-mass productivity. Thus, the algorithm does not require an accurate process model, locates the optimum dilution rate online, and maintains the bioreactors at this optimum condition at all times. The features of the proposed new algorithm are compared with those of other adaptive optimization techniques presented in the literature. A detailed simulation study using three different microbial system models was conducted to illustrate the performance of the optimization algorithms. (orig.).

  9. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.

    Science.gov (United States)

    Ravichandran, Akhilandeshwari; Wen, Feng; Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry K Y; Teoh, Swee-Hin

    2018-04-01

    Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-β-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  11. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    International Nuclear Information System (INIS)

    Mignone, B.K.

    2004-01-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO 2 ). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO 2 into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO 2 through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO 2 outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  12. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  13. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  15. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  17. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  18. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    Science.gov (United States)

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Shell of Planet Earth – Global Batch Bioreactor.

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Šolcová, Olga; Kaštánek, P.

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1959-1965 ISSN 0930-7516 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985858 Keywords : critical raw materials * global batch bioreactor * planet earth Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.051, year: 2016

  20. Efficient removal of disperse dye by mixed culture of ganoderma lucidum and coriolus versicolor

    International Nuclear Information System (INIS)

    Sadaf, S.; Bhatti, H.N.; Bibi, I.

    2013-01-01

    In the current study, an attempt was made to check the potential of aerobic mixed culture of two indigenous white rot fungi for the decolorization of different disperse dyes in batch culture mode and optimization of different conditions to enhance the biotransformation of dyes. Initial screening trial with six disperse dyes, viz. (Foron Yellow RD5GL, Foron Red RDRBLS, Foron Rubine RDGFL, Foron Black RD3GRN, Foron Blue RDGLN and Foron Turquoise SBLN), was carried out using mixed culture of Ganoderma lucidum and Coriolus versicolor. From all the tested dyes, the mixed culture showed better removal efficiency (93 %) with Foron Turquoise SBLN dye after 8 days of incubation period as compared to other tested dyes. Enhanced color removal (98 %) was observed when the medium was amended by ammonium tartarate, maltose, MnSO/sub 4/ at pH 4.5 and 30 degree C with 2 mL fungal culture during 2nd day of incubation period. Enzyme profile showed that the mixed culture produced three liginolytic enzymes like lignin peroxidase (LiP), manganase peroxidase (MnP) and laccase but MnP was found to be the major enzyme. The results indicated that white rot fungi (WRF) could be used to treat wastewater containing disperse dyes. (author)

  1. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors

    Directory of Open Access Journals (Sweden)

    Mariana Manzoni Maroneze

    2014-12-01

    Full Text Available Microalgal heterotrophic bioreactors are a potential technological development that can convert organic matter, nitrogen and phosphorus of wastewaters into a biomass suitable for energy production. The aim of this work was to evaluate the performance of microalgal heterotrophic bioreactors in the secondary treatment of cattle-slaughterhouse wastewater and the reuse of microalgal sludge for biodiesel production. The experiments were performed in a bubble column bioreactor using the microalgae Phormidium sp. Heterotrophic microalgal bioreactors removed 90 % of the chemical oxygen demand, 57 % of total nitrogen and 52 % of total phosphorus. Substantial microalgal sludge is produced in the process (substrate yield coefficient of 0.43 mg sludge mg chemical oxygen demand−¹, resulting in a biomass with high potential for producing biodiesel (ester content of more than 99 %, cetane number of 55, iodine value of 73.5 g iodine 100 g−¹, unsaturation degree of ~75 % and a cold filter plugging point of 5 ºC.

  2. Effect of organic matter to nitrogen ratio on membrane bioreactor performance.

    Science.gov (United States)

    Hao, L; Liao, B Q

    2015-01-01

    Effect of chemical oxygen demand (COD) to nitrogen (COD:N) ratio in feed on the performance of aerobic membrane bioreactor (MBR) for treating a synthetic high-strength industrial waste water containing glucose was studied for over 370 days. The widely recommended nutrients ratio (COD:N:P = 100:5:1) is not necessary for aerobic biological industrial waste water treatment. An increased COD:N ratio from 100:5 to 100:2.5 and 100:1.8 had a limited impact on COD removal efficiency and further led to a significant improvement in membrane performance, a reduced sludge yield, and improved effluent quality in terms of residual nutrients. An increased COD:N ratio will benefit the industrial waste water treatment using MBRs by reducing membrane fouling and sludge yield, saving chemical costs, and reducing secondary pollution by nutrients addition. Optimization of nutrients usage should be conducted for specific industrial waste water streams.

  3. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vakylabad, Ali Behrad, E-mail: alibehzad86@yahoo.co.uk [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Engineers of Nano and Bio Advanced Sciences Company (ENBASCo.), ATIC, Mohaghegh University (Iran, Islamic Republic of); Schaffie, Mahin [Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ranjbar, Mohammad [Department of Mining Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Manafi, Zahra [Sarcheshmeh Copper Complex, National Iranian Copper Industry Company (Iran, Islamic Republic of); Darezereshki, Esmaeel [Mineral Industries Research Centre (MIRC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Energy and Environmental Engineering Research Center (EERC), Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Flotation concentrate and smelter dust were sampled and combined. Black-Right-Pointing-Pointer Copper bioleaching from the combined was investigated. Black-Right-Pointing-Pointer Two bio-reactors were investigated and optimized: stirred and airlift. Black-Right-Pointing-Pointer STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu{sub 2}S, CuS, and Cu{sub 5}FeS{sub 4}.Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  4. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors

    International Nuclear Information System (INIS)

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-01-01

    Highlights: ► Flotation concentrate and smelter dust were sampled and combined. ► Copper bioleaching from the combined was investigated. ► Two bio-reactors were investigated and optimized: stirred and airlift. ► STRs had better technical conditions and situations for bacterial leaching. - Abstract: To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu 2 S, CuS, and Cu 5 FeS 4 .Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  5. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  6. Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae.

    Science.gov (United States)

    Delvigne, F; Lejeune, A; Destain, J; Thonart, P

    2006-01-01

    The mechanisms of interaction between microorganisms and their environment in a stirred bioreactor can be modeled by a stochastic approach. The procedure comprises two submodels: a classical stochastic model for the microbial cell circulation and a Markov chain model for the concentration gradient calculus. The advantage lies in the fact that the core of each submodel, i.e., the transition matrix (which contains the probabilities to shift from a perfectly mixed compartment to another in the bioreactor representation), is identical for the two cases. That means that both the particle circulation and fluid mixing process can be analyzed by use of the same modeling basis. This assumption has been validated by performing inert tracer (NaCl) and stained yeast cells dispersion experiments that have shown good agreement with simulation results. The stochastic model has been used to define a characteristic concentration profile experienced by the microorganisms during a fermentation test performed in a scale-down reactor. The concentration profiles obtained in this way can explain the scale-down effect in the case of a Saccharomyces cerevisiae fed-batch process. The simulation results are analyzed in order to give some explanations about the effect of the substrate fluctuation dynamics on S. cerevisiae.

  7. JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr

    Science.gov (United States)

    1991-01-01

    JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.

  8. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  9. Compressibility of the fouling layer formed by membrane bioreactor sludge and supernatant

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Poorasgari, Eskandar; Christensen, Morten Lykkegaard

    Membrane bioreactors (MBR) are increasingly used for wastewater treatment as they give high effluent quality, low footprint and efficient sludge degradation. However, the accumulation and deposition of sludge components on and within the membrane (fouling) limits the widespread application of MBR....... Compressibility of the gel layer was studied in a dead-end filtration system, whereas the compressibility of a fouling layer formed by MBR sludge was studied in a submerged system hollow sheet membrane by TMP stepping. It was shown that the fouling layer formed by the MBR sludge was highly compressible within....... Hence, for MBR systems operated at constant flux mode, the applied pressure should be increased over time, to compensate for the lower permeability. Increasing applied pressure causes compression of the fouling layer and results in a more severe permeability decline [1]. In a general view, the fouling...

  10. Low energy consumption vortex wave flow membrane bioreactor.

    Science.gov (United States)

    Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan

    2017-11-01

    In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.

  11. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  12. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    Mignone, B.K. [Princeton Univ., NJ (United States). Dept. of Geosciences; Sarmiento, J.L.; Slater, R.D. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Gnanadesikan, A. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Geophysical Fluid Dynamics Lab., NOAA, Princeton, NJ (United States)

    2004-08-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  13. Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors

    Science.gov (United States)

    McGuire, P. M.; Falk, L. M.; Reid, M. C.

    2017-12-01

    To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to

  14. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.; O’ Dea, R. D.; Whiteley, J. P.; Byrne, H. M.; Waters, S. L.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  15. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O\\'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  16. Optimization of Wastewater of Batik Buaran Pekalongan by Using Photocatalytic Membrane Bioreactor

    Science.gov (United States)

    Arifan, Fahmi; Nugraheni, FS; Lianandaya, Niken Elsa

    2018-02-01

    The purpose of this study is to determine the final COD concentration reduction by changing COD and MLSS concentration on the performance of submerged membrane bioreactor (MBRs) as a waste treatment of Batik in Buaran Pekalongan. The method is covers the process of seeding, the acclimatization process and the main process. Description of the process that we take an active mud from IPLT Buaran Pekalongan, then we analyze the sludge MLSS, MLVSS, COD, BOD, and TSS. After that we enter the active sludge in the bath nursery that has been given aerator (a tool for aeration) and made provision in the form of NPK nutrients and glucose at a ratio of 1:10. Activated sludge from the acclimatization process is inserted into the MBRs (membrane bioreactor submerged) that is equipped with an aerator. Then prepare influent(waste to be lowered concentration of COD). How, liquid waste of Batik Pekalongan Buaran COD diluted concentration of 10,000 mg / l and 15,000 mg / l, and then inserted in influent tub. After that liquid waste of Batik Buaran Pekalongan influent flowed into Photocatalytic Membrane Bioreactor, of MPB effluent flowed into the tub (result).

  17. Membrane bioreactor biomass characteristics and microbial yield at ...

    African Journals Online (AJOL)

    In this study, a laboratory-scale MBR and SBR were operated in parallel and at very low MCRTs (3 d, 2 d, 1 d and 0.5 d) to assess the relative bioreactor performance, biomass characteristics, and microbial yield. This study confirmed that the MBR maintains higher solids levels and better overall effluent quality than ...

  18. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors

    International Nuclear Information System (INIS)

    Khelifi, Eltaief; Gannoun, Hana; Touhami, Youssef; Bouallagui, Hassib; Hamdi, Moktar

    2008-01-01

    An aerobic bioprocess was applied to Indigo dye-containing textile wastewater treatment aiming at the colour elimination and biodegradation. A combined aerobic system using continuous stirred tank reactor (CSTR) and fixed film bioreactor (FFB) was continuously operated at constant temperature and fed with the textile wastewater (pH: 7.5 and total chemical oxygen demand (COD): 1185 mg l -1 ). The CSTR is a 1 l continuous flow stirred tank reactor with a 700 ml working volume, and operated with a variable wastewater loading rate (WLR) from 0.92 to 3.7 g l -1 d -1 . The FFB is a 1.5 l continuous flow with three compartments packed with a rippled cylindrical polyethylene support, operated with a variable WLR between 0.09 and 0.73 g l -1 d -1 . The combined two bioreactors were inoculated by an acclimated microbial consortium and continuously operated with four total WLR. This system presented high COD elimination and colour removal efficiencies of 97.5% and 97.3%, respectively, obtained with a total hydraulic retention time (HRT) of 4 days and total WLR of 0.29 g l -1 d -1 . The effects of WLR on absorption phenomena on the yield of conversion of substrate on biomass (R TSS/COD ) and on the yield of conversion of substrate on active biomass (R VVS/COD ) are discussed. The increase of WLR and the decrease of HRT diminished the performances of this system in terms of decolourization and COD removal explained by the sloughing of biofilm, and the washout phenomena

  19. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Science.gov (United States)

    Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta

    2015-01-01

    Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...

  20. Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    De Vrieze, Jo; Hennebel, Tom; Van den Brande, Jens; Bilad, Ro'il M.; Bruton, Thomas A.; Vankelecom, Ivo F.J.; Verstraete, Willy; Boon, Nico

    2014-01-01

    Bio-refineries produce large volumes of waste streams with high organic content, which are potentially interesting for further processing. Anaerobic digestion (AD) can be a key technology for treatment of these sidestreams, such as molasses. However, the high concentration of salts in molasses can cause inhibition of methanogenesis. In this research, concentrated and diluted molasses were subjected to biomethanation in two types of submerged anaerobic membrane bioreactors (AnMBRs): one with biogas recirculation and one with a vibrating membrane. Both reactors were compared in terms of methane production and membrane fouling. Biogas recirculation seemed to be a good way to avoid membrane fouling, while the trans membrane pressures in the vibrating MBR increased over time, due to cake layer formation and the absence of a mixing system. Stable methane production, up to 2.05 L L −1  d −1 and a concomitant COD removal of 94.4%, was obtained only when diluted molasses were used, since concentrated molasses caused a decrease in methane production and an increase in volatile fatty acids (VFA), indicating an inhibiting effect of concentrated molasses on AD. Real-time PCR results revealed a clear dominance of Methanosaetaceae over Methanosarcinaceae as the main acetoclastic methanogens in both AnMBRs. - Highlights: • An anaerobic membrane bioreactor (AnMBR) can be used to digest diluted molasses. • Biogas recirculation is a good way to avoid fouling in an AnMBR. • Trans membrane pressures in AnMBR with vibrating membrane increased over time. • Methanosaeta sp. were the dominant acetoclastic methanogens

  1. Performance evaluation of an side-stream anaerobic membrane bioreactor: Synthetic and alcoholic beverage industry wastewater

    Directory of Open Access Journals (Sweden)

    Nurdan BÜYÜKKAMACI

    2016-06-01

    Full Text Available The treatment performance of a laboratory-scale anaerobic membrane bioreactor (AnMBR using high strength wastewater was evaluated. The AnMBR model system consisted of an up-flow anaerobic sludge blanket reactor (UASB and an ultrafiltration (UF membrane. Its performance was first examined using molasses based synthetic wastewater at different hydraulic retention times (1-3 days and organic loading rates (5-15 kg COD/m3.day. As a result of the experimental studies, maximum treatment efficiency with respect to COD reduction (95% was achieved at 7.5 kg COD/m3.day OLR (CODinfluent=15.000 mg/L, HRT=2 days applications. When OLR was increased to 15 kg COD/m3.day, system performance decreased sharply. Similarly, methane gas production decreased by increasing OLR. After then, feed was changed to real wastewater, which was alcoholic beverage industry effluent. At this study, maximum COD removal efficiency of the system and maximum methane gas production was 88% and 74%, respectively.

  2. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    Science.gov (United States)

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  3. Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Novotný, Čeněk

    2018-01-01

    Roč. 102, č. 1 (2018), s. 39-46 ISSN 0175-7598 Institutional support: RVO:61388971 Keywords : Waste effluents * Bioremediation * White-rot fungal bioreactors Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.420, year: 2016

  4. Microbial biosafety of pilot-scale bioreactor treating MTBE and TBA-contaminated drinking water supply.

    Science.gov (United States)

    Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira

    2012-03-30

    A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    Science.gov (United States)

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  6. Design and Validation of a Cyclic Strain Bioreactor to Condition Spatially-Selective Scaffolds in Dual Strain Regimes

    Directory of Open Access Journals (Sweden)

    J. Matthew Goodhart

    2014-03-01

    Full Text Available The objective of this study was to design and validate a unique bioreactor design for applying spatially selective, linear, cyclic strain to degradable and non-degradable polymeric fabric scaffolds. This system uses a novel three-clamp design to apply cyclic strain via a computer controlled linear actuator to a specified zone of a scaffold while isolating the remainder of the scaffold from strain. Image analysis of polyethylene terephthalate (PET woven scaffolds subjected to a 3% mechanical stretch demonstrated that the stretched portion of the scaffold experienced 2.97% ± 0.13% strain (mean ± standard deviation while the unstretched portion experienced 0.02% ± 0.18% strain. NIH-3T3 fibroblast cells were cultured on the PET scaffolds and half of each scaffold was stretched 5% at 0.5 Hz for one hour per day for 14 days in the bioreactor. Cells were checked for viability and proliferation at the end of the 14 day period and levels of glycosaminoglycan (GAG and collagen (hydroxyproline were measured as indicators of extracellular matrix production. Scaffolds in the bioreactor showed a seven-fold increase in cell number over scaffolds cultured statically in tissue culture plastic petri dishes (control. Bioreactor scaffolds showed a lower concentration of GAG deposition per cell as compared to the control scaffolds largely due to the great increase in cell number. A 75% increase in hydroxyproline concentration per cell was seen in the bioreactor stretched scaffolds as compared to the control scaffolds. Surprisingly, little differences were experienced between the stretched and unstretched portions of the scaffolds for this study. This was largely attributed to the conditioned and shared media effect. Results indicate that the bioreactor system is capable of applying spatially-selective, linear, cyclic strain to cells growing on polymeric fabric scaffolds and evaluating the cellular and matrix responses to the applied strains.

  7. Anaerobic Membrane Bioreactors For Cost-Effective Municipal Water Reuse

    NARCIS (Netherlands)

    Özgün, H.

    2015-01-01

    In recent years, anaerobic membrane bioreactor (AnMBR) technology has been increasingly researched for municipal wastewater treatment as a means to produce nutrient-rich, solids free effluents with low levels of pathogens, while occupying a small footprint. An AnMBR can be used not only for on-site

  8. Enhancing inhibited fermentations through a dynamic electro-membrane bioreactor

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Garde, Arvid; Rype, Jens-Ulrik

    produced in the bioreactor) with hydroxide ions, which maintained a pH close to optimal growing conditions. The ion-exchange was in turn regulated by a PID control unit, which adjusted the electrical current output between the REED electrodes to match the growing production speed of lactic acid, which...

  9. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Science.gov (United States)

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  10. Mixed-Signal Architectures for High-Efficiency and Low-Distortion Digital Audio Processing and Power Amplification

    Directory of Open Access Journals (Sweden)

    Pierangelo Terreni

    2010-01-01

    Full Text Available The paper addresses the algorithmic and architectural design of digital input power audio amplifiers. A modelling platform, based on a meet-in-the-middle approach between top-down and bottom-up design strategies, allows a fast but still accurate exploration of the mixed-signal design space. Different amplifier architectures are configured and compared to find optimal trade-offs among different cost-functions: low distortion, high efficiency, low circuit complexity and low sensitivity to parameter changes. A novel amplifier architecture is derived; its prototype implements digital processing IP macrocells (oversampler, interpolating filter, PWM cross-point deriver, noise shaper, multilevel PWM modulator, dead time compensator on a single low-complexity FPGA while off-chip components are used only for the power output stage (LC filter and power MOS bridge; no heatsink is required. The resulting digital input amplifier features a power efficiency higher than 90% and a total harmonic distortion down to 0.13% at power levels of tens of Watts. Discussions towards the full-silicon integration of the mixed-signal amplifier in embedded devices, using BCD technology and targeting power levels of few Watts, are also reported.

  11. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  12. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  13. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    Science.gov (United States)

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu

  14. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research,

  15. Denitrification capacity of bioreactors filled with refuse at different landfill ages

    International Nuclear Information System (INIS)

    Chen Yingxu; Wu Songwei; Wu Weixiang; Sun Hua; Ding Ying

    2009-01-01

    The denitrification capacity of refuse at different landfill ages in bioreactor landfill system was studied. Three reactors filled with 1-year-old refuse (R1), 6-year-old refuse (R6) and 11-year-old refuse (R11), respectively, were operated in the experiment. Nitrate solution (1000 mg NO 3 - -N L -1 ) was added into each reactor. The results showed that the reactors were all able to consume nitrate. However, 1-year-old refuse in R1 had both a higher nitrate reduction rate and concentration of N 2 . In addition, vertical differences in nitrate removal along the depth of R1 were observed. The bottom-layer refuse and the middle-layer refuse both showed higher efficiency in nitrate depletion than the top layer. Furthermore, N 2 O accumulation was found in R11 with the concentration up to 19.3% of the released gas. These results suggested that 1-year-old refuse, which was partly degraded, was more suitable to use as denitrification medium.

  16. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  17. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  18. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  19. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    Science.gov (United States)

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  20. Integrated sensor array for on-line monitoring micro bioreactors

    NARCIS (Netherlands)

    Krommenhoek, E.E.

    2007-01-01

    The “Fed��?batch on a chip��?��?project, which was carried out in close cooperation with the Technical University of Delft, aims to miniaturize and parallelize micro bioreactors suitable for on-line screening of micro-organisms. This thesis describes an electrochemical sensor array which has been

  1. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis.

    Science.gov (United States)

    Liu, Wan-Ling; Yang, Ni-Shin; Chen, Ya-Ting; Lirio, Stephen; Wu, Cheng-You; Lin, Chia-Her; Huang, Hsi-Ya

    2015-01-02

    A green and sustainable strategy synthesizes clinical medicine warfarin anticoagulant by using lipase-supported metal-organic framework (MOF) bioreactors (see scheme). These findings may be beneficial for future studies in the industrial production of chemical, pharmaceutical, and agrochemical precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2016-08-01

    Full Text Available The hepatic differentiation of human induced pluripotent stem cells (hiPSC holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3. Differentiation into definitive endoderm (DE was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP, a marker for DE, was significantly (p < 0.05 higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH. CYP2B6 activities were significantly (p < 0.05 higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18, and hepatocyte nuclear factor 4-alpha (HNF4A at the end of the differentiation process. In addition, cytokeratin 19 (CK19 staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  3. Methanogenic community development in anaerobic granular bioreactors treating trichloroethylene (TCE)-contaminated wastewater at 37 °C and 15 °C.

    Science.gov (United States)

    Siggins, Alma; Enright, Anne-Marie; O'Flaherty, Vincent

    2011-04-01

    Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m(-3) d(-1)) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l(-1)) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH(4)) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l(-1) resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH(4) to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H(2) for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic

  4. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J

    2013-11-15

    The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    Science.gov (United States)

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficiency Loss of Mixed Equilibrium Associated with Altruistic Users and Logit-based Stochastic Users in Transportation Network

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Yu

    2014-02-01

    Full Text Available The efficiency loss of mixed equilibrium associated with two categories of users is investigated in this paper. The first category of users are altruistic users (AU who have the same altruism coefficient and try to minimize their own perceived cost that assumed to be a linear combination of selfish com­ponent and altruistic component. The second category of us­ers are Logit-based stochastic users (LSU who choose the route according to the Logit-based stochastic user equilib­rium (SUE principle. The variational inequality (VI model is used to formulate the mixed route choice behaviours associ­ated with AU and LSU. The efficiency loss caused by the two categories of users is analytically derived and the relations to some network parameters are discussed. The numerical tests validate our analytical results. Our result takes the re­sults in the existing literature as its special cases.

  7. [The evaluation of the efficiency of kinesitherapy in the patients with mixed-type vertigo].

    Science.gov (United States)

    Bielińska, Marzena; Zielińska-Bliźniewska, Hanna; Pietkiewicz, Piotr; Olszewski, Jurek

    2012-01-01

    The aim of this work was to evaluate the efficiency of kinesitherapy in the patients with mixed-type vertigo. The study was conducted on a randomized group of 35 patients, 21 women and 14 men aged 24-75 years (mean age 42.5 years), who were treated at the Department of Otolaryngology and Laryngological Oncology Medical University Teaching Hospital in Lodz for mixed-type vertigo. The inclusion criteria were an interview, physical and otorhinolaryngological examinations, laboratory investigations, complete audiological and otoneurological examinations, including BERA and VNG, USG examination of the blood vessels to the cranium, and CT of the cervical spine. Each patient underwent an individually selected set of habituation exercises, corrective exercises for posture and its orientation in space through 2 months. The efficiency of the implemented therapy was evaluated after two weeks, one month and two months with the use of the complete videonystagmographic test and Silvoniemi's criteria. The mean excitability of the labyrinths was 25.38 degrees/s before rehabilitation and 22.26 degrees/s after rehabilitation, absolute directional preponderance was 7.62 degrees/s and 1.92 degrees/s respectively, relative directional preponderance was 31.36 degrees/s and 12.57 degrees/s, and unilateral deficit 32.12 degrees/s and 14.34 degrees/s. The subjective evaluation of the vertigo intensification based on the 5 stages of Silvoniemi's scale indicates that the mean point-based evaluation reported by the patients at the beginning of the therapy was 3.85 points, whereas after the therapy was 2.91 points after two weeks, 2.35 points after one month, and 1.2 points after two months. Kinesitherapy is an alternative and very effective method for treating mixed-type vertigo. Copyright © 2012. Published by Elsevier Urban & Partner Sp. z.o.o.

  8. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    International Nuclear Information System (INIS)

    Nguyen, Nguyen Cong; Chen, Shiao-Shing; Nguyen, Hau Thi; Ngo, Huu Hao; Guo, Wenshan; Hao, Chan Wen; Lin, Po-Hsun

    2015-01-01

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m 2 h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH 4 + -N and PO 4 3− -P were almost removed (> 99%) while producing relatively low NO 3 − -N and NO 2 − -N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus

  9. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Nguyen, Hau Thi [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007 (Australia); Hao, Chan Wen [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan, ROC (China); Lin, Po-Hsun [New Materials Research and Development Dept., China Steel Corporation, Taiwan, ROC (China)

    2015-06-15

    This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system (MBBR–OsMBR) for minimizing the reverse salt flux and maintaining a healthy environment for the microorganism community. The results showed that the hybrid system achieved a stable water flux of 6.94 L/m{sup 2} h and low salt accumulation in the bioreactor for 68 days of operation. At a filling rate of 40% (by volume of the bioreactor) of the polyethylene balls used as carriers, NH{sub 4}{sup +}-N and PO{sub 4}{sup 3−}-P were almost removed (> 99%) while producing relatively low NO{sub 3}{sup −}-N and NO{sub 2}{sup −}-N in the effluent (e.g. < 0.56 and 0.96 mg/L, respectively). Furthermore, from analysis based on scanning electron microscopy, Fourier transform infrared spectroscopy, and fluorescence emission–excitation matrix spectrophotometry, there was a thin gel-like fouling layer on the FO membrane, which composed of bacteria as well as biopolymers and protein-like substances. Nonetheless, the formation of these fouling layers of the FO membrane in MBBR–OsMBR was reversible and removed by a physical cleaning technique. - Highlights: • A novel osmotic membrane bioreactor (MBBR–OsMBR) using a novel draw solution (DS) was developed. • The MBBR–OsMBR system successfully reduced membrane fouling. • EDTA sodium coupled with Triton X-100 as novel DS resulted in low salt accumulation. • Nitrification and denitrification were well performed in a biocarrier. • The MBBR–OsMBR could remarkably remove phosphorus.

  10. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios

    2012-01-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...... modelling. In this paper, the vast literature on hydrodynamic and integrated modelling in MBR is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones...

  11. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  12. Energy-efficiency instruments in the electricity area; Instrumente fuer Energieeffizienz im Elektrizitaetsbereich. Auslaendische Erfahrungen und Instrumenten-Mix fuer die Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, S; Oettli, B; Schneider, Ch; Iten, R [Infras, Zuerich (Switzerland); Peherstorfer, N [Oesterreichische Energieagentur, Wien (Austria)

    2007-06-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) describes a mix of instruments that could increase the efficiency of electricity usage in Switzerland. The basis for the development of these instruments - the experience gained in Europe in this area - is discussed. Explicitly not discussed are energy and electricity steering taxes, which could also be part of a future instrument-mix. The measures suggested include the setting of compulsory long-term reduction targets that are to form the basis for strategies and measures to be taken in particular areas and the development of an appropriate instrument-mix for this purpose. These could include regulations and labels, a national fund and certificate trading. Suppliers of electricity could be committed to increasing the efficiency of electricity use and national programmes could also attempt to influence consumer habits. The instruments should, according to the authors, be based on the existing legal framework and use know-how and structures that are already available.

  13. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  14. Glyco-engineering for biopharmaceutical production in moss bioreactors

    Directory of Open Access Journals (Sweden)

    Eva L. Decker

    2014-07-01

    Full Text Available The production of recombinant biopharmaceuticals (pharmaceutical proteins is a strongly growing area in the pharmaceutical industry. While most products to date are produced in mammalian cell cultures, namely CHO cells, plant-based production systems gained increasing acceptance over the last years. Different plant systems have been established which are suitable for standardization and precise control of cultivation conditions, thus meeting the criteria for pharmaceutical production.The majority of biopharmaceuticals comprise glycoproteins. Therefore, differences in protein glycosylation between humans and plants have to be taken into account and plant-specific glycosylation has to be eliminated to avoid adverse effects on quality, safety and efficacy of the products.The basal land plant Physcomitrella patens (moss has been employed for the recombinant production of high-value therapeutic target proteins (e.g., Vascular Endothelial Growth Factor, Complement Factor H, monoclonal antibodies, Erythropoietin. Being genetically excellently characterized and exceptionally amenable for precise gene targeting via homologous recombination, essential steps for the optimization of moss as a bioreactor for the production of recombinant proteins have been undertaken.Here, we discuss the glyco-engineering approaches to avoid non-human N- and O-glycosylation on target proteins produced in moss bioreactors.

  15. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes

    Directory of Open Access Journals (Sweden)

    Princz Sascha

    2016-09-01

    Full Text Available Cultivation of human nasal septal chondrocytes in a self-established automated bioreactor system with a new designed reactor glass vessel and the results of a computational fluid dynamics model are presented. The first results show the effect of a homogeneous fluidic condition of the continuous medium flow and the resulting stresses on the scaffolds’ surface and their influence on the migration of the cells into the scaffold matrix under these conditions. For this purpose computational models, generated with the computational fluid dynamics software STAR-CCM+, and the results of alcian blue staining for newly synthesized sulphated glycosaminoglycans have been compared during cultivation in the new and a first version of the glass reactor vessel with inhomogeneous fluidic conditions, with the same automated bioreactor system and under similar cultivation conditions.

  16. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.

    Science.gov (United States)

    Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E

    1999-05-20

    The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.

  17. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  18. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System.

    Science.gov (United States)

    Knöspel, Fanny; Jacobs, Frank; Freyer, Nora; Damm, Georg; De Bondt, An; van den Wyngaert, Ilse; Snoeys, Jan; Monshouwer, Mario; Richter, Marco; Strahl, Nadja; Seehofer, Daniel; Zeilinger, Katrin

    2016-04-16

    Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR)), while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR) metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  19. In Vitro Model for Hepatotoxicity Studies Based on Primary Human Hepatocyte Cultivation in a Perfused 3D Bioreactor System

    Directory of Open Access Journals (Sweden)

    Fanny Knöspel

    2016-04-01

    Full Text Available Accurate prediction of the potential hepatotoxic nature of new pharmaceuticals remains highly challenging. Therefore, novel in vitro models with improved external validity are needed to investigate hepatic metabolism and timely identify any toxicity of drugs in humans. In this study, we examined the effects of diclofenac, as a model substance with a known risk of hepatotoxicity in vivo, in a dynamic multi-compartment bioreactor using primary human liver cells. Biotransformation pathways of the drug and possible effects on metabolic activities, morphology and cell transcriptome were evaluated. Formation rates of diclofenac metabolites were relatively stable over the application period of seven days in bioreactors exposed to 300 µM diclofenac (300 µM bioreactors (300 µM BR, while in bioreactors exposed to 1000 µM diclofenac (1000 µM BR metabolite concentrations declined drastically. The biochemical data showed a significant decrease in lactate production and for the higher dose a significant increase in ammonia secretion, indicating a dose-dependent effect of diclofenac application. The microarray analyses performed revealed a stable hepatic phenotype of the cells over time and the observed transcriptional changes were in line with functional readouts of the system. In conclusion, the data highlight the suitability of the bioreactor technology for studying the hepatotoxicity of drugs in vitro.

  20. Mathematical modeling of wastewater decolorization in a trickle-bed bioreactor.

    Science.gov (United States)

    Skybová, T; Přibyl, M; Pocedič, J; Hasal, P

    2012-02-20

    This work focuses on mathematical modeling of removal of organic dyes from textile industry waste waters by a white-rot fungus Irpex lacteus in a trickle-bed bioreactor. We developed a mathematical model of biomass and decolorization process dynamics. The model comprises mass balances of glucose and the dye in a fungal biofilm and a liquid film. The biofilm is modeled using a spatially two-dimensional domain. The liquid film is considered as homogeneous in the direction normal to the biofilm surface. The biomass growth, decay and the erosion of the biofilm are taken into account. Using experimental data, we identified values of key model parameters: the dye degradation rate constant, biofilm corrugation factor and liquid velocity. Considering the dye degradation rate constant 1×10⁻⁵ kg m⁻³ s⁻¹, we found optimal values of the corrugation factor 0.853 and 0.59 and values of the liquid velocity 5.23×10⁻³ m s⁻¹ and 6.2×10⁻³ m s⁻¹ at initial dye concentrations 0.09433 kg m⁻³ and 0.05284 kg m⁻³, respectively. A good agreement between the simulated and experimental data using estimated values of the model parameters was achieved. The model can be used to simulate the performance of laboratory scale trickle-bed bioreactor operated in a batch regime or to estimate values of principal parameters of the bioreactor system. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  2. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    Science.gov (United States)

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  4. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  5. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    Science.gov (United States)

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  6. CONSTRUCTION OF MODULAR FIELD-BIOREACTOR FOR ACID MINE DRAINAGE TREATMENT

    Science.gov (United States)

    The paper focuses on the improvements to engineered features of a passive technology that has been used for remediation of acid rock drainage (ARD). This passive remedial technology, a sulfate-reducing bacteria (SRB) bioreactor, takes advantage of the ability of SRB that, if sup...

  7. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  8. A novel customizable modular bioreactor system for whole-heart cultivation under controlled 3D biomechanical stimulation.

    Science.gov (United States)

    Hülsmann, Jörn; Aubin, Hug; Kranz, Alexander; Godehardt, Erhardt; Munakata, Hiroshi; Kamiya, Hiroyuki; Barth, Mareike; Lichtenberg, Artur; Akhyari, Payam

    2013-09-01

    In the last decade, cardiovascular tissue engineering has made great progress developing new strategies for regenerative medicine applications. However, while tissue engineered heart valves are already entering the clinical routine, tissue engineered myocardial substitutes are still restrained to experimental approaches. In contrast to the heart valves, tissue engineered myocardium cannot be repopulated in vivo because of its biological complexity, requiring elaborate cultivation conditions ex vivo. Although new promising approaches-like the whole-heart decellularization concept-have entered the myocardial tissue engineering field, bioreactor technology needed for the generation of functional myocardial tissue still lags behind in the sense of user-friendly, flexible and low cost systems. Here, we present a novel customizable modular bioreactor system that can be used for whole-heart cultivation. Out of a commercially obtainable original equipment manufacturer platform we constructed a modular bioreactor system specifically aimed at the cultivation of decellularized whole-hearts through perfusion and controlled 3D biomechanical stimulation with a simple but highly flexible operation platform based on LabVIEW. The modular setup not only allows a wide range of variance regarding medium conditioning under controlled 3D myocardial stretching but can also easily be upgraded for e.g. electrophysiological monitoring or stimulation, allowing for a tailor-made low-cost myocardial bioreactor system.

  9. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  10. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor

    Directory of Open Access Journals (Sweden)

    Daniel Joe Dailin

    2016-07-01

    Full Text Available Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.

  11. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    Science.gov (United States)

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  12. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  13. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    Science.gov (United States)

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The preparation and characterization of nanostructured TiO2-ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu

    2005-01-01

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO 2 ) and titania (TiO 2 ) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E g ) around 3.27eV, which is higher than that of pure component of titania (E g =3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO 2 . The cell fabricated by 5μm thick mixed TiO 2 -ZrO 2 electrode gave the short-circuit photocurrent about 13mA/cm 2 , open-circuit voltage about 600 mV and the conversion efficiency 5.4%

  15. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi

    2018-02-28

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  16. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi; Kim, Youngjin; Jin, Yongxun; Hong, Seungkwan; Park, Chanhyuk

    2018-01-01

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  17. Effects of thinning and mixed plantations with Alnus cordata on growth and efficiency of common walnut (Juglans regia L.

    Directory of Open Access Journals (Sweden)

    Giannini T

    2009-01-01

    Full Text Available Results about the effects of thinning and mixed plantations with Italian alder (Alnus cordata Loisel. on growth and efficiency of common walnut (Juglans regia L. plantations for wood production are reported. The study, carried out for six years on sixteen year old plantations, compared three theses: pure common walnut plantation (pure common walnut; 50% common walnut - 50% Italian alder plantation; 25% common walnut - 75% Italian alder plantation. Beyond annual surveys of girth at breast height, total height, stem volume and biomass, several variables, useful to describe canopy and foliage characteristics such as leaf area index (LAI, leaf biomass and photosynthetic active radiation below the canopy, were recorded. Data collected allowed to compare growth at individual and whole stand level, to calculate the net assimilation rate (NAR and to compare the growth efficiency of the three theses. Mixed plantations performed results significantly higher than the pure plantation in terms of growth, LAI and leaf biomass both before and after experimental thinning. With reference only to common walnut, growth in mixed plantations was higher than the pure plantation with differences ranging from +40% to +100%. More relevant differences among pure common walnut, 50% common walnut and 25% common walnut at canopy and foliage characteristics were observed, with LAI values of 1.07, 3.96 e 4.35 m2 m-2 respectively. Results accounted for a general positive effect of Italian alder as accessory tree species on growth and efficiency of mixed plantations, mainly due to the good performances induced in common walnut trees. Such performances were enabled by the good ecological integration between the two species and by the positive effects of N-fixing activity of Italian alder. Experimental thinning applied, although heavy, did not biased the dynamics observed before thinning both in pure and mixed plantations. In addition, they had positive effects on common walnut

  18. Thiosulphate conversion in a methane and acetate fed membrane bioreactor

    NARCIS (Netherlands)

    Suarez Zuluaga, D.A.; Timmers, P.H.A.; Plugge, C.M.; Stams, A.J.M.; Buisman, C.J.N.; Weijma, J.

    2016-01-01

    The use of methane and acetate as electron donors for biological reduction of thiosulphate in a 5-L laboratory membrane bioreactor was studied and compared to disproportionation of thiosulphate as competing biological reaction. The reactor was operated for 454 days in semi-batch mode; 30 % of its

  19. MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR

    Science.gov (United States)

    The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...

  20. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  1. Formulation and Validation of an Efficient Computational Model for a Dilute, Settling Suspension Undergoing Rotational Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; Crawford, Nathan C.; Fischer, Paul F.

    2017-04-11

    Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters. We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.

  2. Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2013-03-01

    Full Text Available A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0.5 h−1. Furfural was added directly into the bioreactor by pulse injection or by addition into the feed medium to obtain furfural concentrations ranging from 0.1 to 21.8 g L−1. At all pulse injections of furfural, the yeast was able to convert the furfural very rapidly by in situ detoxification. When injecting 21.8 g L−1 furfural to the cultivation, the yeast converted it by a specific conversion rate of 0.35 g g−1 h−1. At high cell density, Saccharomyces cerevisiae could tolerate very high furfural levels without major changes in the ethanol production. During the continuous cultures when up to 17.0 g L−1 furfural was added to the inlet medium, the yeast successfully produced ethanol, whereas an increase of furfural to 18.6 and 20.6 g L−1 resulted in a rapidly decreasing ethanol production and accumulation of sugars in the permeate. This study show that continuous ethanol fermentations by total cell retention in a membrane bioreactor has a high furfural tolerance and can conduct rapid in situ detoxification of medium containing high furfural concentrations.

  3. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The stress response system of proteins: Implications for bioreactor scaleup

    Science.gov (United States)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  5. Micro propagation of Stevia rebaudiana Bertoni through temporary immersion bioreactor system

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim; Nur Hidayah Sajahan; Siti Maryam Mohd Nahar; Siti Hajar Mohd Nahar

    2012-01-01

    Stevia rebaudiana Bertoni is a perennial herb that belongs to the family of Asteraceae. It is a natural sweetener plant known as sweet leaf, which is estimated to be 300 times sweeter than cane sugar. In this study, micro propagation of this natural herb via temporary immersion bioreactor system was successfully conducted. Shoot tips and nodal segment were used as explants to induce multiply shoots. It was found that shoot tips on MS medium supplemented with 1 mg/l Kinetin showed the highest shoot multiplication after 3 weeks of culture. Shoot elongation and rooting was successfully optimized in MS basal medium 2 weeks later. Mass propagation of stevia shoots were carried out in temporary immersion bioreactor and this system showed promising potential as an alternative approach for rapid and continuous production of in vitro stevia plantlets. (author)

  6. Structural analysis of a fibrocement anaerobic bioreactor for finite elements method

    International Nuclear Information System (INIS)

    Guardia-Puebla, Yans; Pacheco-GamboaI, Raúl; Ramos-Botello, Yoan; Palma-Ramírez, Leonardo; Rodríguez-Pérez, Suyén

    2015-01-01

    The paper consist on asses the mechanical resistant of the fibrocement tanks as a proposal of an anaerobic system of low cost for biogas production. For the design was used the finite elements method (FEM), which it is fundamental tool to carried out the structural analysis of the resistant to the traction of the anaerobic bioreactor. With this new system, a suitable option to spread, of sustainable and economic means, the biogas production on rural zones. For the design was used fibrocement tanks of 1900 L, and pipes and accessories plastics, achieving a maximum volume of cumulative biogas of 1,12 m"3.The fibrocement tank was not accomplished with the necessary specifications to achieve the design aim; for that reason, a new dimensional design was developed to guarantee the traction resistant as anaerobic bioreactors. (author)

  7. Bioprocessing of concentrated mixed hazardous industrial waste

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Silver, G.; Attalla, A.; Prisc, M.

    1994-01-01

    The use of selected microorganisms for the degradation and/or the detoxification of hazardous organic compounds is gaining wide acceptance as an alternative waste treatment technology. This work describes the unique capabilities of an isolated strain of Pseudomonas for metabolizing methylated aromatic compounds. This strain of Pseudomonas putida Idaho is unique in that it can tolerate and grow under a layer of neat p-xylene. A bioprocess has been developed to degrade LLW and mixed wastes containing methylated aromatic compounds, i.e., pseudocumene, toluene and p-xylene. The process is now in the demonstration phase at a DOE facility and has been running for one year. Feed concentrations of 21200 ppm of the toxic organic substrate have been fed to the bioreactor. This report describes the results obtained thus far

  8. Microbial population analysis of nutrient removal-related organisms in membrane bioreactors

    NARCIS (Netherlands)

    Silva, A.F.; Carvalho, G.; Oehmen, A.; Lousada-Ferreira, M.; Van Nieuwenhuijzen, A.; Reis, M.A.M.; Crespo, M.T.B.

    2012-01-01

    Membrane bioreactors (MBR) are an important and increasingly implemented wastewater treatment technology, which are operated at low food to microorganism ratios (F/M) and retain slow-growing organisms. Enhanced biological phosphorus removal (EBPR)-related organisms grow slower than ordinary

  9. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  11. Modeling arsenite oxidation by chemoautotrophic Thiomonas arsenivorans strain b6 in a packed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Dastidar, Aniruddha, E-mail: andy.dastidar@ky.gov [USEPA Research Participant, Division of Water, Frankfort, KY 40601 (United States); Wang, Yi-Tin, E-mail: ywang@engr.uky.edu [Department of Civil Engineering, University of Kentucky, Lexington (United States)

    2012-08-15

    Arsenic is a major toxic pollutant of concern for the human health. Biological treatment of arsenic contaminated water is an alternative strategy to the prevalent conventional treatments. The biological treatment involves a pre-oxidation step transforming the most toxic form of arsenic, As (III), to the least toxic form, As (V), respectively. This intermediate process improves the overall efficiency of total arsenic removal from the contaminated water. As (III) oxidation by the chemoautotrophic bacterium Thiomonas arsenivorans strain b6 was investigated in a fixed-film reactor under variable influent As (III) concentrations (500-4000 mg/L) and hydraulic residence times (HRTs) (0.2-1 day) for a duration of 137 days. During the entire operation, seven steady-state conditions were obtained with As (III) oxidation efficiency ranging from 48.2% to 99.3%. The strong resilience of the culture was exhibited by the recovery of the bioreactor from an As (III) overloading of 5300 {+-} 400 mg As (III)/L day operated at a HRT of 0.2 day. An arsenic mass balance revealed that As (III) was mainly oxidized to As (V) with unaccounted arsenic ({<=} 4%) well within the analytical error of measurement. A modified Monod flux expression was used to determine the biokinetic parameters by fitting the model against the observed steady-state flux data obtained from operating the bioreactor under a range of HRTs (0.2-1 day) and a constant influent As (III) concentration of 500 mg/L. Model parameters, k = 0.71 {+-} 0.1 mg As (III)/mg cells h, and K{sub s} = 13.2 {+-} 2.8 mg As (III)/L were obtained using a non-linear estimation routine and employing the Marquardt-Levenberg algorithm. Sensitivity analysis revealed k to be more sensitive to model simulations of As (III) oxidation under steady-state conditions than parameter K{sub s}. -- Highlights: Black-Right-Pointing-Pointer As (III) oxidation. Black-Right-Pointing-Pointer Biokinetic parameters. Black-Right-Pointing-Pointer Model validation

  12. Plastic carrier polishing chamber reduces pollution swapping from denitrifying woodchip bioreactors

    Science.gov (United States)

    Denitrifying bioreactors with solid organic carbon sources (i.e., “woodchip bioreactors”) have proven to be relatively simple and cost effective treatment systems for nitrate-laden agricultural and aquacultural waters and wastewaters. However, because this technology is still relatively new, design ...

  13. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  14. Optimization of an integrated sponge--granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse.

    Science.gov (United States)

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2012-06-01

    A specific integrated fluidized bed bioreactor (iFBBR) was optimized in terms of organic loading rate (OLR), hydraulic retention time (HRT) and frequency of new sustainable flocculant (NSBF) addition for primary treated sewage effluent (PTSE) treatment. It was observed that iFBBR achieved the best performance with the operating conditions of 4 times/day NSBF addition, HRT of 90 min and OLR of 8.64 kg COD/day m(3). The removal efficiencies were found to be more than 93% of dissolved organic carbon (DOC), 61% of total nitrogen (T-N) and 60% of total phosphorus (T-P). iFBBR as pretreatment of submerged microfiltration (SMF) is successful in increasing the critical flux and reducing the membrane fouling. NSBF-iFBBR-SMF hybrid system led to very high organic removal efficiency with an average DOC removal of 97% from synthetic PTSE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Kalin, Margarete; Krumins, Valdis; Dong, Yiran; Ning, Zengping; Liu, Tong; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Mao, Jianzhong; Xiao, Tangfu

    2016-08-01

    An on-site field-scale bioreactor for passive treatment of antimony (Sb) contamination was installed downstream of an active Sb mine in Southwest China, and operated for one year (including a six month monitoring period). This bioreactor consisted of five treatment units, including one pre-aerobic cell, two aerobic cells, and two microaerobic cells. With the aerobic cells inoculated with indigenous mine water microflora, the bioreactor removed more than 90% of total soluble Sb and 80% of soluble antimonite (Sb(III)). An increase in pH and decrease of oxidation-reduction potential (Eh) was also observed along the flow direction. High-throughput sequencing of the small subunit ribosomal RNA (SSU rRNA) gene variable (V4) region revealed that taxonomically diverse microbial communities developed in the bioreactor. Metal (loid)-oxidizing bacteria including Ferrovum, Thiomonas, Gallionella, and Leptospirillum, were highly enriched in the bioreactor cells where the highest total Sb and Sb(III) removal occurred. Canonical correspondence analysis (CCA) indicated that a suite of in situ physicochemical parameters including pH and Eh were substantially correlated with the overall microbial communities. Based on an UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis), the microbial composition of each cell was distinct, indicating these in situ physicochemical parameters had an effect in shaping the indigenous microbial communities. Overall, this study was the first to employ a field-scale bioreactor to treat Sb-rich mine water onsite and, moreover, the findings suggest the feasibility of the bioreactor in removing elevated Sb from mine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation and characterization during the anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor.

    Science.gov (United States)

    Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing

    2015-10-01

    The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor.

    Science.gov (United States)

    Křesinová, Zdena; Linhartová, Lucie; Filipová, Alena; Ezechiáš, Martin; Mašín, Pavel; Cajthaml, Tomáš

    2018-07-25

    The white rot fungus Pleurotus ostreatus HK 35, which is also an edible industrial mushroom commonly cultivated in farms, was tested in the degradation of typical representatives of endocrine disrupters (EDCs; bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol); its degradation efficiency under model laboratory conditions was greater than 90% within 12 days and better than that of another published strain P. ostreatus 3004. A spent mushroom substrate from a local farm was tested for its applicability in various batch and trickle-bed reactors in degrading EDCs in model fortified and real communal wastewater. The reactors were tested under various regimes including a pilot-scale trickle-bed reactor, which was finally tested at a wastewater treatment plant. The result revealed that the spent substrate is an efficient biodegradation agent, where the fungus was usually able to remove about 95% of EDCs together with suppression of the estrogenic activity of the sample. The results showed the fungus was able to operate in the presence of bacterial microflora in wastewater without any substantial negative effects on the degradation abilities. Finally, a pilot-scale trickle-bed reactor was installed in a wastewater treatment plant and successfully operated for 10days, where the bioreactor was able to remove more than 76% of EDCs present in the wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bioreactor Study Employing Bacteria with Enhanced Activity toward Cyanobacterial Toxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2014-08-01

    Full Text Available An important aim of white (grey biotechnology is bioremediation, where microbes are employed to remove unwanted chemicals. Microcystins (MCs and other cyanobacterial toxins are not industrial or agricultural pollutants; however, their occurrence as a consequence of human activity and water reservoir eutrophication is regarded as anthropogenic. Microbial degradation of microcystins is suggested as an alternative to chemical and physical methods of their elimination. This paper describes a possible technique of the practical application of the biodegradation process. The idea relies on the utilization of bacteria with a significantly enhanced MC-degradation ability (in comparison with wild strains. The cells of an Escherichia coli laboratory strain expressing microcystinase (MlrA responsible for the detoxification of MCs were immobilized in alginate beads. The degradation potency of the tested bioreactors was monitored by HPLC detection of linear microcystin LR (MC-LR as the MlrA degradation product. An open system based on a column filled with alginate-entrapped cells was shown to operate more efficiently than a closed system (alginate beads shaken in a glass container. The maximal degradation rate calculated per one liter of carrier was 219.9 µg h−1 of degraded MC-LR. A comparison of the efficiency of the described system with other biological and chemo-physical proposals suggests that this new idea presents several advantages and is worth investigating in future studies.

  19. Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors.

    Science.gov (United States)

    Morillo, J A; Aguilera, M; Antízar-Ladislao, B; Fuentes, S; Ramos-Cormenzana, A; Russell, N J; Monteoliva-Sánchez, M

    2008-05-01

    Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.

  20. Effect of the gas mixing technique on the production efficiency of ion beams extracted from an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Tarvainen, O.; Suominen, P.; Koivisto, H.

    2004-01-01

    In this work the effect of gas mixing on the production efficiency of ion beams extracted from an ECR ion source has been studied with the JYFL 6.4 GHz electron cyclotron resonance ion source (ECRIS). It was found that the gas mixing affects strongly the confinement of ions in the plasma of the ECRIS. The information obtained can be used to minimize the consumption of expensive materials or isotopes and to reduce contamination of the plasma chamber. It was observed that the carbon contamination, which is built up when the MIVOC method is used could be decreased with the aid of the gas mixing technique. The best mixing gas for this purpose was found to be oxygen