Sample records for biomedical sensor networks

  1. Energy Efficient Security Architecture for Wireless BioMedical Sensor Networks

    Mukesh, Rajeswari; Bharathi, V Subbiah


    Latest developments in VLSI, wireless communications, and biomedical sensing devices allow very small, lightweight, low power, intelligent sensing devices called biosensors. A set of these devices can be integrated into a Wireless Biomedical Sensor Network (WBSN), a new breakthrough technology used in telemedicine for monitoring the physiological condition of an individual. The biosensor nodes in WBSN has got resource limitations in terms of battery lifetime, CPU processing capability, and memory capacity. Replacement or recharging of batteries on thousands of biosensor nodes is quiet difficult or too costly. So, a key challenge in wireless biomedical sensor networks is the reduction of energy and memory consumption. Considering, the sensitivity of information in WBSN, we must provide security and patient privacy, as it is an important issue in the design of such systems. Hence this paper proposes an energy efficient security protocol for WBSN where security is provided to the physiological data, which is bei...

  2. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    Alberto Tapetado Moraleda


    Full Text Available This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG and polymer FBGs (POFBG is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  3. Energy Efficient Security Architecture for Wireless Bio-Medical Sensor Networks

    Rajeswari Mukesh


    Full Text Available Latest developments in VLSI, wireless communications, and biomedical sensing devices allow very small, lightweight, low power, intelligent sensing devices called biosensors. A set of these devices can be integrated into a Wireless Biomedical Sensor Network (WBSN, a new breakthrough technology used in telemedicine for monitoring the physiological condition of an individual. The biosensor nodes in WBSN has got resource limitations in terms of battery lifetime, CPU processing capability, and memory capacity.Replacement or recharging of batteries on thousands of biosensor nodes is quiet difficult or too costly. So, a key challenge in wireless biomedical sensor networks is the reduction of energy and memory consumption. Considering, the sensitivity of information in WBSN, we must provide security and patient privacy, as it is an important issue in the design of such systems. Hence this paper proposes an energy efficient security protocol for WBSN where security is provided to the physiological data, which is being transmitted from the sensor node to the sink device. This is achieved by authenticating the data using patients biometric , encrypting the data using Quasi Group cryptography after compressing the image data using an energy efficient number theory based technique.

  4. Sensors for biomedical applications

    Bergveld, Piet


    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  5. Evaluation of a 433 MHz band body sensor network for biomedical applications.

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen


    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  6. Biomedical Sensors and Instruments

    Tagawa, Tatsuo


    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  7. A brief review of biomedical sensors and robotics sensors

    Yanli Luo; , Qiaoying Zhou; Wenbin Luo


    In this paper, we present a brief review of biomedical sensors and robotics sensors. More specifically, we will review the cochlear sensors and retinal sensors in the category of biomedical sensors and ultrasonic Sensors and infrared motion detection sensors in the category of robotic sensors. Our goal is to familiarize readers with the common sensors used in the fields of both biom

  8. Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Christos Verikoukis


    Full Text Available The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs. The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions. In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs, which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead.

  9. Flexible sensors for biomedical technology.

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel


    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  10. Biomedical sensor design using analog compressed sensing

    Balouchestani, Mohammadreza; Krishnan, Sridhar


    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  11. Adaptive and context-aware detection and classification of potential QoS degradation events in biomedical wireless sensor networks

    Abreu, Carlos; Miranda, Francisco; Mendes, Paulo M.


    The use of wireless sensor networks in healthcare has the potential to enhance the services provided to citizens. In particular, they play an important role in the development of state-of-the-art patient monitoring applications. Nevertheless, due to the critical nature of the data conveyed by such patient monitoring applications, they have to fulfil high standards of quality of service in order to obtain the confidence of all players in the healthcare industry. In such context, vis-à-vis the quality of service being provided by the wireless sensor network, this work presents an adaptive and context-aware method to detect and classify performance degradation events. The proposed method has the ability to catch the most significant and damaging variations on the metrics being used to quantify the quality of service provided by the network without overreacting to small and innocuous variations on the metric's value.

  12. Network fingerprint: a knowledge-based characterization of biomedical networks

    Xiuliang Cui; Haochen He; Fuchu He; Shengqi Wang; Fei Li; Xiaochen Bo


    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerpr...

  13. Super sensor network

    Fjukstad, Bård


    This dissertation studies composing a super sensor network from the combination of three functional sensor networks; A Sensor data producing network, a sensor data computing network and a sensor controlling network. The target devices are today labeled as large sensor nodes. The communication are based on an IP network using HTTP as the main protocol. Bonjour is used for service discovery, with some adjustments for technical reasons. This allows for naming and location of available servi...

  14. [Biomimetic sensors in biomedical research].

    Gayet, Landry; Lenormand, Jean-Luc


    The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine. PMID:26152170

  15. Network fingerprint: a knowledge-based characterization of biomedical networks

    Cui, Xiuliang; He, Haochen; He, Fuchu; Wang, Shengqi; Li, Fei; Bo, Xiaochen


    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerprint”, which contains similarities to basic networks. This knowledge-based multidimensional characterization provides a more intuitive way to decipher molecular networks, especially for large-scale network comparisons and clustering analyses. As an example, we extracted network fingerprints of 44 disease networks in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The comparisons among the network fingerprints of disease networks revealed informative disease-disease and disease-signaling pathway associations, illustrating that the network fingerprinting framework will lead to new approaches for better understanding of biomedical networks. PMID:26307246

  16. Energy scavenging sources for biomedical sensors

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed. (topical review)

  17. WLAN visual sensor networking

    Kostrzewski, Andrew A.; Wang, Wenjian; Jannson, Tomasz P.


    This paper presents a discussion on constructing a wireless ad hoc network using unattended ground visual sensors. The IEEE 802.11 WLAN standard is used to implement a single-hop ad hoc network because of its simplicity. The bandwidth allocation and traffic control between visual sensors is coordinated by the Medium Access Control (MAC) protocol. A ground visual sensor tower is designed for the networking purpose with specially designed video compression, power management, and network module to achieve maximum thoroughput

  18. Environmental Sensor Networks

    Martinez, Kirk; Hart, Jane; Ong, Royan


    Sensor networks for the natural environment require an understanding of earth science, combined with sensor, communications and computer technology. We discuss the evolution from data logging to sensor networks, describe our research from a glacial environment and highlight future challenges in this field.

  19. Biomedical signals and sensors II linking acoustic and optic biosignals and biomedical sensors

    Kaniusas, Eugenijus


    The book set develops a bridge between physiologic mechanisms and diagnostic human engineering. While the first volume is focused on the interface between physiologic mechanisms and the resultant biosignals, this second volume is devoted to the interface between biosignals and biomedical sensors. That is, in the first volume, the physiologic mechanisms determining biosignals are described from the basic cellular level up to their advanced mutual coordination level. This second volume, considers the genesis of acoustic and optic biosignals and the associated sensing technology from a strategic point of view. As a novelty, this book discusses heterogeneous biosignals within a common frame. This frame comprises both the biosignal formation path from the biosignal source at the physiological level to biosignal propagation in the body, and the biosignal sensing path from the biosignal transmission in the sensor applied on the body up to its conversion to a, usually electric, signal. Some biosignals arise in the co...

  20. Wireless Sensors Network (Sensornet)

    Perotti, J.


    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  1. Sensor Network Motes:

    Leopold, Martin

    This dissertation describes our efforts to improve sensor network performance evaluation and portability, within the context of the sensor network project Hogthrob. In Hogthrob, we faced the challenge of building an sensor network architecture for sow monitoring. This application has hard...... requirements on price and performance, and shows great potential for using sensor networks. Throughout the project we let the application requirements guide our design choices, leading us to push the technologies further to meet the specific goal of the application. In this dissertation, we attack two key...... to investigate these challenges and apart from developing the methodologies, we also present the results of our experiments. In particular, we present a new vector based methodology for performance evaluation of sensor network devices (motes) and applications, based on application specific benchmarking...

  2. Biomedical Signals and Sensors I Linking Physiological Phenomena and Biosignals

    Kaniusas, Eugenijus


    This two-volume set focuses on the interface between physiologic mechanisms and diagnostic human engineering. Today numerous biomedical sensors are commonplace in clinical practice. The registered biosignals reflect mostly vital physiologic phenomena. In order to adequately apply biomedical sensors and reasonably interpret the corresponding biosignals, a proper understanding of the involved physiologic phenomena, their influence on the registered biosignals, and the technology behind the sensors is necessary. The first volume is devoted to the interface between physiologic mechanisms and arising biosignals, whereas the second volume is focussed on the interface between biosignals and biomedical sensors. The physiologic mechanisms behind the biosignals are described from the basic cellular level up to their advanced mutual coordination level during sleep. The arising biosignals are discussed within the scope of vital physiologic phenomena to foster their understanding and comprehensive analysis.

  3. Fluorescence Resonance Energy Transfer (FRET) systems for biomedical sensor applications

    Bird , Aoibheann


    This thesis investigates the use of Fluorescence Resonance Energy Transfer (FRET) for biomedical sensor applications. FRET is a process by which energy is transferred, via long range dipole-dipole interactions, from a donor molecule (D) in an excited electronic state to an acceptor molecule (A). The emission band of D must overlap the absorption band of A in order for FRET to occur. FRET is employed in a variety of biomedical applications, including the study of cell biology an...

  4. Medical Sensor Network Infrastructures

    Andersen, Jacob

    researchers have been developing power-efficient security mechanisms for sensor networks. However, most of this work ignores the special usability demands from the clinical use-scenarios: set-up must be fast, and key pre-distribution is problematic if disposable sensors are discarded after being used for only...

  5. On Narrowband Interference Mitigation Methods for Robust Wireless Sensor Networks

    Moussavinik, Hessam


    In this dissertation different approaches to robustness in ultra wideband (UWB) wireless sensor networks, specifically biomedical applications, are studied. UWB wireless sensor networks are unlicensed users of the frequency spectrum and they can be interfered by signals from other licensed users/devices that are generally narrowband signals. Due to the relatively high power of narrowband interferences (NBI) UWB wireless sensor networks can strongly get affected and loose their performance. Th...

  6. Miniaturized wireless sensor network

    Lecointre, Aubin; Dubuc, David; Katia, Grenier; Patrick, Pons; Aubert, Hervé; Muller, A; Berthou, Pascal; Gayraud, Thierry; Plana, Robert


    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  7. Wireless Sensor Networks Approach

    Perotti, Jose M.


    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  8. Wireless rechargeable sensor networks

    Yang, Yuanyuan


    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  9. Modular sensor network node

    Davis, Jesse Harper Zehring; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick; Kyker, Ronald Dean


    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  10. Cognitive Sensor Networks

    Henderson, Thomas C.

    Our overall goal is to develop a cognitive architecture which will allow autonomous and robust operation of sensor-actuator networks. To achieve this, the perception, concept formation, action cycle will be informed by domain theories of signal analysis, physical phenomena, and behavior. Example scenarios include cognitive vehicles and buildings in which the system understands itself and the activities in and around it by means of distributed video and other sensors. This includes discovery of the cognitive system's own sensing and actuation capabilities.

  11. Sharing Sensor Network Data

    Gong Chen; Nathan Yau; Mark Hansen; Deborah Estrin


    Sensor networks generate a variety of data streams in different temporal and spatial resolutions. The data come as numbers text, images, and audio and are dynamically produced periodically and sporadically. How can we organize hundreds of thousands of such data streams? How can we make it easy for scientists and engineers to publish and share such data streams? In this paper, we present our solution, It is a web application that not only provides the user with the functionalit...

  12. Security of sensor networks

    Teo, Hong-Siang


    This thesis discusses the security of sensor networks. First, an overview of the security architectures of two dominant implementations of sensor networks in the market today is presented: the TinyOS stack and the IEEE 802.15.4 stack. Their similarities and differences are explored and their strength and limitations are discussed. Where applicable, comparisons are made with IEEE 802.11 Wireless LAN to highlight improvements and lessons learned. It is pointed out that in general, IEEE 802.15.4...

  13. Wireless smart shipboard sensor network

    Nozik, Andrew B.


    This thesis studies the feasibility of developing a smart shipboard sensor network. The objective of the thesis is to prove that sensors can be made smart by keeping calibration constants and other relevant data such as network information stored on the sensor and a server computer. Study will focus on the design and implementation of an Ipsil IP(micro)8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information can be see...

  14. Wireless Sensor Network Topology Control

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg


    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  15. Wide area sensor network

    Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren


    The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the

  16. remote sensor network

    von Unold, Georg; Junker, Astrid; Altmann, Thomas


    High-throughput (HT) plant phenotyping systems enable the quantitative analysis of a variety of plant features in a fully automated fashion. The comprehensive phenomics infrastructure at IPK comprises three LemnaTec conveyor belt-based (plant-to-sensor) systems for the simultaneous analysis of large numbers of individual plants of different sizes. For monitoring of environmental conditions within the plant growth area and soil conditions in individual pots, highly modular and flexible remote sensing devices are required. We present the architecture of a wireless sensor network implemented in the HT plant phenotyping systems at IPK in the frame of the German Plant Phenotyping Network (DPPN). This system comprises 350 soil monitoring modules, each measuring water content, water matrix potential, temperature and electric conductivity. Furthermore small and large sensor platforms enable the continuous monitoring of environmental parameters such as incident photosynthetic active radiation, total radiation balance, relative humidity and CO2 concentration and more. Finally we present an introduction into data management and maintenance."

  17. Low-Power Platform and Communications for the Development of Wireless Body Sensor Networks

    David Naranjo-Hernández; Laura M. Roa; Javier Reina-Tosina; Miguel A. Estudillo-Valderrama; Gerardo Barbarov


    Although the roles of body sensor networks (BSNs) are similar to those carried out by the generic wireless sensor networks (WSNs), new solutions must be established to optimize communications for true pervasive biomedical monitoring transparent to the user. In this paper, a proposal of a hardware and software platform for biomedical sensors is performed, which is specially designed to minimize energy consumption in BSNs through a modular processing scheme based on the detection of events and ...

  18. Everlasting sensor networks

    Clavier, Laurent; Toldov, Viktor; Igual, Román; Rolland, Nathalie; Kassi, Rédha; Lethien, Christophe; Loyez, Christophe; Boe, Alexandre; Mitton, Nathalie; Vantroys, Thomas


    Poster for " L'énergie demain. Transition énergétique : recherches et ingénierie " symposium. May 30-31, 2013, MINES ParisTech Within the team CSAM (Circuits, Systèmes et Applications des Microondes) of IEMN (Institut d'Électronique, de Microélectronique et de Nanotechnologie) and within IRCICA (Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - USR CNRS 3080) we develop a research on ultra low power sensor networks. Our goal is...

  19. Sensor networks for sustainable development

    Ilyas, Mohammad; Alwakeel, Mohammed M; Aggoune, el-Hadi M


    ContentsPreface AcknowledgmentsEditorsContributorsAgricultureA Review of Applications of Sensor Networks in Smart AgricultureAhsan AbdullahWireless Sensor Networks with Dynamic Nodes for Water and Crop Health Managementel-Hadi M. Aggoune, Sami S. Alwakeel, Mohammed M. Alwakeel, and Mohammad Ammad-UddinEnvironmentScaling Smart EnvironmentsDiane J. CookLocalization of a Wireless Sensor Network for Environment Monitoring using Maximum Likelihood Estimation with Negative


    Piyush Yadav


    Recent advances in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas. For different application areas, there are different technical issues that researchers are currently resolving. The use of sensor networks for healthcare is well established; it works even in extreme environments and has long roots in the engineering sector in medicine and biology community. With the maturity of wire...

  1. Security in Wireless Sensor Networks

    Abdollah Doavi; Hossein Parvan


    Wireless sensor network (WSN) is an emerging important research area. The variety in and number of applications is growing in wireless sensor networks. These wireless sensor nodes are tiny devices with limited energy, memory, transmission range, and computational power. Because WSNs in general and in nature are unattended and physically reachable from the outside world, they could be vulnerable to physical attacks in the form of node capture or node destruction. These forms of attacks are har...

  2. Mesh networked unattended ground sensors

    Colling, Kent; Calcutt, Wade; Winston, Mark; Jones, Barry


    McQ has developed a family of low cost unattended ground sensors that utilize self-configured, mesh network communications for wireless sensing. Intended for use in an urban environment, the area monitored by the sensor system poses a communication challenge. A discussion into the sensor's communication performance and how it affects sensor installation and the operation of the system once deployed is presented.

  3. Mobility in Wireless Sensor Networks

    Mehta, Ankur Mukesh


    The combination of mobility with wireless networks greatly expands the application space of both robots and distributed sensor networks; such a pervasive system can enable seamless integration between the digital and physical worlds. However, there are a number of issues in both robotic and wireless sensor network (WSN) fields that demand research, and their integration generates further challenges. A fundamental open problem in robotic systems is the issue of self-contained localization. ...

  4. Sensors Grouping Hierarchy Structure for Wireless Sensor Network

    Ammar Hawbani; Xingfu Wang; Saleem Karmoshi; Lin Wang; Naji Husaini


    There are many challenges in implementation of wireless sensor network systems: clustering and grouping are two of them. The grouping of sensors is computational process intended to partition the sensors of network into groups. Each group contains a number of sensors and a sensor can be an element of multiple groups. In this paper, we provided a Sensors Grouping Hierarchy Structure (GHS) to split the nodes in wireless sensor network into groups to assist the collaborative, dynamic, distribute...

  5. Communications for unattended sensor networks

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano


    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  6. Centralized Routing for Prolonged Network Lifetime in Wireless Sensor Networks

    Hansen, Ewa


    In this thesis centralized routing methods for wireless sensor networks have been studied. The aim has been to prolong network lifetime by reducing the energy consumed by sensor-node communication. Wireless sensor networks are rapidly becoming common in application areas where information from many sensors is to be collected and acted upon. The use of wireless sensor networks adds flexibility to the network, and the cost of cabling can be avoided. Wireless sensor networks may consist of sever...

  7. An ontology for sensor networks

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon


    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility

  8. Geometric algorithms for sensor networks.

    Gao, Jie; Guibas, Leonidas


    This paper surveys the use of geometric methods for wireless sensor networks. The close relationship of sensor nodes with their embedded physical space imposes a unique geometric character on such systems. The physical locations of the sensor nodes greatly impact on system design in all aspects, from low-level networking and organization to high-level information processing and applications. This paper reviews work in the past 10 years on topics such as network localization, geometric routing, information discovery, data-centric routing and topology discovery. PMID:22124080

  9. The Function Biomedical Informatics Research Network Data Repository

    Keator, DB; van Erp, TGM; Turner, JA; Glover, GH; Mueller, BA; Liu, TT; Voyvodic, JT; Rasmussen, J.; Calhoun, VD; Lee, HJ.; Toga, AW; McEwen, S.; Ford, JM; Mathalon, DH; Diaz, M


    © 2015 Elsevier Inc. The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associa...

  10. Unified broadcast in sensor networks

    Hansen, Morten Tranberg; Jurdak, Raja; Kusy, Branislav


    Complex sensor network applications include multiple services such as collection, dissemination, time synchronization, and failure detection protocols. Many of these protocols require local state maintenance through periodic broadcasts which leads to high control overhead. Recent attempts...

  11. Temperature level fiber sensor network

    López Higuera, José Miguel; Rodríguez Cobo, Luis; Castrellón Uribe, Jesús; Quintela Incera, Antonio; Lomer Barboza, Mauro Matías


    A temperature level fiber sensor network is proposed and demonstrated. Each inline transducer is based on a FBG-SMA wire structure working as an on/off optical device being interrogated using a time domain technique.

  12. Wireless Sensor Networks: Issues & Challenges

    Indu; Sunita Dixit


    Wireless Sensor Networks (WSN) are highly distributed self organized systems. The basic idea of sensor network is to disperse tiny sensing devices; which are capable of sensing some changes of incidents/parameters and communicating with other devices, spread over a specific geographic area for some specific purposes like environmental monitoring, surveillance, target tracking etc. By combining sensing technology with processing power and wireless communication makes it lucrative for being exp...

  13. EYES - Energy Efficient Sensor Networks

    Havinga, Paul; Etalle, Sandro; Karl, Holger; Petrioli, Chiara; Zorzi, Michele; Kip, Harry; Lentsch, Thomas; Conti, M; Giordano, S.; E. Gregori; Olariu, S.


    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It will address the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a lar...

  14. Security in wireless sensor networks

    Oreku, George S


    This monograph covers different aspects of sensor network security including new emerging technologies. The authors present a mathematical approach to the topic and give numerous practical examples as well as case studies to illustrate the theory. The target audience primarily comprises experts and practitioners in the field of sensor network security, but the book may also be beneficial for researchers in academia as well as for graduate students.

  15. Sensor Networks of Intelligent Devices.

    Roadknight, Chris; Marshall, Ian W.


    Making wireless sensor networks work efficiently and effectively is a key technology challenge for the 21st century. We show that novel decentralized evolutionary algorithms, that we proposed for cluster management, are a potential means of automating the management of sensor networks. Specifically we show the algorithm can enable preferential and reliable delivery of the most important data using only high level user priorities as inputs.

  16. An Overview of the Sensor Networks

    Ikegami, Tetsushi

    Recently, the sensor network technology attracts a great deal of attention achieving a safe and comfortable ubiquitous society. The sensor networks are already used in environment and disaster monitoring, medical care, logistics and transportation. This paper aimed to understand the outline of the sensor network technology centering on the wireless sensor network technology.

  17. A community of practice: librarians in a biomedical research network.

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara


    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine. PMID:24528265

  18. Sensor Mobility Control for Multitarget Tracking in Mobile Sensor Networks

    Yinfei Fu; Le Yang


    In emerging tracking systems using mobile wireless sensor networks, sensor mobility management is essential for balancing the tracking performance and costs under limited network resources and sensor movements. This paper considers the sensor mobility control problem for multitarget tracking (MTT), in which multiple mobile sensors are dynamically grouped and moved to track multiple targets and collaborate within each sensor group via track data fusion. A novel sensor mobility control framewor...

  19. Wireless Sensor Networks for Healthcare Applications

    Dishongh, Terrance J; Kuris, Ben


    This unique reference focuses on methods of application, validation and testing based on real deployments of sensor networks in the clinical and home environments. Key topics include healthcare and wireless sensors, sensor network applications, designs of experiments using sensors, data collection and decision making, clinical deployment of wireless sensor networks, contextual awareness medication prompting field trials in homes, social health monitoring, and the future of wireless sensor networks in healthcare.

  20. Wireless sensor networks architectures and protocols

    Callaway, Jr, Edgar H


    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  1. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    Bahrepour, M.; Meratnia, N.; Havinga, P.J.M.


    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for ev

  2. Networked Sensor Arrays

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  3. Logical Sensor Network: An Abstraction of Sensor Data Processing over Multidomain Sensor Network

    Naoya Namatame; Jin Nakazawa; Hideyuki Tokuda


    This paper focuses on a sensor network virtualization over multidomain sensor network and proposes an abstraction called “logical sensor network (LSN)” for sensor data processing. In the proposed abstraction, processing is a directed acyclic graph that consists of nodes and streams, which represents a small data processor and communication rules between them, respectively. We have added a notion of a trigger to this graph. A trigger represents a timing of the process execution. We have implem...

  4. Reliable Actuation in Sensor Networks

    Sean Rooney


    Full Text Available We present a protocol that uses a publish/subscribe approach to perform reliable but efficient actuation over a sensor network whose topology may change. Actuation on a given group of devices in the sensor network is achieved through a publish operation on the topic the devices in that group are subscribed to. The publication message contains the necessary data to successfully perform the actuation. We make the case for our design showing that: a suitable data distribution techniques and cross-layer optimizations can reduce transmissions within the messaging layer of the sensor-network b a soft-state approach can help with the frequent topology changes in wireless sensor networks caused by the transmission medium. We describe our protocol and compare its features and robustness to those of epidemic protocols through simulation. Our protocol is more efficient when the actuation is performed on selected groups of devices within the sensor network. In the general case, the efficiency of our proposal is similar to that of an epidemic model, plus feedback is given to the initiator of the actuation. Robustness remains close to the epidemic approach, even for moderate bit error rates.

  5. Energy efficient sensor network implementations

    Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA


    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  6. Topological Fidelity in Sensor Networks

    Chintakunta, Harish


    Sensor Networks are inherently complex networks, and many of their associated problems require analysis of some of their global characteristics. These are primarily affected by the topology of the network. We present in this paper, a general framework for a topological analysis of a network, and develop distributed algorithms in a generalized combinatorial setting in order to solve two seemingly unrelated problems, 1) Coverage hole detection and Localization and 2) Worm hole attack detection and Localization. We also note these solutions remain coordinate free as no priori localization information of the nodes is assumed. For the coverage hole problem, we follow a "divide and conquer approach", by strategically dissecting the network so that the overall topology is preserved, while efficiently pursuing the detection and localization of failures. The detection of holes, is enabled by first attributing a combinatorial object called a "Rips Complex" to each network segment, and by subsequently checking the exist...


    Mohammad Alwadi; Girija Chetty


    In this paper, we propose a novel energy efficient environment monitoring scheme for wireless sensor networks, based on data mining formulation. The proposed adapting routing scheme for sensors for achieving energy efficiency from temperature wireless sensor network data set. The experimental validation of the proposed approach using publicly available Intel Berkeley lab Wireless Sensor Network dataset shows that it is possible to achieve energy efficient environment monitoring fo...

  8. Cross Layer Interference Management in Wireless Biomedical Networks

    Emmanouil G. Spanakis


    Full Text Available Interference, in wireless networks, is a central phenomenon when multiple uncoordinated links share a common communication medium. The study of the interference channel was initiated by Shannon in 1961 and since then this problem has been thoroughly elaborated at the Information theoretic level but its characterization still remains an open issue. When multiple uncoordinated links share a common medium the effect of interference is a crucial limiting factor for network performance. In this work, using cross layer cooperative communication techniques, we study how to compensate interference in the context of wireless biomedical networks, where many links transferring biomedical or other health related data may be formed and suffer from all other interfering transmissions, to allow successful receptions and improve the overall network performance. We define the interference limited communication range to be the critical communication region around a receiver, with a number of surrounding interfering nodes, within which a successful communication link can be formed. Our results indicate that we can achieve more successful transmissions by adapting the transmission rate and power, to the path loss exponent, and the selected mode of the underline communication technique allowing interference mitigation and when possible lower power consumption and increase achievable transmission rates.

  9. Approaches to Wireless Sensor Network: Security Protocols

    Harmandeep Singh; Garima Malik


    The advancement of electronics and wireless communication technologies have enabled the development of large scale wireless sensor network that consist of many low-power, low-cost and small size sensor nodes. With the help of sensor network we facilitate large scale and real time data processing even in complex environment. The proliferation of sensor application has increased the need of security in sensor network. At the beginning WSN were not built keeping the security in mind because sens...

  10. Smart Body Sensor Object Networking

    Bhumip Khasnabish


    This paper discusses smart body sensor objects (BSOs), including their networking and internetworking. Smartness can be incorpo-rated into BSOs by embedding virtualization, predictive analytics, and proactive computing and communications capabilities. A few use cases including the relevant privacy and protocol requirements are also presented. General usage and deployment eti-quette along with the relevant regulatory implications are then discussed.

  11. A Sentinel Sensor Network for Hydrogen Sensing

    Mason, Andrew J.; Kendig, James W.; Pishko, Michael V.; Chuanmin Ruan; Dickey, Elizabeth C.; Maggie Paulose; Mor, G.; Xiping Yang; Varghese, Oomman K.; Keat G. Ong; Grimes, Craig A.


    A wireless sensor network is presented for in-situ monitoring of atmospheric hydrogen concentration. The hydrogen sensor network consists of multiple sensor nodes, equipped with titania nanotube hydrogen sensors, distributed throughout the area of interest; each node is both sensor, and data-relay station that enables extended wide area monitoring without a consequent increase of node power and thus node size. The hydrogen sensor is fabricated from a sheet of highly ordered titania nanotubes,...

  12. Localization of Sensor Networks Using Sweeps

    Fang, J.; Cao, M.; Morse, A.S.; Anderson, B.D.O.


    The sensor network localization problem with distance information is to determine the positions of all sensors in a network given the positions of some sensors and the distances between some pairs of sensors. We present a specialized localization algorithm and identify the graph properties of some c

  13. Optimisation problems in wireless sensor networks

    Suomela, Jukka


    This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmit...

  14. Multiobjective Sensor Node Deployement in Wireless Sensor Networks

    K.Sheela Sobana Rani; Dr.N.DEVARAJAN


    In Wireless Sensor Networks (WSN), sensor node deployment is essential for maximizing the coverage and detection probabilities. But the existing optimization solution suffers from limited energy storage, node death, increased network traffic etc. To solve these issues, we propose a multi-objective PSO and fuzzy based optimization model for sensor node deployment. The objectives considered in the paper include maximizing network coverage, connectivity and network lifetime. A fuzzy rule is cons...

  15. Reliability of wireless sensor networks.

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo


    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553


    Cetin, Bilge Kartal

    Wireless sensor networks (WSNs) consist of tiny devices, which have a battery, a sensor, a microprocessor and a radio transmitter component. Due to a large range of application area, performance metrics in sensor network are strictly application-specic. However, 'unattended operation of the network...

  17. Secure data aggregation for wireless sensor network

    Tran-Thi-Thuy, Trang


    Like conventional networks, security is also a big concern in wireless sensor networks. However, security in this type of networks faces not only typical but also new challenges. Constrained devices, changing topology or susceptibility to unprecedented security threats such as node capture and node compromise has refrained developers from applying conventional security solutions into wireless sensor networks. Hence, developing security solutions for wireless sensor networks not only requires...

  18. Mobile Zigbee Sensor Networks

    Anantdeep, Er; Kaur, Er Balpreet


    OPNET Modeler accelerates network R&D and improves product quality through high-fidelity modeling and scalable simulation. It provides a virtual environment for designing protocols and devices, and for testing and demonstrating designs in realistic scenarios prior to production. OPNET Modeler supports 802.15.4 standard and has been used to make a model of PAN. Iterations have been performed by changing the Power of the transmitter and the throughput will has been analyzed to arrive at optimal values.An energy-efficient wireless home network based on IEEE 802.15.4, a novel architecture has been proposed. In this architecture, all nodes are classified into stationary nodes and mobile nodes according to the functionality of each node. Mobile nodes are usually battery-powered, and therefore need low-power operation. In order to improve power consumption of mobile nodes, effective handover sequence based on MAC broadcast and transmission power control based on LQ (link quality) are employed. Experimental resul...

  19. Energy modelling in sensor networks

    D. Schmidt


    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  20. Resilient networking in wireless sensor networks

    Erdene-Ochir, Ochirkhand; Valois, Fabrice; Kountouris, Apostolos


    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focu...

  1. Networked unattented ground sensors assesment

    Bouguereau, Julien; Gattefin, Christian; Dupuy, Gilles


    Within the framework of the NATO AC 323 / RTO TG 25 group, relating to advanced concepts of acoustic and seismic technology for military applications, Technical Establishment of Bourges welcomed and organized a joint campaign of experiment intending to demonstrate the interest of a networked unattented ground sensors for vehicles detection and tracking in an area defense context. Having reminded the principle of vehicles tracking, this paper describes the progress of the test campaign and details particularly sensors and participants deployment, the solution of interoperability chosen by the group and the instrumentation used to acquire, network, process and publish in real-time data available during the test: meteorological data, trajectography data and targets detection reports data. Finally, some results of the campaign are presented.

  2. Cooperative robots and sensor networks

    Khelil, Abdelmajid


    Mobile robots and Wireless Sensor Networks (WSNs) have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and WSNs have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other.
 The primary objective of book is to provide a reference for cutting-edge studies and research trends pertaining to robotics and sensor networks, and in particular for the coupling between them. The book consists of five chapters. The first chapter presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The second chapter is motivated by the need to improve existing solutions that deal with connectivity prediction, and proposed a genetic machine learning approach for link-quality prediction. The third chapter presents an arch...

  3. Effective Metadata Management in Federated Sensor Networks

    Jeung H.; Sarni S.; Paparrizos I.; Sathe S; Aberer K. (ed.); Dawes N.; Papaioannou T.G.; Lehning M.


    As the Sensor Internet starts to become reality, increasingly heterogeneous sensor networks are becoming interconnected into federated sensor networks and provide huge volumes of sensor data for a variety of applications to large user communities, such as in science and engineering. Effective metadata management plays a crucial role in processing and properly interpreting raw sensor measurement data, and needs to be performed in a collaborative fashion. Previous work on metadata management fo...

  4. Case study: Wireless Sensor Networks Technology

    Naveen Jain; Pawan Shakdwipee; Sunil Sharma


    This paper present the history of research in sensor networks over the past decades, including two important programs of the Defense Advanced Research Projects Agency (DARPA), and the Distributed Sensor Networks (DSN) and the Sensor Information Technology (SensIT) programs. Technology trends that impact the development of sensor networks are reviewed, and new applications such as infrastructure security, habitat monitoring. The paper concludes by presenting some recent case studies results in...

  5. Vertex covers and sensor networks

    Imbesi, Maurizio; La Barbiera, Monica


    We consider algebraic developments of graph theory through suitable applications in real connection problems. We investigate ideals of vertex covers for the edge ideals associated to a significative class of connected graphs. It is shown that algebraic procedures linked to minimal vertex covering of such graphs are good instruments concerned about how sensor networks can be encoded and their properties measured. Moreover algebraic properties of such ideals are studied. Using the notion of lin...

  6. Data Architecture for Sensor Network

    Jan Ježek


    Full Text Available Fast development of hardware in recent years leads to the high availability of simple sensing devices at minimal cost. As a consequence, there is many of sensor networks nowadays. These networks can continuously produce a large amount of observed data including the location of measurement. Optimal data architecture for such propose is a challenging issue due to its large scale and spatio-temporal nature.  The aim of this paper is to describe data architecture that was used in a particular solution for storage of sensor data. This solution is based on relation data model – concretely PostgreSQL and PostGIS. We will mention out experience from real world projects focused on car monitoring and project targeted on agriculture sensor networks. We will also shortly demonstrate the possibilities of client side API and the potential of other open source libraries that can be used for cartographic visualization (e.g. GeoServer. The main objective is to describe the strength and weakness of usage of relation database system for such propose and to introduce also alternative approaches based on NoSQL concept.

  7. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  8. Hybrid architecture for building secure sensor networks

    Owens, Ken R., Jr.; Watkins, Steve E.


    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  9. Sensor Selection for Event Detection in Wireless Sensor Networks

    Bajovic, Dragana; Sinopoli, Bruno; Xavier, Joao


    We consider the problem of sensor selection for event detection in wireless sensor networks (WSNs). We want to choose a subset of p out of n sensors that yields the best detection performance. As the sensor selection optimality criteria, we propose the Kullback-Leibler and Chernoff distances between the distributions of the selected measurements under the two hypothesis. We formulate the maxmin robust sensor selection problem to cope with the uncertainties in distribution means. We prove that...

  10. Tunneled data transmission over wireless sensor networks

    Yow, Thiam Poh


    A technique for terminal communication through transmission links established across a wireless sensor network is developed and tested. Using protocols established for conventional wireless communication networks as a guiding principle, different methodologies for link management, and segmentation and reassembly of information are explored. A protocol for sensor network encapsulation was designed and implemented across a network of terminals and wireless sensor motes. The study concludes ...

  11. Key Management in Wireless Sensor Networks

    Ismail Mansour; Gérard Chalhoub; Pascal Lafourcade


    Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take cont...

  12. Glacsweb: an environmental sensor network

    Martinez, K.; Hart, J. K.; Ong, R.


    Environmental sensor networks provide an exciting opportunity to remotely study and monitor a range of environments. This is particularly important in remote or hazardous environments where many studies are hampered by inaccessibility. In addition, more accessible environments could be monitored on an unprecedented scale. The potential advances to environmental sciences could be as great as the revolution produced by the development of remote sensing during the 1970's. The aim of the GlacsWeb project is to build an environmental sensor network to understand glacier dynamics in response to climate change. This was undertaken to collect data from sensor nodes (probes) within the ice and the till (subglacial sediment). The wireless probes were designed to move freely like natural stones. Data is also collected from the surface of the glacier (position, weather, image). The data is sent to the Sensor Network Server where it is combined with large scale data from maps and satellites. In this way, specific data from the unique sensor nodes (which reflect point data) are combined with larger scale data to understand the glacier as a whole. The data was collected from within the ice by radio communications specifically designed for this environment; with increased power and using a 433Mhz frequency. The GlacsWeb system is composed of custom-built probes, a Base Station on the ice surface, a Reference Station (2.5 km from the glacier with mains electricity) and the Server based in Southampton. A differential GPS is used to track the base station's movement and recordings are made each day. The whole system operates automatically and data is fetched daily and sent to a web server for analysis. An initial system was installed in 2003 and an improved system was built and deployed in Jostedalsbreen, Norway in 2004. Advances were made in miniaturisation, low power design, networking and autonomous behaviour. Extra sensors were also added which measure probe stress and external

  13. Energy-Harvesting Wireless Sensor Networks

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio;


    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....

  14. An asynchronous multi-sensor micro control unit for wireless body sensor networks (WBSNs).

    Chen, Chiung-An; Chen, Shih-Lun; Huang, Hong-Yi; Luo, Ching-Hsing


    In this work, an asynchronous multi-sensor micro control unit (MCU) core is proposed for wireless body sensor networks (WBSNs). It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE), and an error correct coder (ECC). To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs. PMID:22164000

  15. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs

    Ching-Hsing Luo


    Full Text Available In this work, an asynchronous multi-sensor micro control unit (MCU core is proposed for wireless body sensor networks (WBSNs. It consists of asynchronous interfaces, a power management unit, a multi-sensor controller, a data encoder (DE, and an error correct coder (ECC. To improve the system performance and expansion abilities, the asynchronous interface is created for handshaking different clock domains between ADC and RF with MCU. To increase the use time of the WBSN system, a power management technique is developed for reducing power consumption. In addition, the multi-sensor controller is designed for detecting various biomedical signals. To prevent loss error from wireless transmission, use of an error correct coding technique is important in biomedical applications. The data encoder is added for lossless compression of various biomedical signals with a compression ratio of almost three. This design is successfully tested on a FPGA board. The VLSI architecture of this work contains 2.68-K gate counts and consumes power 496-μW at 133-MHz processing rate by using TSMC 0.13-μm CMOS process. Compared with the previous techniques, this work offers higher performance, more functions, and lower hardware cost than other micro controller designs.

  16. Resource aware sensor nodes in wireless sensor networks

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  17. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    Ren, Fan


    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  18. A CMOS Magnetic Sensor Chip for Biomedical Applications

    Liu, Peng


    The growing need for point-of-care applications in global health and personalized medicine motivates a significant reduction in the size and cost of present technologies. Current solutions use fluorescent or enzymatic labels with complex optical instrumentation that has proven difficult to miniaturize. Recently, magnetic bead labeling has emerged as an alternative solution enabling portable and low-cost platforms. A compact and robust magnetic label detector for biomedical assays is implem...

  19. Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

    Huang, Yi


    This thesis addresses a transmission energy problem for wireless sensor networks. There are two types of wireless sensor networks. One is single-hop sensor network where data from each sensor is directly transmitted to a fusion center, and the other is multihop sensor network where data is relayed through adjacent sensors. In the absence of a moving agent for data collection, multihop sensor network is typically much more energy efficient than single-hop sensor network since the former avoids...

  20. Microfabricated Tactile Sensors for Biomedical Applications: A Review

    Paola Saccomandi


    Full Text Available During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response. Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described.

  1. Integration of RFID and Wireless Sensor Networks

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.


    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  2. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Esposito, M; Anaxagoras, T; Konstantinidis, AC; Zheng, Y.; Speller, RD; Evans, PM; Allinson, NM; Wells, K.


    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non...

  3. Secure Multi-Purpose Wireless Sensor Networks

    Jacobi, Daniel


    Wireless sensor networks (WSNs) were made possible around the late 1990s by industry scale availability of small and energy efficient microcontrollers and radio interfaces. Application areas for WSNs range from agriculture to health care and emergency response scenarios. Depending on the scenario a sensor network can span from some rooms to an area of several square miles in size and so the number of sensor nodes can vary from a fistful of nodes to hundreds or thousands. Sensor nodes are comp...

  4. The art of wireless sensor networks


    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  5. Collaborative Clustering for Sensor Networks

    Wagstaff. Loro :/; Green Jillian; Lane, Terran


    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative

  6. Analyzing multimode wireless sensor networks using the network calculus


    The network calculus is a powerful tool to analyze the performance of wireless sensor networks. But the original network calculus can only model the single-mode wireless sensor network. In this paper, we combine the original network calculus with the multimode model to analyze the maximum delay bound of the flow of interest in the multimode wireless sensor network. There are two combined methods A-MM and N-MM. The method A-MM models the whole network as a multimode component, and the method N...

  7. Forest Fire Prevention using Wireless Sensor Networks



    Because of the rapid development of sensors, microprocessors, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of forest fires control. This paper presents a new type of early warning systems which use a wireless sensor network to collect the information of forest fire-prone sections for forest fire, wireless sensor nodes constitute a "smart" monitoring and control network through the self-organization and transmits the messag...

  8. Lightweight Intrusion Detection in Wireless Sensor Networks

    Riecker, Michael


    Wireless sensor networks have become a mature technology. They are increasingly being used in different practical applications. Examples include the monitoring of industrial environments and light adaptation in tunnels. For such applications, attacks are a serious concern. A disrupted sensor network may not only have a financial impact, but could also be safety-critical. Hence, the availability of a wireless sensor network is our key protection goal in this thesis. A special challenge lies in...

  9. Secure Multipath routing in Wireless Sensor Networks

    Ravindra Gupta; Hema Dhadhal


    Wireless sensor networks are usually deployed for gathering data from unattended or hostile environment. Several application specific sensor network data gathering protocols have been proposed in research literatures. However, most of the proposed algorithms have given little attention to the related security issues. In this paper we have explored general security threats in wireless sensor network and made an extensive study to categorize available data gathering protocols and analyze possib...

  10. Wireless Sensor Networks Attacks and Solutions

    Alajmi, Naser


    A few years ago, wireless sensor networks (WSNs) used by only military. Now, we have seen many of organizations use WSNs for some purposes such as weather, pollution, traffic control, and healthcare. Security is becoming on these days a major concern for wireless sensor network. In this paper I focus on the security types of attacks and their detection. This paper anatomizes the security requirements and security attacks in wireless sensor networks. Also, indicate to the benchmarks for the se...

  11. Properties and customization of sensor materials for biomedical applications.

    Zuliani, Claudio; Matzeu, Giusy; Curto, Vincenzo; Fraser, Kevin J.; Diamond, Dermot


    Low-power chemo- and biosensing devices capable of monitoring clinically important parameters in real time represent a great challenge in the analytical field as the issue of sensor calibration pertaining to keeping the response within an accurate calibration domain is particularly significant (1–4). Diagnostics, personal health, and related costs will also benefit from the introduction of sensors technology (5–7). In addition, with the introduction of Registration, Evaluation, Authorization,...

  12. Modify LEACH Algorithm for Wireless Sensor Network



    Full Text Available Research on wireless sensor networks has recently received much attention as they offer an advantage of monitoring various kinds of environment by sensing physical phenomenon. Prolonged network lifetime, scalability, and load balancing are important requirement for many sensor network applications. Clustering sensor nodes is an effective technique for achieving these goals. In this work, we introduce an energy efficient clustering algorithm for sensor networks based on the LEACH protocol. LEACH (Low Energy Adaptive Clustering Hierarchy is one of popular cluster-based structures, which has been widely proposed in wireless sensor networks. LEACH uses a TDMA based MAC protocol, and In order to maintain a balanced energy consumption. The proposed protocol adds feature to LEACH to reduce the consumption of the network resource in each round. The proposed protocol is simulated and the results show a significant reduction in network energy consumption compared to LEACH.

  13. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Yang, Yinying


    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  14. Contemporary Developments in Wireless Sensor Networks

    Sangeeta Mittal


    Full Text Available Wireless Sensor Networks (WSN since their inception, a decade ago, have grown well in research and implementation. In this work the developments in WSNs are reported in three sub areas of wireless sensor networks that is, wireless sensor node (hardware and software, Communication & Networking issues in WSNs and application areas. WSNs are characterized by huge data hence research work in aggregation & mining is also discussed. Contemporary issues of integration of WSNs with other prevalent networks, sensor enabled smartness and role of artificial intelligence methods is elaborated. Insight into future directions & research avenues in all the above areas is provided

  15. A Semantic Layer for Embedded Sensor Networks

    Salvatore F. Pileggi; Carlos Fernandez-Llatas; Vicente Traver


    Sensor Networks progressively assumed the critical role of bridges between the real world and information systems, through always more consolidated and efficient sensor technologies that enable advanced heterogeneous sensor grids. Sensor data is commonly used by advanced systems and intelligent applications in order to archive complex goals. Processes that build high-level knowledge from sensor data are commonly considered as the key core concept. This paper proposes a semantic la...

  16. Views from the coalface : chemo-sensors, sensor networks and the semantic sensor web

    Hayes, Jer; O'Connor, Edel; Cleary, John; Kolar, H.R.; McCarthy, Robert; Tynan, Richard; O'Hare, G.M.P.; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot


    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the p...

  17. Modelling the Energy Efficient Sensor Nodes for Wireless Sensor Networks

    Dahiya, R.; Arora, A. K.; Singh, V. R.


    Energy is an important requirement of wireless sensor networks for better performance. A widely employed energy-saving technique is to place nodes in sleep mode, corresponding to low-power consumption as well as to reduce operational capabilities. In this paper, Markov model of a sensor network is developed. The node is considered to enter a sleep mode. This model is used to investigate the system performance in terms of energy consumption, network capacity and data delivery delay.

  18. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    Hu, Fei


    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  19. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    Wen-Jong Wu


    Full Text Available This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  20. Multi-Agent Formations and Sensor Networks

    Cao, M.


    We investigate three intertwined problems concerned with distributed cooperative control of groups of autonomous mobile agents. These problems are the consensus problem in mobile networks, the localization problem in sensor networks and the formation maintenance problem in autonomous robotic teams.

  1. Sensor Activation and Radius Adaptation (SARA) in Heterogeneous Sensor Networks

    Bartolini, Novella; la Porta, Thomas; Petrioli, Chiara; Silvestri, Simone


    In this paper we address the problem of prolonging the lifetime of wireless sensor networks (WSNs) deployed to monitor an area of interest. In this scenario, a helpful approach is to reduce coverage redundancy and therefore the energy expenditure due to coverage. We introduce the first algorithm which reduces coverage redundancy by means of Sensor Activation and sensing Radius Adaptation (SARA)in a general applicative scenario with two classes of devices: sensors that can adapt their sensing range (adjustable sensors) and sensors that cannot (fixed sensors). In particular, SARA activates only a subset of all the available sensors and reduces the sensing range of the adjustable sensors that have been activated. In doing so, SARA also takes possible heterogeneous coverage capabilities of sensors belonging to the same class into account. It specifically addresses device heterogeneity by modeling the coverage problem in the Laguerre geometry through Voronoi-Laguerre diagrams. SARA executes quickly and is guarante...

  2. Sybil attack in Wireless Sensor Network

    Abirami.K; Santhi.B


    Wireless network is very susceptible to different types of attack. The main attack is Sybil attack, which allows forming other attacks on the network. Security is very important to the wireless network. In wireless sensor network, to verify node identities by cryptographic authentication but this is not easy because sensor node which contains limited resources. Therefore the current research is going on how to handling the situation of different traffic levels and transmission power for secur...

  3. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David;


    We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic...

  4. The Function Biomedical Informatics Research Network Data Repository.

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G


    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  5. The Sensors and Instrumentation Knowledge Transfer Network

    The Sensors and Instrumentation KTN has established itself as the UK's national network in sensors and instrumentation, developing a community of over 2,250 member organisations. This paper describes the background to Knowledge Transfer Networks (KTNs) and the changes that are happening to KTNs at a national level, before describing the market size, activities and successes of the Sensors and Instrumentation KTN. The paper concludes by describing the merger between the Sensors and Instrumentation KTN and four other KTNs to create a new KTN, with a working title of the Electronics, Sensors and Photonics KTN.

  6. Mathematical theories of distributed sensor networks

    Iyengar, Sitharama S; Balakrishnan, N


    Mathematical Theory of Distributed Sensor Networks demonstrates how mathematical theories can be used to provide distributed sensor modeling and to solve important problems such as coverage hole detection and repair. The book introduces the mathematical and computational structure by discussing what they are, their applications and how they differ from traditional systems. The text also explains how mathematics are utilized to provide efficient techniques implementing effective coverage, deployment, transmission, data processing, signal processing, and data protection within distributed sensor networks. Finally, the authors discuss some important challenges facing mathematics to get more incite to the multidisciplinary area of distributed sensor networks.

  7. Monitoring Greenhouse using Wireless Sensor Network



    Full Text Available Recent advances in science and technology havebeen ledto facilitate monitoring the environment,collecting data, processing the sensed data,threshold-decision making process and lastlyperforming of suitable actions by using ofdistributed wireless sensor networks and actornetworks. Wireless sensor actor networks (WSANis a combination of at least one coordinator nodewith sensors and actor nodes that communicatewirelessly to perform somespecifiedtasks ofsensing, monitoring and actuation.This papersummarizes an idea that can be carriedouttoprovide an efficient control mechanism ofmicroclimateinto greenhouses through theimplementation of aninfrastructure of WirelessSensors Network to control environmentalparameters.

  8. Wireless Sensor Network Software Design Rules

    Strazdiņš, Ģirts


    Abstract In the last decade wireless sensor networks (WSNs) have evolved as a promising approach for smart investigation of our planet, providing solutions for environment and wild animal monitoring, security system development, human health telemonitoring and control, industrial manufacturing and other domains. Lack of unified standards and methodologies leads to limited sensor network solution interoperability and portability. Significant number of WSN operating systems...

  9. Nanostructured sensors for biomedical applications--a current perspective.

    Krishnamoorthy, Sivashankar


    Nanostructured sensors have unique capabilities that can be tailored to advantage in advancing the diagnosis, monitoring and cure of several diseases and health conditions. This report aims at providing a current perspective on, (a) the emerging clinical needs that defines the challenges to be addressed by nanostructured sensors, with specific emphasis on early stage diagnosis, drug-diagnostic combinations, and predictive models to design therapy, (b) the emerging industry trends in in vitro diagnostics, mobile health care, high-throughput molecular and cell-based diagnostic platforms, and (c) recent instances of nanostructured biosensors, including promising sensing concepts that can be enhanced using nanostructures that carry high promise towards catering to the emerging clinical needs, as well as the market/industry trends. PMID:25591062

  10. Energy optimization in mobile sensor networks

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while

  11. Secure Wireless Sensor Networks: Problems and Solutions

    Fei Hu


    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  12. On computer vision in wireless sensor networks.

    Berry, Nina M.; Ko, Teresa H.


    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  13. Cooperative robots and sensor networks 2014

    Khelil, Abdelmajid


    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  14. ECDH power consumption in wireless sensor networks

    Kukuseva, Maja; Citkuseva Dimitrovska, Biljana


    Elliptic Curve Cryptography is cryptographic scheme that combines low power usage for key generation and high level of security in constrained Wireless Sensor Networks. Each sensor node is powered by a battery that should last for long period. This constrains wireless sensor networks in terms of energy usage. Another critical issue is secure communications ant thus, the development of cryptographic scheme is difficult and challenging task. Elliptic Curve Diffie- Hellman is secu...

  15. Vanishing tattoo multi-sensor for biomedical diagnostics

    Moczko, E.; Meglinski, I.; Piletsky, S.


    Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.

  16. Security Threats in Wireless Sensor Networks



    Full Text Available Wireless Sensor Network (WSN is an emergingtechnology that shows great promise for variousfuturistic applications both for mass public andmilitary. The sensing technology combined withprocessing power and wireless communication makesit lucrative for being exploited in abundance in future.Wireless sensor networks are characterized byseverely constrained computational and energy resources, and an ad hoc operational environment. Wireless sensor networks (WSN are currently receiving significant attention due to their unlimitedpotential. However, it is still very early in the lifetime of such systems and many research challenges exist. This paper studies the security aspects of these networks.

  17. Forest Fire Prevention using Wireless Sensor Networks



    Full Text Available Because of the rapid development of sensors, microprocessors, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of forest fires control. This paper presents a new type of early warning systems which use a wireless sensor network to collect the information of forest fire-prone sections for forest fire, wireless sensor nodes constitute a "smart" monitoring and control network through the self-organization and transmits the messages to the control center through the network, thus we can achieve the remote control of the forest fire.

  18. Sustainable coastal sensor networks: technologies and challenges

    Carapezza, Edward M.; Butman, Jerry; Babb, Ivar; Bucklin, Ann


    This paper describes a distributed sensor network for a coastal maritime security system. This concept incorporates a network of small passive and active multi-phenomenological unattended sensors and shore based optical sensors to detect, classify, and track submerged threat objects approaching high value coastal assets, such as ports, harbors, residential, commercial, and military facilities and areas. The network of unattended, in-water sensors perform the initial detection, classification, and coarse tracking and then queues shore based optical laser radar sensors. These shore-based sensors perform a queued sector search to develop a refined track on the submerged threat objects that were initially detected by the unattended sensor network. Potential threat objects include swimmers, small unmanned underwater vehicles (UUV's), small submarines, and submerged barges. All of these threats have the potential to transport threat objects such as explosives, chemical, biological, radiological, and nuclear materials. Reliable systems with low false alarm rates (FAR) are proposed. Tens to hundreds of low cost passive sensors are proposed to be deployed conjunctively with several active acoustic and optical sensors in threat and facility dependant patterns to maximize the detection, tracking and classification of submerged threat objects. The integrated command and control system and novel microbial fuel cells to power these sensor networks are also described.

  19. Distributed neural computations for embedded sensor networks

    Peckens, Courtney A.; Lynch, Jerome P.; Pei, Jin-Song


    Wireless sensing technologies have recently emerged as an inexpensive and robust method of data collection in a variety of structural monitoring applications. In comparison with cabled monitoring systems, wireless systems offer low-cost and low-power communication between a network of sensing devices. Wireless sensing networks possess embedded data processing capabilities which allow for data processing directly at the sensor, thereby eliminating the need for the transmission of raw data. In this study, the Volterra/Weiner neural network (VWNN), a powerful modeling tool for nonlinear hysteretic behavior, is decentralized for embedment in a network of wireless sensors so as to take advantage of each sensor's processing capabilities. The VWNN was chosen for modeling nonlinear dynamic systems because its architecture is computationally efficient and allows computational tasks to be decomposed for parallel execution. In the algorithm, each sensor collects it own data and performs a series of calculations. It then shares its resulting calculations with every other sensor in the network, while the other sensors are simultaneously exchanging their information. Because resource conservation is important in embedded sensor design, the data is pruned wherever possible to eliminate excessive communication between sensors. Once a sensor has its required data, it continues its calculations and computes a prediction of the system acceleration. The VWNN is embedded in the computational core of the Narada wireless sensor node for on-line execution. Data generated by a steel framed structure excited by seismic ground motions is used for validation of the embedded VWNN model.

  20. Distributed Detection in Wireless Sensor Networks Using Dynamic Sensor Thresholds

    Priyadip Ray; Varshney, Pramod K.


    This paper presents a new approach for distributed target detection in wireless sensor networks (WSNs). Contrary to the conventional practice where every sensor uses an identical threshold for decision-making, an unequal and dynamic local sensor threshold selection scheme is proposed. This threshold selection scheme is based on a recently proposed statistical metric for multiple testing problems called the False Discovery Rate (FDR). Assuming a signal attenuation model, where the received sig...

  1. Sensor Data Security Level Estimation Scheme for Wireless Sensor Networks

    Alex Ramos; Raimir Holanda Filho


    Due to their increasing dissemination, wireless sensor networks (WSNs) have become the target of more and more sophisticated attacks, even capable of circumventing both attack detection and prevention mechanisms. This may cause WSN users, who totally trust these security mechanisms, to think that a sensor reading is secure, even when an adversary has corrupted it. For that reason, a scheme capable of estimating the security level (SL) that these mechanisms provide to sensor data is needed, so...

  2. Time-domain fiber loop ringdown sensor and sensor network

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  3. Geodetic sensor systems and sensor networks: positioning and applications

    Verhagen, S.; Grejner-Brzezinska, D.; Retscher, G.; Santos, M.; Ding, X.; Gao, Y.; Jin, S.


    This contribution focuses on geodetic sensor systems and sensor networks for positioning and applications. The key problems in this area will be addressed together with an overview of applications. Global Navigation Satellite Systems (GNSS) and other geodetic techniques play a central role in many a

  4. Combinatorial analysis of body sensor networks subject to probabilistic competing failures

    Body Sensor Networks (BSNs) have been developed to provide wearable, real-time health monitoring systems for many life-critical applications that require a high level of reliability. Therefore it is significant to analyze the reliability attribute of BSNs, contributing to their reliable designs and operations. This paper models reliability of BSNs subject to probabilistic competing failures. Specifically, in a BSN system, biomedical sensors sense physiological information that is then transmitted through a relay node to a sink device used by decision makers. When the relay fails, these sensors may be isolated in transmission with certain probabilities, depending on whether the remaining power can enable a long-range, direct transmission to the sink. This isolation effect prevents the system from being compromised by further failures of those sensors. However, biomedical sensors may experience propagated failures. If any of the propagated failures occurs before the relay failure, the entire system can fail. Therefore, there exists a competition in time domain between probabilistic failure isolation and propagation effects. This paper considers such probabilistic competing effects and different statistical relationships between local and propagated failures of sensors in reliability analysis of BSNs. A case study is given to illustrate application and advantages of the proposed combinatorial method. - Highlights: • Reliability of body sensor networks subject to probabilistic competing failures is modeled. • Different statistical relationships between local and propagated failures of biomedical sensors are considered. • A combinatorial method is suggested

  5. Modified Rumor Routing for Wireless Sensor Networks

    Chiranjib Patra; Parama Bhaumik; Debina Chakroborty


    Due to the limited processing power, and finite power available to each sensor node, regular ad-hoc routing techniques cannot be directly applied to sensor networks domain. Thus, energy-efficient routing algorithms suitable to the inherent characteristics of these types of networks are needed. However highly efficient data centric model of routing will improve the longevity of the network. This paper describes a mechanism of improvisation through simulation of existing feature of Rumor routin...

  6. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Prasan Kumar Sahoo


    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health techn...

  7. Securing radars using secure wireless sensor networking

    Tahmoush, David


    Radar sensors can be viewed as a limited wireless sensor network consisting of radar transmitter nodes, target nodes, and radar receiver nodes. The radar transmitter node sends a communication signal to the target node which then reflects it in a known pattern to the radar receiver nodes. This type of wireless sensor network is susceptible to the same types of attacks as a traditional wireless sensor network, but there is less opportunity for defense. The target nodes in the network are unable to validate the return signal, and they are often uncooperative. This leads to ample opportunities for spoofing and man-in-the-middle attacks. This paper explores some of the fundamental techniques that can be used against a limited wireless network system as well as explores the techniques that can be used to counter them.

  8. Bluetooth and sensor networks: a reality check

    Leopold, Martin; Dydensborg, Mads; Bonnet, Philippe


    The current generation of sensor nodes rely on commodity components. The choice of the radio is particularly important as it impacts not only energy consumption but also software design (e.g., network self-assembly, multihop routing and in-network processing). Bluetooth is one of the most popular...... commodity radios for wireless devices. As a representative of the frequency hopping spread spectrum radios, it is a natural alternative to broadcast radios in the context of sensor networks. The question is whether Bluetooth can be a viable alternative in practice. In this paper, we report our experience...... using Bluetooth for the sensor network regime. We describe our tiny Bluetooth stack that allows TinyOS applications to run on Bluetooth-based sensor nodes, we present a multihop network assembly procedure that leverages Bluetooth's device discovery protocol, and we discuss how Bluetooth favorably...

  9. Audio coding in wireless acoustic sensor networks

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt;


    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  10. Wireless sensor networks distributed consensus estimation

    Chen, Cailian; Guan, Xinping


    This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga

  11. Sensor fault diagnosis using Bayesian belief networks

    This paper describes a method based on Bayesian belief networks (BBNs) sensor fault detection, isolation, classification, and accommodation (SFDIA). For this purpose, a BBN uses three basic types of nodes to represent the information associated with each sensor: (1) sensor-reading nodes that represent the mechanisms by which the information is communicated to the BBN, (2) sensor-status nodes that convey the status of the corresponding sensors at any given time, and (3) process-variable nodes that are a conceptual representation of the actual values of the process variables, which are unknown

  12. A Sentinel Sensor Network for Hydrogen Sensing

    Andrew J. Mason


    Full Text Available A wireless sensor network is presented for in-situ monitoring of atmospheric hydrogen concentration. The hydrogen sensor network consists of multiple sensor nodes, equipped with titania nanotube hydrogen sensors, distributed throughout the area of interest; each node is both sensor, and data-relay station that enables extended wide area monitoring without a consequent increase of node power and thus node size. The hydrogen sensor is fabricated from a sheet of highly ordered titania nanotubes, made by anodization of a titanium thick film, to which platinum electrodes are connected. The electrical resistance of the hydrogen sensor varies from 245 Ω at 500 ppm hydrogen, to 10.23 kΩ at 0 ppm hydrogen (pure nitrogen environment. The measured resistance is converted to voltage, 0.049 V at 500 ppm to 2.046 V at 0 ppm, by interface circuitry. The microcontroller of the sensor node digitizes the voltage and transmits the digital information, using intermediate nodes as relays, to a host node that downloads measurement data to a computer for display. This paper describes the design and operation of the sensor network, the titania nanotube hydrogen sensors with an apparent low level resolution of approximately 0.05 ppm, and their integration in one widely useful device.

  13. Sensor Validation using Bayesian Networks

    National Aeronautics and Space Administration — One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in...

  14. Network Management Framework for Wireless Sensor Networks

    Kim, Jaewoo; Jeon, Hahnearl; Lee, Jaiyong

    Network Management is the process of managing, monitoring, and controlling the network. Conventional network management was based on wired network which is heavy and unsuitable for resource constrained WSNs. WSNs can have large scale network and it is impossible to manage each node individually. Also, polling mechanism of Simple Network Management Protocol (SNMP) impose heavy management traffic overhead. Since management messages consume resources of WSNs, it can affect the performance of the network. Therefore, it is necessary for WSNs to perform energy efficient network management. In this paper, we will propose network management framework. We will introduce cluster-based network management architecture, and classify the Management Information Base (MIB) according to their characteristics. Then, we will define management messages and message exchange operation for each kind of MIB. The analysis result of the management overhead indicates that the proposed framework can reduce management traffic compared to polling mechanism.

  15. Sensor Validation Using Auto associative Neural Network

    Sensor Validation Using Auto associative Neural Network. Sensor signal accuration plays a significant role in safety and operation of a nuclear reactor. These sensor performance could be decline even become totally fault when the reactor in operation. This paper demonstrates the application of auto associative neural network (AANN) to validate signals from various correlated sensor so that the sensor performance deterioration can be earlier detected. An AANN model produces predicted signal, which is used as a measured signal validator. The faulty of a sensor will not disturb the reactor operation since the predicted signal can be used as redundant signal and replace the faulty signal. This method is applied to a set of data from Borselle Nuclear Power Plant and corresponds to various operation modes. Result showed that the system could be used to detect 3% drift on one of the input channel. (author)

  16. Complete Security Framework for Wireless Sensor Networks

    Sharma, Kalpana; Kuldeep,


    Security concern for a Sensor Networks and level of security desired may differ according to application specific needs where the sensor networks are deployed. Till now, most of the security solutions proposed for sensor networks are layer wise i.e a particular solution is applicable to single layer itself. So, to integrate them all is a new research challenge. In this paper we took up the challenge and have proposed an integrated comprehensive security framework that will provide security services for all services of sensor network. We have added one extra component i.e. Intelligent Security Agent (ISA) to assess level of security and cross layer interactions. This framework has many components like Intrusion Detection System, Trust Framework, Key Management scheme and Link layer communication protocol. We have also tested it on three different application scenarios in Castalia and Omnet++ simulator.

  17. Performance Control in Wireless Sensor Networks

    Lindh, Thomas; Orhan, Ibrahim


    This paper presents an implementation of a method for performance control in wireless body sensor networks based on measurement feedback, especially targeted for demanding healthcare applications.

  18. Graphical Model Theory for Wireless Sensor Networks

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  19. Graphical Model Theory for Wireless Sensor Networks

    Davis, William B.


    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  20. Modeling and Optimization of Rechargeable Sensor Networks

    Xie, Liguang


    Over the past fifteen years, advances in Micro-Electro-Mechanical Systems (MEMS) technology have enabled rapid development of wireless sensor networks (WSNs). A WSN consists of a large number of sensor nodes that are typically powered by batteries. Each sensor node collects useful information from its environment, and forwards this data to a base station through wireless communications. Applications of WSNs include environmental monitoring, industrial monitoring, agriculture, smart home monit...

  1. OPTICS Based Coverage in Wireless Sensor Network

    Adak, Chandranath


    This paper deals with the coverage problem of wireless sensor network. We use the density based clustering technique - OPTICS to cover a target region with less number of sensor nodes. OPTICS works well to identify the outliers, core points and it obtains the denser regions. We define a level of acceptance to find next appropriate sensor in the region. We eliminate overlapped area and obtain a decision tree to minimally cover up the target region.

  2. Sensor Validation Using Dynamic Belief Networks

    Nicholson, Ann; Brady, J. M.


    The trajectory of a robot is monitored in a restricted dynamic environment using light beam sensor data. We have a Dynamic Belief Network (DBN), based on a discrete model of the domain, which provides discrete monitoring analogous to conventional quantitative filter techniques. Sensor observations are added to the basic DBN in the form of specific evidence. However, sensor data is often partially or totally incorrect. We show how the basic DBN, which infers only an impossible combination of e...

  3. Various Approaches for Enhancing the Performance of Wireless Sensor Networks

    Hasan Al Shalabi


    Full Text Available In the current time and next decades, Wireless Sensor Networks (WSNs represents a new category of ad hoc networks consisting of small nodes with three functions: sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been designed for WSNs where energy awareness is an essential design issue to improve the overall performance of WSN. There are many approaches and techniques explored for the optimization of energy usage in wireless sensor networks. Routing represents one of these areas in which attempts for efficient utilization of energy have been made. In this paper, we report on the current state of the research on optimizing the performance of WSN using various advanced approaches. There are various directions to enhance and optimize the performance as: avoiding congestion and keep it within certain controlled value, selecting the optimum routing approach, reducing the level of power consumption to increase the life time of the sensor node and others. So, the major objective of this paper is to investigate the various techniques used in improving and enhancing the performance of WSN to let it be more reliable in various applications like: health care and biomedical treatment, environment monitoring, military survival lance , target tracking, greenhouse monitoring, etc .

  4. Deploying a Wireless Sensor Network in Iceland

    K.; Martinez; Hart, J. K.; Ong, R.


    A wireless sensor network deployment on a glacier in Iceland is described. The system uses power management as well as power harvesting to provide long-term environment sensing. Advances in base station and sensor node design as well as initial results are described.

  5. Ultra-wideband radar sensors and networks

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C


    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  6. Mobile Robots and Sensor Network: Working Together

    Batalin, Maxim; Sukhatme, Gaurav S.


    Our research is focused around idea of using sensor network and mobile robots cooperatively for solving various tasks. Moreover, sensor networks and mobile robots both benefit from such collaboration. One of the examples of such "symbiotic" approach is solution to the mobile robot navigation problem. The task is to detect the area requiring robot"s presence in the environment and then to guide the robot into that area. We propose solution to such problem and present results from real-world ex...

  7. Wireless Sensor Networks for Ambient Assisted Living

    Raúl Aquino-Santos; Diego Martinez-Castro; Arthur Edwards-Block; Andrés Felipe Murillo-Piedrahita


    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very s...

  8. A lightweight sensor network management system design

    Yuan, F.; Song, W.-Z.; Peterson, N.; Peng, Y.; Wang, L.; Shirazi, B.; LaHusen, R.


    In this paper, we propose a lightweight and transparent management framework for TinyOS sensor networks, called L-SNMS, which minimizes the overhead of management functions, including memory usage overhead, network traffic overhead, and integration overhead. We accomplish this by making L-SNMS virtually transparent to other applications hence requiring minimal integration. The proposed L-SNMS framework has been successfully tested on various sensor node platforms, including TelosB, MICAz and IMote2. ?? 2008 IEEE.

  9. Secure Data Aggregation in Wireless Sensor Networks

    Dr. Debmalya Bhattacharya


    The Security in sensor networks has become most important aspect along with low power as the sensors are unattended so there is more possibility of attack in WSN than usual networks, data aggregation security is an important task as if some false node injects a highly odd value it will affect the whole aggregation process, The paper reviews the need of security for data aggregation and propose an architecture which can eliminate the false values injection as well as provides e...

  10. Security Issues & Challenges in Wireless Sensor Networks

    Anand Nayyar


    Wireless Sensor Network (WSN) is regarded as emerging futuristic technology which promises various applications development for people and military. Wireless Sensor Network technology is combined with processing power and wireless communications which makes it vulnerable for security breaches in the future. With the addition of Wireless Technology it is open to all types of security threats. This research paper is developed to research on various security issues cum challenges faced by Wirele...

  11. Time/Computationally Optimal Network Architecture: Wireless Sensor Fusion

    Devi, Gadi Gayathri; Kumari, Priya; Jyoshna, Eslavath; Deepika; Murthy, Garimella Rama


    In this research paper, the problems dealing with sensor network architecture, sensor fusion are addressed. Time/Computationally optimal network architectures are investigated. Some novel ideas on sensor fusion are proposed.

  12. A Survey on Wireless Sensor Network Security

    Sen, Jaydip


    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.

  13. Handbook of sensor networks compact wireless and wired sensing systems

    Ilyas, Mohammad


    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  14. Research on the Content Networking Sensor

    Shuyan Wu


    Full Text Available In the content networking fiber optic signal system, optical signal processing in order not to be effected by sound, and change the warning, is proposed based on content networking of optical fiber sensing technology research, by analyzing on the content networking application, content networking of wireless sensor network technology and filtering LMS adaptive algorithm , we can find the problems about the things networking of optical fiber system of adaptive signal processing , and finally show that the physical networking sensor optical fiber technology through contacting ourselves with outside surrounding to improve their performance in signal processing, adjusting their parameters, which can realize the strain along the space distribution and time varying and continuous measurement, and it is senior to the transducer incomparable

  15. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Shah Ahsanul Haque; Mustafizur Rahman; Syed Mahfuzul Aziz


    Wireless Sensor Networks (WSN) are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare servic...

  16. Sensor Temperature Compensation Technique Simulation Based on BP Neural Network

    Xiangwu Wei


    Innovatively, neural network function programming in the BPNN (BP neural network) tool boxes from MATLAB are applied, and data processing is done about CYJ-101 pressure sensor, and the problem of the sensor temperature compensation is solved. The paper has made the pressure sensors major sensors and temperature sensor assistant sensors, input the voltage signal from the two sensors into the established BP neural network model, and done the simulation under the NN Toolbox environment of MATLAB...

  17. Curvature of Indoor Sensor Network: Clustering Coefficient


    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  18. Robust, Distributed Target Tracking Using Sensor Network

    Neema, Kartavya

    Distributed target tracking using sensor networks is crucial for supporting a variety of applications such as battlefield monitoring, weather monitoring, and air traffic management. This dissertation presents a problem formulation and solution approach for distributed target tracking, comprising of sensor fusion and sensor target allocation problems, in the presence of faults in the sensor measurements. There are times when an architecture with central node is preferred but other times when distributed is necessary, we seek a distributed case that can approach the attractive features of centralized case. Therefore, we propose that the underlying two-fold goals of the distributed target tracking problem is to: (1) reach a consensus in the allocation decisions across the sensor network, and (2) achieve a consensus in the state estimates across all the sensors in the network. These goals ensure that each sensor node has the same information across the sensor network, and any node can behave as a central node. In the process of achieving our goals, we develop two new algorithms, one for distributed sensor-target allocation and another for distributed sensor fusion. The Dual Phase Consensus Algorithm (DPCA) for distributed sensor target allocation is a real time algorithm that works in two phases. The first phase of DPCA is similar to distributed sequential greedy search that combines the benefits of greedy and consensus algorithms to reach a feasible solution. The second phase iteratively improves the allocation eventually leading toward a global optimum. DPCA converges to a feasible solution at the order of number of sensors, and thus can be useful for implementation in real time systems. For distributed sensor fusion, we extend the state-of-art distributed Kalman filtering technique called Generalized Kalman Consensus Filter (GKCF), and make it robust against faults present in the sensor measurements. We particularly focus on two types of faults: (1) outliers in the

  19. Planning and Scheduling for Environmental Sensor Networks

    Frank, J. D.


    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  20. JSC Wireless Sensor Network Update

    Wagner, Robert


    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  1. Making sensor networks IPv6 ready

    Durvy, Mathilde; Abeillé, Julien; Wetterwald, Patrick; O'Flynn, Colin; Leverett, Blake; Gnoske, Eric; Vidales, Michael; Mulligan, Geoff; Tsiftes, Nicolas; Finne, Niclas; Dunkels, Adam


    With emerging IPv6-based standards such as 6LowPAN and ISA- 100a, full IPv6 sensor networks are the next major step. With millions of deployed embedded IPv6 devices, interoperability is of major importance, both within the sensor networks and between the sensors and the Internet hosts. We present uIPv6, the first IPv6 stack for memory-constrained devices that passes all Phase-1 IPv6 Ready certification tests. This is an important step for end-to-end interoperability betwe...

  2. Energy Efficient (EECP) Clustered Protocol for Heterogeneous Wireless Sensor Network

    Kumar, Surender; Prateek, Manish; Bhushan, Bharat


    Energy Conservation and prolonging the life of Wireless Sensor Network is one of the major issues in the wireless sensor network as sensor nodes are highly energy constrained devices. Many routing protocols have been proposed for sensor network, especially cluster based routing protocols. Cluster based routing protocols are best known for its energy efficiency, network stability and for increasing the life time of the sensor network. Low Energy Adaptive Clustering Hierarchy (LEACH) is one of ...

  3. Near Optimal Broadcast with Network Coding in Large Sensor Networks

    Adjih, Cédric; Jacquet, Philippe


    We study efficient broadcasting for wireless sensor networks, with network coding. We address this issue for homogeneous sensor networks in the plane. Our results are based on a simple principle (IREN/IRON), which sets the same rate on most of the nodes (wireless links) of the network. With this rate selection, we give a value of the maximum achievable broadcast rate of the source: our central result is a proof of the value of the min-cut for such networks, viewed as hypergraphs. Our metric for efficiency is the number of transmissions necessary to transmit one packet from the source to every destination: we show that IREN/IRON achieves near optimality for large networks; that is, asymptotically, nearly every transmission brings new information from the source to the receiver. As a consequence, network coding asymptotically outperforms any scheme that does not use network coding.


    Bao Shudi; Poon Carmen C.Y.; Shen Lianfeng; Zhang Yuanting


    This study concerns security issues of the emerging Wireless Body Sensor Network(WBSN)formed by biomedical sensors worn on or implanted in the human body for mobile healthcare applications.A novel authenticated symmetric-key establishment scheme is proposed for WBSN,which fully exploits the physiological features obtained by network entities via the body channel available in WBSN but not other wireless networks.The self-defined Intrinsic Shared Secret(ISS)is used to replace the pre-deployment of secrets among network entities,which thus eliminates centralized services or authorities essential in existing protocols,and resolves the key transport problem in the pure symmetric-key cryptosystem for WBSN as well.The security properties of the proposed scheme are demonstrated in terms of its attack complexity and the types of attacks it can resist.Besides,the scheme can be implemented under a light-weight way in WBSN systems.Due to the importance of the ISS concept,the analysis on using false acceptance/false rejection method to evaluate the performance of ISS for its usage in the scheme is also demonstrated.

  5. Fault Reconnaissance Agent for Sensor Networks

    Elhadi M. Shakshuki


    Full Text Available One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection inference engine which harnesses Expectation Maximization (EM algorithm to estimate fault probabilities of sensor nodes. To validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of sensor nodes.

  6. Self-Recovering Sensor-Actor Networks

    Kamali, Maryam; Petre, Luigia; Sere, Kaisa; 10.4204/EPTCS.30.4


    Wireless sensor-actor networks are a recent development of wireless networks where both ordinary sensor nodes and more sophisticated and powerful nodes, called actors, are present. In this paper we formalize a recently introduced algorithm that recovers failed actor communication links via the existing sensor infrastructure. We prove via refinement that the recovery is terminating in a finite number of steps and is distributed, thus self-performed by the actors. Most importantly, we prove that the recovery can be done at different levels, via different types of links, such as direct actor links or indirect links between the actors, in the latter case reusing the wireless infrastructure of sensors. This leads to identifying coordination classes, e.g., for delegating the most security sensitive coordination to the direct actor-actor coordination links, the least real-time constrained coordination to indirect links, and the safety critical coordination to both direct actor links and indirect sensor paths between...

  7. Biomedical Applications of the Information-efficient Spectral Imaging Sensor (ISIS)

    Gentry, S.M.; Levenson, R.


    The Information-efficient Spectral Imaging Sensor (ISIS) approach to spectral imaging seeks to bridge the gap between tuned multispectral and fixed hyperspectral imaging sensors. By allowing the definition of completely general spectral filter functions, truly optimal measurements can be made for a given task. These optimal measurements significantly improve signal-to-noise ratio (SNR) and speed, minimize data volume and data rate, while preserving classification accuracy. The following paper investigates the application of the ISIS sensing approach in two sample biomedical applications: prostate and colon cancer screening. It is shown that in these applications, two to three optimal measurements are sufficient to capture the majority of classification information for critical sample constituents. In the prostate cancer example, the optimal measurements allow 8% relative improvement in classification accuracy of critical cell constituents over a red, green, blue (RGB) sensor. In the colon cancer example, use of optimal measurements boost the classification accuracy of critical cell constituents by 28% relative to the RGB sensor. In both cases, optimal measurements match the performance achieved by the entire hyperspectral data set. The paper concludes that an ISIS style spectral imager can acquire these optimal spectral images directly, allowing improved classification accuracy over an RGB sensor. Compared to a hyperspectral sensor, the ISIS approach can achieve similar classification accuracy using a significantly lower number of spectral samples, thus minimizing overall sample classification time and cost.

  8. Securing Wireless Sensor Networks: Security Architectures

    David Boyle


    Full Text Available Wireless sensor networking remains one of the most exciting and challenging research domains of our time. As technology progresses, so do the capabilities of sensor networks. Limited only by what can be technologically sensed, it is envisaged that wireless sensor networks will play an important part in our daily lives in the foreseeable future. Privy to many types of sensitive information, both sensed and disseminated, there is a critical need for security in a number of applications related to this technology. Resulting from the continuous debate over the most effective means of securing wireless sensor networks, this paper considers a number of the security architectures employed, and proposed, to date, with this goal in sight. They are presented such that the various characteristics of each protocol are easily identifiable to potential network designers, allowing a more informed decision to be made when implementing a security protocol for their intended application. Authentication is the primary focus, as the most malicious attacks on a network are the work of imposters, such as DOS attacks, packet insertion etc. Authentication can be defined as a security mechanism, whereby, the identity of a node in the network can be identified as a valid node of the network. Subsequently, data authenticity can be achieved; once the integrity of the message sender/receiver has been established.

  9. Agent routing algorithm in wireless sensor networks

    Zhang, Yuqing; Yang, Shuqun


    Wireless sensor networks are a new technology of information acquisition and processing, so they are widely used in all kinds of fields. In the paper we introduce Agent technology into the wireless sensor network, conduct a in-depth research on the four routing schemes, and propose a new improved routing scheme, which considers the energy consumption of both nodes and path. Furthermore, The scheme we proposed has efficient routing function, can balance the energy consumption of nodes and extends the lifetime of the network in a more efficient way.

  10. Wireless Sensor Networks for Ambient Assisted Living

    Raúl Aquino-Santos


    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  11. Adaptive computational resource allocation for sensor networks

    WANG Dian-hong; FEI E; YAN Yu-jie


    To efficiently utilize the limited computational resource in real-time sensor networks, this paper focu-ses on the challenge of computational resource allocation in sensor networks and provides a solution with the method of economies. It designs a mieroeconomic system in which the applications distribute their computational resource consumption across sensor networks by virtue of mobile agent. Further, it proposes the market-based computational resource allocation policy named MCRA which satisfies the uniform consumption of computational energy in network and the optimal division of the single computational capacity for multiple tasks. The simula-tion in the scenario of target tracing demonstrates that MCRA realizes an efficient allocation of computational re-sources according to the priority of tasks, achieves the superior allocation performance and equilibrium perform-ance compared to traditional allocation policies, and ultimately prolongs the system lifetime.

  12. Low-Power Wireless Sensor Network Infrastructures

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... in order to achieve the wanted lifetimes. Through more than a decade of wireless sensor network research, progress towards realizing wanted lifetimes have been made and wireless standards for packet formatting and routing have been proposed. With standards in place, the wide-span between programming...... environments and communication primitives in wireless sensor network and traditional network development are closing. However, fundamental differences in wireless technology and energy constraints are still to be considered at the lower levels of the software stack. To fulfill energy requirements hardware...

  13. Intrusion Detection Systems in Wireless Sensor Networks

    Vijay Kumar Mallarapu; K.V.D.Sagar


    Wireless Sensor Networks (WSNs) are a new technology foreseen to be used increasingly in the near future due to their data acquisition and data processing abilities. Security for WSNs is an area that needs to be considered in order to protect the functionality of these networks, the data they convey and the location of their members. The security models & protocols used in wired and other networks are not suited to WSNs because of their severe resource constrictions. In this paper, we describ...

  14. Polymer/ceramic wireless MEMS pressure sensors for harsh environments: High temperature and biomedical applications

    Fonseca, Michael A.


    This dissertation presents an investigation of miniaturized sensors, designed to wirelessly measure pressure in harsh environments such as high temperature and biomedical applications. Current wireless microelectromechanical systems (MEMS) pressure sensors are silicon-based and have limited high temperature operation, require internal power sources, or have limited packaging technology that restricts their use in harsh environments. Sensor designs in this work are based on passive LC resonant circuits to achieve wireless telemetry without the need for active circuitry or internal power sources. A cavity, which is embedded into the substrate, is bound by two pressure-deformable plates that include a parallel-plate capacitor. Deflection of the plates from applied pressure changes the capacitance, thus, the resonance frequency varies and is a function of the applied pressure. The LC resonant circuit and pressure-deformable plates are fabricated into a monolithic housing that servers as the final device package (i.e. intrinsically packaged). This co-integration of device and package offers increased robustness and the ability to operate wirelessly in harsh environments. To intrinsically packaged devices, the fabrication approach relies on techniques developed for MEMS and leverage established lamination-based manufacturing processes, such as ceramic and flexible-circuit-board (flex-circuit) packaging technologies. The sensor concept is further developed by deriving the electromechanical model describing the sensor behavior. The model is initially divided into the electromagnetic model, used to develop the passive wireless telemetry, and the mechanical model, used to develop the pressure dependence of the sensor, which are then combined to estimate the sensor resonance frequency dependence as a function of applied pressure. The derived analytical model allows parametric optimization of sensor designs. The sensor concept is demonstrated in two applications: high

  15. Wireless Sensor Networks Support Educators

    Homa Edalatifard; Merza Abbas; Zaidatun Tasir


    The use of WSNs has a great progress in different fields as well as providing new possibilities for education. Sensor nodes can be applied to recognize learners’ emotional states while understanding the students’ emotion enhances learning. So, this study tries to design and implement a WSN to collect physiological data via 3 sensors: GSR, PPG, and ECG. A management system after analyzing data collected will report the learners’ emotion to the educator. Then it will be considered to what exten...

  16. Priority image transmission in wireless sensor networks

    The emerging technology during the last years allowed the development of new sensors equipped with wireless communication which can be organized into a cooperative autonomous network. Some application areas for wireless sensor networks (WSNs) are home automations, health care services, military domain, and environment monitoring. The required constraints are limited capacity of processing, limited storage capability, and especially these nodes are limited in energy. In addition, such networks are tiny battery powered which their lifetime is very limited. During image processing and transmission to the destination, the lifetime of sensor network is decreased quickly due to battery and processing power constraints. Therefore, digital image transmissions are a significant challenge for image sensor based Wireless Sensor Networks (WSNs). Based on a wavelet image compression, we propose a novel, robust and energy-efficient scheme, called Priority Image Transmission (PIT) in WSN by providing various priority levels during image transmissions. Different priorities in the compressed image are considered. The information for the significant wavelet coeffcients are transmitted with higher quality assurance, whereas relatively less important coefficients are transmitted with lower overhead. Simulation results show that the proposed scheme prolongs the system lifetime and achieves higher energy efficiency in WSN with an acceptable compromise on the image quality.

  17. Target Coverage in Wireless Sensor Networks with Probabilistic Sensors.

    Shan, Anxing; Xu, Xianghua; Cheng, Zongmao


    Sensing coverage is a fundamental problem in wireless sensor networks (WSNs), which has attracted considerable attention. Conventional research on this topic focuses on the 0/1 coverage model, which is only a coarse approximation to the practical sensing model. In this paper, we study the target coverage problem, where the objective is to find the least number of sensor nodes in randomly-deployed WSNs based on the probabilistic sensing model. We analyze the joint detection probability of target with multiple sensors. Based on the theoretical analysis of the detection probability, we formulate the minimum ϵ-detection coverage problem. We prove that the minimum ϵ-detection coverage problem is NP-hard and present an approximation algorithm called the Probabilistic Sensor Coverage Algorithm (PSCA) with provable approximation ratios. To evaluate our design, we analyze the performance of PSCA theoretically and also perform extensive simulations to demonstrate the effectiveness of our proposed algorithm. PMID:27618902

  18. Architecture and Routing Protocols for Smart Wireless Home Sensor Networks

    Yang Xu; Shuai Wu; Ruochen Tan; Zheng Chen; Min Zha; Tina Tsou


    As an important application domain of wireless sensor networks (WSN), wireless home sensor network (WHSN) can be built as a traditional WSN. However, when we consider its own character that plug-in sensors are fixed with AC power supply while mobile sensors are battery powered, traditional WSN techniques do not match well. In this paper, we propose a smart wireless home sensor network architecture with improved routing protocols. It is a hierarchical architecture in which AC-powered sensors a...

  19. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.


    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434

  20. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    Héctor Vázquez-Leal


    Full Text Available We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB, a data acquisition (DAQ card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG.

  1. Collaborative image transmission over wireless sensor networks

    Wu, Min; Chen, Chang W.


    The imaging sensors are able to provide intuitive visual information for quick recognition and decision. However, imaging sensors usually generate vast amount of data. Thus, processing of image data collected in the sensor network for the purpose of energy efficient transmission poses a significant technical challenge. In particular, when a cluster of imaging sensors is activated to track certain moving target, multiple sensors may be collecting similar visual information simultaneously. With correlated image data, we need to intelligently reduce the redundancy among the neighboring sensors so as to minimize the energy for transmission, the primary source of sensor energy consumption. We propose in this paper a novel collaborative image transmission scheme for wireless sensor networks. First, we apply a shape matching method to coarsely register images to find out maximal overlap in order to exploiting the spatial correlation between images acquired from neighboring sensors. A transformation is generated according to the matching results. We encode the original image and the difference between the transformed image and reference image. Then, we transmit the coded bit stream together with the transformation parameters. This will significantly reduce the transmission energy comparing with transmitting two individual images independently. To exploiting the temporal correlation among images in the same sensor, we assume that the imaging sensors and the background scenes remain stationary over the data acquisition period. For a given image sequence, we transmit background image only once. A simple background subtraction method is employed to detect targets. Whenever targets are detected, only the regions of target and their spatial locations are transmitted to the monitoring center. At the monitoring center, the whole image can be reconstructed by fusing the background and the target image as well as its spatial location to further reduce energy consumption

  2. Achieving Network Level Privacy in Wireless Sensor Networks

    Sungyoung Lee; Heejo Lee; d’Auriol, Brian J.; Hassan Jameel; Riaz Ahmed Shaikh; Young-Jae Song


    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data pri...

  3. Towards Self-Powered Wireless Sensor Networks



    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that co...

  4. Security Overview of Wireless Sensor Network

    Modares, Hero; Moravejosharieh, Amirhossein; Salleh, Rosli; Lloret, Jaime


    There are several types of security threats that can give rise to vulnerability issues and performance degradation for the Wireless Sensor Network (WSN). The existing protocols that incorporate security features for authentication, key management, and secure routing, have not able to protect the WSN, effectively but a new Intrusion Detection System (IDS) can overcome these problems. The IDS collects data for analysis in order to identify any abnormal behaviour at the sensor nodes, which if pr...

  5. A secure middleware for wireless sensor networks

    Vairo, Claudio; Albano, Michele; Chessa, Stefano


    SMEPP Light is a middleware for Wireless Sensor Networks (WSNs) based on mote-class sensors. It is derived from the specification developed under the framework of the SMEPP pro ject, to deal with the hardware and software constraints of WSNs. SMEPP Light features group management, group- level security policies, mechanisms for query injection and data collection based on a subscribe/event mechanism, and adaptable energy efficiency mechanisms. In this paper we present the SMEPP Light specifica...

  6. Smart Sensor Network System For Environment Monitoring

    Javed Ali Baloch


    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  7. Security Threats in Wireless Sensor Networks

    Giannetsos, Athanasios


    Over the last few years, technological advances in the design of processors, memory, and radio communications have propelled an active interest in the area of distributed sensor networking, in which a number of independent, self-sustainable nodes collaborate to perform a large sensing task....... Security and privacy are rapidly replacing performance as the first and foremost concern in many sensor networking scenarios. While security prevention is important, it cannot guarantee that attacks will not be launched and that, once launched, they will not be successful. Therefore, detection of malicious...... of the most severe routing attacks against sensor networks, namely the sinkhole and wormhole attacks, and we emphasize on strategies that an attacker can follow to successfully launch them. Then we propose novel localized countermeasures that can make legitimate nodes become aware of the threat, while...

  8. Cross-platform wireless sensor network development

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open-source dev......Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open......-source development environment that takes a holistic approach to implementing sensor network applications. Users build applications using a drag-and-drop visual programming language Open Blocks, a language that Google selected for its App Inventor for Android. Tinylnventor uses cross-platform programming concepts...

  9. Optical networks for wideband sensor array

    Sheng, Lin Horng


    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  10. Lightweight Key Renewals for Clustered Sensor Networks

    Gicheol Wang


    Full Text Available In sensor networks, sensors are likely to be captured by attackers because they are usually deployed in an unprotected or even a hostile environment. If an adversarial compromises a sensor, he/she uses the keys from the compromised sensor to uncover the keys of others sensors. Therefore, it is very important to renew the keys of sensors in a proactive or reactive manner. Even though many group key renewal schemes have been proposed, they have some security flaws. First, they employ a single group key in a cluster so that the compromise of one sensor discloses the group key. Second, they evict the compromised nodes by updating the compromised keys with non-compromised keys. This eviction scheme is useless when the non-compromised keys are exhausted due to the increase of compromised nodes. In this paper, we propose a lightweight key renewal scheme, which evicts the compromised nodes clearly by reforming clusters excluding compromised nodes. Besides, in a cluster, each member employs a pairwise key for communication with its CH (Cluster Head so that our scheme is tolerable against sensor compromise. Our simulation results prove that the proposed scheme is more tolerable against the compromise of sensors and it is more energy-saving than the group key renewal schemes.

  11. Lifetime Prolonging Algorithms for Underwater Sensor Networks

    GUO Zhong-wen; LI Zhi-wei; YU Lei


    Underwater acoustic modem technology has attained a level of maturity to support underwater acoustic sensor networks (UASNs) which are generally formed by acoustically connected sensor nodes and a surface station providing a link to an on-shore control center. While many applications require long-term monitoring of the deployment area, the battery-powered network nodes limit the lifetime of UASNs. Therefore, designing a UASN that minimizes the power consumption while maximizing lifetime becomes a very difficult task. In this paper, a method is proposed to determine the optimum number of clusters through combining an application-specific protocol architecture and underwater acoustic communication model so as to reduce the energy dissipation of UASNs. Deploying more sensor nodes which work alternately is another way to prolong the lifetime of UASNs. An algorithm is presented for selecting sensor nodes and putting them into operation in each round, ensuring the monitoring to the whole given area. The present results show that the algorithm can help prolong system lifetime remarkably when it is applied to other conventional approaches for sensor networks under the condition that the sensor node density is high.

  12. An Efficient Management System for Wireless Sensor Networks

    Mei-Yu Lee; Yueh-Min Huang; Yi-Wei Ma; Jiann-Liang Chen


    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and contro...

  13. Enhance Throughput in Wireless Sensor Network Using Topology Control Approach

    Parikha Chawla; Parmender Singh; Taruna Sikka


    This paper is associated with implementation of topology control approach to enhance throughput in wireless sensor network. A wireless sensor network is characterized by limited energy supply and large nodes. To maximise the network lifetime of wireless sensor network the topology control is the considered to be the important process. Every attempt is being made to reduce the energy consumption and to enhance throughput of the wireless sensor node. Topology Control aims at network-wide goals,...

  14. Wireless sensor network for sodium leak detection

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  15. From Simple to Smart: The Development of Sensor Network

    Ping Liu; Xunxiang Huang; Feng Liu; Lianghua Zhang


    Sensor networks have come a long way since the first point-to-point analog system. Rapid development of industrial applications imposes more challenges on traditional sensors and sensor networks. And World Wide Web browsers and object-oriented programming techniques are also helping shaping the next generation of sensor networks. As a trend, smart sensor networks are getting more attention in industrial areas for the values they can bring into us. The IEEE 1451 family of smart sensor interface standards tends to resolve the issues and problems associated with the proliferation and the heterogeneity of sensor networks. The evolution and current state of the art of sensor networks is captured in this article, where the characteristics of their generations are discussed under the networking technologies. It is also pointed out that the challenges sensor networks will face and intends of this field.

  16. Querying moving objects detected by sensor networks

    Bestehorn, Markus


    Declarative query interfaces to Sensor Networks (SN) have become a commodity. These interfaces allow access to SN deployed for collecting data using relational queries. However, SN are not confined to data collection, but may track object movement, e.g., wildlife observation or traffic monitoring. While rational approaches are well suited for data collection, research on ""Moving Object Databases"" (MOD) has shown that relational operators are unsuitable to express information needs on object movement, i.e., spatio-temporal queries. ""Querying Moving Objects Detected by Sensor Networks"" studi

  17. Secure Data Aggregation in Wireless Sensor Networks

    Dr. Debmalya Bhattacharya


    Full Text Available The Security in sensor networks has become most important aspect along with low power as the sensors are unattended so there is more possibility of attack in WSN than usual networks, data aggregation security is an important task as if some false node injects a highly odd value it will affect the whole aggregation process, The paper reviews the need of security for data aggregation and propose an architecture which can eliminate the false values injection as well as provides end to end reliability and data freshness, the architecture is also energy optimized.

  18. Multiobjective Sensor Node Deployement in Wireless Sensor Networks

    K.Sheela Sobana Rani


    Full Text Available In Wireless Sensor Networks (WSN, sensor node deployment is essential for maximizing the coverage and detection probabilities. But the existing optimization solution suffers from limited energy storage, node death, increased network traffic etc. To solve these issues, we propose a multi-objective PSO and fuzzy based optimization model for sensor node deployment. The objectives considered in the paper include maximizing network coverage, connectivity and network lifetime. A fuzzy rule is constructed with the input parameters suchas node degree, link quality and residual energy. Depending upon the outcome of the fuzzy logic, the nodes are categorized into good, normal and bad. After the initial deployment of good nodes, the multi-objective particle swarm optimization (PSO based technique is applied for the deployment of other nodes. Keeping the good nodes as the reference points, PSO iteration is performed such that each bad and normal node is connected to at least one good node. Thus from our simulation results we show that the fuzzy logic and the optimizationtechnique provides efficient and accurate decisions for node deployment.

  19. Mid-Infrared Fiber-Coupled Photoacoustic Sensor for Biomedical Applications

    Jonas Kottmann


    Full Text Available Biomedical devices employed in therapy, diagnostics and for self-monitoring often require a high degree of flexibility and compactness. Many near infrared (NIR optical fiber-coupled systems meet these requirements and are employed on a daily basis. However, mid-infrared (MIR fibers-based systems have not yet found their way to routine application in medicine. In this work we present the implementation of the first MIR fiber-coupled photoacoustic sensor for the investigation of condensed samples in the MIR fingerprint region. The light of an external-cavity quantum-cascade laser (1010–1095 cm-1 is delivered by a silver halide fiber, which is attached to the PA cell. The PA chamber is conically shaped to perfectly match the beam escaping the fiber and to minimize the cell volume. This results in a compact and handy sensor for investigations of biological samples and the monitoring of constituents both in vitro and in vivo. The performance of the fiber-coupled PA sensor is demonstrated by sensing glucose in aqueous solutions. These measurements yield a detection limit of 57 mg/dL (SNR = 1. Furthermore, the fiber-coupled sensor has been applied to record human skin spectra at different body sites to illustrate its flexibility.

  20. Wireless sensors and sensor networks for homeland security applications

    Potyrailo, Radislav A.; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M.; Kelley-Loughnane, Nancy; Naik, Rajesh R.


    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers. PMID:23175590

  1. Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare

    Shah Ahsanul Haque


    Full Text Available Wireless Sensor Networks (WSN are vulnerable to various sensor faults and faulty measurements. This vulnerability hinders efficient and timely response in various WSN applications, such as healthcare. For example, faulty measurements can create false alarms which may require unnecessary intervention from healthcare personnel. Therefore, an approach to differentiate between real medical conditions and false alarms will improve remote patient monitoring systems and quality of healthcare service afforded by WSN. In this paper, a novel approach is proposed to detect sensor anomaly by analyzing collected physiological data from medical sensors. The objective of this method is to effectively distinguish false alarms from true alarms. It predicts a sensor value from historic values and compares it with the actual sensed value for a particular instance. The difference is compared against a threshold value, which is dynamically adjusted, to ascertain whether the sensor value is anomalous. The proposed approach has been applied to real healthcare datasets and compared with existing approaches. Experimental results demonstrate the effectiveness of the proposed system, providing high Detection Rate (DR and low False Positive Rate (FPR.

  2. Power Optimization in Wireless Sensor Networks

    Debmalya Bhattacharya


    Full Text Available Wireless Sensor Networks (WSNs consist of a network of wireless nodes that have the capability to sense a parameter of interest. Sensors of various types are deployed ubiquitously and pervasively in varied environments such as office buildings, wildlife reserves, battle fields, mobile networks, etc The sensed parameter is relayed to a base station through the network formed amongst these nodes. The devices used are typically characterized by low cost, low power and are rugged in operation. The node integrates programming, computation, communication, and sensing onto a single system and provides an easy user interface for operating and deploying it. The paper presents such a design which minimizes cost and power consumption, thus enhancing the life time of the node.

  3. Energy Consumption in Wireless Sensor Networks

    JIN Yan; WANG Ling; YANG Xiao-zong; WEN Dong-xin


    Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.

  4. Fuzzy-Based Sensor Fusion for Cognitive Radio-Based Vehicular Ad Hoc and Sensor Networks


    In wireless sensor networks, sensor fusion is employed to integrate the acquired data from diverse sensors to provide a unified interpretation. The best and most salient advantage of sensor fusion is to obtain high-level information in both statistical and definitive aspects, which cannot be attained by a single sensor. In this paper, we propose a novel sensor fusion technique based on fuzzy theory for our earlier proposed Cognitive Radio-based Vehicular Ad Hoc and Sensor Networks (CR-VASNET)...

  5. A Tree Based Routing Protocol for Mobile Sensor Networks (MSNs

    Mrityunjay Singh


    Full Text Available Wireless Sensor Networks (WSNs has foreseen big changes in data gathering, processing and disseminating for monitoring specific applications such as emergency services, disaster management, and military applications etc. Wireless sensor networks (WSN's are application dependent. Wireless sensor network can be classified into Static Sensor Network (SSN & Mobile Sensor Network (MSN. In Static Sensor Network, the sensor nodes localize only first time during deployment. In case of Mobile Sensor Network, nodes collect the data by moving from one place to another place hence localization is needed. Mobile sensor networks are more energy efficient, better targeting and provide more data fidelity than Static Sensor Network (SSN. Mobile Sensor networks have gained great attention in recent years due to their ability to offer economical and effective solutions in a variety of fields. There are many routing protocols present for the static sensor network. In this paper we have present a Tree based Routing Protocols (TBRP for mobile sensor network. TBRP was compared with LEACH and TEEN Protocol. Simulation results show that TBRP outperforms LEACH and TEEN in terms of mobility, energy efficiency & network life time.

  6. Optimizing Retransmission Threshold in Wireless Sensor Networks.

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang


    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is O n Δ · max 1 ≤ i ≤ n { u i } , where u i is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based ( 1 + p m i n ) -approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O ( 1 ) -approximation algorithm with time complexity O ( 1 ) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  7. Classification of Attacks in Wireless Sensor Networks

    Messai, Mohamed-Lamine


    In wireless sensor networks (WSNs), security has a vital importance. Recently, there was a huge interest to propose security solutions in WSNs because of their applications in both civilian and military domains. Adversaries can launch different types of attacks, and cryptography is used to countering these attacks. This paper presents challenges of security and a classification of the different possible attacks in WSNs. The problems of security in each layer of the network's OSI model are dis...

  8. Security Analysis in Wireless Sensor Networks

    Murat Dener


    In recent years, wireless sensor network (WSN) is employed in many application areas such as monitoring, tracking, and controlling. For many applications of WSN, security is an important requirement. However, security solutions in WSN differ from traditional networks due to resource limitation and computational constraints. This paper analyzes security solutions: TinySec, IEEE 802.15.4, SPINS, MiniSEC, LSec, LLSP, LISA, and LISP in WSN. The paper also presents characteristics, security requir...

  9. Software Update Recovery for Wireless Sensor Networks

    Brown, Stephen; Sreenan, Cormac J.


    Updating software over the network is important for Wireless Sensor Networks in support of scale, remote deployment, feature upgrades, and fixes. The risk of a fault in the updated code causing system failure is a serious problem. In this paper, we identify a single, critical, symptom loss-of-control, that complements exception-based schemes, and supports failsafe recovery from faults in software updates. We present a new software update recovery mechanism that uses loss-ofc...

  10. Group scheduling problems in directional sensor networks

    Singh, Alok; Rossi, André


    This article addresses the problem of scheduling a set of groups of directional sensors arising as a result of applying an exact or a heuristic approach for solving a problem involving directional sensors. The problem seeks a schedule for these groups that minimizes the total energy consumed in switching from one group to the next group in the schedule. In practice, when switching from a group to the next one, active sensors in the new group have to rotate in order to face their working direction. These rotations consume energy, and the problem is to schedule the groups so as to minimize the total amount of energy consumed by all the sensor rotations, knowing the initial angular positions of all the sensors. In this article, it is assumed that energy consumption is proportional to the angular movement for all the sensors. Another problem version is also investigated that seeks to minimize the total time during which the sensor network cannot cover all the targets because active sensors are rotating. Both problems are proved to be ?-hard, and a lower bound for the first problem is presented. A greedy heuristic and a genetic algorithm are also proposed for addressing the problem of minimizing total rotation in the general case. Finally, a local search is also proposed to improve the solutions obtained through a genetic algorithm.

  11. Target Tracking In Wireless Sensor Networks

    Sunita Gola


    Full Text Available The problem being tackled here relates to the problem of target tracking in wireless sensor networks. It is a specific problem in localization. Localization primarily refers to the detection of spatial coordinates of a node or an object. Target tracking deals with finding spatial coordinates of a moving object and being able to track its movements. In the tracking scheme illustrated, sensors are deployed in a triangular fashion in a hexagonal mesh such that the hexagon is divided into a number of equilateral triangles. The technique used for detection is the trilateration technique in which intersection of three circles is used to determine the object location. While the object is being tracked by three sensors, distance to it from a fourth sensor is also being calculated simultaneously. The difference is that closest three sensors detect at a frequency of one second while the fourth sensor detects the object location at twice the frequency. Using the distance information from the fourth sensor and a simple mathematical technique, location of object ispredicted for every half second as well. The key thing to note is that the forth sensor node is not used for detection but only for estimation of the object at half second intervals and hence does not utilize much power. Using this technique, tracking capability of the system is increased.

  12. Sensor Node Deployment Based on Electromagnetism-Like Algorithm in Mobile Wireless Sensor Networks

    Recep Özdağ; Ali Karcı


    The dynamic deployment of sensors in wireless networks significantly affects the performance of the network. However, the efficient application of dynamic deployments which determines the positions of the sensors within the network increases the coverage area of the network. As a result of this, dynamic deployment increases the efficiency of the wireless sensor networks (WSNs). In this paper, dynamic deployment was applied to WSNs which consist of mobile sensors by aiming at increasing the co...

  13. Target tracking for heterogeneous smart sensor networks

    Bevington, James E.; McDonnell, Timothy X.


    Distributed sensor networks will play a key role in the network centric warfighting environments of the future. We envision a ubiquitous sensing `fabric,' comprising sensors distributed over the terrain and carried on manned and unmanned, terrestrial and airborne vehicles. As a complex `system of systems,' this fabric will need to adapt and self-organize to perform a variety of higher-level tasks such as surveillance and target acquisition. The topology and availability of the sensors will be constantly changing, as will the needs of users as dictated by evolving missions and operational environments. In this work, focusing on the task of target tracking, we address approaches for locating and organizing sensing and processing resources and present algorithms for suitably fusing the observations obtained from a varied and changing set of sensors. Run-time discovery and access of new sensing resources are obtained through the use of Java Jini, treating sensing resources as `services' and viewing higher-level processes such as tracking as clients. Algorithms for fusing generic sensor observations for target tracking are based on the extended Kalman filter, while detection and track initiation are based on a new likelihood projection technique. We present results from an implementation of these concepts in a real- time sensor testbed and discuss lessons learned.

  14. Distributed estimation of sensors position in underwater wireless sensor network

    Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi


    In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.

  15. Energy Efficient Load Balanced Routing Protocol for Wireless Sensor Networks

    Alghanmi Ali Omar; ChongGun Kim


    Due to the enormous applications of wireless sensor s, the research on wireless sensor networks remains active throughout the past two decades. Bec ause of miniaturization of sensor nodes and their limited batteries, the energy efficiency and energy balancing are the demand in-need to extend the life time of sensor networks. This study proposes an energy-aware directional routing protocol for stationary wireless sensor network. Th e routing ...

  16. A survey on the wireless sensor network technology

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report


    Attila Trohák; Máté Kolozsi-Tóth; Péter Rádi


    In the paper we will introduce an intelligent conveyor surveillance system. We started a research project to design and develop a conveyor surveillance system based on wireless sensor network and GPRS communication. Our system is able to measure temperature on fixed and moving, rotating surfaces and able to detect smoke. We would like to introduce the developed devices and give an application example.

  18. Cooperative robots and sensor networks 2015

    Dios, JRamiro


    This book compiles some of the latest research in cooperation between robots and sensor networks. Structured in twelve chapters, this book addresses fundamental, theoretical, implementation and experimentation issues. The chapters are organized into four parts namely multi-robots systems, data fusion and localization, security and dependability, and mobility.

  19. Optimizing Key Updates in Sensor Networks

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming;


    Sensor networks offer the advantages of simple and low–resource communication. Nevertheless, security is of particular importance in many cases such as when sensitive data is communicated or tamper-resistance is required. Updating the security keys is one of the key points in security, which...

  20. Problem solving for wireless sensor networks

    Garcia-Hernando, Ana-Belen; Lopez-Navarro, Juan-Manuel; Prayati, Aggeliki; Redondo-Lopez, Luis


    Wireless Sensor Networks (WSN) is an area of huge research interest, attracting substantial attention from industry and academia for its enormous potential and its inherent challenges. This reader-friendly text delivers a comprehensive review of the developments related to the important technological issues in WSN.

  1. Synchronized Data Aggregation for Wireless Sensor Network

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee


    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...

  2. Clock Synchronization for Multihop Wireless Sensor Networks

    Solis Robles, Roberto


    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  3. Intrusion Detection and Security Mechanisms for Wireless Sensor Networks

    Khan, S.; Jaime Lloret; Jonathan Loo


    Khan, S.; Lloret, J.; Loo, J. (2014). Intrusion Detection and Security Mechanisms for Wireless Sensor Networks. International Journal of Distributed Sensor Networks. 2014:1-3. doi:10.1155/2014/747483.

  4. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Haroglu, Derya

    characteristics: reproducibility, accuracy, selectivity, aging, and resolution. Artificial neural network (ANN), a mathematical model formed by mimicking the human nervous system, was used to predict the sensor response. Qwiknet (version 2.23) software was used to develop ANNs and according to the results of Qwiknet the prediction performances for training and testing data sets were 75%, and 83.33% respectively. In this dissertation, Chapter 1 describes the worldwide plastic optical fiber (POF) and fiber optic sensor markets, and the existing textile structures used in fiber optic sensing design particularly for the applications of biomedical and structural health monitoring (SHM). Chapter 2 provides a literature review in detail on polymer optical fibers, fiber optic sensors, and occupancy sensing in the passenger seats of automobiles. Chapter 3 includes the research objectives. Chapter 4 presents the response of POF to tensile loading, bending, and cyclic tensile loading with discussion parts. Chapter 5 includes an e-mail based survey to prioritize customer needs in a Quality Function Deployment (QFD) format utilizing Analytic Hierarchy Process (AHP) and survey results. Chapter 6 describes the POF sensor design and the behavior of it under pressure. Chapter 7 provides a data analysis based on the experimental results of Chapter 6. Chapter 8 presents the summary of this study and recommendations for future work.

  5. Energy Efficiency in Underwater Sensor Networks: a Research Review

    V. Kanakaris; Savage, N.; K. Ovaliadis


    In an energy-constrained underwater system environment it is very important to find ways to improve the life expectancy of the sensors. Compared to the sensors of a terrestrial Ad Hoc Wireless Sensor Network (WSN), underwater sensors cannotuse solar energy to recharge the batteries, and it is difficult to replace the batteries in the sensors. This paper reviews theresearch progress made to date in the area of energy consumption in underwater sensor networks (UWSN) and suggestsfurther research...

  6. Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia

    This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' ( time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...

  7. Biomedical Image Edge Detection using an Ant Colony Optimization Based on Artificial Neural Networks

    Javad Rahebi


    Full Text Available Ant colony optimization (ACO is the algorithm that has inspired from natural behavior of ants life, which the ants leaved pheromone to search food on the ground. In this paper, ACO is introduced for resolving the edge detection in the biomedical image. Edge detection method based on ACO is able to create a matrix pheromone that shows information of available edge in each location of edge pixel which is created based on the movements of a number of ants on the biomedical image. Moreover, the movements of these ants are created by local fluctuation of biomedical image intensity values. The detected edge biomedical images have low quality rather than detected edge biomedical image resulted of a classic mask and won’t result application of these masks to edge detection biomedical image obtained of ACO. In proposed method, we use artificial neuralnetwork with supervised learning along with momentum to improve edge detection based on ACO. The experimental results shows that make use neural network are very effective in edge detection based on ACO.

  8. Failure Filtrations for Fenced Sensor Networks

    Munch, Elizabeth; Harer, John


    In this paper we consider the question of sensor network coverage for a 2-dimensional domain. We seek to compute the probability that a set of sensors fails to cover given only non-metric, local (who is talking to whom) information and a probability distribution of failure of each node. This builds on the work of de Silva and Ghrist who analyzed this problem in the deterministic situation. We first show that a it is part of a slightly larger class of problems which is #P-complete, and thus fast algorithms likely do not exist unless P$=$NP. We then give a deterministic algorithm which is feasible in the case of a small set of sensors, and give a dynamic algorithm for an arbitrary set of sensors failing over time which utilizes a new criterion for coverage based on the one proposed by de Silva and Ghrist. These algorithms build on the theory of topological persistence.

  9. Intrusion Detection Systems in Wireless Sensor Networks

    Vijay Kumar Mallarapu


    Full Text Available Wireless Sensor Networks (WSNs are a new technology foreseen to be used increasingly in the near future due to their data acquisition and data processing abilities. Security for WSNs is an area that needs to be considered in order to protect the functionality of these networks, the data they convey and the location of their members. The security models & protocols used in wired and other networks are not suited to WSNs because of their severe resource constrictions. In this paper, we describe various threats to WSN and then examine existing approaches to identify these threats. Finally, we propose an intrusion detection mechanism based on these existing approaches to identifying threats.

  10. Wireless multimedia sensor networks on reconfigurable hardware information reduction techniques

    Ang, Li-minn; Chew, Li Wern; Yeong, Lee Seng; Chia, Wai Chong


    Traditional wireless sensor networks (WSNs) capture scalar data such as temperature, vibration, pressure, or humidity. Motivated by the success of WSNs and also with the emergence of new technology in the form of low-cost image sensors, researchers have proposed combining image and audio sensors with WSNs to form wireless multimedia sensor networks (WMSNs).