WorldWideScience

Sample records for biomarker revealing high

  1. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.

    Science.gov (United States)

    Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun

    2017-09-01

    Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.

  2. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection.

    Science.gov (United States)

    Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong

    2012-01-01

    Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to

  3. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    Science.gov (United States)

    Kohnen, Math E. l.; Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. c.; Jan, W. De Leeuw

    1991-05-01

    Three types of sulphur-rich high-molecular-weight material in the alkylsulphide, the polar, and the asphaltene fractions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised using Raney Ni and were treated with MeLi/MeI, a chemical degradation method which cleaves selectively and quantitatively di- or polysulphide linkages. The products formed were characterised by gas chromatography-mass spectrometry. Raney Ni desulphurisation revealed that these S-rich macromolecules are in substantial part composed of sulphur-linked biomarkers with linear, branched, isoprenoid, steroid, hopanoid, and carotenoid carbon skeletons. MeLi/Mel treatment provided evidence that a major part of the total amount of macromolecularly bound biomarkers are linked via di- or polysulphide moieties to the macromolecular network. Since the di- or polysulphide linkages are attached at specific positions of the bound biomarkers it is proposed that they are formed by intermolecular incorporation reactions of HS x- into low-molecular-weight functionalised biological lipids during early diagenesis. The different properties (solubility and molecular weight) of the sulphur-rich macromolecules in the alkylsulphide, the resin, and the asphaltene fractions can be explained simply by differences in degree of sulphur cross-linking.

  4. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus).

    Science.gov (United States)

    Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P 1.0, P puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.

  5. Biomarkers specific to densely-ionising (high LET) radiations

    International Nuclear Information System (INIS)

    Brenner, D.J.; Okladnikova, N.; Hande, P.; Burak, L.; Geard, C.R.; Azizova, T.

    2001-01-01

    There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker could significantly increase the power of epidemiological studies of individuals exposed to densely-ionising radiations such as alpha particles (e.g. radon, plutonium workers, individuals exposed to depleted uranium) or neutrons (e.g. radiation workers, airline personnel). We discuss here a potentially powerful high LET biomarker (the H value) which is the ratio of induced inter-chromosomal aberrations to intra-arm aberrations. Both theoretical and experimental studies have suggested that this ratio should differ by a factor of about three between high LET radiation and any other likely clastogen, and will yield more discrimination than the previously suggested F value (ratio of inter-chromosomal aberrations to intra-chromosomal inter-arm aberrations). Evidence of the long-term stability of such chromosomal biomarkers has also been generated. Because these stable intra-arm and inter-chromosomal aberrations are (1) frequent and (2) measurable at long times after exposure, this H value appears to be a practical biomarker of high LET exposure, and several in vitro studies have confirmed the approach for unstable aberrations. The approach is currently being tested in a population of Russian radiation workers exposed several decades ago to high- or low LET radiation. (author)

  6. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejiang; Tang, Keqi

    2017-06-14

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers would ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode

  7. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer*

    Science.gov (United States)

    Chen, Chien-Lun; Chung, Ting; Wu, Chih-Ching; Ng, Kwai-Fong; Yu, Jau-Song; Tsai, Cheng-Han; Chang, Yu-Sun; Liang, Ying; Tsui, Ke-Hung; Chen, Yi-Ting

    2015-01-01

    More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins—SLC3A2, STMN1, and TAGLN2—in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant

  8. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    Science.gov (United States)

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  9. NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis.

    Science.gov (United States)

    Cui, Jiajia; Liu, Yuetao; Hu, Yinghuan; Tong, Jiayu; Li, Aiping; Qu, Tingli; Qin, Xuemei; Du, Guanhua

    2017-01-05

    Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, 1 H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metabolomics reveals metabolic biomarkers of Crohn's disease

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, J.K.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P.

    2009-06-01

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.

  12. Latent class models for joint analysis of disease prevalence and high-dimensional semicontinuous biomarker data.

    Science.gov (United States)

    Zhang, Bo; Chen, Zhen; Albert, Paul S

    2012-01-01

    High-dimensional biomarker data are often collected in epidemiological studies when assessing the association between biomarkers and human disease is of interest. We develop a latent class modeling approach for joint analysis of high-dimensional semicontinuous biomarker data and a binary disease outcome. To model the relationship between complex biomarker expression patterns and disease risk, we use latent risk classes to link the 2 modeling components. We characterize complex biomarker-specific differences through biomarker-specific random effects, so that different biomarkers can have different baseline (low-risk) values as well as different between-class differences. The proposed approach also accommodates data features that are common in environmental toxicology and other biomarker exposure data, including a large number of biomarkers, numerous zero values, and complex mean-variance relationship in the biomarkers levels. A Monte Carlo EM (MCEM) algorithm is proposed for parameter estimation. Both the MCEM algorithm and model selection procedures are shown to work well in simulations and applications. In applying the proposed approach to an epidemiological study that examined the relationship between environmental polychlorinated biphenyl (PCB) exposure and the risk of endometriosis, we identified a highly significant overall effect of PCB concentrations on the risk of endometriosis.

  13. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    Science.gov (United States)

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (PM. R., Samiei, S., Soheili, Z.-S., Frimmel, S., Zhang, Z., Ablonczy, Z., Ahmadieh, H., Hafezi-Moghadam, A. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis. PMID:24903276

  14. Evaluation of high density lipoprotein as a circulating biomarker of Gaucher disease activity

    Science.gov (United States)

    Stein, Philip; Yang, Ruhua; Liu, Jun; Pastores, Gregory M.; Mistry, Pramod K.

    2011-01-01

    Circulating biomarkers are important surrogates for monitoring disease activity in type I Gaucher disease (GD1). We and others have reported low high-density lipoprotein (HDL) in GD1. We assessed HDL cholesterol as a biomarker of GD1, with respect to its correlation with indicators of disease severity and its response to imiglucerase enzyme replacement therapy (ERT). In 278 consecutively evaluated GD1 patients, we correlated HDL cholesterol, chitotriosidase, and angiotensin-converting enzyme (ACE) with indicators of disease severity. Additionally, we measured the response of these biomarkers to ERT. HDL cholesterol was negatively correlated with spleen volume, liver volume, and GD severity score index; the magnitude of this association of disease severity with HDL cholesterol was similar to that for ACE and for chitotriosidase. Within individual patients monitored over many years, there was a strikingly strong correlation of HDL with liver and spleen volumes; there was a similarly strong correlation of chitotriosidase and ACE with disease severity in individual patients monitored serially over many years (chitotriosidase r=0.96 to 0.98, ACE r =0.88 to 0.94, and HDL r=−0.84 to −0.94, p<0.001). ERT for 3 years resulted in a striking increase of HDL while serum levels of chitotriosidase and ACE decreased. Our results reveal markedly low HDL cholesterol in untreated GD1, a correlation with indicators of disease severity in GD1, and a rise towards normal after ERT. These findings suggest HDL cholesterol merits inclusion within the “biomarker basket” for monitoring of patients with GD1. PMID:21290183

  15. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  16. Biomarker discovery in high grade sarcomas by mass spectrometry imaging

    OpenAIRE

    Lou, S.

    2017-01-01

    This thesis demonstrates a detailed biomarker discovery Mass Spectrometry Imaging workflow for histologically heterogeneous high grade sarcomas. Panels of protein and metabolite signatures were discovered either distinguishing different histological subtypes or stratifying high risk patients with poor survival.

  17. Metabolomic Profiling of Plasma from Melioidosis Patients Using UHPLC-QTOF MS Reveals Novel Biomarkers for Diagnosis

    Directory of Open Access Journals (Sweden)

    Susanna K. P. Lau

    2016-02-01

    Full Text Available To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6, lysophosphatidylethanolamine (LysoPE (n = 3, sphingomyelins (SM (n = 2 and phosphatidylcholine (PC (n = 1, with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0 possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%, and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%. Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0 representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.

  18. Metabolomic Profiling of Plasma from Melioidosis Patients Using UHPLC-QTOF MS Reveals Novel Biomarkers for Diagnosis.

    Science.gov (United States)

    Lau, Susanna K P; Lee, Kim-Chung; Lo, George C S; Ding, Vanessa S Y; Chow, Wang-Ngai; Ke, Tony Y H; Curreem, Shirly O T; To, Kelvin K W; Ho, Deborah T Y; Sridhar, Siddharth; Wong, Sally C Y; Chan, Jasper F W; Hung, Ivan F N; Sze, Kong-Hung; Lam, Ching-Wan; Yuen, Kwok-Yung; Woo, Patrick C Y

    2016-02-27

    To identify potential biomarkers for improving diagnosis of melioidosis, we compared plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and controls without active infection, using ultra-high-performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients and controls. Using multivariate and univariate analysis, 12 significant metabolites from four lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins (SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared, both between melioidosis and bacteremia patients (AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling might serve as a promising approach for diagnosis of melioidosis using patient plasma, with SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various pathways for energy and lipid metabolism, further studies may reveal their possible role in the pathogenesis and host response in melioidosis.

  19. First-void urine: A potential biomarker source for triage of high-risk human papillomavirus infected women.

    Science.gov (United States)

    Van Keer, Severien; Pattyn, Jade; Tjalma, Wiebren A A; Van Ostade, Xaveer; Ieven, Margareta; Van Damme, Pierre; Vorsters, Alex

    2017-09-01

    Great interest has been directed towards the use of first-void urine as a liquid biopsy for high-risk human papillomavirus DNA testing. Despite the high correlations established between urinary and cervical infections, human papillomavirus testing is unable to distinguish between productive and transforming high-risk infections that have the tendency to progress to cervical cancer. Thus far, investigations have been primarily confined to the identification of biomarkers for triage of high-risk human papillomavirus-positive women in cervicovaginal specimens and tissue biopsies. This paper reviews urinary biomarkers for cervical cancer and triage of high-risk human papillomavirus infections and elaborates on the opportunities and challenges that have emerged regarding the use of first-void urine as a liquid biopsy for the analysis of both morphological- (conventional cytology and novel immunohistochemical techniques) and molecular-based (HPV16/18 genotyping, host/viral gene methylation, RNA, and proteins) biomarkers. A literature search was performed in PubMed and Web of Science for studies investigating the use of urine as a biomarker source for cervical cancer screening. Five studies were identified reporting on biomarkers that are still in preclinical exploratory or clinical assay development phases and on assessments of non-invasive (urine) samples. Although large-scale validation studies are still needed, we conclude that methylation of both host and viral genes in urine has been proven feasible for use as a molecular cervical cancer triage and screening biomarker in phase two studies. This is especially promising and underscores our hypothesis that human papillomavirus DNA and candidate human and viral biomarkers are washed away with the initial, first-void urine, together with exfoliated cells, debris and impurities that line the urethra opening. Similar to the limitations of self-collected cervicovaginal samples, first-void urine will likely not fulfil the

  20. Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Mussotter, Franz, E-mail: franz.mussotter@bfr.bund.de [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Tomm, Janina Melanie [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); El Ali, Zeina; Pallardy, Marc; Kerdine-Römer, Saadia [INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Chátenay-Malabry (France); Götz, Mario [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany); Bergen, Martin von [Helmholtz Centre for Environmental Research (UFZ), Department of Molecular Systems Biology, Leipzig (Germany); University of Leipzig, Institute of Biochemistry, Leipzig (Germany); Aalborg University, Department of Chemistry and Bioscience, Aalborg (Denmark); Haase, Andrea; Luch, Andreas [German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin (Germany)

    2016-12-15

    Allergic contact dermatitis is a widespread disease with high clinical relevance affecting approximately 20% of the general population. Typically, contact allergens are low molecular weight electrophilic compounds which can activate the Keap1/Nrf2 pathway. We performed a proteomics study to reveal possible biomarkers for dendritic cell (DC) activation by contact allergens and to further elucidate the role of Keap1/Nrf2 signaling in this process. We used bone marrow derived dendritic cells (BMDCs) of wild-type (nrf2{sup +/+}) and Nrf2 knockout (nrf2{sup −/−}) mice and studied their response against the model contact sensitizers 2,4-dinitrochlorobenzene (DNCB), cinnamaldehyde (CA) and nickel(II) sulfate by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS). Sodium dodecyl sulfate (SDS, 100 μM) served as irritant control. While treatment with nickel(II) sulfate and SDS had only little effects, CA and DNCB led to significant changes in protein expression. We found 18 and 30 protein spots up-regulated in wild-type cells treated with 50 and 100 μM CA, respectively. For 5 and 10 μM DNCB, 32 and 37 spots were up-regulated, respectively. Almost all of these proteins were not differentially expressed in nrf2{sup −/−} BMDCs, indicating an Nrf2-dependent regulation. Among them proteins were detected which are involved in oxidative stress and heat shock responses, as well as in signal transduction or basic cellular pathways. The applied approach allowed us to differentiate between Nrf2-dependent and Nrf2-independent cellular biomarkers differentially regulated upon allergen-induced DC activation. The data presented might contribute to the further development of suitable in vitro testing methods for chemical-mediated sensitization. - Highlights: • Contact allergens induce proteins involved in DC maturation Nrf2-dependently. • Induction of these proteins points to a functional

  1. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers.

    Science.gov (United States)

    Kaufmann, Stefan H E; Weiner, January; Maertzdorf, Jeroen

    2017-08-01

    The most recent estimates on tuberculosis (TB) morbidity and mortality reveal that the global disease burden is even higher than previously assumed. Better drugs, diagnostics and vaccines are major requirements to control the ongoing TB pandemic. The high complexity of the infectious process and the underlying pathology, however, challenge elucidation of protective immune mechanisms at the various stages towards active TB disease, which need to be understood for rational design of novel intervention measures. Areas covered: Next to the more classical approaches, host biomarkers increasingly receive attention as promising tools on our way to control the disease. In the area of diagnosis, host biomarkers are recognized as promising new means because the identification of small biosignatures with high discriminatory and even prognostic potential has stimulated the hope that rapid and easy-to-perform diagnosis and prognosis will become possible in the near future. For rational design of new vaccine candidates, correlates of protection are highly desirable. High-throughput systems-vaccinology will boost the identification of such biomarker profiles. Expert commentary: Considering their potential to accelerate development of better diagnostics and vaccines, host biomarkers should be firmly integrated into future TB research.

  2. Biomarkers in an invasive fish species, Oreochromis niloticus, to assess the effects of pollution in a highly degraded Brazilian River.

    Science.gov (United States)

    Linde-Arias, Ana Rosa; Inácio, Alan F; de Alburquerque, Carla; Freire, Marina M; Moreira, Josino C

    2008-07-25

    Paraiba do Sul watershed is one of the most important Brazilian water bodies (5.5 million people depend on the river). It is in a critical environmental situation, polluted by industrial discharges, non-treated urban wastes, and pesticides, which have had cumulatively negative effects. This study analyzes the effects of pollution, with a biomarker approach, by using the invasive fish species, Oreochromis niloticus, as a sentinel species. The approach comprehends a general biomarker of the health of individual fish, the condition factor, a biomarker of genotoxicity, the micronuclei test; and specific biomarkers of contaminant exposure such as metallothionein (MT) and acetylcholinesterase (AChE) activity. The results revealed different effects in fish from diverse locations with varying degrees of pollution. Low AChE activities were found in fish from the region with strong agriculture activity, showing the effects of pesticides. Fish from an industrialized and heavily environmentally degraded area presented high levels of MT and low AChE activities, indicating an intricate polluted condition. It is noteworthy that fish located just upstream of the main water-treatment plant of the metropolitan area Rio de Janeiro presented high levels of MT, showing to be affected by metals. This can be an alert to public health officials. O. niloticus has proven a suitable sentinel species to assess the effects of pollutions in an aquatic system with a complex and serious polluted situation. The present study also shows the usefulness of integrating a set of biomarkers to define the exposure and the effects of anthropogenic inputs among impacted and reference sites in this water body.

  3. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  4. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    Science.gov (United States)

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  5. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma.

    Science.gov (United States)

    Naboulsi, Wael; Megger, Dominik A; Bracht, Thilo; Kohl, Michael; Turewicz, Michael; Eisenacher, Martin; Voss, Don Marvin; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara

    2016-01-04

    Hepatocellular carcinoma (HCC) is one of the most aggressive tumors, and the treatment outcome of this disease is improved when the cancer is diagnosed at an early stage. This requires biomarkers allowing an accurate and early tumor diagnosis. To identify potential markers for such applications, we analyzed a patient cohort consisting of 50 patients (50 HCC and 50 adjacent nontumorous tissue samples as controls) using two independent proteomics approaches. We performed label-free discovery analysis on 19 HCC and corresponding tissue samples. The data were analyzed considering events known to take place in early events of HCC development, such as abnormal regulation of Wnt/b-catenin and activation of receptor tyrosine kinases (RTKs). 31 proteins were selected for verification experiments. For this analysis, the second set of the patient cohort (31 HCC and corresponding tissue samples) was analyzed using selected (multiple) reaction monitoring (SRM/MRM). We present the overexpression of ATP-dependent RNA helicase (DDX39), Fibulin-5 (FBLN5), myristoylated alanine-rich C-kinase substrate (MARCKS), and Serpin H1 (SERPINH1) in HCC for the first time. We demonstrate Versican core protein (VCAN) to be significantly associated with well differentiated and low-stage HCC. We revealed for the first time the evidence of VCAN as a potential biomarker for early-HCC diagnosis.

  6. Biomarker identification and effect estimation on schizophrenia –a high dimensional data analysis

    Directory of Open Access Journals (Sweden)

    Yuanzhang eLi

    2015-05-01

    Full Text Available Biomarkers have been examined in schizophrenia research for decades. Medical morbidity and mortality rates, as well as personal and societal costs, are associated with schizophrenia patients. The identification of biomarkers and alleles, which often have a small effect individually, may help to develop new diagnostic tests for early identification and treatment. Currently, there is not a commonly accepted statistical approach to identify predictive biomarkers from high dimensional data. We used space Decomposition-Gradient-Regression method (DGR to select biomarkers, which are associated with the risk of schizophrenia. Then, we used the gradient scores, generated from the selected biomarkers, as the prediction factor in regression to estimate their effects. We also used an alternative approach, classification and regression tree (CART, to compare the biomarker selected by DGR and found about 70% of the selected biomarkers were the same. However, the advantage of DGR is that it can evaluate individual effects for each biomarker from their combined effect. In DGR analysis of serum specimens of US military service members with a diagnosis of schizophrenia from 1992 to 2005 and their controls, Alpha-1-Antitrypsin (AAT, Interleukin-6 receptor (IL-6r and Connective Tissue Growth Factor (CTGF were selected to identify schizophrenia for males; and Alpha-1-Antitrypsin (AAT, Apolipoprotein B (Apo B and Sortilin were selected for females. If these findings from military subjects are replicated by other studies, they suggest the possibility of a novel biomarker panel as an adjunct to earlier diagnosis and initiation of treatment.

  7. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers

    International Nuclear Information System (INIS)

    Matheis, Katja A.; Com, Emmanuelle; Gautier, Jean-Charles; Guerreiro, Nelson; Brandenburg, Arnd; Gmuender, Hans; Sposny, Alexandra; Hewitt, Philip; Amberg, Alexander; Boernsen, Olaf; Riefke, Bjoern; Hoffmann, Dana; Mally, Angela; Kalkuhl, Arno; Suter, Laura; Dieterle, Frank; Staedtler, Frank

    2011-01-01

    The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinical chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.

  8. A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts.

    Science.gov (United States)

    Hoover, Malachia; Adamian, Yvess; Brown, Mark; Maawy, Ali; Chang, Alexander; Lee, Jacqueline; Gharibi, Armen; Katz, Matthew H; Fleming, Jason; Hoffman, Robert M; Bouvet, Michael; Doebler, Robert; Kelber, Jonathan A

    2017-01-24

    Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies.

  9. High?Sensitivity Troponin: A Clinical Blood Biomarker for Staging Cardiomyopathy in Fabry Disease

    OpenAIRE

    2016-01-01

    Background High?sensitivity troponin (hs?TNT), a biomarker of myocardial damage, might be useful for assessing fibrosis in Fabry cardiomyopathy. We performed a prospective analysis of hs?TNT as a biomarker for myocardial changes in Fabry patients and a retrospective longitudinal follow?up study to assess longitudinal hs?TNT changes relative to fibrosis and cardiomyopathy progression. Methods and Results For the prospective analysis, hs?TNT from 75 consecutive patients with genetically confirm...

  10. Have biomarkers made their mark? A brief review of dental biomarkers

    Directory of Open Access Journals (Sweden)

    Mohammed Kaleem Sultan

    2014-01-01

    Full Text Available Biomarkers are substances that are released into the human body by tumor cells or by other cells in response to tumor. A high level of a tumor marker is considered a sign of certain cancer, which makes biomarker the subject of many testing methods for the diagnosis of cancers. In recent times, these biomarkers have been successfully isolated to diagnose dental-related tumors, benign and malignant conditions. This article is a brief review of literature for various biomarkers used in the field of dentistry.

  11. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... sequences are united by DNA ligation upon simultaneous target binding forming a PCR amplicon. Multiplex PLA thereby converts multiple target analytes into real-time PCR amplicons that are individually quantificatied using microfluidic high capacity qPCR in nano liter volumes. The assay shows excellent...

  12. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  13. Protein biomarker enrichment by biomarker antibody complex elution for immunoassay biosensing

    NARCIS (Netherlands)

    Sabatté, G.S.; Feitsma, H.; Evers, T.H.; Prins, M.W.J.

    2011-01-01

    It is very challenging to perform sample enrichment for protein biomarkers because proteins can easily change conformation and denature. In this paper we demonstrate protein enrichment suited for high-sensitivity integrated immuno-biosensing. The method enhances the concentration of the biomarkers

  14. Diagnosing phenotypes of single-sample individuals by edge biomarkers.

    Science.gov (United States)

    Zhang, Wanwei; Zeng, Tao; Liu, Xiaoping; Chen, Luonan

    2015-06-01

    Network or edge biomarkers are a reliable form to characterize phenotypes or diseases. However, obtaining edges or correlations between molecules for an individual requires measurement of multiple samples of that individual, which are generally unavailable in clinical practice. Thus, it is strongly demanded to diagnose a disease by edge or network biomarkers in one-sample-for-one-individual context. Here, we developed a new computational framework, EdgeBiomarker, to integrate edge and node biomarkers to diagnose phenotype of each single test sample. By applying the method to datasets of lung and breast cancer, it reveals new marker genes/gene-pairs and related sub-networks for distinguishing earlier and advanced cancer stages. Our method shows advantages over traditional methods: (i) edge biomarkers extracted from non-differentially expressed genes achieve better cross-validation accuracy of diagnosis than molecule or node biomarkers from differentially expressed genes, suggesting that certain pathogenic information is only present at the level of network and under-estimated by traditional methods; (ii) edge biomarkers categorize patients into low/high survival rate in a more reliable manner; (iii) edge biomarkers are significantly enriched in relevant biological functions or pathways, implying that the association changes in a network, rather than expression changes in individual molecules, tend to be causally related to cancer development. The new framework of edge biomarkers paves the way for diagnosing diseases and analyzing their molecular mechanisms by edges or networks in one-sample-for-one-individual basis. This also provides a powerful tool for precision medicine or big-data medicine. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  15. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging

    Science.gov (United States)

    Xu, Jing; Chen, Yanhua; Zhang, Ruiping; He, Jiuming; Song, Yongmei; Wang, Jingbo; Wang, Huiqing; Wang, Luhua; Zhan, Qimin; Abliz, Zeper

    2016-10-01

    We performed a metabolomics study using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis (MVDA) to discriminate global urine profiles in urine samples from esophageal squamous cell carcinoma (ESCC) patients and healthy controls (NC). Our work evaluated the feasibility of employing urine metabolomics for the diagnosis and staging of ESCC. The satisfactory classification between the healthy controls and ESCC patients was obtained using the MVDA model, and obvious classification of early-stage and advanced-stage patients was also observed. The results suggest that the combination of LC-MS analysis and MVDA may have potential applications for ESCC diagnosis and staging. We then conducted LC-MS/MS experiments to identify the potential biomarkers with large contributions to the discrimination. A total of 83 potential diagnostic biomarkers for ESCC were screened out, and 19 potential biomarkers were identified; the variations between the differences in staging using these potential biomarkers were further analyzed. These biomarkers may not be unique to ESCCs, but instead result from any malignant disease. To further elucidate the pathophysiology of ESCC, we studied related metabolic pathways and found that ESCC is associated with perturbations of fatty acid β-oxidation and the metabolism of amino acids, purines, and pyrimidines.

  16. Biomarkers in Transit Reveal the Nature of Fluvial Integration

    Science.gov (United States)

    Ponton, C.; West, A.; Feakins, S. J.; Galy, V.

    2013-12-01

    suggest that OC from high elevations may be proportionally overrepresented relative to areal extent, with possibly important implications for biomarker isotope composition; 3) timescales of different biomarkers vary considerably; 4) the composition of OC varies downstream and with depth stratification within large rivers. We filtered >1000L of river water in this remote location during the wet season, and are presently replicating that study during the dry season, providing a seasonal comparison of OC transport in this major river system.

  17. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  18. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema.

    Science.gov (United States)

    Ptolemy, Adam S; Rifai, Nader

    2010-01-01

    A continual trend of annual growth can be seen within research devoted to the discovery and validation of disease biomarkers within both the natural and clinical sciences. This expansion of intellectual endeavours was quantified through database searches of (a) research grant awards provided by the various branches of the National Institutes of Health (NIH) and (b) academic publications. A search of awards presented between 1986 and 2009 revealed a total of 28,856 grants awarded by the NIH containing the term "biomarker". The total funds for these awards in 2008 and 2009 alone were over $2.5 billion. During the same respective time frames, searches of "biomarker" and either "discovery", "genomics", "proteomics" or "metabolomics" yielded a total of 4,928 NIH grants whose combined funding exceeded $1.2 billion. The derived trend in NIH awards paralleled the annual expansion in "biomarker" literature. A PubMed search for the term, between 1990 and 2009, revealed a total of 441,510 published articles, with 38,457 published in 2008. These enormous investments and academic outputs however have not translated into the expected integration of new biomarkers for patient care. For example no proteomics derived biomarkers are currently being utilized in routine clinical management. This translational chasm necessitates a review of the previously proposed biomarker definitions and evaluation schema. A subsequent discussion of both the analytical and pre-analytical considerations for such research is also presented within. This required knowledge should aid scientists in their pursuit and validation of new biological markers of disease.

  19. Discovery of putative salivary biomarkers for Sjögren's syndrome using high resolution mass spectrometry and bioinformatics.

    Science.gov (United States)

    Zoukhri, Driss; Rawe, Ian; Singh, Mabi; Brown, Ashley; Kublin, Claire L; Dawson, Kevin; Haddon, William F; White, Earl L; Hanley, Kathleen M; Tusé, Daniel; Malyj, Wasyl; Papas, Athena

    2012-03-01

    The purpose of the current study was to determine if saliva contains biomarkers that can be used as diagnostic tools for Sjögren's syndrome (SjS). Twenty seven SjS patients and 27 age-matched healthy controls were recruited for these studies. Unstimulated glandular saliva was collected from the Wharton's duct using a suction device. Two µl of salvia were processed for mass spectrometry analyses on a prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time of flight (MALDI O-TOF) mass spectrometer. Raw data were analyzed using bioinformatic tools to identify biomarkers. MALDI O-TOF MS analyses of saliva samples were highly reproducible and the mass spectra generated were very rich in peptides and peptide fragments in the 750-7,500 Da range. Data analysis using bioinformatic tools resulted in several classification models being built and several biomarkers identified. One model based on 7 putative biomarkers yielded a sensitivity of 97.5%, specificity of 97.8% and an accuracy of 97.6%. One biomarker was present only in SjS samples and was identified as a proteolytic peptide originating from human basic salivary proline-rich protein 3 precursor. We conclude that salivary biomarkers detected by high-resolution mass spectrometry coupled with powerful bioinformatic tools offer the potential to serve as diagnostic/prognostic tools for SjS.

  20. Proteomic analysis of coronary sinus serum reveals leucine-rich α2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2011-03-01

    Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.

  1. Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet.

    Science.gov (United States)

    Al-Muzafar, Hessah Mohammed; Amin, Kamal Adel

    2017-10-06

    Hypercholesterolemia associated with cardiovascular diseases is a global health issue that could be alleviated by functional foods. This study aimed to explore the effects of a high-cholesterol diet on lipid profile, cardiac, inflammatory, and endothelial dysfunction biomarkers, and the possible improvement by functional foods mixture. Male albino rats weighing 100-150 g were randomly divided into four equal groups: 1st control, giving a normal diet; the 2nd received high-cholesterol diet for 8 weeks, the 3rd received the high-cholesterol diet + functional foods mixture, and the 4th administered high-cholesterol diet +atorvastatin (20 mg) orally. The results showed a significant increase in lipid profile and cardiac biomarkers levels (lactate dehydrogenase, creatine kinase and homocystein), also inflammatory markers, as, tumor necrotic factor alpha and chronic reactive proteins were elevated, moreover, vascular adhesion molecule-1 and nitric oxide synthase were disturbed in high-cholesterol diet compared with normal group. While administration of atorvastatin and functional foods mixture ameliorated these alterations. Administration of functional foods mixture and atorvastatin were effective in treating hypercholesterolemia, reduce the risk of inflammation and cardiovascular biomarkers with a high safety margin. These efficiencies may be due to its active ingredient that improve the imbalance in the measured biomarkers.

  2. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  3. Determination of gouty arthritis' biomarkers in human urine using reversed-phase high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Lei-Wen Xiang

    2014-04-01

    Full Text Available Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in urine based on reversed-phase high-performance liquid chromatography (RP-HPLC with ultraviolet (UV detector was proposed. After pretreatment by dilution, centrifugation and filtration, the biomarkers in urine samples were separated by ODS-BP column by elution with methanol/50 mM NaH2PO4 buffer solution at pH 5.26 (5:95. Good linearity between peak areas and concentrations of standards was obtained for the biomarkers with correlation coefficients in the range of 0.9957–0.9993. The proposed analytical method has satisfactory repeatability (the recovery of data in a range of creatinine, uric acid, hypoxanthine and xanthine was 93.49–97.90%, 95.38–96.45%, 112.46–115.78% and 90.82–97.13% with standard deviation of <5%, respectively and the limits of detection (LODs, S/N≥3 for creatinine, uric acid, hypoxanthine, and xanthine were 0.010, 0.025, 0.050 and 0.025 mg/L, respectively. The established method was proved to be simple, accurate, sensitive and reliable for the quantitation of gouty arthritis' biomarkers in human urine samples. The ratio of creatinine to uric acid was found to be a possible factor for assessment of gouty arthritis. Keywords: Gouty arthritis, Creatinine, Uric acid, Hypoxanthine, Xanthine, High-performance liquid chromatography

  4. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  5. Biomarker Identification Using Text Mining

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-01-01

    Full Text Available Identifying molecular biomarkers has become one of the important tasks for scientists to assess the different phenotypic states of cells or organisms correlated to the genotypes of diseases from large-scale biological data. In this paper, we proposed a text-mining-based method to discover biomarkers from PubMed. First, we construct a database based on a dictionary, and then we used a finite state machine to identify the biomarkers. Our method of text mining provides a highly reliable approach to discover the biomarkers in the PubMed database.

  6. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    Science.gov (United States)

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value  1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia

    Science.gov (United States)

    Moorman, Anthony V.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A (MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes - ABL1, ABL2, PDGFRB, CSF1R, CRLF2, JAK2 and EPOR. In vitro and in vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  8. Blood biomarkers of Hikikomori, a severe social withdrawal syndrome.

    Science.gov (United States)

    Hayakawa, Kohei; Kato, Takahiro A; Watabe, Motoki; Teo, Alan R; Horikawa, Hideki; Kuwano, Nobuki; Shimokawa, Norihiro; Sato-Kasai, Mina; Kubo, Hiroaki; Ohgidani, Masahiro; Sagata, Noriaki; Toda, Hiroyuki; Tateno, Masaru; Shinfuku, Naotaka; Kishimoto, Junji; Kanba, Shigenobu

    2018-02-13

    Hikikomori, a severe form of social withdrawal syndrome, is a growing social issue in Japan and internationally. The pathophysiology of hikikomori has not yet been elucidated and an effective treatment remains to be established. Recently, we revealed that avoidant personality disorder is the most common comorbidity of hikikomori. Thus, we have postulated that avoidant personality is the personality underpinning hikikomori. First, we herein show relationships between avoidant personality traits, blood biomarkers, hikikomori-related psychological features, and behavioural characteristics assessed by a trust game in non-hikikomori volunteers. Avoidant personality traits were negatively associated with high-density lipoprotein cholesterol (HDL-C) and uric acid (UA) in men, and positively associated with fibrin degeneration products (FDP) and high sensitivity C-reactive protein (hsCRP) in women. Next, we recruited actual individuals with hikikomori, and compared avoidant personality traits, blood biomarkers, and psychological features between individuals with hikikomori and age-matched healthy controls. Individuals with hikikomori had higher avoidant personality scores in both sexes, and showed lower serum UA levels in men and lower HDL-C levels in women compared with healthy controls. This is the first report showing possible blood biomarkers for hikikomori, and opens the door to clarify the underlying biological pathophysiology of hikikomori.

  9. Potential Peripheral Biomarkers for the Diagnosis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Seema Patel

    2011-01-01

    Full Text Available Advances in the discovery of a peripheral biomarker for the diagnosis of Alzheimer's would provide a way to better detect the onset of this debilitating disease in a manner that is both noninvasive and universally available. This paper examines the current approaches that are being used to discover potential biomarker candidates available in the periphery. The search for a peripheral biomarker that could be utilized diagnostically has resulted in an extensive amount of studies that employ several biological approaches, including the assessment of tissues, genomics, proteomics, epigenetics, and metabolomics. Although a definitive biomarker has yet to be confirmed, advances in the understanding of the mechanisms of the disease and major susceptibility factors have been uncovered and reveal promising possibilities for the future discovery of a useful biomarker.

  10. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  11. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  12. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients.

    Directory of Open Access Journals (Sweden)

    Arndt Rolfs

    Full Text Available Gaucher disease (GD is the most common lysosomal storage disorder (LSD. Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs.Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD.

  13. Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers

    Science.gov (United States)

    Skene, Debra J.; Middleton, Benita; Fraser, Cara K.; Pennings, Jeroen L. A.; Kuchel, Timothy R.; Rudiger, Skye R.; Bawden, C. Simon; Morton, A. Jennifer

    2017-01-01

    The pronounced cachexia (unexplained wasting) seen in Huntington’s disease (HD) patients suggests that metabolic dysregulation plays a role in HD pathogenesis, although evidence of metabolic abnormalities in HD patients is inconsistent. We performed metabolic profiling of plasma from presymptomatic HD transgenic and control sheep. Metabolites were quantified in sequential plasma samples taken over a 25 h period using a targeted LC/MS metabolomics approach. Significant changes with respect to genotype were observed in 89/130 identified metabolites, including sphingolipids, biogenic amines, amino acids and urea. Citrulline and arginine increased significantly in HD compared to control sheep. Ten other amino acids decreased in presymptomatic HD sheep, including branched chain amino acids (isoleucine, leucine and valine) that have been identified previously as potential biomarkers of HD. Significant increases in urea, arginine, citrulline, asymmetric and symmetric dimethylarginine, alongside decreases in sphingolipids, indicate that both the urea cycle and nitric oxide pathways are dysregulated at early stages in HD. Logistic prediction modelling identified a set of 8 biomarkers that can identify 80% of the presymptomatic HD sheep as transgenic, with 90% confidence. This level of sensitivity, using minimally invasive methods, offers novel opportunities for monitoring disease progression in HD patients. PMID:28223686

  14. Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis

    DEFF Research Database (Denmark)

    Hansen, Henning G; Overgaard, Julie; Lajer, Maria

    2010-01-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and improved biomarkers would help identify high-risk individuals. The aim of this study was to discover candidate biomarkers for DN in the plasma peptidome in an in-house cross-sectional cohort (n=122) of type 1 diabet...

  15. Inference of Causal Relationships between Biomarkers and Outcomes in High Dimensions

    Directory of Open Access Journals (Sweden)

    Felix Agakov

    2011-12-01

    Full Text Available We describe a unified computational framework for learning causal dependencies between genotypes, biomarkers, and phenotypic outcomes from large-scale data. In contrast to previous studies, our framework allows for noisy measurements, hidden confounders, missing data, and pleiotropic effects of genotypes on outcomes. The method exploits the use of genotypes as “instrumental variables” to infer causal associations between phenotypic biomarkers and outcomes, without requiring the assumption that genotypic effects are mediated only through the observed biomarkers. The framework builds on sparse linear methods developed in statistics and machine learning and modified here for inferring structures of richer networks with latent variables. Where the biomarkers are gene transcripts, the method can be used for fine mapping of quantitative trait loci (QTLs detected in genetic linkage studies. To demonstrate our method, we examined effects of gene transcript levels in the liver on plasma HDL cholesterol levels in a sample of 260 mice from a heterogeneous stock.

  16. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  17. Biomarker screening of oral cancer cell lines revealed sub-populations of CD133-, CD44-, CD24- and ALDH1- positive cancer stem cells

    Directory of Open Access Journals (Sweden)

    Kendall K

    2013-05-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC ranks sixth worldwide for cancer-related mortality. For the past several decades the mainstay of treatment for HNSCC has been surgery and external beam radiation, although more recent trials combining chemotherapy and radiation have demonstrated improvements. However, cancer recurrence and treatment failures continue to occur in a significant percentage of patients. Recent advances in tumor biology have led to the discovery that many cancers, including HNSCC, may contain subpopulations of cells with stem cell-like properties that may explain relapse and recurrence. The objective of this study was to screen existing oral cancer cell lines for biomarkers specific for cells with stem cell-like properties. RNA was isolated for RT-PCR screening using primers for specific mRNA of the biomarkers: CD44, CD24, CD133, NANOG, Nestin, ALDH1, and ABCG2 in CAL27, SCC25 and SCC15 cells. This analysis revealed that some oral cancer cell lines (CAL27 and SCC25 may contain small subpopulations of adhesion- and contact-independent cells (AiDC that also express tumor stem cell markers, including CD44, CD133, and CD24. In addition, CAL27 cells also expressed the intracellular tumor stem cell markers, ALDH1 and ABCG2. Isolation and culture of the adhesion- and contact-independent cells from CAL27 and SCC25 populations revealed differential proliferation rates and more robust inhibition by the MEK inhibitor PD98059, as well as the chemotherapeutic agents Cisplatin and Paclitaxel, within the AiDC CAL27 cells. At least one oral cancer cell line (CAL27 contained subpopulations of cells that express specific biomarkers associated with tumor stem cells which were morphologically and phenotypically distinct from other cells within this cell line.

  18. Relationship between inflammatory and coagulation biomarkers and cardiac autonomic function in HIV-infected individuals

    DEFF Research Database (Denmark)

    Young, Lari C; Roediger, Mollie P; Grandits, Greg

    2014-01-01

    Therapy study. We examined the association between IL-6, high-sensitivity C-reactive protein (hsCRP) and D-dimer with heart rate variability measures (SDNN and rMSSD), both cross-sectionally and longitudinally. RESULTS: Cross-sectional analysis revealed significant inverse associations between IL-6, hs......CRP and d-dimer with SDNN and rMSSD (p Cross-sectionally, higher levels of inflammatory and coagulation biomarkers were......AIM: To examine the relationship between inflammatory and coagulation biomarkers and cardiac autonomic function (CAF) as measured by heart rate variability in persons with HIV. MATERIALS & METHODS: This analysis included 4073 HIV-infected persons from the Strategies for Management of Antiretroviral...

  19. Biomarkers of sepsis

    Science.gov (United States)

    2013-01-01

    Sepsis is an unusual systemic reaction to what is sometimes an otherwise ordinary infection, and it probably represents a pattern of response by the immune system to injury. A hyper-inflammatory response is followed by an immunosuppressive phase during which multiple organ dysfunction is present and the patient is susceptible to nosocomial infection. Biomarkers to diagnose sepsis may allow early intervention which, although primarily supportive, can reduce the risk of death. Although lactate is currently the most commonly used biomarker to identify sepsis, other biomarkers may help to enhance lactate’s effectiveness; these include markers of the hyper-inflammatory phase of sepsis, such as pro-inflammatory cytokines and chemokines; proteins such as C-reactive protein and procalcitonin which are synthesized in response to infection and inflammation; and markers of neutrophil and monocyte activation. Recently, markers of the immunosuppressive phase of sepsis, such as anti-inflammatory cytokines, and alterations of the cell surface markers of monocytes and lymphocytes have been examined. Combinations of pro- and anti-inflammatory biomarkers in a multi-marker panel may help identify patients who are developing severe sepsis before organ dysfunction has advanced too far. Combined with innovative approaches to treatment that target the immunosuppressive phase, these biomarkers may help to reduce the mortality rate associated with severe sepsis which, despite advances in supportive measures, remains high. PMID:23480440

  20. Role of Protein Biomarkers in the Detection of High-Grade Disease in Cervical Cancer Screening Programs

    Directory of Open Access Journals (Sweden)

    Charlotte A. Brown

    2012-01-01

    Full Text Available Since the Pap test was introduced in the 1940s, there has been an approximately 70% reduction in the incidence of squamous cell cervical cancers in many developed countries by the application of organized and opportunistic screening programs. The efficacy of the Pap test, however, is hampered by high interobserver variability and high false-negative and false-positive rates. The use of biomarkers has demonstrated the ability to overcome these issues, leading to improved positive predictive value of cervical screening results. In addition, the introduction of HPV primary screening programs will necessitate the use of a follow-up test with high specificity to triage the high number of HPV-positive tests. This paper will focus on protein biomarkers currently available for use in cervical cancer screening, which appear to improve the detection of women at greatest risk for developing cervical cancer, including Ki-67, p16INK4a, BD ProEx C, and Cytoactiv HPV L1.

  1. ADC texture—An imaging biomarker for high-grade glioma?

    Energy Technology Data Exchange (ETDEWEB)

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael; Garpebring, Anders; Nyholm, Tufve, E-mail: tufve.nyholm@radfys.umu.se [Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå SE-901 87 (Sweden); Nilsson, David; Trygg, Johan [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, Umeå SE-901 87 (Sweden); Henriksson, Roger [Department of Radiation Sciences, Oncology, Umeå University, Umeå SE-901 87, Sweden and Regionalt Cancercentrum Stockholm, Karolinska Universitetssjukhuset, Solna, Stockholm SE-102 39 (Sweden); Birgander, Richard [Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå SE-901 87 (Sweden); Asklund, Thomas [Department of Radiation Sciences, Oncology, Umeå University, Umeå SE-901 87 (Sweden)

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treated with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems

  2. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia.

    Science.gov (United States)

    Sarkanj, Bojan; Warth, Benedikt; Uhlig, Silvio; Abia, Wilfred A; Sulyok, Michael; Klapec, Tomislav; Krska, Rudolf; Banjari, Ines

    2013-12-01

    In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.

    Science.gov (United States)

    Sajic, Tatjana; Liu, Yansheng; Aebersold, Ruedi

    2015-04-01

    In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)-one of the data-independent strategies that have gained wide application of late. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. More Accurate Oral Cancer Screening with Fewer Salivary Biomarkers

    Directory of Open Access Journals (Sweden)

    James Michael Menke

    2017-10-01

    Full Text Available Signal detection and Bayesian inferential tools were applied to salivary biomarkers to improve screening accuracy and efficiency in detecting oral squamous cell carcinoma (OSCC. Potential cancer biomarkers are identified by significant differences in assay concentrations, receiver operating characteristic areas under the curve (AUCs, sensitivity, and specificity. However, the end goal is to report to individual patients their risk of having disease given positive or negative test results. Likelihood ratios (LRs and Bayes factors (BFs estimate evidential support and compile biomarker information to optimize screening accuracy. In total, 26 of 77 biomarkers were mentioned as having been tested at least twice in 137 studies and published in 16 summary papers through 2014. Studies represented 10 212 OSCC and 25 645 healthy patients. The measure of biomarker and panel information value was number of biomarkers needed to approximate 100% positive predictive value (PPV. As few as 5 biomarkers could achieve nearly 100% PPV for a disease prevalence of 0.2% when biomarkers were ordered from highest to lowest LR. When sequentially interpreting biomarker tests, high specificity was more important than test sensitivity in achieving rapid convergence toward a high PPV. Biomarkers ranked from highest to lowest LR were more informative and easier to interpret than AUC or Youden index. The proposed method should be applied to more recently published biomarker data to test its screening value.

  5. Cardiovascular biomarkers and sex: the case for women.

    Science.gov (United States)

    Daniels, Lori B; Maisel, Alan S

    2015-10-01

    Measurement of biomarkers is a critical component of cardiovascular care. Women and men differ in their cardiac physiology and manifestations of cardiovascular disease. Although most cardiovascular biomarkers are used by clinicians without taking sex into account, sex-specific differences in biomarkers clearly exist. Baseline concentrations of many biomarkers (including cardiac troponin, natriuretic peptides, galectin-3, and soluble ST2) differ in men versus women, but these sex-specific differences do not generally translate into a need for differential sex-based cut-off points. Furthermore, most biomarkers are similarly diagnostic and prognostic, regardless of sex. Two potential exceptions are cardiac troponins measured by high-sensitivity assay, and proneurotensin. Troponin levels are lower in women than in men and, with the use of high-sensitivity assays, sex-specific cut-off points might improve the diagnosis of myocardial infarction. Proneurotensin is a novel biomarker that was found to be predictive of incident cardiovascular disease in women, but not men, and was also predictive of incident breast cancer. If confirmed, proneurotensin might be a unique biomarker of disease risk in women. With any biomarker, an understanding of sex-specific differences might improve its use and might also lead to an enhanced understanding of the physiological differences between the hearts of men and women.

  6. Tracking Biocultural Pathways to Health Disparities: The Value of Biomarkers

    Science.gov (United States)

    Worthman, Carol M.; Costello, E. Jane

    2009-01-01

    Background Cultural factors and biomarkers are emerging emphases in social epidemiology that readily ally with human biology and anthropology. Persistent health challenges and disparities have established biocultural roots, and environment plays an integral role in physical development and function that form the bases of population health. Biomarkers have proven to be valuable tools for investigating biocultural bases of health disparities. Aims We apply recent insights from biology to consider how culture gets under the skin and evaluate the construct of embodiment. We analyze contrasting biomarker models and applications, and propose an integrated model for biomarkers. Three examples from the Great Smoky Mountains Study (GSMS) illustrate these points. Subjects and methods The longitudinal developmental epidemiological GSMS comprises a population-based sample of 1420 children with repeated measures including mental and physical health, life events, household conditions, and biomarkers for pubertal development and allostatic load. Results Analyses using biomarkers resolved competing explanations for links between puberty and depression, identified gender differences in stress at puberty, and revealed interactive effects of birthweight and postnatal adversity on risk for depression at puberty in girls. Conclusion An integrated biomarker model can both enrich epidemiology and illuminate biocultural pathways in population health. PMID:19381986

  7. Scrutinizing the Biomarkers for the Neglected Chagas Disease: How Remarkable!

    Science.gov (United States)

    Pinho, Rosa T; Waghabi, Mariana C; Cardillo, Fabíola; Mengel, José; Antas, Paulo R Z

    2016-01-01

    Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance of contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials.

  8. WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities.

    Science.gov (United States)

    Ravizza, Teresa; Onat, Filiz Y; Brooks-Kayal, Amy R; Depaulis, Antoine; Galanopoulou, Aristea S; Mazarati, Andrey; Numis, Adam L; Sankar, Raman; Friedman, Alon

    2017-03-01

    Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate

  9. Organic matter diagenesis within the water column and surface sediments of the northern Sargasso Sea revealed by lipid biomarkers

    Science.gov (United States)

    Conte, M. H.; Pedrosa Pàmies, R.; Weber, J.

    2017-12-01

    The intensity of particle cycling processes within the mesopelagic and bathypelagic ocean controls the length scale of organic material (OM) remineralization and diagenetic transformations of OM composition through the water column and into the sediments. To elucidate the OM cycling in the oligotrophic North Atlantic gyre, we analyzed lipid biomarkers in the suspended particles (30-4400 m depth, 100 mab), the particle flux (500 m, 1500 m and 3200 m depth), and in the underlying surficial sediments (0-0.5 cm, 4500-4600 m depth) collected at the Oceanic Flux Program (OFP) time series site located 75km SE of Bermuda. Changes in lipid biomarker concentration and composition with depth highlight the rapid remineralization of OM within the upper mesopelagic layer and continuing diagenetic transformations of OM throughout the water column and within surficial sediments. Despite observed similarities in biomarker composition in suspended and sinking particles, results show there are also consistent differences in relative contributions of phytoplankton-, bacterial- and zooplankton-derived sources that are maintained throughout the water column. For example, sinking particles are more depleted in labile biomarkers (e.g. polyunsaturated fatty acids (PUFA)) and more enriched in bacteria-derived biomarkers (e.g. hopanoids and odd/branched fatty acids) and indicators of fecal-derived OM (e.g. saturated fatty acids, FA 18:1w9 and cholesterol) than in the suspended pool. Strong seasonality in deep (3200 m) fluxes of phytoplankton-derived biomarkers reflect the seasonal input of bloom-derived material to underlying sediments. The rapid diagenetic alteration of this bloom-derived input is evidenced by depletion of PUFAs and enrichment of microbial biomarkers (e.g. odd/branched fatty acids) in surficial sediments over a two month period.

  10. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  11. MiRNAs of peripheral blood as the biomarker of schizophrenia.

    Science.gov (United States)

    He, Kuanjun; Guo, Chuang; He, Lin; Shi, Yongyong

    2018-01-01

    The diagnosis of schizophrenia is currently based on the symptoms and bodily signs rather than on the pathological and physiological markers of the patient. In the search for new molecular targeted therapy medicines, and recurrence of early-warning indicators have become the major focus of contemporary research, because they improve diagnostic accuracy. Biomarkers reflect the physiological, physical and biochemical status of the body, and so have extensive applicability and practical significance. The ascertainment of schizophrenia biomarkers will help diagnose, stratify of disease, and treat of schizophrenia patients. The detection of biomarkers from blood has become a promising area of schizophrenia research. Recently, a series of studies revealed that, MiRNAs play an important role in the genesis of schizophrenia, and their abnormal expressions have the potential to be used as biomarkers of schizophrenia. This article presents and summarizes the value of peripheral blood miRNAs with abnormal expression as the biomarker of schizophrenia.

  12. Urinary trans-trans muconic acid (exposure biomarker to benzene) and hippuric acid (exposure biomarker to toluene) concentrations in Mexican women living in high-risk scenarios of air pollution.

    Science.gov (United States)

    Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Maldonado, Iván N

    2017-11-02

    This study aimed to determine t,t-muconic acid (t,t-MA; exposure biomarker for benzene) and hippuric acid (HA; exposure biomarker for toluene) concentrations in the urine of women living in Mexico. In a cross-sectional study, apparently healthy women (n = 104) were voluntarily recruited from localities with a high risk of air pollution; t,t-MA and HA in urine were quantified using a high-performance liquid chromatography (HPLC) technique. Mean urinary levels of t,t-MA ranged from 680 to 1,310 μg/g creatinine. Mean values of HA ranged from 0.38 to 0.87 g/g creatinine. In conclusion, compared to data recently reported in literature, we found high urinary levels of t,t-MA and HA in assessed women participating in this study. We therefore deem the implementation of a strategy aimed at the reduction of exposure as a necessary measure for the evaluated communities.

  13. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  14. Network-based identification of biomarkers coexpressed with multiple pathways.

    Science.gov (United States)

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson's correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson's correlation networks when evaluated with MSigDB database.

  15. Biomarkers of Canadian High Arctic Litoral Sediments for Assessment of Organic Matter Sources and Degradation

    Science.gov (United States)

    Pautler, B. G.; Austin, J.; Otto, A.; Stewart, K.; Lamoureux, S. F.; Simpson, M. J.

    2009-05-01

    Carbon stocks in the High Arctic are particularly sensitive to global climate change, and investigation of variations in organic matter (OM) composition is beneficial for the understanding of the alteration of organic carbon under anticipated future elevated temperatures. Molecular-level characterization of solvent extractable compounds and CuO oxidation products of litoral sedimentary OM at the Cape Bounty Arctic Watershed Observatory in the Canadian Arctic Archipelago was conducted to determine the OM sources and decomposition patterns. The solvent extracts contained a series of aliphatic lipids, steroids and one triterpenoid primarily of higher plant origin and new biomarkers, iso- and anteiso-alkanes originating from cerastium arcticum (Arctic mouse-ear chickweed, a native angiosperm) were discovered. Carbon preference index (CPI) values for the n-alkanes, n-alkanols and n-alkanoic acids suggests that the OM biomarkers result from fresh material input in early stage of degradation. The CuO oxidation products were comprised of benzyls, lignin phenols and short-chain diacids and hydroxyacids. High abundance of terrestrial OM biomarkers observed at sites close to the river inlet suggests fluvial inputs as an important pathway to deliver OM into the lake. The lignin phenol vegetation index (LPVI) also suggests that the OM origin is mostly from non-woody angiosperms. A relatively high degree of lignin alteration in the litoral sediments is evident from the abundant ratio of acids and aldehydes of the vanillyl and syringyl monomers. This suggests that the lignin contents have been diagenetically altered as the result of a long residence time in this ecosystem. The molecular-level characterization of litoral sedimentary OM in Canadian High Arctic region provides insight into current OM composition,potential responses to future disturbances and the biogeochemical cycling of carbon in the Arctic.

  16. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  17. Allergic asthma biomarkers using systems approaches

    Directory of Open Access Journals (Sweden)

    Gaurab eSircar

    2014-01-01

    Full Text Available Asthma is characterized by lung inflammation caused by complex interaction between the immune system and environmental factors such as allergens and inorganic pollutants. Recent research in this field is focused on discovering new biomarkers associated with asthma pathogenesis. This review illustrates updated research associating biomarkers of allergic asthma and their potential use in systems biology of the disease. We focus on biomolecules with altered expression, which may serve as inflammatory, diagnostic and therapeutic biomarkers of asthma discovered in human or experimental asthma model using genomic, proteomic and epigenomic approaches for gene and protein expression profiling. These include high-throughput technologies such as state of the art microarray and proteomics Mass Spectrometry (MS platforms. Emerging concepts of molecular interactions and pathways may provide new insights in searching potential clinical biomarkers. We summarized certain pathways with significant linkage to asthma pathophysiology by analyzing the compiled biomarkers. Systems approaches with this data can identify the regulating networks, which will eventually identify the key biomarkers to be used for diagnostics and drug discovery.

  18. Biomarkers of exposure and dose: State of the art

    International Nuclear Information System (INIS)

    Brooks, A.L.

    2001-01-01

    Biomarkers provide methods to measure changes in biological systems and to relate them to environmental insults and disease processes. Biomarkers can be classified as markers of exposure and dose, markers of sensitivity, and markers of disease. It is important that the differences and applications of the various types of biomarkers be clearly understood. The military is primarily interested in early biomarkers of exposure and dose that do not require high levels of sensitivity but can be used to rapidly triage war fighters under combat or terrorist conditions and determine which, if any, require medical attention. Biomarkers of long-term radiation risk represent the second area of interest for the military. Biomarkers of risk require high sensitivity and specificity for the disease and insult but do not require rapid data turn around. Biomarkers will help provide information for quick command decisions in the field, characterise long-term troop risks and identify early stages of radiation-induced diseases. This information provides major positive reassurances about individual exposures and risk that will minimise the physical and psychological impact of wartime radiation exposures. (author)

  19. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  20. Biomarkers: Delivering on the expectation of molecularly driven, quantitative health.

    Science.gov (United States)

    Wilson, Jennifer L; Altman, Russ B

    2018-02-01

    Biomarkers are the pillars of precision medicine and are delivering on expectations of molecular, quantitative health. These features have made clinical decisions more precise and personalized, but require a high bar for validation. Biomarkers have improved health outcomes in a few areas such as cancer, pharmacogenetics, and safety. Burgeoning big data research infrastructure, the internet of things, and increased patient participation will accelerate discovery in the many areas that have not yet realized the full potential of biomarkers for precision health. Here we review themes of biomarker discovery, current implementations of biomarkers for precision health, and future opportunities and challenges for biomarker discovery. Impact statement Precision medicine evolved because of the understanding that human disease is molecularly driven and is highly variable across patients. This understanding has made biomarkers, a diverse class of biological measurements, more relevant for disease diagnosis, monitoring, and selection of treatment strategy. Biomarkers' impact on precision medicine can be seen in cancer, pharmacogenomics, and safety. The successes in these cases suggest many more applications for biomarkers and a greater impact for precision medicine across the spectrum of human disease. The authors assess the status of biomarker-guided medical practice by analyzing themes for biomarker discovery, reviewing the impact of these markers in the clinic, and highlight future and ongoing challenges for biomarker discovery. This work is timely and relevant, as the molecular, quantitative approach of precision medicine is spreading to many disease indications.

  1. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas

    Directory of Open Access Journals (Sweden)

    Lind Guro E

    2011-07-01

    Full Text Available Abstract Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94% and adenomas (35-91%, whereas normal mucosa samples were rarely (0-5% methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.

  2. Serum metabolomics reveals betaine and phosphatidylcholine as potential biomarkers for the toxic responses of processed Aconitum carmichaelii Debx.

    Science.gov (United States)

    Tan, Yong; Ko, Joshua; Liu, Xinru; Lu, Cheng; Li, Jian; Xiao, Cheng; Li, Li; Niu, Xuyan; Jiang, Miao; He, Xiaojuan; Zhao, Hongyan; Zhang, Zhongxiao; Bian, Zhaoxiang; Yang, Zhijun; Zhang, Ge; Zhang, Weidong; Lu, Aiping

    2014-07-29

    We recently reported that processed Aconitum carmichaelii Debx (Bai-Fu-Pian in Chinese, BFP) elicits differential toxic responses in rats under various health conditions. The present study aimed to determine the graded toxicity of BFP so as to derive a safe therapeutic rationale in clinical practice. Sensitive and reliable biomarkers of toxicity were also identified, with the corresponding metabolic pathways being unveiled. Thirty male Sprague-Dawley rats were divided into five groups (n = 6) and received oral administration of BFP extract (0.32, 0.64, 1.28 or 2.56 g kg(-1) per day) or an equal volume of drinking water (control) for 15 days. The metabolomic profiles of rat serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry (LC-Q-TOF-MS). Linear regression analysis and Ingenuity Pathway Analysis (IPA) were used to elucidate the differentiated altered metabolites and associated network relationships. Results from biochemical and histopathological examinations revealed that BFP could induce prominent toxicity in the heart, liver and kidneys at a dose of 2.56 g kg(-1) per day. Betaine up-regulation and phosphatidylcholine down-regulation were detected in the serum samples of drug-treated groups in a dose-dependent manner. In summary, betaine and phosphatidylcholine could be regarded as sensitive biomarkers for the toxic responses of BFP. Perturbations of RhoA signaling, choline metabolism and free radical scavenging were found to be partly responsible for the toxic effects of the herbal drug. Based on the metabolomics findings, we could establish a safe therapeutic range in the clinical use of BFP, with promising predictions of possible drug toxicity.

  3. Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2017-12-15

    Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  5. Anchoring novel molecular biomarker responses to traditional responses in fish exposed to environmental contamination

    International Nuclear Information System (INIS)

    Nogueira, Patricia; Pacheco, Mario; Lourdes Pereira, M.; Mendo, Sonia; Rotchell, Jeanette M.

    2010-01-01

    The responses of Dicentrarchus labrax and Liza aurata to aquatic pollution were assessed in a contaminated coastal lagoon, using both traditional and novel biomarkers combined. DNA damage, assessed by comet assay, was higher in both fish species from the contaminated sites, whereas levels of cytochrome P450 1A1 gene expression were not significantly altered. The liver histopathological analysis also revealed significant lesions in fish from contaminated sites. Alterations in ras and xpf genes were analysed and additional pollutant-responsive genes were identified. While no alterations were found in ras gene, a downregulation of xpf gene was observed in D. labrax from a contaminated site. Suppression subtractive hybridization applied to D. labrax collected at a contaminated site, revealed altered expression in genes involved in energy metabolism, immune system activity and antioxidant response. The approach and results reported herein demonstrate the utility of anchoring traditional biomarker responses alongside novel biomarker responses. - Novel molecular biomarkers of aquatic environmental contamination in fish.

  6. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Liwei Zhuang

    2014-01-01

    Full Text Available In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC.

  7. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    Directory of Open Access Journals (Sweden)

    I. Tolosa

    2013-03-01

    Full Text Available Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids and compound-specific isotope analysis of suspended particulate organic matter (SPM and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the organic matter (OM of this area. Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and 80%, with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60–75%, whereas those from the slope contained the highest proportion of fossil (40% and C3 terrestrial plant material (10%. Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30–40% of the total carbon in the inner shelf sediments, 17% in the outer shelf and Amundsen Gulf and up to 25% in the slope sediments. These estimates are low

  8. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials

    Directory of Open Access Journals (Sweden)

    Nils Ternès

    2017-05-01

    Full Text Available Abstract Background Thanks to the advances in genomics and targeted treatments, more and more prediction models based on biomarkers are being developed to predict potential benefit from treatments in a randomized clinical trial. Despite the methodological framework for the development and validation of prediction models in a high-dimensional setting is getting more and more established, no clear guidance exists yet on how to estimate expected survival probabilities in a penalized model with biomarker-by-treatment interactions. Methods Based on a parsimonious biomarker selection in a penalized high-dimensional Cox model (lasso or adaptive lasso, we propose a unified framework to: estimate internally the predictive accuracy metrics of the developed model (using double cross-validation; estimate the individual survival probabilities at a given timepoint; construct confidence intervals thereof (analytical or bootstrap; and visualize them graphically (pointwise or smoothed with spline. We compared these strategies through a simulation study covering scenarios with or without biomarker effects. We applied the strategies to a large randomized phase III clinical trial that evaluated the effect of adding trastuzumab to chemotherapy in 1574 early breast cancer patients, for which the expression of 462 genes was measured. Results In our simulations, penalized regression models using the adaptive lasso estimated the survival probability of new patients with low bias and standard error; bootstrapped confidence intervals had empirical coverage probability close to the nominal level across very different scenarios. The double cross-validation performed on the training data set closely mimicked the predictive accuracy of the selected models in external validation data. We also propose a useful visual representation of the expected survival probabilities using splines. In the breast cancer trial, the adaptive lasso penalty selected a prediction model with 4

  9. Active hydrocarbon (methane) seepage at the Alboran Sea mud volcanoes indicated by specific lipid biomarkers.

    Science.gov (United States)

    Lopez-Rodriguez, C.; Stadnitskaia, A.; De Lange, G. J.; Martínez-Ruiz, F.; Comas, M.; Sinninghe Damsté, J. S.

    2012-04-01

    Mud volcanoes (MVs) and pockmark fields are known to occur in the Alboran Basin (Westernmost Mediterranean). These MVs occur above a major sedimentary depocenter that includes up to 7 km thick early Miocene to Holocene sequences. MVs located on the top of diapiric structures that originated from undercompacted Miocene clays and olistostromes. Here we provide results from geochemical data-analyses of four gravity cores acquired in the Northern Mud Volcano Field (north of the 36°N): i.e. Perejil, Kalinin and Schneiderś Heart mud expulsion structures. Extruded materials include different types of mud breccias. Specific lipid biomarkers (n-alkanes, hopanes, irregular isoprenoid hydrocarbons and Dialkyl Glycerol Diethers (DGDs) were analysed by gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS). Determination of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) by high performance liquid chromatography-spectrometry (HPLC-MS), and analysis of biomarker δ13C values were performed in selected samples. Lipid biomarker analysis from the three MVs revealed similar n-alkane distributions in all mud breccia intervals, showing significant hydrocarbon-derived signals and the presence of thermally immature organic-matter admixture. This suggests that similar strata fed these MVs. The hemipelagic drapes reveal comparable n-alkane distributions, suggesting that significant upward diffusion of fluids occurs. Distributions of GDGTs are generally accepted as usefull biomarkers to locate the anaerobic oxidation of methane (AOM) in marine sediments. However, our GDGT profiles only reflect the marine thaumarchaeotal signature. There seems to be no archaea producing specific GDGTs involved in AOM in the recovered interval. Evidence of recent activity (i.e., methane gas-bubbling and chemosynthetic fauna at the Perejil MV) and the presence of specific lipid biomarker related with methanotropic archaea (Irregular Isoprenoids and DGDs), however, suggest the existence of

  10. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    Science.gov (United States)

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In search of biomarkers for autism: scientific, social and ethical challenges.

    Science.gov (United States)

    Walsh, Pat; Elsabbagh, Mayada; Bolton, Patrick; Singh, Ilina

    2011-09-20

    There is widespread hope that the discovery of valid biomarkers for autism will both reveal the causes of autism and enable earlier and more targeted methods for diagnosis and intervention. However, growing enthusiasm about recent advances in this area of autism research needs to be tempered by an awareness of the major scientific challenges and the important social and ethical concerns arising from the development of biomarkers and their clinical application. Collaborative approaches involving scientists and other stakeholders must combine the search for valid, clinically useful autism biomarkers with efforts to ensure that individuals with autism and their families are treated with respect and understanding.

  12. Zooming into Molecular Biomarker Distribution through Spatially Resolved Mass Spectrometry on Intact Sediment Sections

    Science.gov (United States)

    Wörmer, L.; Fuchser, J.; Alfken, S.; Elvert, M.; Schimmelmann, A.; Hinrichs, K. U.

    2016-02-01

    Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. After sedimentation, and due to their persistence in the sedimentary record, the information archived in them remains available on geological time-scales. Thereby sedimentary lipid biomarkers become important informants of past environments. Conventional biomarker analysis is labor-intensive and requires cm-sized samples, temporal resolution is consequently low. We here present an approach, based on laser desorption ionization (LDI) coupled to ultra high resolution mass spectrometry, that avoids wet-chemical sample preparation and enables analysis directly on sediment sections at sub-mm spatial resolution. Our initial study targeted archaeal glycerol dialkyl glycerol tetraethers (GDGTs). GDGTS are ubiquitous and persistent components in marine sediments, and used in several, widely recognized paleoenvironmental proxies. Applied to an Eastern Mediterranean Sapropel layer, GDGT-profiles with previously unachieved temporal resolution were obtained, and pointed to a strong influence of high frequency cycles on sea-surface temperature and planktonic archaeal ecology. Spatial information furthermore revealed a new view on the fine-scale patchiness of lipid distribution. Following these pioneering studies, major developments are under way. A dedicated facility has been set up at MARUM/University of Bremen, which combines lipid biomarker and elemental analysis at sub-mm resolution (down to 50 µm). We present methods for other comprehensive lipid biomarkers (e.g. alkenones or sterols) that are currently being targeted; and the application of spatially resolved biomarker analysis to recent laminated sediments (Santa Barbara Basin), yielding informative profiles with subannual resolution. We also discuss criteria for analyte and sample selection, as well as the main potentialities and constraints of this new approach.

  13. Pharmacogenomic Biomarkers

    Directory of Open Access Journals (Sweden)

    Sandra C. Kirkwood

    2002-01-01

    Full Text Available Pharmacogenomic biomarkers hold great promise for the future of medicine and have been touted as a means to personalize prescriptions. Genetic biomarkers for disease susceptibility including both Mendelian and complex disease promise to result in improved understanding of the pathophysiology of disease, identification of new potential therapeutic targets, and improved molecular classification of disease. However essential to fulfilling the promise of individualized therapeutic intervention is the identification of drug activity biomarkers that stratify individuals based on likely response to a particular therapeutic, both positive response, efficacy, and negative response, development of side effect or toxicity. Prior to the widespread clinical application of a genetic biomarker multiple scientific studies must be completed to identify the genetic variants and delineate their functional significance in the pathophysiology of a carefully defined phenotype. The applicability of the genetic biomarker in the human population must then be verified through both retrospective studies utilizing stored or clinical trial samples, and through clinical trials prospectively stratifying patients based on the biomarker. The risk conferred by the polymorphism and the applicability in the general population must be clearly understood. Thus, the development and widespread application of a pharmacogenomic biomarker is an involved process and for most disease states we are just at the beginning of the journey towards individualized therapy and improved clinical outcome.

  14. Gene-Expression Biomarkers for Application to High-Throughput Radiation Biodosimetry

    National Research Council Canada - National Science Library

    Grace, M. B; Salter, C. A; Bullard, J. R; Prasanna, P. G; Manglapus, G. L; Blakely, W. F

    2005-01-01

    .... Even with the delayed onset of symptoms, sometimes several days after exposure, gene-expression biomarkers can identify these exposed individuals very early after exposure, allowing for prompt medical intervention...

  15. Biomarkers of necrotising soft tissue infections

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Simonsen, Ulf; Garred, Peter

    2015-01-01

    INTRODUCTION: The mortality and amputation rates are still high in patients with necrotising soft tissue infections (NSTIs). It would be ideal to have a set of biomarkers that enables the clinician to identify high-risk patients with NSTI on admission. The objectives of this study are to evaluate...... and mortality in patients with NSTI and that HBOT reduces the inflammatory response. METHODS AND ANALYSIS: This is a prospective, observational study being conducted in a tertiary referral centre. Biomarkers will be measured in 114 patients who have been operatively diagnosed with NSTI. On admission, baseline...

  16. Novel biomarkers for prediabetes, diabetes, and associated complications

    Science.gov (United States)

    Dorcely, Brenda; Katz, Karin; Jagannathan, Ram; Chiang, Stephanie S; Oluwadare, Babajide; Goldberg, Ira J; Bergman, Michael

    2017-01-01

    The number of individuals with prediabetes is expected to grow substantially and estimated to globally affect 482 million people by 2040. Therefore, effective methods for diagnosing prediabetes will be required to reduce the risk of progressing to diabetes and its complications. The current biomarkers, glycated hemoglobin (HbA1c), fructosamine, and glycated albumin have limitations including moderate sensitivity and specificity and are inaccurate in certain clinical conditions. Therefore, identification of additional biomarkers is being explored recognizing that any single biomarker will also likely have inherent limitations. Therefore, combining several biomarkers may more precisely identify those at high risk for developing prediabetes and subsequent progression to diabetes. This review describes recently identified biomarkers and their potential utility for addressing the burgeoning epidemic of dysglycemic disorders. PMID:28860833

  17. Biomarkers of intermediate endpoints in environmental and occupational health

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E; Hansen, Ase M

    2007-01-01

    The use of biomarkers in environmental and occupational health is increasing due to increasing demands on information about health risks from unfavourable exposures. Biomarkers provide information about individual loads. Biomarkers of intermediate endpoints benefit in comparison with biomarkers...... of exposure from the fact that they are closer to the adverse outcome in the pathway from exposure to health effects and may provide powerful information for intervention. Some biomarkers are specific, e.g., DNA and protein adducts, while others are unspecific like the cytogenetic biomarkers of chromosomal...... health effect from the result of the measurement has been performed for the cytogenetic biomarkers showing a predictive value of high levels of CA and increased risk of cancer. The use of CA in future studies is, however, limited by the laborious and sensitive procedure of the test and lack of trained...

  18. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1.

    Science.gov (United States)

    Yee, S W; Giacomini, M M; Hsueh, C-H; Weitz, D; Liang, X; Goswami, S; Kinchen, J M; Coelho, A; Zur, A A; Mertsch, K; Brian, W; Kroetz, D L; Giacomini, K M

    2016-11-01

    Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  19. Mining biomarker information in biomedical literature

    Directory of Open Access Journals (Sweden)

    Younesi Erfan

    2012-12-01

    Full Text Available Abstract Background For selection and evaluation of potential biomarkers, inclusion of already published information is of utmost importance. In spite of significant advancements in text- and data-mining techniques, the vast knowledge space of biomarkers in biomedical text has remained unexplored. Existing named entity recognition approaches are not sufficiently selective for the retrieval of biomarker information from the literature. The purpose of this study was to identify textual features that enhance the effectiveness of biomarker information retrieval for different indication areas and diverse end user perspectives. Methods A biomarker terminology was created and further organized into six concept classes. Performance of this terminology was optimized towards balanced selectivity and specificity. The information retrieval performance using the biomarker terminology was evaluated based on various combinations of the terminology's six classes. Further validation of these results was performed on two independent corpora representing two different neurodegenerative diseases. Results The current state of the biomarker terminology contains 119 entity classes supported by 1890 different synonyms. The result of information retrieval shows improved retrieval rate of informative abstracts, which is achieved by including clinical management terms and evidence of gene/protein alterations (e.g. gene/protein expression status or certain polymorphisms in combination with disease and gene name recognition. When additional filtering through other classes (e.g. diagnostic or prognostic methods is applied, the typical high number of unspecific search results is significantly reduced. The evaluation results suggest that this approach enables the automated identification of biomarker information in the literature. A demo version of the search engine SCAIView, including the biomarker retrieval, is made available to the public through http

  20. Biomarkers in acute heart failure.

    Science.gov (United States)

    Mallick, Aditi; Januzzi, James L

    2015-06-01

    The care of patients with acutely decompensated heart failure is being reshaped by the availability and understanding of several novel and emerging heart failure biomarkers. The gold standard biomarkers in heart failure are B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, which play an important role in the diagnosis, prognosis, and management of acute decompensated heart failure. Novel biomarkers that are increasingly involved in the processes of myocardial injury, neurohormonal activation, and ventricular remodeling are showing promise in improving diagnosis and prognosis among patients with acute decompensated heart failure. These include midregional proatrial natriuretic peptide, soluble ST2, galectin-3, highly-sensitive troponin, and midregional proadrenomedullin. There has also been an emergence of biomarkers for evaluation of acute decompensated heart failure that assist in the differential diagnosis of dyspnea, such as procalcitonin (for identification of acute pneumonia), as well as markers that predict complications of acute decompensated heart failure, such as renal injury markers. In this article, we will review the pathophysiology and usefulness of established and emerging biomarkers for the clinical diagnosis, prognosis, and management of acute decompensated heart failure. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Biomarkers in spinal cord compression Ethics and perspectives

    Directory of Open Access Journals (Sweden)

    Iencean A.St.

    2016-09-01

    Full Text Available The phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H in serum or in cerebro-spinal fluid (CSF is a specific lesional biomarker for spinal cord injury. The lesional biomarkers and the reaction biomarkers are both presented after several hours post-injury. The specific predictive patterns of lesional biomarkers could be used to aid clinicians with making a diagnosis and establishing a prognosis, and evaluating therapeutic interventions. Diagnosis, prognosis, and treatment guidance based on biomarker used as a predictive indicator can determine ethical difficulties by differentiated therapies in patients with spinal cord compression. At this point based on studies until today we cannot take a decision based on biomarker limiting the treatment of neurological recovery in patients with complete spinal cord injury because we do not know the complexity of the biological response to spinal cord compression.

  2. Analysis of cagA in Helicobacter pylori strains from Colombian populations with contrasting gastric cancer risk reveals a biomarker for disease severity

    Science.gov (United States)

    Loh, John T.; Shaffer, Carrie L.; Piazuelo, M. Blanca; Bravo, Luis E.; McClain, Mark S.; Correa, Pelayo; Cover, Timothy L.

    2011-01-01

    BACKGROUND Helicobacter pylori infection is a risk factor for the development of gastric cancer, and the bacterial oncoprotein CagA contributes to gastric carcinogenesis. METHODS We analyzed H. pylori isolates from persons in Colombia and observed that there was marked variation among strains in levels of CagA expression. To elucidate the basis for this variation, we analyzed sequences upstream from the CagA translational initiation site in each strain. RESULTS A DNA motif (AATAAGATA) upstream of the translational initiation site of CagA was associated with high levels of CagA expression. Experimental studies showed that this motif was necessary but not sufficient for high-level CagA expression. H. pylori strains from a region of Colombia with high gastric cancer rates expressed higher levels of CagA than did strains from a region with lower gastric cancer rates, and Colombian strains of European phylogeographic origin expressed higher levels of CagA than did strains of African origin. Histopathological analysis of gastric biopsy specimens revealed that strains expressing high levels of CagA or containing the AATAAGATA motif were associated with more advanced precancerous lesions than those found in persons infected with strains expressing low levels of CagA or lacking the AATAAGATA motif. CONCLUSIONS CagA expression varies greatly among H. pylori strains. The DNA motif identified in this study is associated with high levels of CagA expression, and may be a useful biomarker to predict gastric cancer risk. IMPACT These findings help to explain why some persons infected with cagA-positive H. pylori develop gastric cancer and others do not. PMID:21859954

  3. Overview of Biomarkers and Surrogate Endpoints in Drug Development

    Directory of Open Access Journals (Sweden)

    John A. Wagner

    2002-01-01

    Full Text Available There are numerous factors that recommend the use of biomarkers in drug development including the ability to provide a rational basis for selection of lead compounds, as an aid in determining or refining mechanism of action or pathophysiology, and the ability to work towards qualification and use of a biomarker as a surrogate endpoint. Examples of biomarkers come from many different means of clinical and laboratory measurement. Total cholesterol is an example of a clinically useful biomarker that was successfully qualified for use as a surrogate endpoint. Biomarkers require validation in most circumstances. Validation of biomarker assays is a necessary component to delivery of high-quality research data necessary for effective use of biomarkers. Qualification is necessary for use of a biomarker as a surrogate endpoint. Putative biomarkers are typically identified because of a relationship to known or hypothetical steps in a pathophysiologic cascade. Biomarker discovery can also be effected by expression profiling experiment using a variety of array technologies and related methods. For example, expression profiling experiments enabled the discovery of adipocyte related complement protein of 30 kD (Acrp30 or adiponectin as a biomarker for in vivo activation of peroxisome proliferator-activated receptors (PPAR γ activity.

  4. Combination of biomarkers

    DEFF Research Database (Denmark)

    Thurfjell, Lennart; Lötjönen, Jyrki; Lundqvist, Roger

    2012-01-01

    The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury.......The New National Institute on Aging-Alzheimer's Association diagnostic guidelines for Alzheimer's disease (AD) incorporate biomarkers in the diagnostic criteria and suggest division of biomarkers into two categories: Aβ accumulation and neuronal degeneration or injury....

  5. Fibrosis biomarkers in workers exposed to MWCNTs

    International Nuclear Information System (INIS)

    Fatkhutdinova, Liliya M.; Khaliullin, Timur O.; Vasil'yeva, Olga L.; Zalyalov, Ramil R.; Mustafin, Ilshat G.; Kisin, Elena R.; Birch, M. Eileen; Yanamala, Naveena; Shvedova, Anna A.

    2016-01-01

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. - Highlights: • The effects of MWCNT exposure in humans remain unclear. • We found increased KL-6/TGF-β levels in the biofluids of MWCNT-exposed workers.

  6. Fibrosis biomarkers in workers exposed to MWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Fatkhutdinova, Liliya M., E-mail: liliya.fatkhutdinova@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Khaliullin, Timur O., E-mail: Khaliullin.40k@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Department of Physiology & Pharmacology, WVU, Morgantown, WV (United States); Vasil' yeva, Olga L., E-mail: volgaleon@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Zalyalov, Ramil R., E-mail: zalyalov.ramil@gmail.com [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Mustafin, Ilshat G., E-mail: ilshat64@mail.ru [Kazan State Medical University, ul. Butlerova 49, Kazan 420012 (Russian Federation); Kisin, Elena R., E-mail: edk8@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [National Institute for Occupational Safety and Health, Cincinnati, OH (United States); Yanamala, Naveena, E-mail: wqu1@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [National Institute for Occupational Safety and Health, Morgantown, WV (United States); Department of Physiology & Pharmacology, WVU, Morgantown, WV (United States)

    2016-05-15

    Multi-walled carbon nanotubes (MWCNT) with their unique physico-chemical properties offer numerous technological advantages and are projected to drive the next generation of manufacturing growth. As MWCNT have already found utility in different industries including construction, engineering, energy production, space exploration and biomedicine, large quantities of MWCNT may reach the environment and inadvertently lead to human exposure. This necessitates the urgent assessment of their potential health effects in humans. The current study was carried out at NanotechCenter Ltd. Enterprise (Tambov, Russia) where large-scale manufacturing of MWCNT along with relatively high occupational exposure levels was reported. The goal of this small cross-sectional study was to evaluate potential biomarkers during occupational exposure to MWCNT. All air samples were collected at the workplaces from both specific areas and personal breathing zones using filter-based devices to quantitate elemental carbon and perform particle analysis by TEM. Biological fluids of nasal lavage, induced sputum and blood serum were obtained from MWCNT-exposed and non-exposed workers for assessment of inflammatory and fibrotic markers. It was found that exposure to MWCNTs caused significant increase in IL-1β, IL6, TNF-α, inflammatory cytokines and KL-6, a serological biomarker for interstitial lung disease in collected sputum samples. Moreover, the level of TGF-β1 was increased in serum obtained from young exposed workers. Overall, the results from this study revealed accumulation of inflammatory and fibrotic biomarkers in biofluids of workers manufacturing MWCNTs. Therefore, the biomarkers analyzed should be considered for the assessment of health effects of occupational exposure to MWCNT in cross-sectional epidemiological studies. - Highlights: • The effects of MWCNT exposure in humans remain unclear. • We found increased KL-6/TGF-β levels in the biofluids of MWCNT-exposed workers.

  7. Advances in Biomarkers in Critical Ill Polytrauma Patients.

    Science.gov (United States)

    Papurica, Marius; Rogobete, Alexandru F; Sandesc, Dorel; Dumache, Raluca; Cradigati, Carmen A; Sarandan, Mirela; Nartita, Radu; Popovici, Sonia E; Bedreag, Ovidiu H

    2016-01-01

    The complexity of the cases of critically ill polytrauma patients is given by both the primary, as well as the secondary, post-traumatic injuries. The severe injuries of organ systems, the major biochemical and physiological disequilibrium, and the molecular chaos lead to a high rate of morbidity and mortality in this type of patient. The 'gold goal' in the intensive therapy of such patients resides in the continuous evaluation and monitoring of their clinical status. Moreover, optimizing the therapy based on the expression of certain biomarkers with high specificity and sensitivity is extremely important because of the clinical course of the critically ill polytrauma patient. In this paper we wish to summarize the recent studies of biomarkers useful for the intensive care unit (ICU) physician. For this study the available literature on specific databases such as PubMed and Scopus was thoroughly analyzed. Each article was carefully reviewed and useful information for this study extracted. The keywords used to select the relevant articles were "sepsis biomarker", "traumatic brain injury biomarker" "spinal cord injury biomarker", "inflammation biomarker", "microRNAs biomarker", "trauma biomarker", and "critically ill patients". For this study to be carried out 556 original type articles were analyzed, as well as case reports and reviews. For this review, 89 articles with relevant topics for the present paper were selected. The critically ill polytrauma patient, because of the clinical complexity the case presents with, needs a series of evaluations and specific monitoring. Recent studies show a series of either tissue-specific or circulating biomarkers that are useful in the clinical status evaluation of these patients. The biomarkers existing today, with regard to the critically ill polytrauma patient, can bring a significant contribution to increasing the survival rate, by adapting the therapy according to their expressions. Nevertheless, the necessity remains to

  8. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with lasso regression.

    Directory of Open Access Journals (Sweden)

    Are Hugo Pripp

    Full Text Available Chronic subdural hematoma (CSDH is characterized by an "old" encapsulated collection of blood and blood breakdown products between the brain and its outermost covering (the dura. Recognized risk factors for development of CSDH are head injury, old age and using anticoagulation medication, but its underlying pathophysiological processes are still unclear. It is assumed that a complex local process of interrelated mechanisms including inflammation, neomembrane formation, angiogenesis and fibrinolysis could be related to its development and propagation. However, the association between the biomarkers of inflammation and angiogenesis, and the clinical and radiological characteristics of CSDH patients, need further investigation. The high number of biomarkers compared to the number of observations, the correlation between biomarkers, missing data and skewed distributions may limit the usefulness of classical statistical methods. We therefore explored lasso regression to assess the association between 30 biomarkers of inflammation and angiogenesis at the site of lesions, and selected clinical and radiological characteristics in a cohort of 93 patients. Lasso regression performs both variable selection and regularization to improve the predictive accuracy and interpretability of the statistical model. The results from the lasso regression showed analysis exhibited lack of robust statistical association between the biomarkers in hematoma fluid with age, gender, brain infarct, neurological deficiencies and volume of hematoma. However, there were associations between several of the biomarkers with postoperative recurrence requiring reoperation. The statistical analysis with lasso regression supported previous findings that the immunological characteristics of CSDH are local. The relationship between biomarkers, the radiological appearance of lesions and recurrence requiring reoperation have been inclusive using classical statistical methods on these data

  9. Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia

    Directory of Open Access Journals (Sweden)

    Jérôme Kaiser

    2016-06-01

    Full Text Available Lake Salda located in south-western Anatolia is characterized by the presence of living stromatolites and by a low diversity of both phytoplankton and zooplankton due to high pH and magnesium concentration. The most abundant, free sedimentary lipids of the uppermost centimetres of the lake sediments were studied as potential environmental biomarkers, and proxies based on glycerol dialkyl glycerol tetraethers (GDGT were tested in this extreme environment. Dinosterol and tetrahymanol are potentially relevant biomarkers for the dinoflagellate Peridinium cinctum and ciliates, respectively. C20:1 and C25:2 highly branched isoprenoid (HBI alkenes, and n-C17 alkane and n-C17:1 alkene are considered as representing, respectively, diatoms and Cyanobacteria involved in the formation of the stromatolites. Isoprenoid GDGT-0 is assumed to be derived mainly from Euryarchaeota (methanogens, and crenarchaeol from Thaumarchaeota. Allochthonous organic material is represented by long-chain n-alkanes and n-alkanols derived from land plant leaf waxes, as well as branched GDGTs produced by soil bacteria. While pH and temperature proxies based on branched GDGTs are likely not applicable in Lake Salda, TEX86 (tetraether index of tetraethers consisting of 86 carbons, a proxy based on isoprenoid GDGTs, potentially allows estimating mean annual lake surface temperature. Interestingly, C23 and C25 1,2 diols, which have a yet unknown origin, were found for the first time in lake sediments. This study represents the first investigation of sedimentary lipid distribution in an alkaline and magnesium-rich lake in Anatolia, and provides a basis for future biomarker-based paleoenvironmental reconstruction of Lake Salda.

  10. Potential biomarkers for bipolar disorder: Where do we stand?

    Directory of Open Access Journals (Sweden)

    Rajesh Sagar

    2017-01-01

    Full Text Available Bipolar disorder (BD is a severe, recurrent mood disorder, associated with a significant morbidity and mortality, with high rates of suicides and medical comorbidities. There is a high risk of mood disorders among the first-degree relatives of patients with BD. In the current clinical practice, the diagnosis of BD is made by history taking, interview and behavioural observations, thereby lacking an objective, biological validation. This approach may result in underdiagnosis, misdiagnosis and eventually poorer outcomes. Due to the heterogeneity of BD, the possibility of developing a single, specific biomarker is still remote; however, there is a set of promising biomarkers which may serve as predictive, prognostic or treatment markers in the future. The review presents a critical appraisal and update on some of the most promising candidates for biomarkers, namely, neuroimaging markers, peripheral biomarkers and genetic markers, including a brief discussion on cognitive endophenotypes as indicative of genetic risk. The lessons learnt from other fields and specialties in medicine need to be applied to psychiatry to translate the knowledge from 'bench to bedside' by means of clinically useful biomarkers. Overall, the biomarkers may help in pushing the shift towards personalized medicine for psychiatric patients.

  11. Proteomic analysis of coronary sinus serum reveals leucine-rich alpha2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure.

    LENUS (Irish Health Repository)

    Watson, Chris J

    2012-02-01

    BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF. METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich alpha2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P<\\/=0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-alpha (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-betaR1 (P<0.001) and alpha-smooth muscle actin (P=0.025) expression. CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, beta-blocker therapy, and BNP.

  12. Mark-recapture using tetracycline and genetics reveal record-high bear density

    Science.gov (United States)

    Peacock, E.; Titus, K.; Garshelis, D.L.; Peacock, M.M.; Kuc, M.

    2011-01-01

    We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. Copyright ?? 2011 The Wildlife Society.

  13. Genomic Biomarkers for Personalized Medicine: Development and Validation in Clinical Studies

    Directory of Open Access Journals (Sweden)

    Shigeyuki Matsui

    2013-01-01

    Full Text Available The establishment of high-throughput technologies has brought substantial advances to our understanding of the biology of many diseases at the molecular level and increasing expectations on the development of innovative molecularly targeted treatments and molecular biomarkers or diagnostic tests in the context of clinical studies. In this review article, we position the two critical statistical analyses of high-dimensional genomic data, gene screening and prediction, in the framework of development and validation of genomic biomarkers or signatures, through taking into consideration the possible different strategies for developing genomic signatures. A wide variety of biomarker-based clinical trial designs to assess clinical utility of a biomarker or a new treatment with a companion biomarker are also discussed.

  14. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.

    Science.gov (United States)

    Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo

    2017-10-01

    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  15. Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis.

    Science.gov (United States)

    Fryar-Williams, Stephanie; Strobel, Jörg E

    2015-01-01

    The Mental Health Biomarker Project (2010-2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case-control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Participants underwent protocol-based diagnostic-checking, functional-rating, biological sample-collection for thirty candidate markers and sensory-processing assessment. Fifteen biomarkers were identified on ROC analysis. Using these biomarkers, odds ratios, adjusted for a case-control design, indicated that schizophrenia and schizoaffective disorder were highly associated with dichotic listening disorder, delayed visual processing, low visual span, delayed auditory speed of processing, low reverse digit span as a measure of auditory working memory and elevated levels of catecholamines. Other nutritional and biochemical biomarkers were identified as elevated hydroxyl pyrroline-2-one as a marker of oxidative stress, vitamin D, B6 and folate deficits with elevation of serum B12 and free serum copper to zinc ratio. When individual biomarkers were ranked by odds ratio and correlated with clinical severity, five functional domains of visual processing, auditory processing, oxidative stress, catecholamines and nutritional-biochemical variables were formed. When the strengths of their inter-domain relationships were predicted by Lowess (non-parametric) regression, predominant bidirectional relationships were found between visual processing and catecholamine domains. At a cellular level, the nutritional-biochemical domain exerted a pervasive influence on the auditory domain as well as on all other domains. The findings of this biomarker research

  16. REG4 Is Highly Expressed in Mucinous Ovarian Cancer: A Potential Novel Serum Biomarker.

    Directory of Open Access Journals (Sweden)

    Laura Lehtinen

    Full Text Available Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.

  17. Impact of biomarker development on drug safety assessment

    International Nuclear Information System (INIS)

    Marrer, Estelle; Dieterle, Frank

    2010-01-01

    Drug safety has always been a key aspect of drug development. Recently, the Vioxx case and several cases of serious adverse events being linked to high-profile products have increased the importance of drug safety, especially in the eyes of drug development companies and global regulatory agencies. Safety biomarkers are increasingly being seen as helping to provide the clarity, predictability, and certainty needed to gain confidence in decision making: early-stage projects can be stopped quicker, late-stage projects become less risky. Public and private organizations are investing heavily in terms of time, money and manpower on safety biomarker development. An illustrative and 'door opening' safety biomarker success story is the recent recognition of kidney safety biomarkers for pre-clinical and limited translational contexts by FDA and EMEA. This milestone achieved for kidney biomarkers and the 'know how' acquired is being transferred to other organ toxicities, namely liver, heart, vascular system. New technologies and molecular-based approaches, i.e., molecular pathology as a complement to the classical toolbox, allow promising discoveries in the safety biomarker field. This review will focus on the utility and use of safety biomarkers all along drug development, highlighting the present gaps and opportunities identified in organ toxicity monitoring. A last part will be dedicated to safety biomarker development in general, from identification to diagnostic tests, using the kidney safety biomarkers success as an illustrative example.

  18. Bio-mining for biomarkers with a multi-resolution block chain

    Science.gov (United States)

    Jenkins, Jeffrey; Kopf, Jarad; Tran, Binh Q.; Frenchi, Christopher; Szu, Harold

    2015-05-01

    In this paper, we discuss a framework for bridging the gap between security and medical Large Data Analysis (LDA) with functional- biomarkers. Unsupervised Learning for individual e-IQ & IQ relying on memory eliciting (i.e. scent, grandmother images) and IQ baseline profiles could further enhance the ability to uniquely identify and properly diagnose individuals. Sub-threshold changes in a common/probable biomedical biomarker (disorders) means that an individual remains healthy, while a martingale would require further investigation and more measurements taken to determine credibility. Empirical measurements of human actions can discover anomalies hidden in data, which point to biomarkers revealed through stimulus response. We review the approach for forming a single-user baseline having 1-d devices and a scale-invariant representation for N users each (i) having N*d(i) total devices. Such a fractal representation of human-centric data provides self-similar levels information and relationships which are useful for diagnosis and identification causality anywhere from a mental disorder to a DNA match. Biomarkers from biomedical devices offer a robust way to collect data. Biometrics could be envisioned as enhanced and personalized biomedical devices (e.g. typing fist), but used for security. As long as the devices have a shared context origin, useful information can be found by coupling the sensors. In the case of the electroencephalogram (EEG), known patterns have emerged in low frequency Delta Theta Alpha Beta-Gamma (DTAB-G) waves when an individual views a familiar picture in the visual cortex which is shown on EEGs as a sharp peak. Using brainwaves as a functional biomarker for security can lead the industry to create more secure sessions by allowing not only passwords but also visual stimuli and/or keystrokes coupled with EEG to capture and stay informed about real time user e-IQ/IQ data changes. This holistic Computer Science (CS) Knowledge Discovery in

  19. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology

    DEFF Research Database (Denmark)

    Lind, Mads Vendelbo; Savolainen, Otto I; Ross, Alastair B

    2016-01-01

    measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many...... biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses...

  20. ITGA3 and ITGB4 expression biomarkers estimate the risks of locoregional and hematogenous dissemination of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nagata, Masaki; Takahashi, Katsu; Kodama, Naoki; Kawase, Tomoyuki; Hoshina, Hideyuki; Ikeda, Nobuyuki; Shingaki, Susumu; Takagi, Ritsuo; Noman, Arhab A; Suzuki, Kenji; Kurita, Hiroshi; Ohnishi, Makoto; Ohyama, Tokio; Kitamura, Nobutaka; Kobayashi, Takanori; Uematsu, Kohya

    2013-01-01

    Molecular biomarkers are essential for monitoring treatment effects, predicting prognosis, and improving survival rate in oral squamous cell carcinoma. This study sought to verify the effectiveness of two integrin gene expression ratios as biomarkers. Gene expression analyses of integrin α3 (ITGA3), integrin β4 (ITGB4), CD9 antigen (CD9), and plakoglobin (JUP) by quantitative real-time PCR were conducted on total RNA from 270 OSCC cases. The logrank test, Cox proportional hazards model, and Kaplan-Meier estimates were performed on the gene expression ratios of ITGA3/CD9 and ITGB4/JUP and on the clinicopathological parameters for major clinical events. A high rate (around 80%) of lymph node metastasis was found in cases with a high ITGA3/CD9 ratio (high-ITGA3/CD9) and invasive histopathology (YK4). Primary site recurrence (PSR) was associated with high-ITGA3/CD9, T3-4 (TNM class), and positive margin, indicating that PSR is synergistically influenced by treatment failure and biological malignancy. A high ITGB4/JUP ratio (high-ITGB4/JUP) was revealed to be a primary contributor to distant metastasis without the involvement of clinicopathological factors, suggesting intervention of a critical step dependent on the function of the integrin β4 subunit. Kaplan-Meier curves revealed positive margin as a lethal treatment consequence in high-ITGA3/CD9 and YK4 double-positive cases. Two types of metastatic trait were found in OSCC: locoregional dissemination, which was reflected by high-ITGA3/CD9, and distant metastasis through hematogenous dissemination, uniquely distinguished by high-ITGB4/JUP. The clinical significance of the integrin biomarkers implies that biological mechanisms such as cancer cell motility and anchorage-independent survival are vital for OSCC recurrence and metastasis

  1. The New Digital Divide For Digital BioMarkers.

    Science.gov (United States)

    Torous, John; Rodriguez, Jorge; Powell, Adam

    2017-09-01

    As smartphone and sensors continue to become more ubiquitous across the world, digital biomarkers have emerged as a scalable and practical tool to explore disease states and advance health. But as the digital divide of access and ownership begins to fade, a new digital divide is emerging. Who are the types of people that own smartphones or smart watches, who are the types of people that download health apps or partake in digital biomarker studies, and who are the types of people that are actually active with digital biomarkers apps and sensors - the people providing the high quality and longitudinal data that this field is being founded upon? Understanding the people behind digital biomarkers, the very people this emerging field aims to help, may actually be the real challenge as well as opportunity for digital biomarkers.

  2. Biology and Biomarkers for Wound Healing

    Science.gov (United States)

    Lindley, Linsey E.; Stojadinovic, Olivera; Pastar, Irena; Tomic-Canic, Marjana

    2016-01-01

    Background As the population grows older, the incidence and prevalence of conditions which lead to a predisposition for poor wound healing also increases. Ultimately, this increase in non-healing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has, and will continue to be the leading pathway to the discovery of therapeutic targets as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of non-healing patients for whom biomarker-guided approaches may aid in healing. Methods A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. Results Currently, biomarkers are being identified using biomaterials sourced locally, from human wounds and/or systemically using systematic high-throughput “omics” modalities (genomic, proteomic, lipidomic, metabolomic analysis). In this review we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum including those measured in tissue specimens e.g. β-catenin and c-myc, wound fluid e.g. MMP’s and interleukins, swabs e.g. wound microbiota and serum e.g. procalcitonin and MMP’s. Conclusions Identification of numerous potential biomarkers utilizing different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity, and consistent implementation of these biomarkers as well as an emphasis on efficacious follow-up therapeutics is necessary for transition of this technology to clinically feasible point-of-care applications. PMID:27556760

  3. Emerging Concepts and Methodologies in Cancer Biomarker Discovery.

    Science.gov (United States)

    Lu, Meixia; Zhang, Jinxiang; Zhang, Lanjing

    2017-01-01

    Cancer biomarker discovery is a critical part of cancer prevention and treatment. Despite the decades of effort, only a small number of cancer biomarkers have been identified for and validated in clinical settings. Conceptual and methodological breakthroughs may help accelerate the discovery of additional cancer biomarkers, particularly their use for diagnostics. In this review, we have attempted to review the emerging concepts in cancer biomarker discovery, including real-world evidence, open access data, and data paucity in rare or uncommon cancers. We have also summarized the recent methodological progress in cancer biomarker discovery, such as high-throughput sequencing, liquid biopsy, big data, artificial intelligence (AI), and deep learning and neural networks. Much attention has been given to the methodological details and comparison of the methodologies. Notably, these concepts and methodologies interact with each other and will likely lead to synergistic effects when carefully combined. Newer, more innovative concepts and methodologies are emerging as the current emerging ones became mainstream and widely applied to the field. Some future challenges are also discussed. This review contributes to the development of future theoretical frameworks and technologies in cancer biomarker discovery and will contribute to the discovery of more useful cancer biomarkers.

  4. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  5. Biomarkers in DILI: one more step forward

    Directory of Open Access Journals (Sweden)

    Mercedes Robles-Díaz

    2016-08-01

    Full Text Available Despite being relatively rare, drug-induced liver injury (DILI is a serious condition, both for the individual patient due to the risk of acute liver failure, and for the drug development industry and regulatory agencies due to associations with drug development attritions, black box warnings and postmarketing withdrawals. A major limitation in DILI diagnosis and prediction is the current lack of specific biomarkers. Despite refined usage of traditional liver biomarkers in DILI, reliable disease outcome predictions are still difficult to make. These limitations have driven the growing interest in developing new more sensitive and specific DILI biomarkers, which can improve early DILI prediction, diagnosis and course of action. Several promising DILI biomarker candidates have been discovered to date, including mechanistic-based biomarker candidates such as glutamate dehydrogenase, high-mobility group box 1 protein and keratin-18, which can also provide information on the injury mechanism of different causative agents. Furthermore, microRNAs have received much attention lately as potential non-invasive DILI biomarker candidates, in particular miR-122. Advances in omics technologies offer a new approach for biomarker exploration studies. The ability to screen a large number of molecules (for example metabolites, proteins or DNA simultaneously enables the identification of ‘toxicity signatures’, which may be used to enhance preclinical safety assessments and disease diagnostics. Omics-based studies can also provide information on the underlying mechanisms of distinct forms of DILI that may further facilitate the identification of early diagnostic biomarkers and safer implementation of personalized medicine. In this review we summarize recent advances in the area of DILI biomarker studies.

  6. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  7. AOPs and Biomarkers: Bridging High Throughput Screening ...

    Science.gov (United States)

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will benefit from additional data sources that connect the magnitude of perturbation from the in vitro system to a level of concern at the organism or population level. The adverse outcome pathway (AOP) concept provides an ideal framework for combining these complementary data. Recent international efforts under the auspices of the Organization for Economic Co-operation and Development (OECD) have resulted in an AOP wiki designed to house formal descriptions of AOPs suitable for use in regulatory decision making. Recent efforts have built upon this to include an ontology describing the AOP with linkages to biological pathways, physiological terminology, and taxonomic applicability domains. Incorporation of an AOP network tool developed by the U.S. Army Corps of Engineers also allows consideration of cumulative risk from chemical and non-chemical stressors. Biomarkers are an important complement to formal AOP descriptions, particularly when dealing with susceptible subpopulations or lifestages in human health risk assessment. To address the issue of nonchemical stressors than may modify effects of criteria air pollutants, a novel method was used to integrate blood gene expression data with hema

  8. Novel Bacterial Proteins and Lipids Reveal the Diversity of Triterpenoid Biomarker Synthesis

    Science.gov (United States)

    Wei, J. H.; Banta, A. B.; Gill, C. C. C.; Giner, J. L.; Welander, P. V.

    2017-12-01

    Lipids preserved in sediments and rocks function as organic biomarkers providing evidence for the types of organisms that lived in ancient environments. We use a combined approach utilizing comparative genomics, molecular biology, and lipid analysis to discover novel cyclic triteprenoid lipids and their biosynthetic pathways in bacteria. Here, we present two cases of bacterial synthesis of pentacylic triterpenols previously thought to be indicative of eukaryotes, which address current incongruities in the fossil record. Cyclic triterpenoid lipids, such as hopanoids and sterols, are generally associated with bacteria and eukaryotes, respectively. The pentacyclic triterpenoid tetrahymanol, first discovered in the ciliate Tetrahymena pyriformis, and its diagenetic product gammacerane, have been previously interpreted as markers for eukaryotes and linked to water column stratification. Yet the occurrence of tetrahymanol in bacteria implies our knowledge of extant tetrahymanol producers is not complete. Through comparative genomics we identified a new gene required for tetrahymanol synthesis in the bacterium Methylomicrobium alcaliphilum. This gene encodes a novel enzyme, Tetrahymanol synthase (THS), that synthesizes tetrahymanol from the hopanoid diploptene demonstrating a pathway for tetrahymanol production in bacteria distinct from that in eukaryotes. We bionformatically identified THS homologs in 104 bacterial genomes and 472 metagenomes, implying a great diversity of tetrahymanol producers. Lipids of the arborane class, such as iso-arborinol, are commonly found in modern angiosperms. Arobranes are synthesized by the enzyme oxidosqualene cyclase (OSC), which in plants can form both tetra and pentacyclic molecules. While bacteria are known to produce tetracyclic sterol compounds, bacterial synthesis of pentacyclic arborane class triterpenols of this class were previously undiscovered. We have identified a bacterium, Eudoraea adriatica, whose OSC synthesizes

  9. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Leonore Wigger

    2017-02-01

    Full Text Available Summary: Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D. Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D. : Wigger et al. find that several sphingolipids in mouse plasma correlate with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in human plasma from two cohorts reveal that dihydroceramides are significantly elevated in individuals progressing to diabetes, up to 9 years before disease onset. Keywords: diabetes, T2D, ceramides, dihydroceramides, biomarkers, lipidomics, prognostic, mouse, human, high-fat diet, metabolic challenge, glucose intolerance, insulin sensitivity, prospective cohort

  10. CBD: a biomarker database for colorectal cancer.

    Science.gov (United States)

    Zhang, Xueli; Sun, Xiao-Feng; Cao, Yang; Ye, Benchen; Peng, Qiliang; Liu, Xingyun; Shen, Bairong; Zhang, Hong

    2018-01-01

    Colorectal cancer (CRC) biomarker database (CBD) was established based on 870 identified CRC biomarkers and their relevant information from 1115 original articles in PubMed published from 1986 to 2017. In this version of the CBD, CRC biomarker data were collected, sorted, displayed and analysed. The CBD with the credible contents as a powerful and time-saving tool provide more comprehensive and accurate information for further CRC biomarker research. The CBD was constructed under MySQL server. HTML, PHP and JavaScript languages have been used to implement the web interface. The Apache was selected as HTTP server. All of these web operations were implemented under the Windows system. The CBD could provide to users the multiple individual biomarker information and categorized into the biological category, source and application of biomarkers; the experiment methods, results, authors and publication resources; the research region, the average age of cohort, gender, race, the number of tumours, tumour location and stage. We only collect data from the articles with clear and credible results to prove the biomarkers are useful in the diagnosis, treatment or prognosis of CRC. The CBD can also provide a professional platform to researchers who are interested in CRC research to communicate, exchange their research ideas and further design high-quality research in CRC. They can submit their new findings to our database via the submission page and communicate with us in the CBD.Database URL: http://sysbio.suda.edu.cn/CBD/.

  11. Exosomal miRNAs as biomarkers for prostate cancer

    Directory of Open Access Journals (Sweden)

    Nina Pettersen Hessvik

    2013-03-01

    Full Text Available miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles or apoptotic bodies or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, noninvasive diagnostic and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.

  12. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  13. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort

    Directory of Open Access Journals (Sweden)

    Dickens Jennifer A

    2011-11-01

    Full Text Available Abstract Background There is a need for biomarkers to better characterise individuals with COPD and to aid with the development of therapeutic interventions. A panel of putative blood biomarkers was assessed in a subgroup of the Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE cohort. Methods Thirty-four blood biomarkers were assessed in 201 subjects with COPD, 37 ex-smoker controls with normal lung function and 37 healthy non-smokers selected from the ECLIPSE cohort. Biomarker repeatability was assessed using baseline and 3-month samples. Intergroup comparisons were made using analysis of variance, repeatability was assessed through Bland-Altman plots, and correlations between biomarkers and clinical characteristics were assessed using Spearman correlation coefficients. Results Fifteen biomarkers were significantly different in individuals with COPD when compared to former or non-smoker controls. Some biomarkers, including tumor necrosis factor-α and interferon-γ, were measurable in only a minority of subjects whilst others such as C-reactive protein showed wide variability over the 3-month replication period. Fibrinogen was the most repeatable biomarker and exhibited a weak correlation with 6-minute walk distance, exacerbation rate, BODE index and MRC dyspnoea score in COPD subjects. 33% (66/201 of the COPD subjects reported at least 1 exacerbation over the 3 month study with 18% (36/201 reporting the exacerbation within 30 days of the 3-month visit. CRP, fibrinogen interleukin-6 and surfactant protein-D were significantly elevated in those COPD subjects with exacerbations within 30 days of the 3-month visit compared with those individuals that did not exacerbate or whose exacerbations had resolved. Conclusions Only a few of the biomarkers assessed may be useful in diagnosis or management of COPD where the diagnosis is based on airflow obstruction (GOLD. Further analysis of more promising biomarkers may reveal

  14. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker

    International Nuclear Information System (INIS)

    Kang, Un-Beom; Ahn, Younghee; Lee, Jong Won; Kim, Yong-Hak; Kim, Joon; Yu, Myeong-Hee; Noh, Dong-Young; Lee, Cheolju

    2010-01-01

    Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood. Plasma proteomes obtained from 6 breast cancer patients and 6 normal healthy women were analyzed by using the isotope-coded affinity tag (ICAT) labeling approach and tandem mass spectrometry. All the plasma samples used were depleted of highly abundant 6 plasma proteins by immune-affinity column chromatography before ICAT labeling. Several proteins showing differential abundance level were selected based on literature searches and their specificity to the commercially available antibodies, and then verified by immunoblot assays. A total of 155 proteins were identified and quantified by ICAT method. Among them, 33 proteins showed abundance changes by more than 1.5-fold between the plasmas of breast cancer patients and healthy women. We chose 5 proteins for the follow-up confirmation in the individual plasma samples using immunoblot assay. Four proteins, α1-acid glycoprotein 2, monocyte differentiation antigen CD14, biotinidase (BTD), and glutathione peroxidase 3, showed similar abundance ratio to ICAT result. Using a blind set of plasmas obtained from 21 breast cancer patients and 21 normal healthy controls, we confirmed that BTD was significantly down-regulated in breast cancer plasma (Wilcoxon rank-sum test, p = 0.002). BTD levels were lowered in all cancer grades (I-IV) except cancer grade zero. The area under the receiver operating characteristic curve of BTD was 0.78. Estrogen receptor status (p = 0.940) and progesterone receptor status (p = 0.440) were not associated with the plasma BTD levels. Our study suggests that BTD is a potential serological biomarker for the detection of breast cancer

  15. Biomarker Qualification: Toward a Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization.

    Science.gov (United States)

    Amur, S; LaVange, L; Zineh, I; Buckman-Garner, S; Woodcock, J

    2015-07-01

    The discovery, development, and use of biomarkers for a variety of drug development purposes are areas of tremendous interest and need. Biomarkers can become accepted for use through submission of biomarker data during the drug approval process. Another emerging pathway for acceptance of biomarkers is via the biomarker qualification program developed by the Center for Drug Evaluation and Research (CDER, US Food and Drug Administration). Evidentiary standards are needed to develop and evaluate various types of biomarkers for their intended use and multiple stakeholders, including academia, industry, government, and consortia must work together to help develop this evidence. The article describes various types of biomarkers that can be useful in drug development and evidentiary considerations that are important for qualification. A path forward for coordinating efforts to identify and explore needed biomarkers is proposed for consideration. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  16. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers

    Directory of Open Access Journals (Sweden)

    Vasiliki Taraslia

    2018-01-01

    Full Text Available Dental stem cells (DSCs have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs and Periodontal Ligament Stem Cells (PDLSCs. A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.

  17. HCC Biomarkers in China and Taiwan

    Directory of Open Access Journals (Sweden)

    Regina M. Santella

    2007-02-01

    Full Text Available

    A number of different types of biomarkers have been used to understand the etiology and progression of hepatocellular cancer (HCC. Perhaps the most well known are the serum/ plasma markers of HBV or HCV infection. These markers include analysis of viral DNA or proteins or antibodies produced against the viral proteins. HBV surface antigen (HBsAg is most frequently used to determine chronic infection with high or low viral replication, while HBeAg is a measure of chronic infection with high viral replication. Analysis of antibodies includes measurement of anti-HBV core antigen, anti-HBV e antigen and anti-HBsAg. The response to immunization can be monitored by analysis of anti-HBsAg. The other major classes of biomarkers used in studies of HCC are biomarkers of exposure to environmental, lifestyle or dietary carcinogens, biomarkers of oxidative stress and early biologic response. In addition, studies of genetic susceptibility have studied polymorphisms in a number of pathways and their role in HCC risk. The biomarkers of exposure include the measurement of carcinogens in urine and carcinogen-DNA and protein adducts. Examples are measurement of aflatoxin and polycyclic aromatic hydrocarbon metabolites, and DNA and protein adducts.

    Biomarkers of oxidative stress include urinary isoprostanes and 8-oxodeoxyguanosine and oxidized plasma proteins. Most of these assays are immunologic although the use of high performance liquid chromatograph (HPLC as well as gas chromatography/mass spectroscopy (GC/MS have been utilized. In nested case-control studies, many of these markers are associated with elevated risk. For example, elevated aflatoxin and polycyclic aromatic hydrocarbon-albumin adducts, aflatoxin metabolites in urine and urinary isoprostanes were observed in baseline samples from

  18. LABORATORY BIOMARKERS FOR ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    E. N. Aleksandrova

    2017-01-01

    Full Text Available Ankylosing spondylitis (AS is a chronic inflammatory disease from a group of spondyloarthritis (SpA, which is characterized by lesions of the sacroiliac joints and spine with the common involvement of entheses and peripheral joints in the pathological process. Advances in modern laboratory medicine have contributed to a substantial expansion of the range of pathogenetic, diagnostic, and prognostic biomarkers of AS. As of now, there are key pathogenetic biomarkers of AS (therapeutic targets, which include tumor necrosis factor-α (TNF-α, interleukin 17 (IL-17, and IL-23. Among the laboratory diagnostic and prognostic biomarkers, HLA-B27 and C-reactive protein are of the greatest value in clinical practice; the former for the early diagnosis of the disease and the latter for the assessment of disease activity, the risk of radiographic progression and the efficiency of therapy. Anti-CD74 antibodies are a new biomarker that has high sensitivity and specificity values in diagnosing axial SpA at an early stage. A number of laboratory biomarkers, including calprotectin, matrix metalloproteinase-3 (MMP-3, vascular endothelial growth factor, Dickkopf-1 (Dkk-1, and C-terminal telopeptide of type II collagen (CTX II do not well reflect disease activity, but may predict progressive structural changes in the spine and sacroiliac joints in AS. Blood calprotectin level monitoring allows the effective prediction of a response to therapy with TNF inhibitors and anti-IL-17А monoclonal antibodies. The prospects for the laboratory diagnosis of AS are associated with the clinical validation of candidate biomarkers during large-scale prospective cohort studies and with a search for new proteomic, transcriptomic and genomic markers, by using innovative molecular and cellular technologies.

  19. High-Sensitivity Troponin: A Clinical Blood Biomarker for Staging Cardiomyopathy in Fabry Disease.

    Science.gov (United States)

    Seydelmann, Nora; Liu, Dan; Krämer, Johannes; Drechsler, Christiane; Hu, Kai; Nordbeck, Peter; Schneider, Andreas; Störk, Stefan; Bijnens, Bart; Ertl, Georg; Wanner, Christoph; Weidemann, Frank

    2016-05-31

    High-sensitivity troponin (hs-TNT), a biomarker of myocardial damage, might be useful for assessing fibrosis in Fabry cardiomyopathy. We performed a prospective analysis of hs-TNT as a biomarker for myocardial changes in Fabry patients and a retrospective longitudinal follow-up study to assess longitudinal hs-TNT changes relative to fibrosis and cardiomyopathy progression. For the prospective analysis, hs-TNT from 75 consecutive patients with genetically confirmed Fabry disease was analyzed relative to typical Fabry-associated echocardiographic findings and total myocardial fibrosis as measured by late gadolinium enhancement (LE) on magnetic resonance imaging. Longitudinal data (3.9±2.0 years), including hs-TNT, LE, and echocardiographic findings from 58 Fabry patients, were retrospectively collected. Hs-TNT level positively correlated with LE (linear correlation coefficient, 0.72; odds ratio, 32.81 [95% CI, 3.56-302.59]; P=0.002); patients with elevated baseline hs-TNT (>14 ng/L) showed significantly increased LE (median: baseline, 1.9 [1.1-3.3] %; follow-up, 3.2 [2.3-4.9] %; PFabry disease and a qualified predictor of cardiomyopathy progression. Thus, hs-TNT could be helpful for staging and follow-up of Fabry patients. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Metabolomics in cancer biomarker discovery: current trends and future perspectives.

    Science.gov (United States)

    Armitage, Emily G; Barbas, Coral

    2014-01-01

    Cancer is one of the most devastating human diseases that causes a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer. It is well known that cancer metabolism differs from that of normal tissue and an important hypothesis published in the 1950s by Otto Warburg proposed that cancer cells rely on anaerobic metabolism as the source for energy, even under physiological oxygen levels. Following this, cancer central carbon metabolism has been researched extensively and beyond respiration, cancer has been found to involve a wide range of metabolic processes, and many more are still to be unveiled. Studying cancer through metabolomics could reveal new biomarkers for cancer that could be useful for its future prognosis, diagnosis and therapy. Metabolomics is becoming an increasingly popular tool in the life sciences since it is a relatively fast and accurate technique that can be applied with either a particular focus or in a global manner to reveal new knowledge about biological systems. There have been many examples of its application to reveal potential biomarkers in different cancers that have employed a range of different analytical platforms. In this review, approaches in metabolomics that have been employed in cancer biomarker discovery are discussed and some of the most noteworthy research in the field is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  2. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.

    Science.gov (United States)

    Skotland, Tore; Ekroos, Kim; Kauhanen, Dimple; Simolin, Helena; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2017-01-01

    Exosomes have recently appeared as a novel source of noninvasive cancer biomarkers, since these nanovesicles contain molecules from cancer cells and can be detected in biofluids. We have here investigated the potential use of lipids in urinary exosomes as prostate cancer biomarkers. A high-throughput mass spectrometry quantitative lipidomic analysis was performed to reveal the lipid composition of urinary exosomes in prostate cancer patients and healthy controls. Control samples were first analysed to characterise the lipidome of urinary exosomes and test the reproducibility of the method. In total, 107 lipid species were quantified in urinary exosomes. Several differences, for example, in cholesterol and phosphatidylcholine, were found between urinary exosomes and exosomes derived from cell lines, thus showing the importance of in vivo studies for biomarker analysis. The 36 most abundant lipid species in urinary exosomes were then quantified in 15 prostate cancer patients and 13 healthy controls. Interestingly, the levels of nine lipids species were found to be significantly different when the two groups were compared. The highest significance was shown for phosphatidylserine (PS) 18:1/18:1 and lactosylceramide (d18:1/16:0), the latter also showed the highest patient-to-control ratio. Furthermore, combinations of these lipid species and PS 18:0-18:2 distinguished the two groups with 93% sensitivity and 100% specificity. Finally, in agreement with the reported dysregulation of sphingolipid metabolism in cancer cells, alteration in specific sphingolipid lipid classes were observed. This study shows for the first time the potential use of exosomal lipid species in urine as prostate cancer biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. YKL-40: a new biomarker in cardiovascular disease?

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Henningsen, Kristoffer Mads Aaris; Harutyunyan, Marina Jurjevna

    2010-01-01

    Cardiovascular disease in the form of coronary artery disease is the most common cause of death in western countries. Early treatment with stabilizing drugs and mechanical revascularization by percutaneous coronary intervention or coronary bypass surgery has reduced the mortality significantly....... But in spite of improved treatments, many patients are still plagued by a high frequency of angina symptoms, hospitalizations and a poor prognosis. There is a need for new independent or supplementary biomarkers that can help to predict cardiovascular disease and cardiovascular events earlier and more...... precisely, and thus accompany existing biomarkers in both primary and secondary cardiovascular prevention. One such potential new biomarker is the protein YKL-40. As an independent biomarker in both cardiovascular diseases and noncardiovascular diseases, current evidence suggests YKL-40 to be most useful...

  4. Biomarkers of tolerance: searching for the hidden phenotype.

    Science.gov (United States)

    Perucha, Esperanza; Rebollo-Mesa, Irene; Sagoo, Pervinder; Hernandez-Fuentes, Maria P

    2011-08-01

    Induction of transplantation tolerance remains the ideal long-term clinical and logistic solution to the current challenges facing the management of renal allograft recipients. In this review, we describe the recent studies and advances made in identifying biomarkers of renal transplant tolerance, from study inceptions, to the lessons learned and their implications for current and future studies with the same goal. With the age of biomarker discovery entering a new dimension of high-throughput technologies, here we also review the current approaches, developments, and pitfalls faced in the subsequent statistical analysis required to identify valid biomarker candidates.

  5. Mass spectrometry for biomarker development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  6. Biomarkers for screening of lung cancer and pre-neoplastic lesions in a high risk Chilean population

    Directory of Open Access Journals (Sweden)

    Marta I Adonis

    2014-01-01

    Full Text Available BACKGROUND: The mortality of lung cancer (LC, increases each year in the world, in spite of any advances, in development of new drugs to advance stages of LC. The high incidence of LC has been associated with smoking habit, genetic diversity and environmental pollution. Antofagasta region has been reported to have the highest LC mortality rate in Chile and its inhabitants were exposed to arsenic in their drinking water in concentrations as high as 870 μg/L. Non-invasive techniques such as biomarkers (Automatic Quantitative Cytometry: AQC and DR70 and Auto Fluorescence Bronchoscopy (AFB might be potentially useful as a supplementary diagnostic approach and early detection. Early detection is one of the most important factors to intervene and prevent cancer progression in LC. This is a work of an ongoing prospective bimodality cancer surveillance study in high risk LC volunteers. Enrolment was done in subjects from Antofagasta and Metropolitan regions. In addition, we enrolled subjects who were suspected of having lung cancer. AQC, DR70 and AFB were used as tools in the detection of pre-neoplastic (PNL and neoplastic lesions (NL. RESULTS: Half of the samples, classified as suspicious by AFB, were confirmed as metaplasia or dysplasia by histopathology. For LC, DR70 showed a higher sensitivity (95.8% and specificity (91.9% than AQC. However, for PNL AQC showed a higher sensitivity (91.9% than DR70 (27.3%, although both with low PPV values. As a pre screener, both biomarkers might be employed as complementary tools to detect LC, especially as serially combined tests, with a sensitivity of 60% and a PPV of 65.2%. Additionally, the use of parallel combined tests might support the detection of PNL (sensitivity 91.2%; PPV 49.1%. CONCLUSION: This work adds information on cellular and molecular biomarkers to complement imaging techniques for early detection of LC in Latin America that might contribute to formulate policies concerning screening of LC

  7. Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage

    Directory of Open Access Journals (Sweden)

    Felipe Gomes Naveca

    2018-05-01

    Full Text Available BACKGROUND Infection with Zika virus (ZIKV manifests in a broad spectrum of disease ranging from mild illness to severe neurological complications and little is known about Zika immunopathogenesis. OBJECTIVES To define the immunologic biomarkers that correlate with acute ZIKV infection. METHODS We characterized the levels of circulating cytokines, chemokines, and growth factors in 54 infected patients of both genders at five different time points after symptom onset using microbeads multiplex immunoassay; comparison to 100 age-matched controls was performed for statistical analysis and data mining. FINDINGS ZIKV-infected patients present a striking systemic inflammatory response with high levels of pro-inflammatory mediators. Despite the strong inflammatory pattern, IL-1Ra and IL-4 are also induced during the acute infection. Interestingly, the inflammatory cytokines IL-1β, IL-13, IL-17, TNF-α, and IFN-γ; chemokines CXCL8, CCL2, CCL5; and the growth factor G-CSF, displayed a bimodal distribution accompanying viremia. While this is the first manuscript to document bimodal distributions of viremia in ZIKV infection, this has been documented in other viral infections, with a primary viremia peak during mild systemic disease and a secondary peak associated with distribution of the virus to organs and tissues. MAIN CONCLUSIONS Biomarker network analysis demonstrated distinct dynamics in concurrence with the bimodal viremia profiles at different time points during ZIKV infection. Such a robust cytokine and chemokine response has been associated with blood-brain barrier permeability and neuroinvasiveness in other flaviviral infections. High-dimensional data analysis further identified CXCL10, a chemokine involved in foetal neuron apoptosis and Guillain-Barré syndrome, as the most promising biomarker of acute ZIKV infection for potential clinical application.

  8. Methodological utility of chemerin as a novel biomarker of immunity and metabolism

    Directory of Open Access Journals (Sweden)

    Fabian Eichelmann

    2017-07-01

    Full Text Available Chemerin is a recently discovered adipokine with inflammatory and metabolic actions relevant for chronic disease development. However, evidence from human research on the role of chemerin in chronic disease risk is still lacking. We assessed the reliability of plasma chemerin concentrations measured on two occasions over a 4-month period in 207 apparently healthy participants. In addition, we explored the cross-sectional associations between chemerin and inflammatory biomarkers using Spearman partial correlation and multivariable linear regression analyses. Intra-individual reproducibility of chemerin measurements was assessed by calculating intraclass correlation coefficients (ICCs and exploration of Bland–Altman plots. Reliability analyses revealed good reproducibility of chemerin measurements (ICC: 0.72 (95%-CI 0.65, 0.78. Visual inspection of Bland–Altman plots confirmed that the two time point measurements had a high level of agreement. In correlation analyses, chemerin was positively correlated with adiposity measures (body mass index and waist circumference. In addition, independent of adiposity measures, chemerin was correlated with the biomarkers C-reactive protein, fatty acid-binding protein 4 and progranulin (Rho-s ranging from 0.23 to 0.37. In multivariable linear regression analysis, a combination of correlated factors including body mass index, waist circumference, C-reactive protein, progranulin and fatty acid-binding protein-4 explained 28.0% of chemerin concentrations. These findings demonstrate methodological utility of chemerin concentrations in population-based research setting. Human studies are highly warranted in order to provide further insights into the role of chemerin as a biomarker linking immunity and metabolism in relation to chronic disease risk.

  9. Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Yan-Xin Zhang

    2016-05-01

    Full Text Available Nonylphenol (NP was quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS in the urine and plasma of rats treated with 0, 50, and 250 mg/kg/day of NP for four consecutive days. A urinary metabolomic strategy was originally implemented by high performance liquid chromatography time of flight mass spectrometry (HPLC-QTOF-MS to explore the toxicological effects of NP and determine the overall alterations in the metabolite profiles so as to find potential biomarkers. It is essential to point out that from the observation, the metabolic data were clearly clustered and separated for the three groups. To further identify differentiated metabolites, multivariate analysis, including principal component analysis (PCA, orthogonal partial least-squares discriminant analysis (OPLS-DA, high-resolution MS/MS analysis, as well as searches of Metlin and Massbank databases, were conducted on a series of metabolites between the control and dose groups. Finally, five metabolites, including glycine, glycerophosphocholine, 5-hydroxytryptamine, malonaldehyde (showing an upward trend, and tryptophan (showing a downward trend, were identified as the potential urinary biomarkers of NP-induced toxicity. In order to validate the reliability of these potential biomarkers, an independent validation was performed by using the multiple reaction monitoring (MRM-based targeted approach. The oxidative stress reflected by urinary 8-oxo-deoxyguanosine (8-oxodG levels was elevated in individuals highly exposed to NP, supporting the hypothesis that mitochondrial dysfunction was a result of xenoestrogen accumulation. This study reveals a promising approach to find biomarkers to assist researchers in monitoring NP.

  10. An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    International Nuclear Information System (INIS)

    Li, Guodong; Zhang, Wenjuan; Zeng, Huazong; Chen, Lei; Wang, Wenjing; Liu, Jilong; Zhang, Zhiyu; Cai, Zhengdong

    2009-01-01

    SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (m/z) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis. After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma. Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation. Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma

  11. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers.

    Science.gov (United States)

    Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia

    2013-09-06

    Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.

  12. The acute effect of cigarette smoking on the high-sensitivity CRP and fibrinogen biomarkers in chronic obstructive pulmonary disease patients.

    Science.gov (United States)

    van Dijk, Wouter D; Akkermans, Reinier; Heijdra, Yvonne; Weel, Chris van; Schermer, Tjard R J; Scheepers, Paul T J; Lenders, Jacques W M

    2013-04-01

    The evidence on the acute effects of smoking on biomarkers is limited. Our aim was to study the acute effect of smoking on disease-related biomarkers. The acute effect of smoking on serum high sensitivity CRP (hs-CRP) and plasma fibrinogen and its association with disease severity was studied by challenging 31 chronic obstructive pulmonary disease patients with cigarette smoking and repeatedly measuring these biomarkers before and after smoking. Fibrinogen and hs-CRP increased directly after smoking by 9.4 mg/dl (95% CI: 4.2-14.5) and 0.13 mg/l (95% CI: 0.03-0.23), respectively. Fibrinogen levels remained elevated after 35 min, whereas hs-CRP normalized. Pearson's correlation coefficient between the hs-CRP change and chronic obstructive pulmonary disease severity was 0.25 (p = 0.06). Fibrinogen and hs-CRP increased directly after smoking in the chronic obstructive pulmonary disease patients. Their association with disease risk and/or progression remains to be demonstrated.

  13. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  14. Molecular biomarkers in idiopathic pulmonary fibrosis

    Science.gov (United States)

    Ley, Brett; Brown, Kevin K.

    2014-01-01

    Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF. PMID:25260757

  15. Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals.

    Science.gov (United States)

    Zeng, Tao; Zhang, Wanwei; Yu, Xiangtian; Liu, Xiaoping; Li, Meiyi; Chen, Luonan

    2016-07-01

    Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression

  16. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study.

    Science.gov (United States)

    Wang, Thomas J; Wollert, Kai C; Larson, Martin G; Coglianese, Erin; McCabe, Elizabeth L; Cheng, Susan; Ho, Jennifer E; Fradley, Michael G; Ghorbani, Anahita; Xanthakis, Vanessa; Kempf, Tibor; Benjamin, Emelia J; Levy, Daniel; Vasan, Ramachandran S; Januzzi, James L

    2012-09-25

    Biomarkers for predicting cardiovascular events in community-based populations have not consistently added information to standard risk factors. A limitation of many previously studied biomarkers is their lack of cardiovascular specificity. To determine the prognostic value of 3 novel biomarkers induced by cardiovascular stress, we measured soluble ST2, growth differentiation factor-15, and high-sensitivity troponin I in 3428 participants (mean age, 59 years; 53% women) in the Framingham Heart Study. We performed multivariable-adjusted proportional hazards models to assess the individual and combined ability of the biomarkers to predict adverse outcomes. We also constructed a "multimarker" score composed of the 3 biomarkers in addition to B-type natriuretic peptide and high-sensitivity C-reactive protein. During a mean follow-up of 11.3 years, there were 488 deaths, 336 major cardiovascular events, 162 heart failure events, and 142 coronary events. In multivariable-adjusted models, the 3 new biomarkers were associated with each end point (Pstatistic (P=0.005 or lower) and net reclassification improvement (P=0.001 or lower). Multiple biomarkers of cardiovascular stress are detectable in ambulatory individuals and add prognostic value to standard risk factors for predicting death, overall cardiovascular events, and heart failure.

  17. Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis.

    Science.gov (United States)

    Takeshita, Masaru; Kuno, Atsushi; Suzuki, Katsuya; Matsuda, Atsushi; Shimazaki, Hiroko; Nakagawa, Tomomi; Otomo, Yuki; Kabe, Yasuaki; Suematsu, Makoto; Narimatsu, Hisashi; Takeuchi, Tsutomu

    2016-05-21

    Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. This is the first report of a glycoprotein

  18. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    Science.gov (United States)

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. The diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in Urinary Tract Infection (UTI) in camels.

    Science.gov (United States)

    El-Deeb, Wael M; Buczinski, Sébastien

    2015-01-01

    The present study aimed to investigate the diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in urinary tract infection (UTI) in camels. We describe the clinical, bacteriological and biochemical findings in 89 camels. Blood and urine samples from diseased (n = 74) and control camels (n = 15) were submitted to laboratory investigations. The urine analysis revealed high number of RBCS and pus cells. The concentrations of serum and erythrocytic malondialdehyde (sMDA & eMDA), Haptoglobin (Hp), serum amyloid A (SAA), Ceruloplasmin (Cp), fibrinogen (Fb), albumin, globulin and interleukin 6 (IL-6) were higher in diseased camels when compared to healthy ones. Catalase, super oxide dismutase and glutathione levels were lower in diseased camels when compared with control group. Forty one of 74 camels with UTI were successfully treated. The levels of malondialdehyde, catalase, super oxide dismutase, glutathione, Hp, SAA, Fb, total protein, globulin and IL-6 were associated with the odds of treatment failure. The MDA showed a great sensitivity (Se) and specificity (Sp) in predicting treatment failure (Se 85%/Sp 100%) as well as the SAA (Se 92%/Sp 87%) and globulin levels (Se 85%/Sp 100%) when using the cutoffs that maximizes the sum of Se + Sp. Multivariate logistic regression analysis revealed that two models had a high accuracy to predict failure with the first model including sex, sMDA and Hp as covariates (area under the receiver operating characteristic curve (AUC) = 0.92) and a second model using sex, SAA and Hp (AUC = 0.89). Conclusively, the oxidative stress biomarkers and acute phase proteins could be used as diagnostic and prognostic biomarkers in camel UTI management. Efforts should be forced to investigate such biomarkers in other species with UTI.

  20. Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia.

    Directory of Open Access Journals (Sweden)

    Aneta Dobierzewska

    Full Text Available Preeclampsia (PE is a gestational disorder, manifested in the second half of pregnancy by maternal hypertension, proteinuria and generalized edema. PE is a major cause of maternal and fetal morbidity and mortality, accounting for nearly 40% of all premature births worldwide. Bioactive sphingolipids are emerging as key molecules involved in etiopathogenesis of PE, characterized by maternal angiogenic imbalance and symptoms of metabolic syndrome. The aim of this study was to compare the cross-gestational profile of circulating bioactive sphingolipids in maternal plasma from preeclamptic (PE versus normotensive control (CTL subjects with the goal of identifying sphingolipids as candidate first trimester biomarkers of PE for early prediction of the disease.A prospective cohort of patients was sampled at the first, second and third trimester of pregnancy for each patient (11-14, 22-24, and 32-36 weeks´ gestation. A retrospective stratified study design was used to quantify different classes of sphingolipids in maternal plasma. We used a reverse-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-ESI-MS/MS approach for determining different sphingolipid molecular species (sphingosine-1-phosphate (S1P, dihydro-sphingosine-1-phosphate (DH-S1P, sphingomyelins (SM and ceramides (Cer in cross-gestational samples of human plasma from PE (n = 7, 21 plasma samples across pregnancy and CTL (n = 7, 21 plasma samples across pregnancy patients.Plasma levels of angiogenic S1P did not change significantly in control and in preeclamptic patients´ group across gestation. DH-S1P was significantly decreased in second trimester plasma of PE patients in comparison to their first trimester, which could contribute to reduced endothelial barrier observed in PE. The major ceramide species (Cer 16:0 and Cer 24:0 tended to be up-regulated in plasma of control and PE subjects across gestation. The levels of a less abundant plasma ceramide species (Cer

  1. Biomarkers of Pediatric Brain Tumors

    Directory of Open Access Journals (Sweden)

    Mark D Russell

    2013-03-01

    Full Text Available Background and Need for Novel Biomarkers: Brain tumors are the leading cause of death by solid tumors in children. Although improvements have been made in their radiological detection and treatment, our capacity to promptly diagnose pediatric brain tumors in their early stages remains limited. This contrasts several other cancers where serum biomarkers such as CA 19-9 and CA 125 facilitate early diagnosis and treatment. Aim: The aim of this article is to review the latest literature and highlight biomarkers which may be of clinical use in the common types of primary pediatric brain tumor. Methods: A PubMed search was performed to identify studies reporting biomarkers in the bodily fluids of pediatric patients with brain tumors. Details regarding the sample type (serum, cerebrospinal fluid or urine, biomarkers analyzed, methodology, tumor type and statistical significance were recorded. Results: A total of 12 manuscripts reporting 19 biomarkers in 367 patients vs. 397 controls were identified in the literature. Of the 19 biomarkers identified, 12 were isolated from cerebrospinal fluid, 2 from serum, 3 from urine, and 2 from multiple bodily fluids. All but one study reported statistically significant differences in biomarker expression between patient and control groups.Conclusions: This review identifies a panel of novel biomarkers for pediatric brain tumors. It provides a platform for the further studies necessary to validate these biomarkers and, in addition, highlights several techniques through which new biomarkers can be discovered.

  2. Clinical, functional, behavioural and epigenomic biomarkers of obesity.

    Science.gov (United States)

    Lafortuna, Claudio L; Tovar, Armando R; Rastelli, Fabio; Tabozzi, Sarah A; Caramenti, Martina; Orozco-Ruiz, Ximena; Aguilar-Lopez, Miriam; Guevara-Cruz, Martha; Avila-Nava, Azalia; Torres, Nimbe; Bertoli, Gloria

    2017-06-01

    Overweight and obesity are highly prevalent conditions worldwide, linked to an increased risk for death, disability and disease due to metabolic and biochemical abnormalities affecting the biological human system throughout different domains. Biomarkers, defined as indicators of biological processes in health and disease, relevant for body mass excess management have been identified according to different criteria, including anthropometric and molecular indexes, as well as physiological and behavioural aspects. Analysing these different biomarkers, we identified their potential role in diagnosis, prognosis and treatment. Epigenetic biomarkers, cellular mediators of inflammation and factors related to microbiota-host interactions may be considered to have a theranostic value. Though, the molecular processes responsible for the biological phenomenology detected by the other analysed markers, is not clear yet. Nevertheless, these biomarkers possess valuable diagnostic and prognostic power. A new frontier for theranostic biomarkers can be foreseen in the exploitation of parameters defining behaviours and lifestyles linked to the risk of obesity, capable to describe the effects of interventions for obesity prevention and treatment which include also behaviour change strategies.

  3. Novel biomarkers for prediabetes, diabetes, and associated complications

    Directory of Open Access Journals (Sweden)

    Dorcely B

    2017-08-01

    Full Text Available Brenda Dorcely,1 Karin Katz,1 Ram Jagannathan,2 Stephanie S Chiang,1 Babajide Oluwadare,1 Ira J Goldberg,1 Michael Bergman1 1New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY, 2Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA Abstract: The number of individuals with prediabetes is expected to grow substantially and estimated to globally affect 482 million people by 2040. Therefore, effective methods for diagnosing prediabetes will be required to reduce the risk of progressing to diabetes and its complications. The current biomarkers, glycated hemoglobin (HbA1c, fructosamine, and glycated albumin have limitations including moderate sensitivity and specificity and are inaccurate in certain clinical conditions. Therefore, identification of additional biomarkers is being explored recogni­zing that any single biomarker will also likely have inherent limitations. Therefore, combining several biomarkers may more precisely identify those at high risk for developing prediabetes and subsequent progression to diabetes. This review describes recently identified biomarkers and their potential utility for addressing the burgeoning epidemic of dysglycemic disorders. Keywords: prediabetes, biomarkers, inflammatory markers, diabetes, diabetes complications

  4. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges.

    Science.gov (United States)

    Root, Alex; Allen, Peter; Tempst, Paul; Yu, Kenneth

    2018-03-07

    Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but interdisciplinary

  5. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Alex Root

    2018-03-01

    Full Text Available Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but

  6. High-protein, low-fat diets are effective for weight loss and favorably alter biomarkers in healthy adults.

    Science.gov (United States)

    Johnston, Carol S; Tjonn, Sherrie L; Swan, Pamela D

    2004-03-01

    Although popular and effective for weight loss, low-carbohydrate, high-protein, high-fat (Atkins) diets have been associated with adverse changes in blood and renal biomarkers. High-protein diets low in fat may represent an equally appealing diet plan but promote a more healthful weight loss. Healthy adults (n = 20) were randomly assigned to 1 of 2 low-fat (vs. the high-carbohydrate diet (3.9 +/- 1.4 and 0.7 +/- 1.7 g N/d, respectively, P low-fat, energy-restricted diets of varying protein content (15 or 30% energy) promoted healthful weight loss, but diet satisfaction was greater in those consuming the high-protein diet.

  7. Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales

    Science.gov (United States)

    Chen, F. X.; Fang, N. F.; Wang, Y. X.; Tong, L. S.; Shi, Z. H.

    2017-02-01

    Long-term sedimentary sequence research can reveal how human activities and climate interact to affect catchment vegetation, flooding, soil erosion, and sediment sources. In this study, a biomarker sediment fingerprinting technique based on n-alkanes was used to identify long timescale (decadal) sediment sources in a small agricultural catchment. However, the highly saline carbonate environment and bacterial and algal activities elevated the levels of even-chain n-alkanes in the sediments, leading to an obvious even-over-odd predominance of short and middle components (C15-C26). Therefore, by analyzing three odd, long-chain n-alkanes (C27, C29 and C31) in 27 source samples from cropland, gully, and steep slope areas and one sediment sequence (one cultivated horizon and 47 flood couplets), a composite fingerprinting method and genetic algorithm optimization were applied to find the optimal source contributions to sediments. The biomarker fingerprinting results demonstrated that the primary sediment source is gullies, followed by cropland and steep slope areas. The average median source contributions associated with 47 flood couples collected from sediment core samples ranged from 0 ± 0.1% to 91.9 ± 0.4% with an average of 45.0% for gullies, 0 ± 0.4% to 95.6 ± 1.6% with an average of 38.2% for cropland, and 0 ± 2.1% to 60.7 ± 0.4% with an average of 16.8% for steep slopes. However, because farmers were highly motivated to manage the cropland after the 1980s, over half the sediments were derived from cropland in the 1980s. Biomarkers have significant advantages in the identification of sediments derived from different landscape units (e.g., gully and steep slope areas), and n-alkanes have considerable potential in high-resolution research of environmental change based on soil erosion in the hilly Loess Plateau region.

  8. In situ evaluation of cadmium biomarkers in green algae

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Dana F.; Davis, Thomas A. [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Tercier-Waeber, Mary-Lou [Analytical and Biophysical Environmental Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland); England, Roxane [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Wilkinson, Kevin J., E-mail: kj.wilkinson@umontreal.ca [Department of Chemistry, University of Montreal, P.O. Box 6128, Succursale Centre-ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-15

    In situ measurements provide data that are the highly representative of the natural environment. In this paper, laboratory-determined biomarkers of Cd stress that were previously identified for the green alga Chlamydomonas reinhardtii, were tested in two French rivers: a contaminated site on the Riou Mort River and an 'uncontaminated' reference site on the Lot River. Transcript abundance levels were determined by real time qPCR for biomarkers thought to be Cd sensitive. Transcript levels were significantly higher (>5 fold) for organisms exposed to the contaminated site as compared to those exposed at the uncontaminated site. Biomarker mRNA levels were best correlated to free Cd (Cd{sup 2+}) rather than intracellular Cd, suggesting that they may be useful indicators of in situ stress. The paper shows that biomarker expression levels increased with time, were sensitive to metal levels and metal speciation and were higher in the 'contaminated' as opposed to the 'reference' site. - Highlights: > Biomarkers of Cd stress were tested in a contaminated and a reference site. > The organism was viable under exposure conditions and metal accumulation occurred. > Biomarker levels were correlated to Cd{sup 2+} and were higher in the contaminated site. - Algal transcription levels of several biomarkers were studied in two natural waters in situ.

  9. Identification of urinary biomarkers of exposure to di-(2-propylheptyl) phthalate using high-resolution mass spectrometry and two data-screening approaches.

    Science.gov (United States)

    Shih, Chia-Lung; Liao, Pao-Mei; Hsu, Jen-Yi; Chung, Yi-Ning; Zgoda, Victor G; Liao, Pao-Chi

    2018-02-01

    Di-(2-propylheptyl) phthalate (DPHP) is a plasticizer used in polyvinyl chloride and vinyl chloride copolymer that has been suggested to be a toxicant in rats and may affect human health. Because the use of DPHP is increasing, the general German population is being exposed to DPHP. Toxicant metabolism is important for human toxicant exposure assessments. To date, the knowledge regarding DPHP metabolism has been limited, and only four metabolites have been identified in human urine. Ultra-performance liquid chromatography was coupled with Orbitrap high-resolution mass spectrometry (MS) and two data-screening approaches-the signal mining algorithm with isotope tracing (SMAIT) and the mass defect filter (MDF)-for DPHP metabolite candidate discovery. In total, 13 and 104 metabolite candidates were identified by the two approaches, respectively, in in vitro DPHP incubation samples. Of these candidates, 17 were validated as tentative exposure biomarkers using a rat model, 13 of which have not been reported in the literature. The two approaches generated rather different tentative DPHP exposure biomarkers, indicating that these approaches are complementary for discovering exposure biomarkers. Compared with the four previously reported DPHP metabolites, the three tentative novel biomarkers had higher peak intensity ratios, and two were confirmed as DPHP hydroxyl metabolites based on their MS/MS product ion profiles. These three tentative novel biomarkers should be further investigated for potential application in human exposure assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood.

    Directory of Open Access Journals (Sweden)

    Sunil M Kurian

    2009-07-01

    Full Text Available Despite significant improvements in life expectancy of kidney transplant patients due to advances in surgery and immunosuppression, Chronic Allograft Nephropathy (CAN remains a daunting problem. A complex network of cellular mechanisms in both graft and peripheral immune compartments complicates the non-invasive diagnosis of CAN, which still requires biopsy histology. This is compounded by non-immunological factors contributing to graft injury. There is a pressing need to identify and validate minimally invasive biomarkers for CAN to serve as early predictors of graft loss and as metrics for managing long-term immunosuppression.We used DNA microarrays, tandem mass spectroscopy proteomics and bioinformatics to identify genomic and proteomic markers of mild and moderate/severe CAN in peripheral blood of two distinct cohorts (n = 77 total of kidney transplant patients with biopsy-documented histology.Gene expression profiles reveal over 2400 genes for mild CAN, and over 700 for moderate/severe CAN. A consensus analysis reveals 393 (mild and 63 (moderate/severe final candidates as CAN markers with predictive accuracy of 80% (mild and 92% (moderate/severe. Proteomic profiles show over 500 candidates each, for both stages of CAN including 302 proteins unique to mild and 509 unique to moderate/severe CAN.This study identifies several unique signatures of transcript and protein biomarkers with high predictive accuracies for mild and moderate/severe CAN, the most common cause of late allograft failure. These biomarkers are the necessary first step to a proteogenomic classification of CAN based on peripheral blood profiling and will be the targets of a prospective clinical validation study.

  11. Novel biomarkers for sepsis

    DEFF Research Database (Denmark)

    Larsen, Frederik Fruergaard; Petersen, J Asger

    2017-01-01

    BACKGROUND: Sepsis is a prevalent condition among hospitalized patients that carries a high risk of morbidity and mortality. Rapid recognition of sepsis as the cause of deterioration is desirable, so effective treatment can be initiated rapidly. Traditionally, diagnosis was based on presence of two...... or more positive SIRS criteria due to infection. However, recently published sepsis-3 criteria put more emphasis on organ dysfunction caused by infection in the definition of sepsis. Regardless of this, no gold standard for diagnosis exist, and clinicians still rely on a number of traditional and novel...... biomarkers to discriminate between patients with and without infection, as the cause of deterioration. METHOD: Narrative review of current literature. RESULTS: A number of the most promising biomarkers for diagnoses and prognostication of sepsis are presented. CONCLUSION: Procalcitonin, presepsin, CD64, su...

  12. Polymorphisms within the APOBR gene are highly associated with milk levels of prognostic ketosis biomarkers in dairy cows.

    Science.gov (United States)

    Tetens, Jens; Heuer, Claas; Heyer, Iris; Klein, Matthias S; Gronwald, Wolfram; Junge, Wolfgang; Oefner, Peter J; Thaller, Georg; Krattenmacher, Nina

    2015-04-01

    Essentially all high-yielding dairy cows experience a negative energy balance during early lactation leading to increased lipomobilization, which is a normal physiological response. However, a severe energy deficit may lead to high levels of ketone bodies and, subsequently, to subclinical or clinical ketosis. It has previously been reported that the ratio of glycerophosphocholine to phosphocholine in milk is a prognostic biomarker for the risk of ketosis in dairy cattle. It was hypothesized that this ratio reflects the ability to break down blood phosphatidylcholine as a fatty acid resource. In the current study, 248 animals from a previous study were genotyped with Illumina BovineSNP50 BeadChip, and genome-wide association studies were carried out for the milk levels of phosphocholine, glycerophosphocholine, and the ratio of both metabolites. It was demonstrated that the latter two traits are heritable with h2 = 0.43 and h2 = 0.34, respectively. A major quantitative trait locus was identified on cattle chromosome 25. The APOBR gene, coding for the apolipoprotein B receptor, is located within this region and was analyzed as a candidate gene. The analysis revealed highly significant associations of polymorphisms within the gene with glycerophosphocholine as well as the metabolite ratio. These findings support the hypothesis that differences in the ability to take up blood phosphatidylcholine from low-density lipoproteins play an important role in early lactation metabolic stability of dairy cows and indicate APOBR to contain a causative variant. Copyright © 2015 the American Physiological Society.

  13. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  14. Lipidomics analysis of follicular fluid by ESI-MS reveals potential biomarkers for ovarian endometriosis.

    Science.gov (United States)

    Cordeiro, Fernanda Bertuccez; Cataldi, Thais Regiani; Perkel, Kayla Jane; do Vale Teixeira da Costa, Lívia; Rochetti, Raquel Cellin; Stevanato, Juliana; Eberlin, Marcos Nogueira; Zylbersztejn, Daniel Suslik; Cedenho, Agnaldo Pereira; Turco, Edson Guimarães Lo

    2015-12-01

    The aim of the present study was to analyze the lipid profile of follicular fluid from patients with endometriosis and endometrioma who underwent in vitro fertilization treatment (IVF). The control group (n = 10) was composed of women with tubal factor or minimal male factor infertility who had positive pregnancy outcomes after IVF. The endometriosis group consisted of women with endometriosis diagnosed by videolaparoscopy (n = 10), and from the same patients, the endometriomas fluids were collected, which composed the endometrioma group (n = 10). From the follicular fluid and endometriomas, lipids were extracted by the Bligh and Dyer method, and the samples were analyzed by tandem mass spectrometry. We observed phosphatidylglycerol phosphate, phosphatidylcholine, phosphatidylserine, and phosphatidylnositol bisphosphate in the control group. In the endometriosis group, sphingolipids and phosphatidylcholines were more abundant, while in the endometrioma group, sphingolipids and phosphatidylcholines with different m/z from the endometriosis group were found in high abundance. This analysis demonstrated that there is a differential representation of these lipids according to their respective groups. In addition, the lipids found are involved in important mechanisms related to endometriosis progress in the ovary. Thus, the metabolomic approach for the study of lipids may be helpful in potential biomarker discovery.

  15. Prognostic biomarkers in osteoarthritis

    Science.gov (United States)

    Attur, Mukundan; Krasnokutsky-Samuels, Svetlana; Samuels, Jonathan; Abramson, Steven B.

    2013-01-01

    Purpose of review Identification of patients at risk for incident disease or disease progression in osteoarthritis remains challenging, as radiography is an insensitive reflection of molecular changes that presage cartilage and bone abnormalities. Thus there is a widely appreciated need for biochemical and imaging biomarkers. We describe recent developments with such biomarkers to identify osteoarthritis patients who are at risk for disease progression. Recent findings The biochemical markers currently under evaluation include anabolic, catabolic, and inflammatory molecules representing diverse biological pathways. A few promising cartilage and bone degradation and synthesis biomarkers are in various stages of development, awaiting further validation in larger populations. A number of studies have shown elevated expression levels of inflammatory biomarkers, both locally (synovial fluid) and systemically (serum and plasma). These chemical biomarkers are under evaluation in combination with imaging biomarkers to predict early onset and the burden of disease. Summary Prognostic biomarkers may be used in clinical knee osteoarthritis to identify subgroups in whom the disease progresses at different rates. This could facilitate our understanding of the pathogenesis and allow us to differentiate phenotypes within a heterogeneous knee osteoarthritis population. Ultimately, such findings may help facilitate the development of disease-modifying osteoarthritis drugs (DMOADs). PMID:23169101

  16. A plasma metabonomic analysis on potential biomarker in pyrexia induced by three methods using ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Liu, Ting; Li, Songhe; Tian, Xiumin; Li, Zhaoqin; Cui, Yue; Han, Fei; Zhao, Yunli; Yu, Zhiguo

    2017-09-15

    Pyrexia usually is a systemic pathological process that can lead to metabolic disorders. Metabonomics as a powerful tool not only can reveal the pathological mechanisms, but also can give insight into the progression of pyrexia from another angle. Thus, an ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) metabonomic approach was employed for the first time to investigate the plasma biochemical characteristics of pyrexia induced by three methods and to reveal subtle metabolic changes under the condition of pyrexia so as to explore its mechanism. The acquired metabolic data of the models were subjected to principal component analysis (PCA) for allowing the clear separation of the pyrexia rats from the control rats. Variable importance for project values (VIP) and Student's t-test were used to screen the significant metabolic changes caused by pyrexia. Fifty-two endogenous metabolites were identified and putatively identified as potential biomarkers primarily associated with phospholipid metabolism, sphingolipid metabolism, fatty acid oxidation metabolism, fatty acid amides metabolism and amino acid metabolism, and related to bile acid biosynthesis and glycerolipid catabolism. LysoPC (14:0), LysoPC (18:3), LysoPC (20:4), LysoPC (16:0), phytosphingosine, Cer (d18:0/12:0), N-[(4E,8E)-1,3-dihydroxyoctadeca-4,8-dien-2-yl]hexadecanamide, oleamide, fatty acid amide C22:1, tryptophan, acetylcarnitine, palmitoylcarnitine and stearoylcarnitine were considered as common potential biomarkers of pyrexia rats induced by three methods: Our results revealed that the UHPLC-FT-ICR-MS-based metabolomic method is helpful for finding new potential metabolic markers for pyrexia detection and offers a good perspective in pyrexia research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biomarkers in adult posthemorrhagic hydrocephalus.

    Science.gov (United States)

    Hua, Cong; Zhao, Gang

    2017-08-01

    Posthemorrhagic hydrocephalus is a severe complication following intracranial hemorrhage. Posthemorrhagic hydrocephalus is often associated with high morbidity and mortality and serves as an important clinical predictor of adverse outcomes after intracranial hemorrhage. Currently, no effective medical intervention exists to improve functional outcomes in posthemorrhagic hydrocephalus patients because little is still known about the mechanisms of posthemorrhagic hydrocephalus pathogenesis. Because a better understanding of the posthemorrhagic hydrocephalus pathogenesis would facilitate development of clinical treatments, this is an active research area. The purpose of this review is to describe recent progress in elucidation of molecular mechanisms that cause posthemorrhagic hydrocephalus. What we are certain of is that the entry of blood into the ventricular system and subarachnoid space results in release of lytic blood products which cause a series of physiological and pathological changes in the brain. Blood components that can be linked to pathology would serve as disease biomarkers. From studies of posthemorrhagic hydrocephalus, such biomarkers are known to mutually synergize to initiate and promote posthemorrhagic hydrocephalus progression. These findings suggest that modulation of biomarker expression or function may benefit posthemorrhagic hydrocephalus patients.

  18. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers.

    Directory of Open Access Journals (Sweden)

    Fermín I Milagro

    Full Text Available INTRODUCTION: MicroRNAs (miRNAs are being increasingly studied in relation to energy metabolism and body composition homeostasis. Indeed, the quantitative analysis of miRNAs expression in different adiposity conditions may contribute to understand the intimate mechanisms participating in body weight control and to find new biomarkers with diagnostic or prognostic value in obesity management. OBJECTIVE: The aim of this study was the search for miRNAs in blood cells whose expression could be used as prognostic biomarkers of weight loss. METHODS: Ten Caucasian obese women were selected among the participants in a weight-loss trial that consisted in following an energy-restricted treatment. Weight loss was considered unsuccessful when 5% (responders. At baseline, total miRNA isolated from peripheral blood mononuclear cells (PBMC was sequenced with SOLiD v4. The miRNA sequencing data were validated by RT-PCR. RESULTS: Differential baseline expression of several miRNAs was found between responders and non-responders. Two miRNAs were up-regulated in the non-responder group (mir-935 and mir-4772 and three others were down-regulated (mir-223, mir-224 and mir-376b. Both mir-935 and mir-4772 showed relevant associations with the magnitude of weight loss, although the expression of other transcripts (mir-874, mir-199b, mir-766, mir-589 and mir-148b also correlated with weight loss. CONCLUSIONS: This research addresses the use of high-throughput sequencing technologies in the search for miRNA expression biomarkers in obesity, by determining the miRNA transcriptome of PBMC. Basal expression of different miRNAs, particularly mir-935 and mir-4772, could be prognostic biomarkers and may forecast the response to a hypocaloric diet.

  19. Individual Biomarkers Using Molecular Personalized Medicine Approaches.

    Science.gov (United States)

    Zenner, Hans P

    2017-01-01

    Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.

  20. CURRENT APPROACHES FOR RESEARCH OF MULTIPLE SCLEROSIS BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Kolyada T.I

    2016-12-01

    techniques (including full genome resequencing, targeted resequencing of the genome. The results obtained with these techniques became the basis for the further development of screening technologies. Disadvantages of the "classical" methods are associated not only with their resolution or other technical limitations but also to the fact that the range of pathological processes in MS may vary significantly from patient to patient and single biomarkers suitable for one group of patients may be inappropriate for another group of patients. Due to the complexity of MS the reflection of pathological changes may be determined not by single biomarkers but by isolated biomarkers panel from different compartments. The solution of this problem seems to be possible due to the development of microarray methods including biochips technology. Biochips are used for screening of MS patients and allow determining the rare MS-associated gene variants that have a significant impact on the development of the disease. In conjunction with the "classical" methods, microarrays allowed to apply systems biology approaches (i.e. genomics, transcriptomics, proteomics, metabolomics, epigenomics in the study of MS biomarkers. Addition of bioinformatics methods to "classical" and microarray laboratory methods allows not only to find new biomarkers but to identify complex patterns of biomarkers while single biomarkers informative value is not sufficient. To date, the use of genome-wide association study (GWAS revealed more than a hundred genetic variants associated with the development of MS, while the total number of investigated genetic variants including the candidate ones exceeded two hundred. GWAS is used to identify correlations of genetic variants with the disease, including the identification of variants associated with a risk of developing MS, but cannot answer the question of the causal links between specific genes polymorphism and the pathogenesis of MS. Current studies of biomarkers of disease

  1. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    Science.gov (United States)

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  2. Biomarkers in cancer screening: a public health perspective.

    Science.gov (United States)

    Srivastava, Sudhir; Gopal-Srivastava, Rashmi

    2002-08-01

    The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of

  3. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  4. Novel ageing-biomarker discovery using data-intensive technologies.

    Science.gov (United States)

    Griffiths, H R; Augustyniak, E M; Bennett, S J; Debacq-Chainiaux, F; Dunston, C R; Kristensen, P; Melchjorsen, C J; Navarrete, Santos A; Simm, A; Toussaint, O

    2015-11-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Beneficial effect of bilingualism on Alzheimer's disease CSF biomarkers and cognition.

    Science.gov (United States)

    Estanga, Ainara; Ecay-Torres, Mirian; Ibañez, Almudena; Izagirre, Andrea; Villanua, Jorge; Garcia-Sebastian, Maite; Iglesias Gaspar, M Teresa; Otaegui-Arrazola, Ane; Iriondo, Ane; Clerigue, Monserrat; Martinez-Lage, Pablo

    2017-02-01

    Bilingualism as a component of cognitive reserve has been claimed to delay the onset of Alzheimer's disease (AD). However, its effect on cerebrospinal fluid (CSF) AD-biomarkers has not been investigated. We assessed cognitive performance and CSF AD-biomarkers, and potential moderation effect of bilingualism on the association between age, CSF AD-biomarkers, and cognition. Cognitively healthy middle-aged participants classified as monolinguals (n = 100, n CSF  = 59), early (n = 81, n CSF  = 55) and late bilinguals (n = 97, n CSF  = 52) were evaluated. Models adjusted for confounders showed that bilinguals performed better than monolinguals on digits backwards (early-bilinguals p = 0.003), Judgment of Line Orientation (JLO) (early-bilinguals p = 0.018; late-bilinguals p = 0.004), and Trail Making Test-B (late-bilinguals p = 0.047). Early bilingualism was associated with lower CSF total-tau (p = 0.019) and lower prevalence of preclinical AD (NIA-AA classification) (p = 0.02). Bilingualism showed a moderation effect on the relationship between age and CSF AD-biomarkers and the relationship between age and executive function. We conclude that bilingualism contributes to cognitive reserve enhancing executive and visual-spatial functions. For the first time, this study reveals that early bilingualism is associated with more favorable CSF AD-biomarker profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The role of novel biomarkers in predicting diabetic nephropathy: a review

    Directory of Open Access Journals (Sweden)

    Uwaezuoke SN

    2017-08-01

    Full Text Available Samuel N Uwaezuoke Pediatric Nephrology Firm, Department of Pediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria Abstract: Diabetic nephropathy (DN is one of the microvascular complications of the kidney arising commonly from type 1 diabetes mellitus (T1DM, and occasionally from type 2 diabetes mellitus (T2DM. Microalbuminuria serves as an early indicator of DN risk and a predictor of its progression as well as cardiovascular disease risk in both T1DM and T2DM. Although microalbuminuria remains the gold standard for early detection of DN, it is not a sufficiently accurate predictor of DN risk due to some limitations. Thus, there is a paradigm shift to novel biomarkers which would help to predict DN risk early enough and possibly prevent the occurrence of end-stage kidney disease. These new biomarkers have been broadly classified into glomerular biomarkers, tubular biomarkers, biomarkers of inflammation, biomarkers of oxidative stress, and miscellaneous biomarkers which also include podocyte biomarkers, some of which are also considered as tubular and glomerular biomarkers. Although they are potentially useful for the evaluation of DN, current data still preclude the routine clinical use of majority of them. However, their validation using high-quality and large longitudinal studies is of paramount importance, as well as the subsequent development of a biomarker panel which can reliably predict and evaluate this renal microvascular disease. This paper aims to review the predictive role of these biomarkers in the evaluation of DN. Keywords: type 1 diabetes mellitus, renal microvascular complication, microalbuminuria, end-stage kidney disease, biomarker panel

  7. Plasma biomarker of dietary phytosterol intake.

    Directory of Open Access Journals (Sweden)

    Xiaobo Lin

    Full Text Available Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI. Therefore, we sought to identify a plasma biomarker of DPI.Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P 0.600; P < 0.01.The ratio of plasma campesterol to the coordinately regulated endogenous cholesterol metabolite 5-α-cholestanol is a biomarker of dietary phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.

  8. Rapid and High-Throughput Detection and Quantitation of Radiation Biomarkers in Human and Nonhuman Primates by Differential Mobility Spectrometry-Mass Spectrometry

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul

    2016-10-01

    Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.

  9. Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes

    DEFF Research Database (Denmark)

    Pena, Michelle J; de Zeeuw, Dick; Mischak, Harald

    2015-01-01

    biomarkers address the predictive performance of novel biomarker panels in addition to the classical panel in type 2 diabetes. However, the prospective studies conducted so far have small sample sizes, are insufficiently powered and lack external validation. Adequately sized validation studies of multiple......Diabetic kidney disease occurs in ∼ 25-40% of patients with type 2 diabetes. Given the high risk of progressive renal function loss and end-stage renal disease, early identification of patients with a renal risk is important. Novel biomarkers may aid in improving renal risk stratification...... and metabolomics biomarkers. We focus on multiple biomarker panels since the molecular processes of renal disease progression in type 2 diabetes are heterogeneous, rendering it unlikely that a single biomarker significantly adds to clinical risk prediction. A limited number of prospective studies of multiple...

  10. The Knowledge-Integrated Network Biomarkers Discovery for Major Adverse Cardiac Events

    Science.gov (United States)

    Jin, Guangxu; Zhou, Xiaobo; Wang, Honghui; Zhao, Hong; Cui, Kemi; Zhang, Xiang-Sun; Chen, Luonan; Hazen, Stanley L.; Li, King; Wong, Stephen T. C.

    2010-01-01

    The mass spectrometry (MS) technology in clinical proteomics is very promising for discovery of new biomarkers for diseases management. To overcome the obstacles of data noises in MS analysis, we proposed a new approach of knowledge-integrated biomarker discovery using data from Major Adverse Cardiac Events (MACE) patients. We first built up a cardiovascular-related network based on protein information coming from protein annotations in Uniprot, protein–protein interaction (PPI), and signal transduction database. Distinct from the previous machine learning methods in MS data processing, we then used statistical methods to discover biomarkers in cardiovascular-related network. Through the tradeoff between known protein information and data noises in mass spectrometry data, we finally could firmly identify those high-confident biomarkers. Most importantly, aided by protein–protein interaction network, that is, cardiovascular-related network, we proposed a new type of biomarkers, that is, network biomarkers, composed of a set of proteins and the interactions among them. The candidate network biomarkers can classify the two groups of patients more accurately than current single ones without consideration of biological molecular interaction. PMID:18665624

  11. Biomarkers of Nutrition for Development—Iodine Review1234

    Science.gov (United States)

    Rohner, Fabian; Zimmermann, Michael; Jooste, Pieter; Pandav, Chandrakant; Caldwell, Kathleen; Raghavan, Ramkripa; Raiten, Daniel J.

    2014-01-01

    The objective of the Biomarkers of Nutrition for Development (BOND) project is to provide state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. Specifically, the BOND project seeks to develop consensus on accurate assessment methodologies that are applicable to researchers (laboratory/clinical/surveillance), clinicians, programmers, and policy makers (data consumers). The BOND project is also intended to develop targeted research agendas to support the discovery and development of biomarkers through improved understanding of nutrient biology within relevant biologic systems. In phase I of the BOND project, 6 nutrients (iodine, vitamin A, iron, zinc, folate, and vitamin B-12) were selected for their high public health importance because they typify the challenges faced by users in the selection, use, and interpretation of biomarkers. For each nutrient, an expert panel was constituted and charged with the development of a comprehensive review covering the respective nutrient’s biology, existing biomarkers, and specific issues of use with particular reference to the needs of the individual user groups. In addition to the publication of these reviews, materials from each will be extracted to support the BOND interactive Web site (http://www.nichd.nih.gov/global_nutrition/programs/bond/pages/index.aspx). This review represents the first in the series of reviews and covers all relevant aspects of iodine biology and biomarkers. The article is organized to provide the reader with a full appreciation of iodine’s background history as a public health issue, its biology, and an overview of available biomarkers and specific considerations for the use and interpretation of iodine biomarkers across a range of clinical and population-based uses. The review also includes a detailed research agenda to address priority gaps in our understanding of iodine biology and assessment

  12. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Hellberg

    2016-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.

  13. Predictive Biomarkers for Asthma Therapy.

    Science.gov (United States)

    Medrek, Sarah K; Parulekar, Amit D; Hanania, Nicola A

    2017-09-19

    Asthma is a heterogeneous disease characterized by multiple phenotypes. Treatment of patients with severe disease can be challenging. Predictive biomarkers are measurable characteristics that reflect the underlying pathophysiology of asthma and can identify patients that are likely to respond to a given therapy. This review discusses current knowledge regarding predictive biomarkers in asthma. Recent trials evaluating biologic therapies targeting IgE, IL-5, IL-13, and IL-4 have utilized predictive biomarkers to identify patients who might benefit from treatment. Other work has suggested that using composite biomarkers may offer enhanced predictive capabilities in tailoring asthma therapy. Multiple biomarkers including sputum eosinophil count, blood eosinophil count, fractional concentration of nitric oxide in exhaled breath (FeNO), and serum periostin have been used to identify which patients will respond to targeted asthma medications. Further work is needed to integrate predictive biomarkers into clinical practice.

  14. Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers.

    Directory of Open Access Journals (Sweden)

    Maria A Sleddering

    Full Text Available Very low calorie diets (VLCD with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼ 450 kcal/day. Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS and targeted multiple reaction monitoring (MRM and a large scale isobaric tags for relative and absolute quantitation (iTRAQ approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin, obesity-associated (complement C3, and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV. To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers.Controlled-Trials.com ISRCTN76920690.

  15. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    Science.gov (United States)

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  16. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy.

    Science.gov (United States)

    Forker, L J; Choudhury, A; Kiltie, A E

    2015-10-01

    Radiotherapy is an essential component of treatment for more than half of newly diagnosed cancer patients. The response to radiotherapy varies widely between individuals and although advances in technology have allowed the adaptation of radiotherapy fields to tumour anatomy, it is still not possible to tailor radiotherapy based on tumour biology. A biomarker of intrinsic radiosensitivity would be extremely valuable for individual dosing, aiding decision making between radical treatment options and avoiding toxicity of neoadjuvant or adjuvant radiotherapy in those unlikely to benefit. This systematic review summarises the current evidence for biomarkers under investigation as predictors of radiotherapy benefit. Only 10 biomarkers were identified as having been evaluated for their radiotherapy-specific predictive value in over 100 patients in a clinical setting, highlighting that despite a rich literature there were few high-quality studies for inclusion. The most extensively studied radiotherapy predictive biomarkers were the radiosensitivity index and MRE11; however, neither has been evaluated in a randomised controlled trial. Although these biomarkers show promise, there is not enough evidence to justify their use in routine practice. Further validation is needed before biomarkers can fulfil their potential and predict treatment outcomes for large numbers of patients. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  18. Cardiac biomarkers in Neonatology

    OpenAIRE

    Vijlbrief, D.C.

    2015-01-01

    In this thesis, the role for cardiac biomarkers in neonatology was investigated. Several clinically relevant results were reported. In term and preterm infants, hypoxia and subsequent adaptation play an important role in cardiac biomarker elevation. The elevated natriuretic peptides are indicative of abnormal function; elevated troponins are suggestive for cardiomyocyte damage. This methodology makes these biomarkers of additional value in the treatment of newborn infants, separate or as a co...

  19. Distinguishing prognostic and predictive biomarkers: An information theoretic approach.

    Science.gov (United States)

    Sechidis, Konstantinos; Papangelou, Konstantinos; Metcalfe, Paul D; Svensson, David; Weatherall, James; Brown, Gavin

    2018-05-02

    The identification of biomarkers to support decision-making is central to personalised medicine, in both clinical and research scenarios. The challenge can be seen in two halves: identifying predictive markers, which guide the development/use of tailored therapies; and identifying prognostic markers, which guide other aspects of care and clinical trial planning, i.e. prognostic markers can be considered as covariates for stratification. Mistakenly assuming a biomarker to be predictive, when it is in fact largely prognostic (and vice-versa) is highly undesirable, and can result in financial, ethical and personal consequences. We present a framework for data-driven ranking of biomarkers on their prognostic/predictive strength, using a novel information theoretic method. This approach provides a natural algebra to discuss and quantify the individual predictive and prognostic strength, in a self-consistent mathematical framework. Our contribution is a novel procedure, INFO+, which naturally distinguishes the prognostic vs predictive role of each biomarker and handles higher order interactions. In a comprehensive empirical evaluation INFO+ outperforms more complex methods, most notably when noise factors dominate, and biomarkers are likely to be falsely identified as predictive, when in fact they are just strongly prognostic. Furthermore, we show that our methods can be 1-3 orders of magnitude faster than competitors, making it useful for biomarker discovery in 'big data' scenarios. Finally, we apply our methods to identify predictive biomarkers on two real clinical trials, and introduce a new graphical representation that provides greater insight into the prognostic and predictive strength of each biomarker. R implementations of the suggested methods are available at https://github.com/sechidis. konstantinos.sechidis@manchester.ac.uk. Supplementary data are available at Bioinformatics online.

  20. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches.

    Science.gov (United States)

    Checkley, William; Deza, Maria P; Klawitter, Jost; Romero, Karina M; Klawitter, Jelena; Pollard, Suzanne L; Wise, Robert A; Christians, Uwe; Hansel, Nadia N

    2016-12-01

    The diagnosis of asthma in children is challenging and relies on a combination of clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted metabolomics approach combined with data science methods. We conducted a nested case-control study of 100 children living in a peri-urban community in Lima, Peru. We defined cases as children with current asthma, and controls as children with no prior history of asthma and normal lung function. We further categorized enrollment following a factorial design to enroll equal numbers of children as either overweight or not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted markers using a metabolomics approach based on high performance liquid chromatography-mass spectrometry. A statistical comparison of targeted metabolites between children with asthma (n = 50) and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several metabolites: children with asthma had approximately 40-50% lower relative concentrations of ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-d-gluconate when compared to children without asthma, and 70% lower relative concentrations of reduced glutathione (all p  13 077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second). By using a metabolomics approach applied to serum, we were able to discriminate between children with and without asthma by revealing different metabolic patterns. These results suggest that serum metabolomics may represent a diagnostic tool for asthma and may be helpful for distinguishing asthma phenotypes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Procalcitonin as an adjunctive biomarker in sepsis

    Directory of Open Access Journals (Sweden)

    Mahua Sinha

    2011-01-01

    Full Text Available Sepsis can sometimes be difficult to substantiate, and its distinction from non-infectious conditions in critically ill patients is often a challenge. Serum procalcitonin (PCT assay is one of the biomarkers of sepsis. The present study was aimed to assess the usefulness of PCT assay in critically ill patients with suspected sepsis. The study included 40 patients from the intensive care unit with suspected sepsis. Sepsis was confirmed clinically and/or by positive blood culture. Serum PCT was assayed semi-quantitatively by rapid immunochromatographic technique (within 2 hours of sample receipt. Among 40 critically ill patients, 21 had clinically confirmed sepsis. There were 12 patients with serum PCT ≥10 ng/ml (8, blood culture positive; 1, rickettsia; 2, post-antibiotic blood culture sterile; and 1, non-sepsis; 7 patients with PCT 2-10 ng/ml (4, blood culture positive; 1, falciparum malaria; 2, post-antibiotic blood culture sterile; 3 patients with PCT of 0.5 to 2 ng/ml (sepsis in 1 patient; and 18 patients with PCT < 0.5 ng/ml (sepsis in 2 patients. Patients with PCT ≥ 2 ng/ml had statistically significant correlation with the presence of sepsis (P<0.0001. The PCT assay revealed moderate sensitivity (86% and high specificity (95% at a cut-off ≥ 2 ng/ml. The PCT assay was found to be a useful biomarker of sepsis in this study. The assay could be performed and reported rapidly and provided valuable information before availability of culture results. This might assist in avoiding unwarranted antibiotic usage.

  2. A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Ngounou Wetie, Armand G; Wormwood, Kelly L; Russell, Stefanie; Ryan, Jeanne P; Darie, Costel C; Woods, Alisa G

    2015-06-01

    Autism spectrum disorder (ASD) prevalence is increasing, with current estimates at 1/68-1/50 individuals diagnosed with an ASD. Diagnosis is based on behavioral assessments. Early diagnosis and intervention is known to greatly improve functional outcomes in people with ASD. Diagnosis, treatment monitoring and prognosis of ASD symptoms could be facilitated with biomarkers to complement behavioral assessments. Mass spectrometry (MS) based proteomics may help reveal biomarkers for ASD. In this pilot study, we have analyzed the salivary proteome in individuals with ASD compared to neurotypical control subjects, using MS-based proteomics. Our goal is to optimize methods for salivary proteomic biomarker discovery and to identify initial putative biomarkers in people with ASDs. The salivary proteome is virtually unstudied in ASD, and saliva could provide an easily accessible biomaterial for analysis. Using nano liquid chromatography-tandem mass spectrometry, we found statistically significant differences in several salivary proteins, including elevated prolactin-inducible protein, lactotransferrin, Ig kappa chain C region, Ig gamma-1 chain C region, Ig lambda-2 chain C regions, neutrophil elastase, polymeric immunoglobulin receptor and deleted in malignant brain tumors 1. Our results indicate that this is an effective method for identification of salivary protein biomarkers, support the concept that immune system and gastrointestinal disturbances may be present in individuals with ASDs and point toward the need for larger studies in behaviorally-characterized individuals. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  4. Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting

    Directory of Open Access Journals (Sweden)

    Lars Tomas Hillered

    2014-12-01

    Full Text Available Cerebral microdialysis (MD was introduced as a neurochemical monitoring tool in the early 1990s and is currently well established for the sampling of low molecular weight biomarkers of energy metabolic perturbation and cellular distress in the neurointensive care (NIC setting. There is now a growing interest in MD for intracerebral sampling of protein biomarkers of secondary injury mechanisms in acute traumatic and neurovascular brain injury in the NIC community. The initial enthusiasm over the opportunity to sample protein biomarkers with high molecular weight cut-off (MWCO MD catheters has dampened somewhat with the emerging realization of inherent problems with this methodology including protein adhesion, protein-protein interaction and biofouling, leading to unstable MD catheter performance (i.e. fluid recovery and extraction efficiency. This review will focus on the results of a multidisciplinary collaborative effort, within the Uppsala Berzelii Centre for Neurodiagnostics during the past several years, to study the features of the complex process of high MWCO MD for protein biomarkers. This research has led to new methodology showing robust in vivo performance with optimized fluid recovery and improved extraction efficiency, allowing for more accurate biomarker monitoring. In combination with evolving analytical methodology allowing for multiplex biomarker analysis in ultra-small MD samples a new opportunity opens up for high-resolution temporal mapping of secondary injury cascades, such as neuroinflammation and other cell injury reactions directly in the injured human brain. Such data may provide an important basis for improved characterization of complex injuries, e.g. traumatic and neurovascular brain injury, and help in defining targets and treatment windows for neuroprotective drug development

  5. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker.

    Directory of Open Access Journals (Sweden)

    Julien Textoris

    Full Text Available Preeclampsia is a placental disease characterized by hypertension and proteinuria in pregnant women, and it is associated with a high maternal and neonatal morbidity. However, circulating biomarkers that are able to predict the prognosis of preeclampsia are lacking. Thirty-eight women were included in the current study. They consisted of 19 patients with preeclampsia (13 with severe preeclampsia and 6 with non-severe preeclampsia and 19 gestational age-matched women with normal pregnancies as controls. We measured circulating factors that are associated with the coagulation pathway (including fibrinogen, fibronectin, factor VIII, antithrombin, protein S and protein C, endothelial activation (such as soluble endoglin and CD146, and the release of total and platelet-derived microparticles. These markers enabled us to discriminate the preeclampsia condition from a normal pregnancy but were not sufficient to distinguish severe from non-severe preeclampsia. We then used a microarray to study the transcriptional signature of blood samples. Preeclampsia patients exhibited a specific transcriptional program distinct from that of the control group of women. Interestingly, we also identified a severity-related transcriptional signature. Functional annotation of the upmodulated signature in severe preeclampsia highlighted two main functions related to "ribosome" and "complement". Finally, we identified 8 genes that were specifically upmodulated in severe preeclampsia compared with non-severe preeclampsia and the normotensive controls. Among these genes, we identified VSIG4 as a potential diagnostic marker of severe preeclampsia. The determination of this gene may improve the prognostic assessment of severe preeclampsia.

  6. Biomarkers for Detecting Mitochondrial Disorders

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2018-01-01

    Full Text Available (1 Objectives: Mitochondrial disorders (MIDs are a genetically and phenotypically heterogeneous group of slowly or rapidly progressive disorders with onset from birth to senescence. Because of their variegated clinical presentation, MIDs are difficult to diagnose and are frequently missed in their early and late stages. This is why there is a need to provide biomarkers, which can be easily obtained in the case of suspecting a MID to initiate the further diagnostic work-up. (2 Methods: Literature review. (3 Results: Biomarkers for diagnostic purposes are used to confirm a suspected diagnosis and to facilitate and speed up the diagnostic work-up. For diagnosing MIDs, a number of dry and wet biomarkers have been proposed. Dry biomarkers for MIDs include the history and clinical neurological exam and structural and functional imaging studies of the brain, muscle, or myocardium by ultrasound, computed tomography (CT, magnetic resonance imaging (MRI, MR-spectroscopy (MRS, positron emission tomography (PET, or functional MRI. Wet biomarkers from blood, urine, saliva, or cerebrospinal fluid (CSF for diagnosing MIDs include lactate, creatine-kinase, pyruvate, organic acids, amino acids, carnitines, oxidative stress markers, and circulating cytokines. The role of microRNAs, cutaneous respirometry, biopsy, exercise tests, and small molecule reporters as possible biomarkers is unsolved. (4 Conclusions: The disadvantages of most putative biomarkers for MIDs are that they hardly meet the criteria for being acceptable as a biomarker (missing longitudinal studies, not validated, not easily feasible, not cheap, not ubiquitously available and that not all MIDs manifest in the brain, muscle, or myocardium. There is currently a lack of validated biomarkers for diagnosing MIDs.

  7. Biomarkers of adverse drug reactions.

    Science.gov (United States)

    Carr, Daniel F; Pirmohamed, Munir

    2018-02-01

    Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug reactions affect many bodily organ systems and vary widely in severity. Milder adverse drug reactions often resolve quickly following withdrawal of the casual drug or sometimes after dose reduction. Some adverse drug reactions are severe and lead to significant organ/tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders would benefit from development of new, robust biomarkers for the prediction, diagnosis, and prognostication of adverse drug reactions. There has been significant recent progress in identifying predictive genomic biomarkers with the potential to be used in clinical settings to reduce the burden of adverse drug reactions. These have included biomarkers that can be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathioprine dose) and drug choice. The latter have in particular included human leukocyte antigen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both the current state of the art with regard to genomic adverse drug reaction biomarkers. We also review circulating biomarkers that have the potential to be used for both diagnosis and prognosis, and have the added advantage of providing mechanistic information. In the future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple biomarker panels, integrated through the application of different omics technologies, which will provide information on predisposition, early diagnosis, prognosis, and mechanisms. Impact statement • Genetic and circulating biomarkers present significant opportunities to personalize patient therapy to minimize the risk of adverse drug reactions. ADRs are a significant heath issue

  8. Biomarkers in Vasculitis

    Science.gov (United States)

    Monach, Paul A.

    2014-01-01

    Purpose of review Better biomarkers are needed for guiding management of patients with vasculitis. Large cohorts and technological advances had led to an increase in pre-clinical studies of potential biomarkers. Recent findings The most interesting markers described recently include a gene expression signature in CD8+ T cells that predicts tendency to relapse or remain relapse-free in ANCA-associated vasculitis, and a pair of urinary proteins that are elevated in Kawasaki disease but not other febrile illnesses. Both of these studies used “omics” technologies to generate and then test hypotheses. More conventional hypothesis-based studies have indicated that the following circulating proteins have potential to improve upon clinically available tests: pentraxin-3 in giant cell arteritis and Takayasu’s arteritis; von Willebrand factor antigen in childhood central nervous system vasculitis; eotaxin-3 and other markers related to eosinophils or Th2 immune responses in eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome); and MMP-3, TIMP-1, and CXCL13 in ANCA-associated vasculitis. Summary New markers testable in blood and urine have the potential to assist with diagnosis, staging, assessment of current disease activity, and prognosis. However, the standards for clinical usefulness, in particular the demonstration of either very high sensitivity or very high specificity, have yet to be met for clinically relevant outcomes. PMID:24257367

  9. Effect of moderate- versus high-intensity exercise on vascular function, biomarkers and quality of life in heart transplant recipients

    DEFF Research Database (Denmark)

    Dall, Christian H; Gustafsson, Finn; Christensen, Stefan B

    2015-01-01

    BACKGROUND: Growing evidence in long-term treatment of heart transplant (HTx) recipients indicates effects of high-intensity interval training (HIIT) on several parameters, including oxygen uptake, vascular function and psychological distress. In this study we compare the effect of HIIT vs...... continued moderate training (CON) on vascular function, biomarkers and health-related quality of life (HRQoL) in HTx recipients. METHODS: A randomized, controlled crossover trial of stable HTx recipients >12 months after transplantation was done on patients with 12 weeks of HIIT or 12 weeks of CON, followed...... by a 5-month washout and crossover. Outcomes included endothelial function, arterial stiffness, biomarkers, HRQoL and markers of anxiety and depression. RESULTS: Sixteen HTx recipients (mean age 52 years, 75% male) completed the study. HIIT increased VO2peak more than CON (between-group difference, p

  10. Meeting Report--NASA Radiation Biomarker Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  11. Multiple Sclerosis Cerebrospinal Fluid Biomarkers

    Directory of Open Access Journals (Sweden)

    Gavin Giovannoni

    2006-01-01

    Full Text Available Cerebrospinal fluid (CSF is the body fluid closest to the pathology of multiple sclerosis (MS. For many candidate biomarkers CSF is the only fluid that can be investigated. Several factors need to be standardized when sampling CSF for biomarker research: time/volume of CSF collection, sample processing/storage, and the temporal relationship of sampling to clinical or MRI markers of disease activity. Assays used for biomarker detection must be validated so as to optimize the power of the studies. A formal method for establishing whether or not a particular biomarker can be used as a surrogate end-point needs to be adopted. This process is similar to that used in clinical trials, where the reporting of studies has to be done in a standardized way with sufficient detail to permit a critical review of the study and to enable others to reproduce the study design. A commitment must be made to report negative studies so as to prevent publication bias. Pre-defined consensus criteria need to be developed for MS-related prognostic biomarkers. Currently no candidate biomarker is suitable as a surrogate end-point. Bulk biomarkers of the neurodegenerative process such as glial fibrillary acidic protein (GFAP and neurofilaments (NF have advantages over intermittent inflammatory markers.

  12. Addressing small sample size bias in multiple-biomarker trials: Inclusion of biomarker-negative patients and Firth correction.

    Science.gov (United States)

    Habermehl, Christina; Benner, Axel; Kopp-Schneider, Annette

    2018-03-01

    In recent years, numerous approaches for biomarker-based clinical trials have been developed. One of these developments are multiple-biomarker trials, which aim to investigate multiple biomarkers simultaneously in independent subtrials. For low-prevalence biomarkers, small sample sizes within the subtrials have to be expected, as well as many biomarker-negative patients at the screening stage. The small sample sizes may make it unfeasible to analyze the subtrials individually. This imposes the need to develop new approaches for the analysis of such trials. With an expected large group of biomarker-negative patients, it seems reasonable to explore options to benefit from including them in such trials. We consider advantages and disadvantages of the inclusion of biomarker-negative patients in a multiple-biomarker trial with a survival endpoint. We discuss design options that include biomarker-negative patients in the study and address the issue of small sample size bias in such trials. We carry out a simulation study for a design where biomarker-negative patients are kept in the study and are treated with standard of care. We compare three different analysis approaches based on the Cox model to examine if the inclusion of biomarker-negative patients can provide a benefit with respect to bias and variance of the treatment effect estimates. We apply the Firth correction to reduce the small sample size bias. The results of the simulation study suggest that for small sample situations, the Firth correction should be applied to adjust for the small sample size bias. Additional to the Firth penalty, the inclusion of biomarker-negative patients in the analysis can lead to further but small improvements in bias and standard deviation of the estimates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Predictive Biomarkers of Radiation Sensitivity in Rectal Cancer

    Science.gov (United States)

    Tut, Thein Ga

    repair (MMR) proteins, the insufficiency of which is characteristic of CRCs with microsatellite instability (MSI). MSI may enable unlimited replicative potential of malignant cell that leads to radiation injury resistance. Therefore, these proteins were characterized in both CRC cell lines (MMR proteins) and different (core and invasive front) rectal cancer tissues (Plk1, gammaH2AX and MMR proteins) exposed to radiation. Histopathological grading of tumour regression was performed following radiotherapy in rectal cancer as a marker of radiotherapy response and a surrogate indicator of patient prognosis. Though MMR protein expressions correlated with improved in vitro cell survival following radiation, these findings could only be partially replicated in patient tissue samples. This may not be entirely unexpected, given intratumoural heterogeneity in genetic profiles and oxygenation between individual cancer cells, their interaction with stromal environment and a multitude of other factors that cannot be adequately replicated in cell line experiments. In our rectal cancer patient cohort, histopathological regression following radiotherapy did appear to correlate with better clinical outcome, but certainly no replacement for the routine pTNM staging with which it was compared. Overexpression of Plk1 in the primary rectal cancer also correlates with poor tumour regression and reduced overall survival. High level of gammaH2AX correlates with higher tumour stage, perineural invasion and vascular invasion. However, interpretation of the results is limited by the small number of positivity amongst the cohort, with respect to gammaH2AX and MMR proteins. The combined analysis of all the proteins examined in this thesis revealed no interactions, possibly suggesting these biomarkers act individually within the DDR pathway, rather than in a demonstrably interdependent manner. Though our results are mixed, finding biomarkers predictive of radiation response is nonetheless critical

  14. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics

    Science.gov (United States)

    Kocevar, Nina; Komel, Radovan

    2014-01-01

    Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697

  15. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  16. Validation of biomarkers of food intake − critical assessment of candidate biomarkers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Scalbert, Augustin

    2018-01-01

    Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promis...

  17. DJ-1 is a reliable serum biomarker for discriminating high-risk endometrial cancer.

    Science.gov (United States)

    Di Cello, Annalisa; Di Sanzo, Maddalena; Perrone, Francesca Marta; Santamaria, Gianluca; Rania, Erika; Angotti, Elvira; Venturella, Roberta; Mancuso, Serafina; Zullo, Fulvio; Cuda, Giovanni; Costanzo, Francesco

    2017-06-01

    New reliable approaches to stratify patients with endometrial cancer into risk categories are highly needed. We have recently demonstrated that DJ-1 is overexpressed in endometrial cancer, showing significantly higher levels both in serum and tissue of patients with high-risk endometrial cancer compared with low-risk endometrial cancer. In this experimental study, we further extended our observation, evaluating the role of DJ-1 as an accurate serum biomarker for high-risk endometrial cancer. A total of 101 endometrial cancer patients and 44 healthy subjects were prospectively recruited. DJ-1 serum levels were evaluated comparing cases and controls and, among endometrial cancer patients, between high- and low-risk patients. The results demonstrate that DJ-1 levels are significantly higher in cases versus controls and in high- versus low-risk patients. The receiver operating characteristic curve analysis shows that DJ-1 has a very good diagnostic accuracy in discriminating endometrial cancer patients versus controls and an excellent accuracy in distinguishing, among endometrial cancer patients, low- from high-risk cases. DJ-1 sensitivity and specificity are the highest when high- and low-risk patients are compared, reaching the value of 95% and 99%, respectively. Moreover, DJ-1 serum levels seem to be correlated with worsening of the endometrial cancer grade and histotype, making it a reliable tool in the preoperative decision-making process.

  18. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M.; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan

    2016-01-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  19. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Shilpa [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Koller, Antonius [Proteomics Center, Stony Brook University School of Medicine, Stony Brook, New York (United States); Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Mani, Kartik M. [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wen, Ruofeng [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York (United States); Alfieri, Alan; Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wang, Jian [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Patel, Purvi [Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York (United States); Bandeira, Nuno [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); and others

    2016-11-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  20. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills.Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea.It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  1. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis.

    Science.gov (United States)

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-09-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P<0.01), compared to normal controls. More than 80% of the VEGFR-2 in the diabetic retina was in the capillaries, compared to 47% in normal controls (P<0.01). Angiography in rabbit retinas revealed microvascular capillaries to be the location for VEGF-A-induced leakage, as expressed by significantly higher rate of fluorophore spreading with VEGF-A injection when compared to vehicle control (26±2 vs. 3±1 μm/s, P<0.05). Immunohistochemistry showed VEGFR-2 expression in capillaries of diabetic animals but not in normal controls. Macular vessels from diabetic patients (n=7) showed significantly more VEGFR-2 compared to nondiabetic controls (n=5) or peripheral retinal regions of the same retinas (P<0.01 in both cases). Here we introduce a new approach for early diagnosis of DR and VEGFR-2 as a molecular marker. VEGFR-2 could become a key diagnostic target, one that might help to prevent retinal vascular leakage and proliferation in diabetic patients. © FASEB.

  2. Early-Phase Studies of Biomarkers

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Janes, Holly; Li, Christopher I.

    2016-01-01

    of a positive biomarker test in cases (true positive) to cost associated with a positive biomarker test in controls (false positive). Guidance is offered on soliciting the cost/benefit ratio. The calculations are based on the longstanding decision theory concept of providing a net benefit on average...... impact on patient outcomes of using the biomarker to make clinical decisions....

  3. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  4. Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A

    Science.gov (United States)

    Ye, Guozhu; Chen, Yajie; Wang, Hong-Ou; Ye, Ting; Lin, Yi; Huang, Qiansheng; Chi, Yulang; Dong, Sijun

    2016-10-01

    Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.

  5. The current state of serum biomarkers of hepatotoxicity.

    Science.gov (United States)

    Ozer, Josef; Ratner, Marcia; Shaw, Martin; Bailey, Wendy; Schomaker, Shelli

    2008-03-20

    The level of serum alanine aminotransferase (ALT) activity reflects damage to hepatocytes and is considered to be a highly sensitive and fairly specific preclinical and clinical biomarker of hepatotoxicity. However, an increase in serum ALT activity level has also been associated with other organ toxicities, thus, indicating that the enzyme has specificity beyond liver in the absence of correlative histomorphologic alteration in liver. Thus, unidentified non-hepatic sources of serum ALT activity may inadvertently influence the decision of whether to continue development of a novel pharmaceutical compound. To assess the risk of false positives due to extraneous sources of serum ALT activity, additional biomarkers are sought with improved specificity for liver function compared to serum ALT activity alone. Current published biomarker candidates are reviewed herein and compared with ALT performance in preclinical and on occasion, clinical studies. An examination of the current state of hepatotoxic biomarkers indicates that serum F protein, arginase I, and glutathione-S-transferase alpha (GSTalpha) levels, all measured by ELISA, may show utility, however, antibody availability and high cost per run may present limitations to widespread applicability in preclinical safety studies. In contrast, the enzymatic markers sorbitol dehydrogenase, glutamate dehydrogenase, paraxonase, malate dehydrogenase, and purine nucleoside phosphorylase are all readily measured by photometric methods and use reagents that work across preclinical species and humans and are commercially available. The published literature suggests that these markers, once examined collectively in a large qualification study, could provide additional information relative to serum ALT and aspartate aminotransferase (AST) values. Since these biomarkers are found in the serum/plasma of treated humans and rats, they have potential to be utilized as bridging markers to monitor acute drug-induced liver injury in

  6. The current state of serum biomarkers of hepatotoxicity

    International Nuclear Information System (INIS)

    Ozer, Josef; Ratner, Marcia; Shaw, Martin; Bailey, Wendy; Schomaker, Shelli

    2008-01-01

    The level of serum alanine aminotransferase (ALT) activity reflects damage to hepatocytes and is considered to be a highly sensitive and fairly specific preclinical and clinical biomarker of hepatotoxicity. However, an increase in serum ALT activity level has also been associated with other organ toxicities, thus, indicating that the enzyme has specificity beyond liver in the absence of correlative histomorphologic alteration in liver. Thus, unidentified non-hepatic sources of serum ALT activity may inadvertently influence the decision of whether to continue development of a novel pharmaceutical compound. To assess the risk of false positives due to extraneous sources of serum ALT activity, additional biomarkers are sought with improved specificity for liver function compared to serum ALT activity alone. Current published biomarker candidates are reviewed herein and compared with ALT performance in preclinical and on occasion, clinical studies. An examination of the current state of hepatotoxic biomarkers indicates that serum F protein, arginase I, and glutathione-S-transferase alpha (GSTα) levels, all measured by ELISA, may show utility, however, antibody availability and high cost per run may present limitations to widespread applicability in preclinical safety studies. In contrast, the enzymatic markers sorbitol dehydrogenase, glutamate dehydrogenase, paraxonase, malate dehydrogenase, and purine nucleoside phosphorylase are all readily measured by photometric methods and use reagents that work across preclinical species and humans and are commercially available. The published literature suggests that these markers, once examined collectively in a large qualification study, could provide additional information relative to serum ALT and aspartate aminotransferase (AST) values. Since these biomarkers are found in the serum/plasma of treated humans and rats, they have potential to be utilized as bridging markers to monitor acute drug-induced liver injury in early

  7. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  8. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  9. IGFBP3 methylation is a novel diagnostic and predictive biomarker in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lucia Perez-Carbonell

    Full Text Available Aberrant hypermethylation of cancer-related genes has emerged as a promising strategy for the development of diagnostic, prognostic and predictive biomarkers in human cancer, including colorectal cancer (CRC. The aim of this study was to perform a systematic and comprehensive analysis of a panel of CRC-specific genes as potential diagnostic, prognostic and predictive biomarkers in a large, population-based CRC cohort.Methylation status of the SEPT9, TWIST1, IGFBP3, GAS7, ALX4 and miR137 genes was studied by quantitative bisulfite pyrosequencing in a population-based cohort of 425 CRC patients.Methylation levels of all genes analyzed were significantly higher in tumor tissues compared to normal mucosa (p<0.0001; however, cancer-associated hypermethylation was most frequently observed for miR137 (86.7% and IGFBP3 (83% in CRC patients. Methylation analysis using the combination of these two genes demonstrated greatest accuracy for the identification of colonic tumors (sensitivity 95.5%; specificity 90.5%. Low levels of IGFBP3 promoter methylation emerged as an independent risk factor for predicting poor disease free survival in stage II and III CRC patients (HR = 0.49, 95% CI: 0.28-0.85, p = 0.01. Our results also suggest that stage II & III CRC patients with high levels of IGFBP3 methylation do not benefit from adjuvant 5FU-based chemotherapy.By analyzing a large, population-based CRC cohort, we demonstrate the potential clinical significance of miR137 and IGFBP3 hypermethylation as promising diagnostic biomarkers in CRC. Our data also revealed that IGFBP3 hypermethylation may serve as an independent prognostic and predictive biomarker in stage II and III CRC patients.

  10. NanoSIMS analysis of Archean fossils and biomarkers

    International Nuclear Information System (INIS)

    Kilburn, M.R.; Wacey, D.

    2008-01-01

    The study of fossils and biomarkers from Archean rocks is of vital importance to reveal how life arose on Earth and what we might expect to find on other planets such as Mars. The Cameca NanoSIMS 50 has the unique ability to measure stable isotopes and map biologically relevant elements at the micron-scale, in situ. This makes it the perfect tool for testing the biogenicity of a range of putative biomarkers from early Archean rocks (∼3.50 billion-year-old). NanoSIMS has been used to investigate ambient inclusion trails (AITs) in a 3.43 Ga beach sand deposit from the Pilbara craton, Western Australia. Chemical maps of the light elements necessary for life (C, N and O) and several transition metals commonly associated with biological processing (Ni, Zn and Fe), coupled with 13 C/ 12 C isotope ratios from carbonaceous linings, strongly suggest a biological component in the formation of AITs

  11. Biomarker Evidence of Relatively Stable Community Structure in the Northern South China Sea during the Last Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    Juan He

    2008-01-01

    Full Text Available High-resolution molecular abundance records for several marine biomarkers during the last glacial and Holocene have been generated for core MD05-2904 (19 _ 116 _ 2066 mwater depth from the northern South China Sea. The UK' 37 SST record indicates a 4.4 C cooling during the Last Glacial Maximum for this site, consistent with previous reconstructions. The contents of C37 alkenones, dinosterol, brassicasterol, and C30 alkyl diols are used as productivity proxies for haptophytes, dinoflagellates, diatoms, and eustigmatophytes, respectively. These records reveal that both individual phytoplankton group and total productivity increased by several factors during the LGM compared with those for the Holocene, in response to increased nutrient supply. However, the community structure based on biomarker percentages remained relatively stable during the last glacial-Holocene transition, although there were short-term oscillations.

  12. Opportunities and Challenges of Proteomics in Pediatric Patients: Circulating Biomarkers After Hematopoietic Stem Cell Transplantation As a Successful Example

    Science.gov (United States)

    Paczesny, Sophie; Duncan, Christine; Jacobsohn, David; Krance, Robert; Leung, Kathryn; Carpenter, Paul; Bollard, Catherine; Renbarger, Jamie; Cooke, Kenneth

    2015-01-01

    Biomarkers have the potential to improve diagnosis and prognosis, facilitate targeted treatment, and reduce health care costs. Thus, there is great hope that biomarkers will be integrated in all clinical decisions in the near future. A decade ago, the biomarker field was launched with great enthusiasm because mass spectrometry revealed that blood contains a rich library of candidate biomarkers. However, biomarker research has not yet delivered on its promise due to several limitations: (i) improper sample handling and tracking as well as limited sample availability in the pediatric population, (ii) omission of appropriate controls in original study designs, (iii) lability and low abundance of interesting biomarkers in blood, and (iv) the inability to mechanistically tie biomarker presence to disease biology. These limitations as well as successful strategies to overcome them are discussed in this review. Several advances in biomarker discovery and validation have been made in hematopoietic stem cell transplantation, the current most effective tumor immunotherapy, and these could serve as examples for other conditions. This review provides fresh optimism that biomarkers clinically relevant in pediatrics are closer to being realized based on: (i) a uniform protocol for low-volume blood collection and preservation, (ii) inclusion of well-controlled independent cohorts, (iii) novel technologies and instrumentation with low analytical sensitivity, and (iv) integrated animal models for exploring potential biomarkers and targeted therapies. PMID:25196024

  13. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar; Baker, Erin M.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements

  14. DNA methylation based biomarkers: Practical considerations and applications

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; How Kit, Alexandre; Tost, Jorg

    2012-01-01

    of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type...... of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods...... as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more...

  15. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer.

    Directory of Open Access Journals (Sweden)

    Koichiro Saito

    Full Text Available BACKGROUND: MicroRNA (miRNA is an emerging subclass of small non-coding RNAs that regulates gene expression and has a pivotal role for many physiological processes including cancer development. Recent reports revealed the role of miRNAs as ideal biomarkers and therapeutic targets due to their tissue- or disease-specific nature. Head and neck cancer (HNC is a major cause of cancer-related mortality and morbidity, and laryngeal cancer has the highest incidence in it. However, the molecular mechanisms involved in laryngeal cancer development remain to be known and highly sensitive biomarkers and novel promising therapy is necessary. METHODOLOGY/PRINCIPAL FINDINGS: To explore laryngeal cancer-specific miRNAs, RNA from 5 laryngeal surgical specimens including cancer and non-cancer tissues were hybridized to microarray carrying 723 human miRNAs. The resultant differentially expressed miRNAs were further tested by using quantitative real time PCR (qRT-PCR on 43 laryngeal tissue samples including cancers, noncancerous counterparts, benign diseases and precancerous dysplasias. Significant expressional differences between matched pairs were reproduced in miR-133b, miR-455-5p, and miR-196a, among which miR-196a being the most promising cancer biomarker as validated by qRT-PCR analyses on additional 84 tissue samples. Deep sequencing analysis revealed both quantitative and qualitative deviation of miR-196a isomiR expression in laryngeal cancer. In situ hybridization confirmed laryngeal cancer-specific expression of miR-196a in both cancer and cancer stroma cells. Finally, inhibition of miR-196a counteracted cancer cell proliferation in both laryngeal cancer-derived cells and mouse xenograft model. CONCLUSIONS/SIGNIFICANCE: Our study provided the possibilities that miR-196a might be very useful in diagnosing and treating laryngeal cancer.

  16. Biomarkers of PTSD: military applications and considerations.

    Science.gov (United States)

    Lehrner, Amy; Yehuda, Rachel

    2014-01-01

    Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  17. Implementation of proteomic biomarkers: making it work

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John PA; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-01-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. PMID:22519700

  18. Dietary options and behavior suggested by plant biomarker evidence in an early human habitat

    Science.gov (United States)

    Magill, Clayton R.; Ashley, Gail M.; Domínguez-Rodrigo, Manuel; Freeman, Katherine H.

    2016-03-01

    The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species' evolution open to debate. Exceptionally well-preserved organic geochemical fossils-biomarkers-preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m2 archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.

  19. Utility of CSF biomarkers in psychiatric disorders: a national multicentre prospective study.

    Science.gov (United States)

    Paquet, Claire; Magnin, Eloi; Wallon, David; Troussière, Anne-Cécile; Dumurgier, Julien; Jager, Alain; Bellivier, Frank; Bouaziz-Amar, Elodie; Blanc, Frédéric; Beaufils, Emilie; Miguet-Alfonsi, Carole; Quillard, Muriel; Schraen, Susanna; Pasquier, Florence; Hannequin, Didier; Robert, Philippe; Hugon, Jacques; Mouton-Liger, François

    2016-06-13

    Affective and psychotic disorders are mental or behavioural patterns resulting in an inability to cope with life's ordinary demands and routines. These conditions can be a prodromal event of Alzheimer's disease (AD). The prevalence of underlying AD lesions in psychiatric diseases is unknown, and it would be helpful to determine them in patients. AD cerebrospinal fluid (CSF) biomarkers (amyloid β, tau and phosphorylated tau) have high diagnostic accuracy, both for AD with dementia and to predict incipient AD (mild cognitive impairment due to AD), and they are sometimes used to discriminate psychiatric diseases from AD. Our objective in the present study was to evaluate the clinical utility of CSF biomarkers in a group of patients with psychiatric disease as the main diagnosis. In a multicentre prospective study, clinicians filled out an anonymous questionnaire about all of their patients who had undergone CSF biomarker evaluation. Before and after CSF biomarker results were obtained, clinicians provided a diagnosis with their level of confidence and information about the treatment. We included patients with a psychiatric disorder as the initial diagnosis. In a second part of the study conducted retrospectively in a followed subgroup, clinicians detailed the psychiatric history and we classified patients into three categories: (1) psychiatric symptoms associated with AD, (2) dual diagnosis and (3) cognitive decline not linked to a neurodegenerative disorder. Of 957 patients, 69 had an initial diagnosis of a psychiatric disorder. Among these 69 patients, 14 (20.2 %) had a CSF AD profile, 5 (7.2 %) presented with an intermediate CSF profile and 50 (72.4 %) had a non-AD CSF profile. Ultimately, 13 (18.8 %) patients were diagnosed with AD. We show that in the AD group psychiatric symptoms occurred later and the delay between the first psychiatric symptoms and the cognitive decline was shorter. This study revealed that about 20 % of patients with a primary

  20. An OMIC biomarker detection algorithm TriVote and its application in methylomic biomarker detection.

    Science.gov (United States)

    Xu, Cheng; Liu, Jiamei; Yang, Weifeng; Shu, Yayun; Wei, Zhipeng; Zheng, Weiwei; Feng, Xin; Zhou, Fengfeng

    2018-04-01

    Transcriptomic and methylomic patterns represent two major OMIC data sources impacted by both inheritable genetic information and environmental factors, and have been widely used as disease diagnosis and prognosis biomarkers. Modern transcriptomic and methylomic profiling technologies detect the status of tens of thousands or even millions of probing residues in the human genome, and introduce a major computational challenge for the existing feature selection algorithms. This study proposes a three-step feature selection algorithm, TriVote, to detect a subset of transcriptomic or methylomic residues with highly accurate binary classification performance. TriVote outperforms both filter and wrapper feature selection algorithms with both higher classification accuracy and smaller feature number on 17 transcriptomes and two methylomes. Biological functions of the methylome biomarkers detected by TriVote were discussed for their disease associations. An easy-to-use Python package is also released to facilitate the further applications.

  1. Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Borlawsky Tara B

    2010-10-01

    Full Text Available Abstract Background Chronic lymphocytic leukemia (CLL is the most common adult leukemia. It is a highly heterogeneous disease, and can be divided roughly into indolent and progressive stages based on classic clinical markers. Immunoglobin heavy chain variable region (IgVH mutational status was found to be associated with patient survival outcome, and biomarkers linked to the IgVH status has been a focus in the CLL prognosis research field. However, biomarkers highly correlated with IgVH mutational status which can accurately predict the survival outcome are yet to be discovered. Results In this paper, we investigate the use of gene co-expression network analysis to identify potential biomarkers for CLL. Specifically we focused on the co-expression network involving ZAP70, a well characterized biomarker for CLL. We selected 23 microarray datasets corresponding to multiple types of cancer from the Gene Expression Omnibus (GEO and used the frequent network mining algorithm CODENSE to identify highly connected gene co-expression networks spanning the entire genome, then evaluated the genes in the co-expression network in which ZAP70 is involved. We then applied a set of feature selection methods to further select genes which are capable of predicting IgVH mutation status from the ZAP70 co-expression network. Conclusions We have identified a set of genes that are potential CLL prognostic biomarkers IL2RB, CD8A, CD247, LAG3 and KLRK1, which can predict CLL patient IgVH mutational status with high accuracies. Their prognostic capabilities were cross-validated by applying these biomarker candidates to classify patients into different outcome groups using a CLL microarray datasets with clinical information.

  2. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  3. The role of biomarkers in evaluating human health concerns from fungal contaminants in food.

    Science.gov (United States)

    Turner, Paul C; Flannery, Brenna; Isitt, Catherine; Ali, Mariyam; Pestka, James

    2012-06-01

    Mycotoxins are toxic secondary metabolites that globally contaminate an estimated 25 % of cereal crops and thus exposure is frequent in many populations. Aflatoxins, fumonisins and deoxynivalenol are amongst those mycotoxins of particular concern from a human health perspective. A number of risks to health are suggested including cancer, growth faltering, immune suppression and neural tube defects; though only the demonstrated role for aflatoxin in the aetiology of liver cancer is widely recognised. The heterogeneous distribution of mycotoxins in food restricts the usefulness of food sampling and intake estimates; instead biomarkers provide better tools for informing epidemiological investigations. Validated exposure biomarkers for aflatoxin (urinary aflatoxin M(1), aflatoxin-N7-guaunine, serum aflatoxin-albumin) were established almost 20 years ago and were critical in confirming aflatoxins as potent liver carcinogens. Validation has included demonstration of assay robustness, intake v. biomarker level, and stability of stored samples. More recently, aflatoxin exposure biomarkers are revealing concerns of growth faltering and immune suppression; importantly, they are being used to assess the effectiveness of intervention strategies. For fumonisins and deoxynivalenol these steps of development and validation have significantly advanced in recent years. Such biomarkers should better inform epidemiological studies and thus improve our understanding of their potential risk to human health.

  4. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.

    Science.gov (United States)

    Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik

    2016-11-30

    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.

  5. Early biomarkers of joint damage in rheumatoid and psoriatic arthritis.

    LENUS (Irish Health Repository)

    Mc Ardle, Angela

    2015-01-01

    Joint destruction, as evidenced by radiographic findings, is a significant problem for patients suffering from rheumatoid arthritis and psoriatic arthritis. Inherently irreversible and frequently progressive, the process of joint damage begins at and even before the clinical onset of disease. However, rheumatoid and psoriatic arthropathies are heterogeneous in nature and not all patients progress to joint damage. It is therefore important to identify patients susceptible to joint destruction in order to initiate more aggressive treatment as soon as possible and thereby potentially prevent irreversible joint damage. At the same time, the high cost and potential side effects associated with aggressive treatment mean it is also important not to over treat patients and especially those who, even if left untreated, would not progress to joint destruction. It is therefore clear that a protein biomarker signature that could predict joint damage at an early stage would support more informed clinical decisions on the most appropriate treatment regimens for individual patients. Although many candidate biomarkers for rheumatoid and psoriatic arthritis have been reported in the literature, relatively few have reached clinical use and as a consequence the number of prognostic biomarkers used in rheumatology has remained relatively static for several years. It has become evident that a significant challenge in the transition of biomarker candidates to clinical diagnostic assays lies in the development of suitably robust biomarker assays, especially multiplexed assays, and their clinical validation in appropriate patient sample cohorts. Recent developments in mass spectrometry-based targeted quantitative protein measurements have transformed our ability to rapidly develop multiplexed protein biomarker assays. These advances are likely to have a significant impact on the validation of biomarkers in the future. In this review, we have comprehensively compiled a list of candidate

  6. Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets.

    Science.gov (United States)

    Wang, Maoqing; Yang, Xue; Ren, Lihong; Li, Songtao; He, Xuan; Wu, Xiaoyan; Liu, Tingting; Lin, Liqun; Li, Ying; Sun, Changhao

    2014-09-05

    Nutritional rickets is a worldwide public health problem; however, the current diagnostic methods retain shortcomings for accurate diagnosis of nutritional rickets. To identify urinary biomarkers associated with nutritional rickets and establish a noninvasive diagnosis method, urinary metabonomics analysis by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis were employed to investigate the metabolic alterations associated with nutritional rickets in 200 children with or without nutritional rickets. The pathophysiological changes and pathogenesis of nutritional rickets were illustrated by the identified biomarkers. By urinary metabolic profiling, 31 biomarkers of nutritional rickets were identified and five candidate biomarkers for clinical diagnosis were screened and identified by quantitative analysis and receiver operating curve analysis. Urinary levels of five candidate biomarkers were measured using mass spectrometry or commercial kits. In the validation step, the combination of phosphate and sebacic acid was able to give a noninvasive and accurate diagnostic with high sensitivity (94.0%) and specificity (71.2%). Furthermore, on the basis of the pathway analysis of biomarkers, our urinary metabonomics analysis gives new insight into the pathogenesis and pathophysiology of nutritional rickets.

  7. Implementation of proteomic biomarkers: making it work.

    Science.gov (United States)

    Mischak, Harald; Ioannidis, John P A; Argiles, Angel; Attwood, Teresa K; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W; Julien, Bruce A; Lankisch, Tim; Leung, Hing Y; Maahs, David; Magni, Fulvio; Manns, Michael P; Manolis, Efthymios; Mayer, Gert; Navis, Gerjan; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P; Vlahou, Antonia

    2012-09-01

    While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe major obstacles and possible solutions to ease valid biomarker implementation. Some of the problems lie in suboptimal biomarker discovery and validation, especially lack of validated platforms with well-described performance characteristics to support biomarker qualification. These issues have been acknowledged and are being addressed, raising the hope that valid biomarkers may start accumulating in the foreseeable future. However, successful biomarker discovery and qualification alone does not suffice for successful implementation. Additional challenges include, among others, limited access to appropriate specimens and insufficient funding, the need to validate new biomarker utility in interventional trials, and large communication gaps between the parties involved in implementation. To address this problem, we propose an implementation roadmap. The implementation effort needs to involve a wide variety of stakeholders (clinicians, statisticians, health economists, and representatives of patient groups, health insurance, pharmaceutical companies, biobanks, and regulatory agencies). Knowledgeable panels with adequate representation of all these stakeholders may facilitate biomarker evaluation and guide implementation for the specific context of use. This approach may avoid unwarranted delays or failure to implement potentially useful biomarkers, and may expedite meaningful contributions of the biomarker community to healthcare. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Biomarkers of PTSD: military applications and considerations

    Directory of Open Access Journals (Sweden)

    Amy Lehrner

    2014-08-01

    Full Text Available Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk for PTSD following trauma exposure, and predict or identify recovery. While there has been much interest in PTSD biomarkers, there has been less discussion of their potential clinical applications, and of the social, legal, and ethical implications of such biomarkers. Objective: This article will discuss possible applications of PTSD biomarkers, including the social, legal, and ethical implications of such biomarkers, with an emphasis on military applications. Method: Literature on applications of PTSD biomarkers and on potential ethical and legal implications will be reviewed. Results: Biologically informed research findings hold promise for prevention, assessment, treatment planning, and the development of prophylactic and treatment interventions. As with any biological indicator of disorder, there are potentially positive and negative clinical, social, legal, and ethical consequences of using such biomarkers. Conclusions: Potential clinical applications of PTSD biomarkers hold promise for clinicians, patients, and employers. The search for biomarkers of PTSD should occur in tandem with an interdisciplinary discussion regarding the potential implications of applying biological findings in clinical and employment settings.

  9. Diagnostic significance of microRNAs as novel biomarkers for bladder cancer: a meta-analysis of ten articles.

    Science.gov (United States)

    Shi, Hong-Bin; Yu, Jia-Xing; Yu, Jian-Xiu; Feng, Zheng; Zhang, Chao; Li, Guang-Yong; Zhao, Rui-Ning; Yang, Xiao-Bo

    2017-08-03

    Previous studies have revealed the importance of microRNAs' (miRNAs) function as biomarkers in diagnosing human bladder cancer (BC). However, the results are discordant. Consequently, the possibility of miRNAs to be BC biomarkers was summarized in this meta-analysis. In this study, the relevant articles were systematically searched from CBM, PubMed, EMBASE, and Chinese National Knowledge Infrastructure (CNKI). The bivariate model was used to calculate the pooled diagnostic parameters and summary receiver operator characteristic (SROC) curve in this meta-analysis, thereby estimating the whole predictive performance. STATA software was used during the whole analysis. Thirty-one studies from 10 articles, including 1556 cases and 1347 controls, were explored in this meta-analysis. In short, the pooled sensitivity, area under the SROC curve, specificity, positive likelihood ratio, diagnostic odds ratio, and negative likelihood ratio were 0.72 (95%CI 0.66-0.76), 0.80 (0.77-0.84), 0.76 (0.71-0.81), 3.0 (2.4-3.8), 8 (5.0-12.0), and 0.37 (0.30-0.46) respectively. Additionally, sub-group and meta-regression analyses revealed that there were significant differences between ethnicity, miRNA profiling, and specimen sub-groups. These results suggested that Asian population-based studies, multiple-miRNA profiling, and blood-based assays might yield a higher diagnostic accuracy than their counterparts. This meta-analysis demonstrated that miRNAs, particularly multiple miRNAs in the blood, might be novel, useful biomarkers with relatively high sensitivity and specificity and can be used for the diagnosis of BC. However, further prospective studies with more samples should be performed for further validation.

  10. Plasma biomarker of dietary phytosterol intake.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Spearie, Catherine Anderson; Ostlund, Richard E

    2015-01-01

    Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI). Therefore, we sought to identify a plasma biomarker of DPI. Data were analyzed from two feeding studies with a total of 38 subjects during 94 dietary periods. DPI was carefully controlled at low, intermediate, and high levels. Plasma levels of phytosterols and cholesterol metabolites were assessed at the end of each diet period. Based on simple ordinary least squares regression analysis, the best biomarker for DPI was the ratio of plasma campesterol to the endogenous cholesterol metabolite 5-α-cholestanol (R2 = 0.785, P 0.600; P phytosterol intake. Conversely, plasma phytosterol levels alone are not ideal biomarkers of DPI because they are confounded by large inter-individual variation in absorption and turnover of non-cholesterol sterols. Further work is needed to assess the relation between non-cholesterol sterol metabolism and associated cholesterol transport in the genesis of coronary heart disease.

  11. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  12. Dietary and health biomarkers - time for an update

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Gao, Qian; Pratico, Giulia

    2017-01-01

    for these biomarker classes, and no recent systematic review of all proposed biomarkers for food intake. While advanced databases exist for the human and food metabolomes, additional tools are needed to curate and evaluate current data on dietary and health biomarkers. The Food Biomarkers Alliance (FoodBAll) under......In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health...... much mechanistic insight into the effects of food components and diets. Although hundreds of papers in nutrition are published annually, there is no current ontology for the area, no generally accepted classification terminology for biomarkers in nutrition and health, no systematic validation scheme...

  13. Biomarkers of HIV-associated Cancer

    OpenAIRE

    Flepisi, Brian Thabile; Bouic, Patrick; Sissolak, Gerhard; Rosenkranz, Bernd

    2014-01-01

    Cancer biomarkers have provided great opportunities for improving the management of cancer patients by enhancing the efficiency of early detection, diagnosis, and efficacy of treatment. Every cell type has a unique molecular signature, referred to as biomarkers, which are identifiable characteristics such as levels or activities of a myriad of genes, proteins, or other molecular features. Biomarkers can facilitate the molecular definition of cancer, provide information about the course of can...

  14. Biomarkers of animal health: integrating nutritional ecology, endocrine ecophysiology, ecoimmunology, and geospatial ecology.

    Science.gov (United States)

    Warne, Robin W; Proudfoot, Glenn A; Crespi, Erica J

    2015-02-01

    Diverse biomarkers including stable isotope, hormonal, and ecoimmunological assays are powerful tools to assess animal condition. However, an integrative approach is necessary to provide the context essential to understanding how biomarkers reveal animal health in varied ecological conditions. A barrier to such integration is a general lack of awareness of how shared extraction methods from across fields can provide material from the same animal tissues for diverse biomarker assays. In addition, the use of shared methods for extracting differing tissue fractions can also provide biomarkers for how animal health varies across time. Specifically, no study has explicitly illustrated the depth and breadth of spacial and temporal information that can be derived from coupled biomarker assessments on two easily collected tissues: blood and feathers or hair. This study used integrated measures of glucocorticoids, stable isotopes, and parasite loads in the feathers and blood of fall-migrating Northern saw-whet owls (Aegolius acadicus) to illustrate the wealth of knowledge about animal health and ecology across both time and space. In feathers, we assayed deuterium (δD) isotope and corticosterone (CORT) profiles, while in blood we measured CORT and blood parasite levels. We found that while earlier migrating owls had elevated CORT levels relative to later migrating birds, there was also a disassociation between plasma and feather CORT, and blood parasite loads. These results demonstrate how these tissues integrate time periods from weeks to seasons and reflect energetic demands during differing life stages. Taken together, these findings illustrate the potential for integrating diverse biomarkers to assess interactions between environmental factors and animal health across varied time periods without the necessity of continually recapturing and tracking individuals. Combining biomarkers from diverse research fields into an integrated framework hold great promise for

  15. Tumor antigens as proteogenomic biomarkers in invasive ductal carcinomas

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Winther, Ole

    2014-01-01

    directly linked to the hallmarks of cancer. The results found by proteogenomic analysis of the 32 tumor antigens studied here, capture largely the same pathway irregularities as those elucidated from large-scale screening of genomics analyses, where several thousands of genes are often found......Background: The majority of genetic biomarkers for human cancers are defined by statistical screening of high-throughput genomics data. While a large number of genetic biomarkers have been proposed for diagnostic and prognostic applications, only a small number have been applied in the clinic....... Similarly, the use of proteomics methods for the discovery of cancer biomarkers is increasing. The emerging field of proteogenomics seeks to enrich the value of genomics and proteomics approaches by studying the intersection of genomics and proteomics data. This task is challenging due to the complex nature...

  16. Analysis of biomarker data a practical guide

    CERN Document Server

    Looney, Stephen W

    2015-01-01

    A "how to" guide for applying statistical methods to biomarker data analysis Presenting a solid foundation for the statistical methods that are used to analyze biomarker data, Analysis of Biomarker Data: A Practical Guide features preferred techniques for biomarker validation. The authors provide descriptions of select elementary statistical methods that are traditionally used to analyze biomarker data with a focus on the proper application of each method, including necessary assumptions, software recommendations, and proper interpretation of computer output. In addition, the book discusses

  17. Biomarkers and Genetics in Peripheral Artery Disease.

    Science.gov (United States)

    Hazarika, Surovi; Annex, Brian H

    2017-01-01

    Peripheral artery disease (PAD) is highly prevalent and there is considerable diversity in the initial clinical manifestation and disease progression among individuals. Currently, there is no ideal biomarker to screen for PAD, to risk stratify patients with PAD, or to monitor therapeutic response to revascularization procedures. Advances in human genetics have markedly enhanced the ability to develop novel diagnostic and therapeutic approaches across a host of human diseases, but such developments in the field of PAD are lagging. In this article, we will discuss the epidemiology, traditional risk factors for, and clinical presentations of PAD. We will discuss the possible role of genetic factors and gene-environment interactions in the development and/or progression of PAD. We will further explore future avenues through which genetic advances can be used to better our understanding of the pathophysiology of PAD and potentially find newer therapeutic targets. We will discuss the potential role of biomarkers in identifying patients at risk for PAD and for risk stratifying patients with PAD, and novel approaches to identification of reliable biomarkers in PAD. The exponential growth of genetic tools and newer technologies provides opportunities to investigate and identify newer pathways in the development and progression of PAD, and thereby in the identification of newer biomarkers and therapies. © 2016 American Association for Clinical Chemistry.

  18. Urinary Excretion of Sodium, Nitrogen, and Sugar Amounts Are Valid Biomarkers of Dietary Sodium, Protein, and High Sugar Intake in Nonobese Adolescents.

    Science.gov (United States)

    Moore, Lori B; Liu, Sarah V; Halliday, Tanya M; Neilson, Andrew P; Hedrick, Valisa E; Davy, Brenda M

    2017-12-01

    Background: Objective indicators of dietary intake (e.g., biomarkers) are needed to overcome the limitations of self-reported dietary intake assessment methods in adolescents. To our knowledge, no controlled feeding studies to date have evaluated the validity of urinary sodium, nitrogen, or sugar excretion as dietary biomarkers in adolescents. Objective: This investigation aimed to evaluate the validity of urinary sodium, nitrogen, and total sugars (TS) excretion as biomarkers for sodium, protein, and added sugars (AS) intake in nonobese adolescents. Methods: In a crossover controlled feeding study design, 33 adolescents [12-18 y of age, 47 ± 25th percentile (mean ± SD) of body mass index (BMI; in kg/m 2 ) for age] consumed 5% AS [low added sugars (LAS)] and 25% AS [high added sugars (HAS)] isocaloric, macronutrient-matched (55% carbohydrate, 30% fat, and 15% protein) diets for 7 d each, in a randomly assigned order, with a 4-wk washout period between diets. On the final 2 d of each diet period, 24-h urine samples were collected. Thirty-two adolescents completed all measurements (97% retention). Results: Urinary sodium was not different from the expected 90% recovery (mean ± SD: 88% ± 18%, P = 0.50). Urinary nitrogen was correlated with protein intake ( r = 0.69, P sodium appears to be a valid biomarker for sodium intake in nonobese adolescents. Urinary nitrogen is associated with protein intake, but nitrogen excretion rates were less than previously reported for adults, possibly owing to adolescent growth rates. TS excretion reflects AS at 25% AS intake and was responsive to the change in AS intake. Thus, urinary biomarkers are promising objective indicators of dietary intake in adolescents, although larger-scale feeding trials are needed to confirm these findings. This trial was registered at clinicaltrials.gov as NCT02455388. © 2017 American Society for Nutrition.

  19. Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer's disease

    DEFF Research Database (Denmark)

    Simonsen, A.H.; McGuire, J.; Podust, V.N.

    2008-01-01

    samples from AD patients (n=95) and population-based healthy controls (n=72) were analyzed by SELDI-TOF-MS in order to discover and characterize novel candidate biomarker combinations that differentiate AD patients from normal aging in this explorative study. Thirty candidate biomarkers (ROC AUC>0.7) were...... healthy control individuals with high sensitivity (97%) and specificity (98%). The panel of five markers was tested on a blinded independent data set of 30 AD samples and 28 controls giving 100% sensitivity and 97% specificity. This novel panel of biomarkers could potentially be used to improve...

  20. Neutrophilia as a biomarker for overall survival in newly diagnosed high-grade glioma patients undergoing chemoradiation

    Directory of Open Access Journals (Sweden)

    Antoine Schernberg

    2018-03-01

    Full Text Available Objective: To study the prognostic value of neutrophil disorders in a retrospective cohort of high-grade glioma patients receiving definitive concurrent temozolomide and radiation. Materials and methods: Clinical records of consecutive patients treated in our Institution between January 2005 and December 2010 with concurrent temozolomide (75 mg/m2 daily and radiation were collected. The prognostic value of pretreatment neutrophilia on survival, defined as a neutrophil count exceeding 7 G/L, was examined. Results: We identified 164 patients, all treated with concurrent temozolomide-based chemoradiotherapy. Initial surgery was achieved in most (75%, with resection > 90% in 55 patients (34%. Total 151 patients (92% had glioblastoma, and 13 patients (8% had WHO grade III glioma. Eighty-two patients (50% displayed pretreatment neutrophilia. Neutrophilia was not associated with concurrent or adjuvant temodal discontinuation (p > 0.3. The 2-year actuarial overall survival was 45%. Steroid consumption, i.e. 60 mg or more of daily prednisolone, increased pretreatment neutrophil count (p = 0.005. In univariate analysis, neutrophilia was associated with worse overall survival (p = 0.019, as well as age ≥ 65 years (p = 0.009, surgical resection < 90% (p = 0.003 and prednisolone consumption ≥ 60 mg/day (p = 0.016. In multivariate analysis, neutrophilia (p = 0.013, age ≥ 65 (p = 0.001, and surgical tumor resection < 90% (p = 0.010 independently decreased overall survival, while, steroid consumption was not (p = 0.088. Conclusion: In high-grade gliomas treated with concurrent temozolomide and radiation, pretreatment neutrophilia may be a significant prognosis factor for overall survival. In addition with previously available markers, this independent cost-effective biomarker could help identifying patients with worsened prognosis. Keywords: High grade gliomas, Glioblastoma

  1. NovaSil clay intervention in Ghanaians at high risk for aflatoxicosis: II. Reduction in biomarkers of aflatoxin exposure in blood and urine.

    Science.gov (United States)

    Wang, P; Afriyie-Gyawu, E; Tang, Y; Johnson, N M; Xu, L; Tang, L; Huebner, H J; Ankrah, N-A; Ofori-Adjei, D; Ellis, W; Jolly, P E; Williams, J H; Wang, J-S; Phillips, T D

    2008-05-01

    The efficacy of NovaSil clay (NS) to reduce aflatoxin (AF) biomarkers of exposure was evaluated in 656 blood samples and 624 urine samples collected from study participants during a 3-month phase IIa clinical intervention trial in Ghana. NS was delivered before meals via capsules. Serum AFB (1)-albumin adduct was measured by radioimmunoassay and urinary AFM (1) metabolites were quantified by immunoaffinity-high-performance liquid chromatography (HPLC)-fluorescence methods. Levels of AFB (1) -albumin adduct in serum samples collected at baseline and at 1 month were similar (p = 0.2354 and p = 0.3645, respectively) among the placebo (PL), low dose (LD, 1.5 g NS day (-1)), and high dose (HD, 3.0 g NS day (-1)) groups. However, the levels of AFB (1)-albumin adduct at 3 months were significantly decreased in both the LD group (p clay can be used to reduce effectively the bioavailability of dietary AF based on a reduction of AF-specific biomarkers.

  2. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration.

    Science.gov (United States)

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a

  3. Inflammatory biomarkers in asthma-COPD overlap syndrome

    Directory of Open Access Journals (Sweden)

    Kobayashi S

    2016-09-01

    Full Text Available Seiichi Kobayashi, Masakazu Hanagama, Shinsuke Yamanda, Masatsugu Ishida, Masaru YanaiDepartment of Respiratory Medicine, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, JapanBackground: The clinical phenotypes and underlying mechanisms of asthma-COPD overlap syndrome (ACOS remain elusive. This study aimed to investigate a comparison of COPD patients with and without ACOS, focusing on inflammatory biomarkers, in an outpatient COPD cohort.Methods: We conducted a cross-sectional study analyzing prospectively collected data from the Ishinomaki COPD Network registry. All participants were diagnosed with COPD, confirmed by using spirometry, and were aged 40–90 years and former smokers. Patients with features of asthma including both variable respiratory symptoms and variable expiratory airflow limitation were identified and defined as having ACOS. Then, the inflammatory biomarkers such as fractional exhaled nitric oxide level, blood eosinophil count and percentage, total immunoglobulin E (IgE level, and presence of antigen-specific IgE were evaluated.Results: A total of 257 patients with COPD were identified, including 37 (14.4% with ACOS. Patients with ACOS tended to be younger, have a shorter smoking history, and use more respiratory medications, especially inhaled corticosteroids and theophylline. Mean fractional exhaled nitric oxide level was significantly higher in those with ACOS than in those without ACOS (38.5 parts per billion [ppb] vs 20.3 ppb, P<0.001. Blood eosinophil count and percentage were significantly increased in those with ACOS (295/mm3 vs 212/mm3, P=0.032; 4.7% vs 3.2%, P=0.003, respectively. Total IgE level was also significantly higher, and presence of antigen-specific IgE was observed more frequently in patients with ACOS. Receiver operating characteristic curve analysis indicated that the sensitivity and specificity of these biomarkers were relatively low, but combinations of these biomarkers showed high specificity for

  4. Validation of biomarkers for the study of environmental carcinogens: a review

    DEFF Research Database (Denmark)

    Gallo, Valentina; Khan, Aneire; Gonzales, Carlos

    2008-01-01

    There is a need for validation of biomarkers. Our aim is to review published work on the validation of selected biomarkers: bulky DNA adducts, N-nitroso compounds, 1-hydroxypyrene, and oxidative damage to DNA. A systematic literature search in PubMed was performed. Information on the variability...... and reliability of the laboratory tests used for biomarkers measurements was collected. For the evaluation of the evidence on validation we referred to the ACCE criteria. Little is known about intraindividual variation of DNA adduct measurements, but measurements have a good repeatability irrespective...... of the technique used for their identification; reproducibility improved after the correction for a laboratory factor. A high-sensitivity method is available for the measurement of 1-hydroxypyrene in urine. There is consensus on validation of biomarkers of oxidative damage DNA based on the comet assay...

  5. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jintao [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guan, Mingyuan; Huang, Guoyin; Qiu, Hengming; Chen, Zhengcheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Huang, Yong, E-mail: huangyong503@126.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China)

    2016-06-01

    A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V) = 0.00714C{sub hIgG} (μg/mL)–0.0147 with a correlation coefficient of 0.9968 over a range 0–150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications. - Highlights: • A novel structured light-addressable potentiometric sensor (LAPS) based on covalently functionalized membrane was designed. • The composition of the surface of LAPS chip was investigated by X-ray photoelectron spectroscopy (XPS). • hIgG dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of LAPS.

  6. Biomarkers for cardiac cachexia: reality or utopia.

    Science.gov (United States)

    Martins, Telma; Vitorino, Rui; Amado, Francisco; Duarte, José Alberto; Ferreira, Rita

    2014-09-25

    Cardiac cachexia is a serious complication of chronic heart failure, characterized by significant weight loss and body wasting. Chronic heart failure-related muscle wasting results from a chronic imbalance in the activation of anabolic or catabolic pathways, caused by a series of immunological, metabolic, and neurohormonal processes. In spite of the high morbidity and mortality associated to this condition, there is no universally accepted definition or specific biomarkers for cardiac cachexia, which makes its diagnosis and treatment difficult. Several hormonal, inflammatory and oxidative stress molecules have been proposed as serological markers of prognosis in cardiac cachexia but with doubtful success. As individual biomarkers may have limited sensitivity and specificity, multimarker strategies involving mediators of the biological processes modulated by cardiac cachexia will strongly contribute for the diagnosis and management of the disease, as well as for the establishment of new therapeutic targets. An integrated analysis of the biomarkers proposed so far for cardiac cachexia is made in the present review, highlighting the biological processes to which they are related. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Biomarkers for personalized oncology: recent advances and future challenges.

    Science.gov (United States)

    Kalia, Madhu

    2015-03-01

    Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells and oncology is a branch of medicine that deals with tumors. The last decade has seen significant advances in the development of biomarkers in oncology that play a critical role in understanding molecular and cellular mechanisms which drive tumor initiation, maintenance and progression. Clinical molecular diagnostics and biomarker discoveries in oncology are advancing rapidly as we begin to understand the complex mechanisms that transform a normal cell into an abnormal one. These discoveries have fueled the development of novel drug targets and new treatment strategies. The standard of care for patients with advanced-stage cancers has shifted away from an empirical treatment strategy based on the clinical-pathological profile to one where a biomarker driven treatment algorithm based on the molecular profile of the tumor is used. Recent advances in multiplex genotyping technologies and high-throughput genomic profiling by next-generation sequencing make possible the rapid and comprehensive analysis of the cancer genome of individual patients even from very little tumor biopsy material. Predictive (diagnostic) biomarkers are helpful in matching targeted therapies with patients and in preventing toxicity of standard (systemic) therapies. Prognostic biomarkers identify somatic germ line mutations, changes in DNA methylation, elevated levels of microRNA (miRNA) and circulating tumor cells (CTC) in blood. Predictive biomarkers using molecular diagnostics are currently in use in clinical practice of personalized oncotherapy for the treatment of five diseases: chronic myeloid leukemia, colon, breast, lung cancer and melanoma and these biomarkers are being used successfully to evaluate benefits that can be achieved through targeted therapy. Examples of these molecularly targeted biomarker therapies are: tyrosine kinase inhibitors in chronic myeloid leukemia and

  8. Deciphering metabonomics biomarkers-targets interactions for psoriasis vulgaris by network pharmacology.

    Science.gov (United States)

    Gu, Jiangyong; Li, Li; Wang, Dongmei; Zhu, Wei; Han, Ling; Zhao, Ruizhi; Xu, Xiaojie; Lu, Chuanjian

    2018-06-01

    Psoriasis vulgaris is a chronic inflammatory and immune-mediated skin disease. 44 metabonomics biomarkers were identified by high-throughput liquid chromatography coupled to mass spectrometry in our previous work, but the roles of metabonomics biomarkers in the pathogenesis of psoriasis is unclear. The metabonomics biomarker-enzyme network was constructed. The key metabonomics biomarkers and enzymes were screened out by network analysis. The binding affinity between each metabonomics biomarker and target was calculated by molecular docking. A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways. Long-chain fatty acids, phospholipids, Estradiol and NADH were the most important metabonomics biomarkers. Most key enzymes belonged hydrolase, thioesterase and acyltransferase. Six proteins (TNF-alpha, MAPK3, iNOS, eNOS, COX2 and mTOR) were extensively involved in inflammatory reaction, immune response and cell proliferation, and might be drug targets for psoriasis. PI3K-Akt signaling pathway and five other pathways had close correlation with the pathogenesis of psoriasis and could deserve further research. The inflammatory reaction, immune response and cell proliferation are mainly involved in psoriasis. Network pharmacology provide a new insight into the relationships between metabonomics biomarkers and the pathogenesis of psoriasis. KEY MESSAGES   • Network pharmacology was adopted to identify key metabonomics biomarkers and enzymes.   • Six proteins were screened out as important drug targets for psoriasis.   • A binding energy-weighted polypharmacological index was introduced to evaluate the importance of target-related pathways.

  9. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  10. Increasing the predictive accuracy of amyloid-β blood-borne biomarkers in Alzheimer's disease.

    Science.gov (United States)

    Watt, Andrew D; Perez, Keyla A; Faux, Noel G; Pike, Kerryn E; Rowe, Christopher C; Bourgeat, Pierrick; Salvado, Olivier; Masters, Colin L; Villemagne, Victor L; Barnham, Kevin J

    2011-01-01

    Diagnostic measures for Alzheimer's disease (AD) commonly rely on evaluating the levels of amyloid-β (Aβ) peptides within the cerebrospinal fluid (CSF) of affected individuals. These levels are often combined with levels of an additional non-Aβ marker to increase predictive accuracy. Recent efforts to overcome the invasive nature of CSF collection led to the observation of Aβ species within the blood cellular fraction, however, little is known of what additional biomarkers may be found in this membranous fraction. The current study aimed to undertake a discovery-based proteomic investigation of the blood cellular fraction from AD patients (n = 18) and healthy controls (HC; n = 15) using copper immobilized metal affinity capture and Surface Enhanced Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry. Three candidate biomarkers were observed which could differentiate AD patients from HC (ROC AUC > 0.8). Bivariate pairwise comparisons revealed significant correlations between these markers and measures of AD severity including; MMSE, composite memory, brain amyloid burden, and hippocampal volume. A partial least squares regression model was generated using the three candidate markers along with blood levels of Aβ. This model was able to distinguish AD from HC with high specificity (90%) and sensitivity (77%) and was able to separate individuals with mild cognitive impairment (MCI) who converted to AD from MCI non-converters. While requiring further characterization, these candidate biomarkers reaffirm the potential efficacy of blood-based investigations into neurodegenerative conditions. Furthermore, the findings indicate that the incorporation of non-amyloid markers into predictive models, function to increase the accuracy of the diagnostic potential of Aβ.

  11. Biomarkers of latent TB infection

    DEFF Research Database (Denmark)

    Ruhwald, Morten; Ravn, Pernille

    2009-01-01

    For the last 100 years, the tuberculin skin test (TST) has been the only diagnostic tool available for latent TB infection (LTBI) and no biomarker per se is available to diagnose the presence of LTBI. With the introduction of M. tuberculosis-specific IFN-gamma release assays (IGRAs), a new area...... of in vitro immunodiagnostic tests for LTBI based on biomarker readout has become a reality. In this review, we discuss existing evidence on the clinical usefulness of IGRAs and the indefinite number of potential new biomarkers that can be used to improve diagnosis of latent TB infection. We also present...... early data suggesting that the monocyte-derived chemokine inducible protein-10 may be useful as a novel biomarker for the immunodiagnosis of latent TB infection....

  12. Carbonyl Stress and Microinflammation-Related Molecules as Potential Biomarkers in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Tohru Ohnuma

    2018-03-01

    Full Text Available This literature review primarily aims to summarize our research, comprising both cross-sectional and longitudinal studies, and discuss the possibility of using microinflammation-related biomarkers as peripheral biomarkers in the diagnosis and monitoring of patients with schizophrenia. To date, several studies have been conducted on peripheral biomarkers to recognize the potential markers for the diagnosis of schizophrenia and to determine the state and effects of therapy in patients with schizophrenia. Research has established a correlation between carbonyl stress, an environmental factor, and the pathophysiology of neuropsychiatric diseases, including schizophrenia. In addition, studies on biomarkers related to these stresses have achieved results that are either replicable or exhibit consistent increases or decreases in patients with schizophrenia. For instance, pentosidine, an advanced glycation end product (AGE, is considerably elevated in patients with schizophrenia; however, low levels of vitamin B6 [a detoxifier of reactive carbonyl compounds (RCOs] have also been reported in some patients with schizophrenia. Another study on peripheral markers of carbonyl stress in patients with schizophrenia revealed a correlation of higher levels of glyceraldehyde-derived AGEs with higher neurotoxicity and lower levels of soluble receptors capable of diminishing the effects of AGEs. Furthermore, studies on evoked microinflammation-related biomarkers (e.g., soluble tumor necrosis factor receptor 1 have reported relatively consistent results, suggesting the involvement of microinflammation in the pathophysiology of schizophrenia. We believe that our cross-sectional and longitudinal studies as well as various previous inflammation marker studies that could be interpreted from several perspectives, such as mild localized encephalitis and microvascular disturbance, highlighted the importance of early intervention as prevention and distinguished the possible

  13. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Science.gov (United States)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2017-09-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  14. Molecular imaging reveals elevated VEGFR-2 expression in retinal capillaries in diabetes: a novel biomarker for early diagnosis

    OpenAIRE

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Bagheri, Abouzar; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Soheili, Zahra-Soheila; Frimmel, Sonja; Zhang, Zhongyu; Ablonczy, Zsolt; Ahmadieh, Hamid; Hafezi-Moghadam, Ali

    2014-01-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of vision loss. Biomarkers and methods for early diagnosis of DR are urgently needed. Using a new molecular imaging approach, we show up to 94% higher accumulation of custom designed imaging probes against vascular endothelial growth factor receptor 2 (VEGFR-2) in retinal and choroidal vessels of diabetic animals (P

  15. High-throughput simultaneous analysis of RNA, protein, and lipid biomarkers in heterogeneous tissue samples.

    Science.gov (United States)

    Reiser, Vladimír; Smith, Ryan C; Xue, Jiyan; Kurtz, Marc M; Liu, Rong; Legrand, Cheryl; He, Xuanmin; Yu, Xiang; Wong, Peggy; Hinchcliffe, John S; Tanen, Michael R; Lazar, Gloria; Zieba, Renata; Ichetovkin, Marina; Chen, Zhu; O'Neill, Edward A; Tanaka, Wesley K; Marton, Matthew J; Liao, Jason; Morris, Mark; Hailman, Eric; Tokiwa, George Y; Plump, Andrew S

    2011-11-01

    With expanding biomarker discovery efforts and increasing costs of drug development, it is critical to maximize the value of mass-limited clinical samples. The main limitation of available methods is the inability to isolate and analyze, from a single sample, molecules requiring incompatible extraction methods. Thus, we developed a novel semiautomated method for tissue processing and tissue milling and division (TMAD). We used a SilverHawk atherectomy catheter to collect atherosclerotic plaques from patients requiring peripheral atherectomy. Tissue preservation by flash freezing was compared with immersion in RNAlater®, and tissue grinding by traditional mortar and pestle was compared with TMAD. Comparators were protein, RNA, and lipid yield and quality. Reproducibility of analyte yield from aliquots of the same tissue sample processed by TMAD was also measured. The quantity and quality of biomarkers extracted from tissue prepared by TMAD was at least as good as that extracted from tissue stored and prepared by traditional means. TMAD enabled parallel analysis of gene expression (quantitative reverse-transcription PCR, microarray), protein composition (ELISA), and lipid content (biochemical assay) from as little as 20 mg of tissue. The mean correlation was r = 0.97 in molecular composition (RNA, protein, or lipid) between aliquots of individual samples generated by TMAD. We also demonstrated that it is feasible to use TMAD in a large-scale clinical study setting. The TMAD methodology described here enables semiautomated, high-throughput sampling of small amounts of heterogeneous tissue specimens by multiple analytical techniques with generally improved quality of recovered biomolecules.

  16. Biomarker Discovery Using New Metabolomics Software for Automated Processing of High Resolution LC-MS Data

    Science.gov (United States)

    Hnatyshyn, S.; Reily, M.; Shipkova, P.; McClure, T.; Sanders, M.; Peake, D.

    2011-01-01

    Robust biomarkers of target engagement and efficacy are required in different stages of drug discovery. Liquid chromatography coupled to high resolution mass spectrometry provides sensitivity, accuracy and wide dynamic range required for identification of endogenous metabolites in biological matrices. LCMS is widely-used tool for biomarker identification and validation. Typical high resolution LCMS profiles from biological samples may contain greater than a million mass spectral peaks corresponding to several thousand endogenous metabolites. Reduction of the total number of peaks, component identification and statistical comparison across sample groups remains to be a difficult and time consuming challenge. Blood samples from four groups of rats (male vs. female, fully satiated and food deprived) were analyzed using high resolution accurate mass (HRAM) LCMS. All samples were separated using a 15 minute reversed-phase C18 LC gradient and analyzed in both positive and negative ion modes. Data was acquired using 15K resolution and 5ppm mass measurement accuracy. The entire data set was analyzed using software developed in collaboration between Bristol Meyers Squibb and Thermo Fisher Scientific to determine the metabolic effects of food deprivation on rats. Metabolomic LC-MS data files are extraordinarily complex and appropriate reduction of the number of spectral peaks via identification of related peaks and background removal is essential. A single component such as hippuric acid generates more than 20 related peaks including isotopic clusters, adducts and dimers. Plasma and urine may contain 500-1500 unique quantifiable metabolites. Noise filtering approaches including blank subtraction were used to reduce the number of irrelevant peaks. By grouping related signals such as isotopic peaks and alkali adducts, data processing was greatly simplified by reducing the total number of components by 10-fold. The software processes 48 samples in under 60minutes. Principle

  17. Biomarkers of disease activity in vitiligo: A systematic review.

    Science.gov (United States)

    Speeckaert, R; Speeckaert, M; De Schepper, S; van Geel, N

    2017-09-01

    The pathophysiology of vitiligo is complex although recent research has discovered several markers which are linked to vitiligo and associated with disease activity. Besides providing insights into the driving mechanisms of vitiligo, these findings could reveal potential biomarkers. Activity markers can be used to monitor disease activity in clinical trials and may also be useful in daily practice. The aim of this systematic review was to document which factors have been associated with vitiligo activity in skin and blood. A second goal was to determine how well these factors are validated in terms of sensitivity and specificity as biomarkers to determine vitiligo activity. Both in skin (n=43) as in blood (n=66) an adequate number of studies fulfilled the predefined inclusion criteria. These studies used diverse methods and investigated a broad range of plausible biomarkers. Unfortunately, sensitivity and specificity analyses were scarce. In skin, simple histopathology with or without supplemental CD4 and CD8 stainings can still be considered as the gold standard, although more recently chemokine (C-X-C motif) ligand (CXCL) 9 and NLRP1 have demonstrated a good and possibly even better association with progressive disease. Regarding circulating biomarkers, cytokines (IL-1β, IL-17, IFN-γ, TGF-β), autoantibodies, oxidative stress markers, immune cells (Tregs), soluble CDs (sCD25, sCD27) and chemokines (CXCL9, CXCL10) are still competing. However, the two latter may be preferable as both chemokines and soluble CDs are easy to measure and the available studies display promising results. A large multicenter study could make more definitive statements regarding their sensitivity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Use of ribosomal proteins as biomarkers for identification of Flavobacterium psychrophilum by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Fernández-Álvarez, Clara; Torres-Corral, Yolanda; Santos, Ysabel

    2018-01-06

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a rapid methodology for identification of bacteria that is increasingly used in diagnostic laboratories. This work aimed at evaluating the potential of MALDI-TOF-MS for identification of the main serotypes of Flavobacterium psychrophilum isolated from salmonids, and its discrimination from closely related Flavobacterium spp. A mass spectra library was constructed by analysing 70 F. psychrophilum strains representing the serotypes O1, O2a, O2b and O3, including reference and clinical isolates. Peak mass lists were examined using the Mass-Up software for the detection of potential biomarkers, similarity and cluster analysis. Fourteen species-identifying biomarkers were detected in all the F. psychrophilum isolates tested, moreover, sets of serotype-identifying biomarkers ions were selected. F. psychrophilum-specific biomarkers were identified as ribosomal proteins by matching with protein databases. Furthermore, sequence variation corresponding to amino acid exchanges in several biomarker proteins were tentatively assigned. Closely related Flavobacterium species (F. flevense, F. succinicans, F. columnare, F. branchiophilum and F. johnsoniae) could be differentiated from F. psychrophilum by defining species identifying biomarkers and hierarchical cluster analysis. These results demonstrated that MALDI-TOF spectrometry represents a powerful tool for an accurate identification of the fish pathogen F. psychrophilum as well as for epidemiological studies. The results obtained in this study demonstrated that MALDI-TOF mass spectrometry represents a powerful tool that can be used by diagnostic laboratories for rapid identification of the fish pathogen Flavobacterium psychrophilum and its differentiation from other Flavobacterium-related species. Analysis of mass peak lists revealed the potential of the MALDI-TOF technique to identify epidemiologically important serotypes affecting

  19. Fluid biomarkers in multiple system atrophy

    DEFF Research Database (Denmark)

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy

    2015-01-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target...... engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood...... and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results...

  20. Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis.

    Directory of Open Access Journals (Sweden)

    Benjamin A Neely

    Full Text Available Domoic acid toxicosis (DAT in California sea lions (Zalophus californianus is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05. Interestingly, 11 apolipoprotein E (ApoE charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value and high specificity (92.3% with 85.7% positive predictive value. These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers.

  1. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    Science.gov (United States)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  2. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

    Science.gov (United States)

    Zou, Meng; Liu, Zhaoqi; Zhang, Xiang-Sun; Wang, Yong

    2015-10-15

    In prognosis and survival studies, an important goal is to identify multi-biomarker panels with predictive power using molecular characteristics or clinical observations. Such analysis is often challenged by censored, small-sample-size, but high-dimensional genomic profiles or clinical data. Therefore, sophisticated models and algorithms are in pressing need. In this study, we propose a novel Area Under Curve (AUC) optimization method for multi-biomarker panel identification named Nearest Centroid Classifier for AUC optimization (NCC-AUC). Our method is motived by the connection between AUC score for classification accuracy evaluation and Harrell's concordance index in survival analysis. This connection allows us to convert the survival time regression problem to a binary classification problem. Then an optimization model is formulated to directly maximize AUC and meanwhile minimize the number of selected features to construct a predictor in the nearest centroid classifier framework. NCC-AUC shows its great performance by validating both in genomic data of breast cancer and clinical data of stage IB Non-Small-Cell Lung Cancer (NSCLC). For the genomic data, NCC-AUC outperforms Support Vector Machine (SVM) and Support Vector Machine-based Recursive Feature Elimination (SVM-RFE) in classification accuracy. It tends to select a multi-biomarker panel with low average redundancy and enriched biological meanings. Also NCC-AUC is more significant in separation of low and high risk cohorts than widely used Cox model (Cox proportional-hazards regression model) and L1-Cox model (L1 penalized in Cox model). These performance gains of NCC-AUC are quite robust across 5 subtypes of breast cancer. Further in an independent clinical data, NCC-AUC outperforms SVM and SVM-RFE in predictive accuracy and is consistently better than Cox model and L1-Cox model in grouping patients into high and low risk categories. In summary, NCC-AUC provides a rigorous optimization framework to

  3. Urinary Biomarkers of Brain Diseases

    Directory of Open Access Journals (Sweden)

    Manxia An

    2015-12-01

    Full Text Available Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome.

  4. Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp.

    Science.gov (United States)

    Barros, Ivaldete Tijolin; Ceccon, Juliana Parolin; Glinski, Andressa; Liebel, Samuel; Grötzner, Sonia Regina; Randi, Marco Antonio Ferreira; Benedito, Evanilde; Ortolani-Machado, Claudia Feijó; Filipak Neto, Francisco; de Oliveira Ribeiro, Ciro Alberto

    2017-07-01

    In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.

  5. Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders

    DEFF Research Database (Denmark)

    Gnanapavan, Sharmilee; Hegen, Harald; Khalil, Michael

    2014-01-01

    , there are concerns over the high attrition rate of promising candidate biomarkers at later phases of development. METHODS: BioMS-eu consortium, a collaborative network working toward improving the quality of biomarker research in neurologic disorders, discussed the merits of standardizing the reporting of body fluid...... biomarker research. A checklist of items integrating the results of other published guidances, literature, conferences, regulatory opinion, and personal expertise was created to ultimately form a structured summary guidance incorporating the key features. RESULTS: The summary guidance is comprised of a 10......-point uniform reporting format ranging from introduction, materials and methods, through to results and discussion. Each item is discussed in detail in the guidance report. CONCLUSIONS: To enhance the future development of body fluid biomarkers, it will be important to standardize the reporting...

  6. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration.

    Science.gov (United States)

    Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William

    2012-12-01

    To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Utility of circulating IGF-I as a biomarker for assessing body composition changes in men during periods of high physical activity superimposed upon energy and sleep restriction.

    Science.gov (United States)

    Nindl, Bradley C; Alemany, Joseph A; Kellogg, Mark D; Rood, Jennifer; Allison, Steven A; Young, Andrew J; Montain, Scott J

    2007-07-01

    Insulin-like growth factor (IGF)-I is a biomarker that may have greater utility than other conventional nutritional biomarkers in assessing nutritional, health, and fitness status. We hypothesized that the IGF-I system would directionally track a short-term energy deficit and would be more related to changes in body composition than other nutritional biomarkers. Thirty-five healthy men (24 +/- 0.3 yr) underwent 8 days of exercise and energy imbalance. Total and free IGF-I, IGF binding proteins-1, -2, and -3, the acid labile subunit, transferrin, ferritin, retinol binding protein, prealbumin, testosterone, triiodothyronine, thyroxine, and leptin responses were measured. Dual-energy X-ray absorptiometry assessed changes in body mass and composition. Repeated-measures ANOVA, correlation analysis, and receiver operator characteristic curves were used for statistical analyses (P losing >5% body mass. The IGF-I system is an important adjunct in the overall assessment of adaptation to stress imposed by high levels of physical activity superimposed on energy and sleep restriction and is more closely associated with losses in body mass and fat-free mass than other conventional nutritional biomarkers.

  8. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  9. Cardiovascular biomarkers in clinical studies of type 2 diabetes

    DEFF Research Database (Denmark)

    Baldassarre, M P A; Andersen, A; Consoli, A

    2018-01-01

    biomarkers and 3) novel biomarkers (oxidative stress and endothelial dysfunction biomarkers). Within each category we present the currently best validated biomarkers with special focus on the population of interest (type 2 diabetes). For each individual biomarker, the physiological role, the validation...

  10. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer.

    Science.gov (United States)

    Fan, Heng; Zhu, Jian-Hua; Yao, Xue-Qing

    2018-05-01

    Long non-coding RNA (lncRNA) plays a very important role in the occurrence and development of various tumors, and is a potential biomarker for cancer diagnosis and prognosis. The purpose of this study was to investigate the relationship between the expression of lncRNA plasmacytoma variant translocation 1 (PVT1) and the prognostic significance in patients with colorectal cancer. The expression of PVT1 was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in cancerous and adjacent tissues of 210 colorectal cancer patients. The disease-free survival and overall survival of colorectal cancer patients were evaluated by Kaplan-Meier analysis, and univariate and multivariate analysis were performed by Cox proportional-hazards model. Our results revealed that PVT1 expression in cancer tissues of colorectal cancer was significantly higher than that of adjacent tissues ( Pcolorectal cancer patients, whether at TNM I/II stage or at TNM III/IV stage. A multivariate Cox regression analysis demonstrated that high PVT1 expression was an independent predictor of poor prognosis in colorectal cancer patients. Our results suggest that high PVT1 expression might be a potential biomarker for assessing tumor recurrence and prognosis in colorectal cancer patients.

  11. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of distal airway and blood biomarkers that predict FEV1 decline

    Science.gov (United States)

    Weiden, Michael D.; Kwon, Sophia; Caraher, Erin; Berger, Kenneth I.; Reibman, Joan; Rom, William N.; Prezant, David J.; Nolan, Anna

    2016-01-01

    Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung’s normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after World Trade Center (WTC) exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1biomarkers of WTC-LI. We have identified biomarkers of Inflammation, metabolic derangement, protease/antiprotease balance and vascular injury expressed in serum within 6 months of WTC exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services. PMID:26024341

  12. Dietary and health biomarkers-time for an update

    NARCIS (Netherlands)

    Dragsted, L.O.; Gao Qizian,; Praticò, G.; Manach, Claudine; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M.

    2017-01-01

    In the dietary and health research area, biomarkers are extensively used for multiple purposes. These include biomarkers of dietary intake and nutrient status, biomarkers used to measure the biological effects of specific dietary components, and biomarkers to assess the effects of diet on health.

  13. Evaluating biomarkers for prognostic enrichment of clinical trials.

    Science.gov (United States)

    Kerr, Kathleen F; Roth, Jeremy; Zhu, Kehao; Thiessen-Philbrook, Heather; Meisner, Allison; Wilson, Francis Perry; Coca, Steven; Parikh, Chirag R

    2017-12-01

    A potential use of biomarkers is to assist in prognostic enrichment of clinical trials, where only patients at relatively higher risk for an outcome of interest are eligible for the trial. We investigated methods for evaluating biomarkers for prognostic enrichment. We identified five key considerations when considering a biomarker and a screening threshold for prognostic enrichment: (1) clinical trial sample size, (2) calendar time to enroll the trial, (3) total patient screening costs and the total per-patient trial costs, (4) generalizability of trial results, and (5) ethical evaluation of trial eligibility criteria. Items (1)-(3) are amenable to quantitative analysis. We developed the Biomarker Prognostic Enrichment Tool for evaluating biomarkers for prognostic enrichment at varying levels of screening stringency. We demonstrate that both modestly prognostic and strongly prognostic biomarkers can improve trial metrics using Biomarker Prognostic Enrichment Tool. Biomarker Prognostic Enrichment Tool is available as a webtool at http://prognosticenrichment.com and as a package for the R statistical computing platform. In some clinical settings, even biomarkers with modest prognostic performance can be useful for prognostic enrichment. In addition to the quantitative analysis provided by Biomarker Prognostic Enrichment Tool, investigators must consider the generalizability of trial results and evaluate the ethics of trial eligibility criteria.

  14. The current status of biomarkers for predicting toxicity

    Science.gov (United States)

    Campion, Sarah; Aubrecht, Jiri; Boekelheide, Kim; Brewster, David W; Vaidya, Vishal S; Anderson, Linnea; Burt, Deborah; Dere, Edward; Hwang, Kathleen; Pacheco, Sara; Saikumar, Janani; Schomaker, Shelli; Sigman, Mark; Goodsaid, Federico

    2013-01-01

    Introduction There are significant rates of attrition in drug development. A number of compounds fail to progress past preclinical development due to limited tools that accurately monitor toxicity in preclinical studies and in the clinic. Research has focused on improving tools for the detection of organ-specific toxicity through the identification and characterization of biomarkers of toxicity. Areas covered This article reviews what we know about emerging biomarkers in toxicology, with a focus on the 2012 Northeast Society of Toxicology meeting titled ‘Translational Biomarkers in Toxicology.’ The areas covered in this meeting are summarized and include biomarkers of testicular injury and dysfunction, emerging biomarkers of kidney injury and translation of emerging biomarkers from preclinical species to human populations. The authors also provide a discussion about the biomarker qualification process and possible improvements to this process. Expert opinion There is currently a gap between the scientific work in the development and qualification of novel biomarkers for nonclinical drug safety assessment and how these biomarkers are actually used in drug safety assessment. A clear and efficient path to regulatory acceptance is needed so that breakthroughs in the biomarker toolkit for nonclinical drug safety assessment can be utilized to aid in the drug development process. PMID:23961847

  15. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers.

    Science.gov (United States)

    Chiu, Yu-Han; Williams, Paige L; Mínguez-Alarcón, Lidia; Gillman, Matthew; Sun, Qi; Ospina, Maria; Calafat, Antonia M; Hauser, Russ; Chavarro, Jorge E

    2018-01-01

    We developed a pesticide residue burden score (PRBS) based on a food frequency questionnaire and surveillance data on food pesticide residues to characterize dietary exposure over the past year. In the present study, we evaluated the association of the PRBS with urinary concentrations of pesticide biomarkers. Fruit and vegetable (FV) intake was classified as having high (PRBS≥4) or low (PRBSEARTH study. Two urine samples per man were analyzed for seven biomarkers of organophosphate and pyrethroid insecticides, and the herbicide 2,4-dichlorophenoxyacetic acid. We used generalized estimating equations to analyze the association of the PRBS with urinary concentrations of pesticide biomarkers. Urinary concentrations of pesticide biomarkers were positively related to high pesticide FV intake but inversely related to low pesticide FV intake. The molar sum of urinary concentrations of pesticide biomarkers was 21% (95% confidence interval (CI): 2%, 44%) higher for each one serving/day increase in high pesticide FV intake, and 10% (95% CI: 1%, 18%) lower for each one serving/day increase in low pesticide FV intake. Furthermore, intake of high pesticide FVs positively related to most individual urinary biomarkers. Our findings support the usefulness of the PRBS approach to characterize dietary exposure to select pesticides.

  16. Blood biomarkers for the non-invasive diagnosis of endometriosis.

    Science.gov (United States)

    Nisenblat, Vicki; Bossuyt, Patrick M M; Shaikh, Rabia; Farquhar, Cindy; Jordan, Vanessa; Scheffers, Carola S; Mol, Ben Willem J; Johnson, Neil; Hull, M Louise

    2016-05-01

    , we classified the data as positive or negative for the surgical detection of endometriosis, and we calculated sensitivity and specificity estimates. We used the bivariate model to obtain pooled estimates of sensitivity and specificity whenever sufficient datasets were available. The predetermined criteria for a clinically useful blood test to replace diagnostic surgery were a sensitivity of 0.94 and a specificity of 0.79 to detect endometriosis. We set the criteria for triage tests at a sensitivity of ≥ 0.95 and a specificity of ≥ 0.50, which 'rules out' the diagnosis with high accuracy if there is a negative test result (SnOUT test), or a sensitivity of ≥ 0.50 and a specificity of ≥ 0.95, which 'rules in' the diagnosis with high accuracy if there is a positive result (SpIN test). We included 141 studies that involved 15,141 participants and evaluated 122 blood biomarkers. All the studies were of poor methodological quality. Studies evaluated the blood biomarkers either in a specific phase of the menstrual cycle or irrespective of the cycle phase, and they tested for them in serum, plasma or whole blood. Included women were a selected population with a high frequency of endometriosis (10% to 85%), in which surgery was indicated for endometriosis, infertility work-up or ovarian mass. Seventy studies evaluated the diagnostic performance of 47 blood biomarkers for endometriosis (44 single-marker tests and 30 combined tests of two to six blood biomarkers). These were angiogenesis/growth factors, apoptosis markers, cell adhesion molecules, high-throughput markers, hormonal markers, immune system/inflammatory markers, oxidative stress markers, microRNAs, tumour markers and other proteins. Most of these biomarkers were assessed in small individual studies, often using different cut-off thresholds, and we could only perform meta-analyses on the data sets for anti-endometrial antibodies, interleukin-6 (IL-6), cancer antigen-19.9 (CA-19.9) and CA-125. Diagnostic

  17. Do Subjective Alcohol Screening Tools Correlate with Biomarkers Among High-Risk Transgender Women and Men Who Have Sex with Men in Lima, Peru?

    Science.gov (United States)

    Herrera, M C; Konda, K A; Leon, S R; Brown, B; Calvo, G M; Salvatierra, H J; Caceres, C F; Klausner, J D; Deiss, R

    2017-11-01

    Alcohol abuse can influence sexual risk behavior; however, its measurement is not straightforward. This study compared self-reported alcohol use, via the AUDIT and CAGE, with levels of phosphatidylethanol (Peth), a phospholipid biomarker that forms with chronic, heavy drinking, among high-risk MSM and TW in Lima, Peru. Chi square, Fisher's exact, Wilcoxon ranksum tests compared the instruments. Receiver operating curves determined sensitivity and specificity of the self-reported measures. Among 69 MSM and 17 TW, PEth was positive for 86% (95% CI 77-93%) of participants, while 67% reported binge-drinking in the last 2 weeks. The AUDIT classified 25% as hazardous drinkers while CAGE identified 6% as problem drinkers. Self-reported binge drinking was more sensitive than the AUDIT for PEth positivity (71% vs. 27%, p = 0.022). Among high-risk MSM and TW in Lima, validated, self-report measures of alcohol abuse underestimated biological measures. Further research correlating bio-markers and self-reported alcohol abuse measures is needed.

  18. An inflammatory and trophic disconnect biomarker profile revealed in Down syndrome plasma: Relation to cognitive decline and longitudinal evaluation.

    Science.gov (United States)

    Iulita, M Florencia; Ower, Alison; Barone, Concetta; Pentz, Rowan; Gubert, Palma; Romano, Corrado; Cantarella, Rita Anna; Elia, Flaviana; Buono, Serafino; Recupero, Marilena; Romano, Carmelo; Castellano, Sabrina; Bosco, Paolo; Di Nuovo, Santo; Drago, Filippo; Caraci, Filippo; Cuello, A Claudio

    2016-11-01

    Given that Alzheimer's pathology develops silently over decades in Down syndrome (DS), prognostic biomarkers of dementia are a major need. We investigated the plasma levels of Aβ, proNGF, tPA, neuroserpin, metallo-proteases and inflammatory molecules in 31 individuals with DS (with and without dementia) and in 31 healthy controls. We examined associations between biomarkers and cognitive decline. Aβ40 and Aβ42 were elevated in DS plasma compared to controls, even in DS individuals without dementia. Plasma Aβ correlated with the rate of cognitive decline across 2 years. ProNGF, MMP-1, MMP-3, MMP-9 activity, TNF-α, IL-6, and IL-10 were higher in DS plasma, even at AD-asymptomatic stages. Declining plasma Aβ42 and increasing proNGF levels correlated with cognitive decline. A combined measure of Aβ and inflammatory molecules was a strong predictor of prospective cognitive deterioration. Our findings support the combination of plasma and cognitive assessments for the identification of DS individuals at risk of dementia. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  19. Effect of Exercise Training on Cardiac Biomarkers in At-Risk Populations: A Systematic Review.

    Science.gov (United States)

    Glenney, Susan Sullivan; Brockemer, Derrick Paul; Ng, Andy C; Smolewski, Michael A; Smolgovskiy, Vladimir M; Lepley, Adam S

    2017-12-01

    Studies have demonstrated beneficial effects of exercise on cardiovascular disease biomarkers for healthy individuals; however, a comprehensive review regarding the effect of exercise on cardiovascular disease biomarkers in at-risk populations is lacking. A literature search was performed to identify studies meeting the following criteria: randomized controlled study, participants with pathology/activity limitations, biomarker outcome (total cholesterol, high-density lipoprotein, low-density lipoprotein, C-reactive protein, insulin, triglycerides, or glucose), and exercise intervention. Means and standard deviations from each biomarker were used to calculate standardized Cohen's d effect sizes with 95% confidence intervals. In total, 37 articles were included. The majority (44/57; 77%) of data points demonstrated moderate to strong effects for the reduction in total cholesterol, triglycerides, and low-density lipoprotein, and elevation in high-density lipoprotein following exercise. The majority of data points demonstrated strong effects for reductions in blood glucose (24/30; 80%) and insulin (23/24; 96%) levels following exercise intervention. Evidence is heterogeneous regarding the influence of exercise on cardiovascular disease biomarkers in at-risk patients, which does not allow a definitive conclusion. Favorable effects include reductions in triglycerides, total cholesterol, low-density lipoprotein, glucose, and insulin, and elevation in high-density lipoprotein following exercise intervention. The strongest evidence indicates that exercise is favorable for the reduction in glucose and cholesterol levels among obese patients, and reduction of insulin regardless of population.

  20. Biomarkers for sepsis: past, present and future

    Directory of Open Access Journals (Sweden)

    Giuseppe Chesi

    2016-12-01

    Full Text Available Sepsis is a complication of severe infection associated with high mortality and open diagnostic issues. Treatment strategies are currently limited and essentially based on prompt recognition, aggressive supportive care and early antibiotic treatment. In the last years, extensive antibiotic use has led to selection, propagation and maintenance of drug-resistant microorganisms. In this context, several biomarkers have been proposed for early identification, etiological definition, risk stratification and improving antibiotic stewardship in septic patient care. Among these molecules, only a few have been translated into clinical practice. In this review, we provided an updated overview of established and developing biomarkers for sepsis, focusing our attention on their pathophysiological profile, advantages, limitations, and appropriate evidence-based use in the management of septic patients.

  1. Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies

    Directory of Open Access Journals (Sweden)

    Charlotte E. Teunissen

    2011-01-01

    Full Text Available There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO, but we could expect novel CSF biomarkers that help define prognosis and response to treatment for this disease. One of the most critical factors in biomarker research is the inadequate powering of studies performed by single centers. Collaboration between investigators is needed to establish large biobanks of well-defined samples. A key issue in collaboration is to establish standardized protocols for biobanking to ensure that the statistical power gained by increasing the numbers of CSF samples is not compromised by pre-analytical factors. Here, consensus guidelines for CSF collection and biobanking are presented, based on the guidelines that have been published by the BioMS-eu network for CSF biomarker research. We focussed on CSF collection procedures, pre-analytical factors and high quality clinical and paraclinical information. Importantly, the biobanking protocols are applicable for CSF biobanks for research targeting any neurological disease.

  2. HMGB1 Is a Potential Biomarker for Severe Viral Hemorrhagic Fevers.

    Directory of Open Access Journals (Sweden)

    Katarina Resman Rus

    2016-06-01

    Full Text Available Hemorrhagic fever with renal syndrome (HFRS and Crimean-Congo hemorrhagic fever (CCHF are common representatives of viral hemorrhagic fevers still often neglected in some parts of the world. Infection with Dobrava or Puumala virus (HFRS and Crimean-Congo hemorrhagic fever virus (CCHFV can result in a mild, nonspecific febrile illness or as a severe disease with hemorrhaging and high fatality rate. An important factor in optimizing survival rate in patients with VHF is instant recognition of the severe form of the disease for which significant biomarkers need to be elucidated. To determine the prognostic value of High Mobility Group Box 1 (HMGB1 as a biomarker for disease severity, we tested acute serum samples of patients with HFRS or CCHF. Our results showed that HMGB1 levels are increased in patients with CCHFV, DOBV or PUUV infection. Above that, concentration of HMGB1 is higher in patients with severe disease progression when compared to the mild clinical course of the disease. Our results indicate that HMGB1 could be a useful prognostic biomarker for disease severity in PUUV and CCHFV infection, where the difference between the mild and severe patients group was highly significant. Even in patients with severe DOBV infection concentrations of HMGB1 were 2.8-times higher than in the mild group, but the difference was not statistically significant. Our results indicated HMGB1 as a potential biomarker for severe hemorrhagic fevers.

  3. The NINDS Parkinson's disease biomarkers program: The Ninds Parkinson's Disease Biomarkers Program

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Liana S. [Department of Neurology, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Drake, Daniel [Department of Biostatistics, Columbia University, New York New York USA; Alcalay, Roy N. [Department of Neurology, Columbia University, New York New York USA; Babcock, Debra [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Bowman, F. DuBois [Department of Biostatistics, Columbia University, New York New York USA; Chen-Plotkin, Alice [Department of Neurology, University of Pennsylvania, Philadelphia Pennsylvania USA; Dawson, Ted M. [Department of Neurology, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Solomon H. Snyder Department of Neuroscience, Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore Maryland USA; Dewey, Richard B. [Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas USA; German, Dwight C. [Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas USA; Huang, Xuemei [Department of Neurology, Penn State Hershey Medical Center, Hershey Pennsylvania USA; Landin, Barry [Center for Information Technology, National Institutes of Health, Bethesda Maryland USA; McAuliffe, Matthew [Center for Information Technology, National Institutes of Health, Bethesda Maryland USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington USA; Scherzer, Clemens R. [Department of Neurology, Brigham & Women' s Hospital, Harvard Medical School, Cambridge Massachusetts USA; Hillaire-Clarke, Coryse St. [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Sieber, Beth-Anne [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Sutherland, Margaret [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA; Tarn, Chi [Coriell Institute for Medical Research, Camden New Jersey USA; West, Andrew [Department of Neurology, University of Alabama at Birmingham, Birmingham USA; Vaillancourt, David [Department of Applied Physiology and Kinesiology, University of Florida, Gainesville Florida USA; Zhang, Jing [Department of Pathology, University of Washington, Seattle Washington USA; Gwinn, Katrina [National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Maryland USA

    2015-10-07

    Background: Neuroprotection for Parkinson Disease (PD) remains elusive. Biomarkers hold the promise of removing roadblocks to therapy development. The National Institute of Neurological Disorders and Stroke (NINDS) has therefore established the Parkinson’s Disease Biomarkers Program (PDBP) to promote discovery of biomarkers for use in phase II-III clinical trials in PD. Methods: The PDBP facilitates biomarker development to improve neuroprotective clinical trial design, essential for advancing therapeutics for PD. To date, eleven consortium projects in the PDBP are focused on the development of clinical and laboratory-based PD biomarkers for diagnosis, progression tracking, and/or the prediction of prognosis. Seven of these projects also provide detailed longitudinal data and biospecimens from PD patients and controls, as a resource for all PD researchers. Standardized operating procedures and pooled reference samples have been created in order to allow cross-project comparisons and assessment of batch effects. A web-based Data Management Resource facilitates rapid sharing of data and biosamples across the entire PD research community for additional biomarker projects. Results: Here we describe the PDBP, highlight standard operating procedures for the collection of biospecimens and data, and provide an interim report with quality control analysis on the first 1082 participants and 1033 samples with quality control analysis collected as of October 2014. Conclusions: By making samples and data available to academics and industry, encouraging the adoption of existing standards, and providing a resource which complements existing programs, the PDBP will accelerate the pace of PD biomarker research, with the goal of improving diagnostic methods and treatment.

  4. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH).

    Science.gov (United States)

    Younossi, Zobair M; Jarrar, Mohammed; Nugent, Clare; Randhawa, Manpreet; Afendy, Mariam; Stepanova, Maria; Rafiq, Nila; Goodman, Zachary; Chandhoke, Vikas; Baranova, Ancha

    2008-11-01

    Within the spectrum of nonalcoholic fatty liver disease (NAFLD), only patients with nonalcoholic steatohepatitis (NASH) show convincing evidence for progression. To date, liver biopsy remains the gold standard for the diagnosis of NASH; however, liver biopsy is expensive and associated with a small risk, emphasizing the urgent need for noninvasive diagnostic biomarkers. Recent findings suggest a role for apoptosis and adipocytokines in the pathogenesis of NASH. The aim of this study was to develop a noninvasive diagnostic biomarker for NASH. The study included 101 patients with liver biopsies who were tested with enzyme-linked immunosorbent assay (ELISA)-based assays. Of these, 69 were included in the biomarker development set and 32 were included in the biomarker validation set. Clinical data and serum samples were collected at the time of biopsy. Fasting serum samples were assayed for adiponectin, resistin, insulin, glucose, TNF-alpha, IL-6, IL-8, cytokeratin CK-18 (M65 antigen), and caspase-cleaved CK-18 (M30 antigen). Data analysis revealed that the levels of M30 antigen (cleaved CK-18) predicted histological NASH with 70% sensitivity and 83.7% specificity and area under the curve (AUC) = 0.711, p < 10(-4), whereas the predictive value of the levels of intact CK-18 (M65) was higher (63.6% sensitivity and 89.4% specificity and AUC = 0.814, p < 10(-4)). Histological NASH could be predicted by a combination of Cleaved CK-18, a product of the subtraction of Cleaved CK-18 level from intact CK-18 level, serum adiponectin, and serum resistin with a sensitivity of 95.45% sensitivity, specificity of 70.21%, and AUC of 0.908 (p < 10(-4)). Blinded validation of this model confirmed its reliability for separating NASH from simple steatosis. Four ELISA-based tests were combined to form a simple diagnostic biomarker for NASH.

  5. Biomarkers of the Dementia

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    2011-01-01

    Full Text Available Recent advances in biomarker studies on dementia are summarized here. CSF Aβ40, Aβ42, total tau, and phosphorylated tau are the most sensitive biomarkers for diagnosis of Alzheimer's disease (AD and prediction of onset of AD from mild cognitive impairment (MCI. Based on this progress, new diagnostic criteria for AD, MCI, and preclinical AD were proposed by National Institute of Aging (NIA and Alzheimer's Association in August 2010. In these new criteria, progress in biomarker identification and amyloid imaging studies in the past 10 years have added critical information. Huge contributions of basic and clinical studies have established clinical evidence supporting these markers. Based on this progress, essential therapy for cure of AD is urgently expected.

  6. Biomarkers and asthma management: analysis and potential applications

    NARCIS (Netherlands)

    Richards, Levi B.; Neerincx, Anne H.; van Bragt, Job J. M. H.; Sterk, Peter J.; Bel, Elisabeth H. D.; Maitland-van der Zee, Anke H.

    2018-01-01

    Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or

  7. Increased prevalence of cardiovascular disease and risk biomarkers in patients with unknown type 2 diabetes visiting cardiology specialists: results from the DIASPORA study.

    Science.gov (United States)

    Schöndorf, Thomas; Lübben, Georg; Karagiannis, Efstrathios; Erdmann, Erland; Forst, Thomas; Pfützner, Andreas

    2010-04-01

    Patients with diabetes mellitus and IGT have a high risk for cardiovascular events. It is tempting to speculate that these patients are often first seen by cardiologists. This cross-sectional study investigates the diabetes prevalence in cardiology care units and the correlated metabolic conditions as assessed by several circulating biomarkers. Patients aged 55 or older with suspected or overt coronary heart disease were eligible for trial participation. Fasting blood samples were drawn from patients to determine HOMA score, glycaemic and lipid profile, and several risk biomarkers. An OGTT was performed in patients without known diabetes. We enrolled 530 patients (181 male, 349 female, mean age, 68+/-7 years) in this study from 22 German cardiology centres; 156 patients (29.4%) had known diabetes and OGTT revealed that 184 patients (34.7%) had no diabetes, 106 patients (20.0%) had IGT or IFG and 84 patients (15.9%) were newly diagnosed with diabetes. Increased cardiovascular risk as reflected by increased hsCRP, ICAM and MMP-9 values was observed in diabetes patients. A higher cardiovascular biomarkers risk profile was seen in the IGT/IFG cohort. This study confirms the observation that one third of patients of a cardiologic care unit suffer from impaired glucose regulation. Furthermore, the cardiology patients with previously unknown glucose homeostasis abnormalities had a higher prevalence of macrovacular disease and an impaired biomarker risk profile. This study underlines the importance of joint treatment efforts by cardiologists in concert with diabetologists for treatment of this patient group at high risk for cardiovascular events.

  8. Early Pregnancy Biomarkers in Pre-Eclampsia: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Pensée Wu

    2015-09-01

    Full Text Available Pre-eclampsia (PE complicates 2%–8% of all pregnancies and is an important cause of perinatal morbidity and mortality worldwide. In order to reduce these complications and to develop possible treatment modalities, it is important to identify women at risk of developing PE. The use of biomarkers in early pregnancy would allow appropriate stratification into high and low risk pregnancies for the purpose of defining surveillance in pregnancy and to administer interventions. We used formal methods for a systematic review and meta-analyses to assess the accuracy of all biomarkers that have been evaluated so far during the first and early second trimester of pregnancy to predict PE. We found low predictive values using individual biomarkers which included a disintegrin and metalloprotease 12 (ADAM-12, inhibin-A, pregnancy associated plasma protein A (PAPP-A, placental growth factor (PlGF and placental protein 13 (PP-13. The pooled sensitivity of all single biomarkers was 0.40 (95% CI 0.39–0.41 at a false positive rate of 10%. The area under the Summary of Receiver Operating Characteristics Curve (SROC was 0.786 (SE 0.02. When a combination model was used, the predictive value improved to an area under the SROC of 0.893 (SE 0.03. In conclusion, although there are multiple potential biomarkers for PE their efficacy has been inconsistent and comparisons are difficult because of heterogeneity between different studies. Therefore, there is an urgent need for high quality, large-scale multicentre research in biomarkers for PE so that the best predictive marker(s can be identified in order to improve the management of women destined to develop PE.

  9. Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus.

    Science.gov (United States)

    Lu, Fang; Cao, Min; Wu, Bin; Li, Xu-zhao; Liu, Hong-yu; Chen, Da-zhong; Liu, Shu-min

    2013-08-26

    Xanthii Fructus (XF) is commonly called "Cang-Erzi" in traditional Chinese medicine (TCM) and widely used for the treatment of sinusitis, headache, rheumatism, and skin itching. However, the clinical utilization of XF is relatively restricted owing to its toxicity. To discover the characteristic potential biomarkers in rats treated with XF by urinary metabonomics. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was applied in the study. The total ion chromatograms obtained from control and different dosage groups were distinguishable by a multivariate statistical analysis method. The greatest difference in metabolic profile was observed between high dosage group and control group, and the metabolic characters in rats treated with XF were perturbed in a dose-dependent manner. The metabolic changes in response for XF treatment were observed in urinary samples, which were revealed by orthogonal projection to latent structures discriminate analysis (OPLS-DA), and 10 metabolites could be served as the potential toxicity biomarkers. In addition, the mechanism associated with the damages of lipid per-oxidation and the metabolic disturbances of fatty acid oxidation were investigated. These results indicate that metabonomics analysis in urinary samples may be useful for predicting the toxicity induced by XF. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Biomarkers for ragwort poisoning in horses: identification of protein targets

    Directory of Open Access Journals (Sweden)

    Beynon Robert J

    2008-08-01

    Full Text Available Abstract Background Ingestion of the poisonous weed ragwort (Senecio jacobea by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods. Results One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin. Conclusion These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.

  11. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  12. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  13. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sunny Malhotra

    Full Text Available Myxovirus A (MxA, a protein encoded by the MX1 gene with antiviral activity, has proven to be a sensitive measure of IFNβ bioactivity in multiple sclerosis (MS. However, the use of MxA as a biomarker of IFNβ bioactivity has been criticized for the lack of evidence of its role on disease pathogenesis and the clinical response to IFNβ. Here, we aimed to identify specific biomarkers of IFNβ bioactivity in order to compare their gene expression induction by type I IFNs with the MxA, and to investigate their potential role in MS pathogenesis. Gene expression microarrays were performed in PBMC from MS patients who developed neutralizing antibodies (NAB to IFNβ at 12 and/or 24 months of treatment and patients who remained NAB negative. Nine genes followed patterns in gene expression over time similar to the MX1, which was considered the gold standard gene, and were selected for further experiments: IFI6, IFI27, IFI44L, IFIT1, HERC5, LY6E, RSAD2, SIGLEC1, and USP18. In vitro experiments in PBMC from healthy controls revealed specific induction of selected biomarkers by IFNβ but not IFNγ, and several markers, in particular USP18 and HERC5, were shown to be significantly induced at lower IFNβ concentrations and more selective than the MX1 as biomarkers of IFNβ bioactivity. In addition, USP18 expression was deficient in MS patients compared with healthy controls (p = 0.0004. We propose specific biomarkers that may be considered in addition to the MxA to evaluate IFNβ bioactivity, and to further explore their implication in MS pathogenesis.

  14. Identification of serum biomarkers for aging and anabolic response

    Directory of Open Access Journals (Sweden)

    Urban Randall J

    2011-06-01

    Full Text Available Abstract Objective With the progressive aging of the human population, there is an inexorable decline in muscle mass, strength and function. Anabolic supplementation with testosterone has been shown to effectively restore muscle mass in both young and elderly men. In this study, we were interested in identifying serum factors that change with age in two distinct age groups of healthy men, and whether these factors were affected by testosterone supplementation. Methods We measured the protein levels of a number of serum biomarkers using a combination of banked serum samples from older men (60 to 75 years and younger men (ages 18 to 35, as well as new serum specimens obtained through collaboration. We compared baseline levels of all biomarkers between young and older men. In addition, we evaluated potential changes in these biomarker levels in association with testosterone dose (low dose defined as 125 mg per week or below compared to high dose defined as 300 mg per week or above in our banked specimens. Results We identified nine serum biomarkers that differed between the young and older subjects. These age-associated biomarkers included: insulin-like growth factor (IGF1, N-terminal propeptide of type III collagen (PIIINP, monokine induced by gamma interferon (MIG, epithelial-derived neutrophil-activating peptide 78 (ENA78, interleukin 7 (IL-7, p40 subunit of interleukin 12 (IL-12p40, macrophage inflammatory protein 1β (MIP-1β, platelet derived growth factor β (PDGFβ and interferon-inducible protein 10 (IP-10. We further observed testosterone dose-associated changes in some but not all age related markers: IGF1, PIIINP, leptin, MIG and ENA78. Gains in lean mass were confirmed by dual energy X-ray absorptiometry (DEXA. Conclusions Results from this study suggest that there are potential phenotypic biomarkers in serum that can be associated with healthy aging and that some but not all of these biomarkers reflect gains in muscle mass upon

  15. New high-resolution record of Holocene climate change in the Weddell Sea from combined biomarker analysis of the Patriot Hills blue ice area

    Science.gov (United States)

    Fogwill, Christopher; Turney, Chris; Baker, Andy; Ellis, Bethany; Cooper, Alan; Etheridge, David; Rubino, Mauro; Thornton, David; Fernando, Francisco; Bird, Michale; Munksgaard, Niels

    2017-04-01

    We report preliminary analysis of biomarkers (including dissolved organic matter (DOM) and DNA) from the Patriot Hills blue ice area (BIA), from the Ellsworth Mountains in the Weddell Sea Embayment. Preliminary isotopic and multiple gas analysis (CO2, CH4, N2O and CO) demonstrate that the Holocene comprises more than 50% of the 800m long BIA record, and in combination isotopic and biomarker analysis reveals a remarkable record of centennial variability through the Holocene in this sector of the Weddell Sea. Analysis using a Horiba Aqualog - which measures the fluorescence of DOM by producing a map of the fluorescence through an excitation-emission matrix (EEM) - identifies the presence of two marine protein-like components in both modern snow pit samples and within the Holocene part of Patriot Hills BIA transect. Intriguingly, the modern seasonal trends in DOM, recorded in contemporary snow pits, have relatively low signals compared to those recorded in the mid-Holocene record, suggesting a reduction in DOM signal in contemporary times. Given that the δD excess data suggests the source of precipitation has remained constant through the Holocene, the biomarker signal must relate to multi-year marine productivity signals from the Weddell Sea. The marked variability in DOM between the mid-Holocene and contemporary times can only relate to periods of sustained, enhanced biological productivity in the Weddell Sea associated with shifts in Southern Annular Mode, sea ice variability, changes in ventilation or polynya activity. Here we discuss the possible drivers of these changes and describe how this approach at this BIA could benefit conventional ice core records regionally.

  16. Biomarkers and their stable isotopes in Cenozoic sediments above the Chicxulub impact crater

    Science.gov (United States)

    Grice, K.; Schaefer, B.; Coolen, M.; Greenwood, P. F.; Scarlett, A. G.; Freeman, K.; Lyons, S. L.

    2017-12-01

    The most widely accepted hypothesis for the cause of the End-Cretaceous mass extinction (K/Pg event) 66 Ma ago is the impact of an extra-terrestrial body, which produced the 200 km wide Chicxulub impact structure. This event led to an extinction of 75% of all species on Earth. The massive extinction in the terrestrial realm is partly attributed to the intense heat pulse, the widespread wild fires caused by the impact and the ensuing darkness, as dust and sulfate aerosols blocked out the sun leading to photosynthesis shut off and productivity collapse in both the terrestrial and marine realms. The marine realm may additionally have experienced ocean acidification resulting in mass extinction of plankton (foraminifera and coccolithophorids) and marine reptiles. Samples from the Cenozoic marine sediments including the Paleocene-Eocene Thermal Maximum (PETM) have been extracted for hydrocarbons and analysed to investigate the molecular and isotopic organic record of biotic and environmental change after the K/Pg boundary event. Specific biomarker-precursor relationship has been established by the direct correlation of sedimentary biomarkers with the biochemicals (e.g. lipids) of extant biological systems. The structural characterisation of biomarkers as well as their stable isotopic compositions (C, H and N) are used to evaluate the source(s) of organic matter (OM) and to reconstruct paleoenvironmental depositional conditions. Throughout the Cenozoic sediments (including the PETM) the biomarker distribution suggests a variation in the source of organic matter from terrestrial to marine. Furthermore, the presence of sulfurised biomarkers indicates euxinic environmental conditions at the time of deposition. Biomarker distributions indicative of green sulfur bacteria reveal persistent photic zone euxinic conditions at several intervals in the Cenozoic. Further compound specific isotope analyses will provide insights into the long-term biogeochemical cycling of C, H and S

  17. Exposure assessment of process-related contaminants in food by biomarker monitoring.

    Science.gov (United States)

    Rietjens, Ivonne M C M; Dussort, P; Günther, Helmut; Hanlon, Paul; Honda, Hiroshi; Mally, Angela; O'Hagan, Sue; Scholz, Gabriele; Seidel, Albrecht; Swenberg, James; Teeguarden, Justin; Eisenbrand, Gerhard

    2018-01-01

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.

  18. Aerobic exercise reduces biomarkers related to cardiovascular risk among cleaners

    DEFF Research Database (Denmark)

    Korshøj, Mette; Ravn, Marie Højbjerg; Holtermann, Andreas

    2016-01-01

    PURPOSE: Blue-collar workers have an increased risk of cardiovascular disease. Accordingly, elevated levels of biomarkers related to risk of cardiovascular disease, such as high-sensitive C-reactive protein, have been observed among blue-collar workers. The objective was to examine whether...... an aerobic exercise worksite intervention changes the level of inflammation biomarkers among cleaners. METHODS: The design was a cluster-randomized controlled trial with 4-month worksite intervention. Before the 116 cleaners aged 18-65 years were randomized, they signed an informed consent form...

  19. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands.

    Science.gov (United States)

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-12-23

    Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should

  20. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  1. Cardiovascular disease biomarkers on cognitive function in older adults: Joint effects of cardiovascular disease biomarkers and cognitive function on mortality risk.

    Science.gov (United States)

    Loprinzi, Paul D; Crush, Elizabeth; Joyner, Chelsea

    2017-01-01

    Previous research demonstrates an inverse association between age and cardiovascular disease (CVD) biomarkers with cognitive function; however, little is known about the combined associations of CVD risk factors and cognitive function with all-cause mortality in an older adult population, which was the purpose of this study. Data from the 1999-2002 NHANES were used (N=2,097; 60+yrs), with mortality follow-up through 2011. Evaluated individual biomarkers included mean arterial pressure (MAP), high-sensitivity C-reactive protein (CRP), HDL-C, total cholesterol (TC), A1C, and measured body mass index (BMI). Cognitive function was assessed using the Digit Symbol Substitution Test (DSST). Further, 4 groups were created based on CVD risk and cognitive function. Group 1: high cognitive function and low CVD risk; Group 2: high cognitive function and high CVD risk; Group 3: low cognitive function and low CVD risk; Group 4: low cognitive function and high CVD risk. An inverse relationship was observed where those with more CVD risk factors had a lower (worse) cognitive function score. Compared to those in Group 1, only those in Group 3 and 4 had an increase mortality risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury

    NARCIS (Netherlands)

    Deddens, Janine C; Vrijsen, Krijn R; Colijn, Johanna M; Oerlemans, Marish; Metz, Corina H G; van der Vlist, Els J; Nolte-'t Hoen, Esther N M; den Ouden, Krista; Jansen of Lorkeers, SJ; van der Spoel, TIG; Koudstaal, Stefan; Arkesteijn, Ger J; Wauben, Marca H M; van Laake, Linda W; Doevendans, Pieter A; Chamuleau, Steven A J; Sluijter, Joost P G

    2016-01-01

    Plasma-circulating microRNAs have been implicated as novel early biomarkers for myocardial infarction (MI) due to their high specificity for cardiac injury. For swift clinical translation of this potential biomarker, it is important to understand their temporal and spatial characteristics upon MI.

  3. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  4. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    Science.gov (United States)

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2017. Published by Elsevier Inc.

  5. The path from biomarker discovery to regulatory qualification

    CERN Document Server

    Goodsaid, Federico

    2013-01-01

    The Path from Biomarker Discovery to Regulatory Qualification is a unique guide that focuses on biomarker qualification, its history and current regulatory settings in both the US and abroad. This multi-contributed book provides a detailed look at the next step to developing biomarkers for clinical use and covers overall concepts, challenges, strategies and solutions based on the experiences of regulatory authorities and scientists. Members of the regulatory, pharmaceutical and biomarker development communities will benefit the most from using this book-it is a complete and practical guide to biomarker qualification, providing valuable insight to an ever-evolving and important area of regulatory science. For complimentary access to chapter 13, 'Classic' Biomarkers of Liver Injury, by John R. Senior, Associate Director for Science, Food and Drug Administration, Silver Spring, Maryland, USA, please visit the following site:  http://tinyurl.com/ClassicBiomarkers Contains a collection of experiences of different...

  6. RECENT ADVANCES IN BIOMARKERS IN SEVERE BURNS.

    Science.gov (United States)

    Ruiz-Castilla, Mireia; Roca, Oriol; Masclans, Joan R; Barret, Joan P

    2016-02-01

    The pathophysiology of burn injuries is tremendously complex. A thorough understanding is essential for correct treatment of the burned area and also to limit the appearance of organ dysfunction, which, in fact, is a key determinant of morbidity and mortality. In this context, research into biomarkers may play a major role. Biomarkers have traditionally been considered an important area of medical research: the measurement of certain biomarkers has led to a better understanding of pathophysiology, while others have been used either to assess the effectiveness of specific treatments or for prognostic purposes. Research into biomarkers may help to improve the prognosis of patients with severe burn injury. The aim of the present clinical review is to discuss new evidence of the value of biomarkers in this setting.

  7. The Indian Consensus Document on cardiac biomarker

    Directory of Open Access Journals (Sweden)

    I. Satyamurthy

    2014-01-01

    Full Text Available Despite recent advances, the diagnosis and management of heart failure evades the clinicians. The etiology of congestive heart failure (CHF in the Indian scenario comprises of coronary artery disease, diabetes mellitus and hypertension. With better insights into the pathophysiology of CHF, biomarkers have evolved rapidly and received diagnostic and prognostic value. In CHF biomarkers prove as measures of the extent of pathophysiological derangement; examples include biomarkers of myocyte necrosis, myocardial remodeling, neurohormonal activation, etc. In CHF biomarkers act as indicators for the presence, degree of severity and prognosis of the disease, they may be employed in combination with the present conventional clinical assessments. These make the biomarkers feasible options against the present expensive measurements and may provide clinical benefits.

  8. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    Science.gov (United States)

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R.L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed. PMID:23750150

  9. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  10. Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Itziou, A., E-mail: itziou@bio.auth.gr; Dimitriadis, V.K., E-mail: vdimitr@bio.auth.gr

    2011-02-15

    The present study aimed to enrich the group of sentinel organisms of terrestrial pollution biomonitoring, by investigating the efficacy of the land snail Eobania vermiculata. For this reason, a package of biomarkers was performed on land snails E. vermiculata collected from polluted areas in the field or treated with heavy metals in the laboratory. The biomarkers used were neutral red lysosomal retention assay of the haemocytes, acetylcholinesterase activity in the digestive gland and the haemolymph, and metallothionein content of the digestive gland. Moreover, the morphometric changes in the lysosomal system and the morphometric alterations of the neutral lipids were also investigated. In addition, the content of cadmium, lead and copper was evaluated in the digestive gland of the snails. The results revealed appreciable alterations in the biomarker values both in field- and laboratory-conditions, accompanied by significant correlations among the biomarkers. Therefore, this exploratory study suggests the utility of E. vermiculata as a sentinel organism for biomonitoring the biologic impact of terrestrial pollution, and supports the package's efficacy of the selected biomarkers. - Research Highlights: {yields} Significant changes were noted in the values of the applied biomarkers. {yields} A package of biomarkers is supported to be an efficient tool for biomoniroting studies. {yields} The land snail Eobania vermiculata is proposed to be a good bioindicator organism in terrestrial pollution studies.

  11. Biomarkers for equine joint injury and osteoarthritis.

    Science.gov (United States)

    McIlwraith, C Wayne; Kawcak, Christopher E; Frisbie, David D; Little, Christopher B; Clegg, Peter D; Peffers, Mandy J; Karsdal, Morten A; Ekman, Stina; Laverty, Sheila; Slayden, Richard A; Sandell, Linda J; Lohmander, L S; Kraus, Virginia B

    2018-03-01

    We report the results of a symposium aimed at identifying validated biomarkers that can be used to complement clinical observations for diagnosis and prognosis of joint injury leading to equine osteoarthritis (OA). Biomarkers might also predict pre-fracture change that could lead to catastrophic bone failure in equine athletes. The workshop was attended by leading scientists in the fields of equine and human musculoskeletal biomarkers to enable cross-disciplinary exchange and improve knowledge in both. Detailed proceedings with strategic planning was written, added to, edited and referenced to develop this manuscript. The most recent information from work in equine and human osteoarthritic biomarkers was accumulated, including the use of personalized healthcare to stratify OA phenotypes, transcriptome analysis of anterior cruciate ligament (ACL) and meniscal injuries in the human knee. The spectrum of "wet" biomarker assays that are antibody based that have achieved usefulness in both humans and horses, imaging biomarkers and the role they can play in equine and human OA was discussed. Prediction of musculoskeletal injury in the horse remains a challenge, and the potential usefulness of spectroscopy, metabolomics, proteomics, and development of biobanks to classify biomarkers in different stages of equine and human OA were reviewed. The participants concluded that new information and studies in equine musculoskeletal biomarkers have potential translational value for humans and vice versa. OA is equally important in humans and horses, and the welfare issues associated with catastrophic musculoskeletal injury in horses add further emphasis to the need for good validated biomarkers in the horse. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:823-831, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-01-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs. In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.

  13. Evaluating Chagas disease progression and cure through blood-derived biomarkers: a systematic review.

    Science.gov (United States)

    Requena-Méndez, Ana; López, Manuel Carlos; Angheben, Andrea; Izquierdo, Luis; Ribeiro, Isabela; Pinazo, Maria-Jesús; Gascon, Joaquim; Muñoz, José

    2013-09-01

    This article reviews the usefulness of various types of blood-derived biomarkers that are currently being studied to predict the progression of Chagas disease in patients with the indeterminate form, to assess the efficacy of antiparasitic drugs and to identify early cardiac and gastrointestinal damage. The authors used a search strategy based on MEDLINE, Cochrane Library Register for systematic review, EmBase, Global Health and LILACS databases. Out of 1716 screened articles, only 166 articles were eligible for final inclusion. The authors classified the biomarkers according to their biochemical structure and primary biological activity in four groups: i) markers of inflammation and cellular injury, ii) metabolic biomakers, iii) prothrombotic biomarkers and iv) markers derived from specific antigens of the parasite. Several potential biomarkers might have clinical potential for the detection of early cardiopathy. Such capacity is imperative in order to detect high-risk patients who require intensive monitoring and earlier therapy. Prospective studies with longer follow-ups are needed for the appraisal of biomarkers assessing clinical or microbiological cure after therapy. At the same time, studies evaluating more than one biomarker are useful to compare the efficacy among them given the lack of a recognized gold standard.

  14. Diagnostic Biomarkers for Posttraumatic Stress Disorder: Promising Horizons from Translational Neuroscience Research.

    Science.gov (United States)

    Michopoulos, Vasiliki; Norrholm, Seth Davin; Jovanovic, Tanja

    2015-09-01

    Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently reclassified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition, the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers, with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  15. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  16. Biofluid-based microRNA Biomarkers for Parkinsons Disease: an Overview and Update

    Directory of Open Access Journals (Sweden)

    Sapana Shinde

    2015-02-01

    Full Text Available Parkinson's disease (PD is a highly debilitating motor disorder and is the second most common neurodegenerative disease after Alzheimer's disease. Its current method of diagnosis mainly relies on subjective clinical rating scales in the presence of clinical motor features. Early detection of PD is a known challenge as neuronal cell death may range from 50% to 80% when a patient is first diagnosed with PD. Therefore, there is an urgent need to identify and develop biomarkers for early detection of this progressive disease. This mini review focuses on the recent developments of biofluid-based microRNAs (miRNAs as molecular biomarkers for PD. A comprehensive list of miRNA biomarkers found in blood, plasma, serum, and cerebral spinal fluid is presented. Challenges and future perspectives of using these PD-related molecular biomarkers in a “real-world” clinical setting are also discussed.

  17. The Urine Proteome as a Biomarker of Radiation Injury

    Science.gov (United States)

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  18. NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease.

    Science.gov (United States)

    Iyappan, Anandhi; Kawalia, Shweta Bagewadi; Raschka, Tamara; Hofmann-Apitius, Martin; Senger, Philipp

    2016-07-08

    Neurodegenerative diseases are incurable and debilitating indications with huge social and economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease models could offer a knowledge framework to help decipher the complex interactions that occur at molecular and cellular levels. This motivates the need for the development of an approach integrating highly curated and heterogeneous data into a disease model of different regulatory data layers. Although several disease models exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in semantic web technology, we still do not have cure for complex diseases like Alzheimer's disease. One of the key reasons accountable for this could be the increasing gap between generated data and the derived knowledge. In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well curated and context specific data for integration into one single semantic web-based framework, RDF. This increases the probability of the derived knowledge to be novel and reliable in a specific disease context. This infrastructure integrates highly curated data from databases (Bind, IntAct, etc.), literature (PubMed), and gene expression resources (such as GEO and ArrayExpress). We illustrate the effectiveness of our approach by asking real-world biomedical questions that link these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the effort and challenges faced during generation of such an indication-specific knowledge base comprising of curated and quality-controlled data. Although many alternative approaches

  19. Biomarker Production and Preservation on Europa

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2017-12-01

    Future landing site selection and sampling techniques for Europa will concentrate on locations of high potential biomarker preservation, however it is unclear what the best targets might be. On Europa, the scenario is quite unlike the depositional surface environments of terrestrial planets we've studied thus far-Europa's surface is passively communicating with putative habitable niches below that extend throughout the ice shell, ocean and sea floor. In this work, I approach biomarker production and preservation on Europa based by considering the many hypotheses that govern the its habitability, the processes that occur within the sea floor, ocean, and ice and exchange between them, and the geologic hypotheses for the formation of its various surfaces to establish, what journey through the planet a biomarker might take to arrive, if possible, at the surface where it is accessible to near-term landed missions. The goal of this project is to construct a simple model through which to consider the context for sampled material that will provide us with the ability to identify limitations in our intuition, understanding of the Europan system, our current hypotheses and data, and provide a road map for developing both areas for new research and identifying technology gaps that we must overcome before we can confidently select a landing site or analyze a sample from the near surface of Europa. I first consider the nature of the environment, i.e. at the sea floor interface, the ocean, or ocean-ice interface, in order to establish what the likely "biomarker" could be and then trace its path through the system: downwelling through the shell, mixing through the ocean, and pathways to the surface. Importantly, many models exist for the production of Europa's surface and subsurface geology that could affect the integrity of a putative biomarker. Often we modulate such considerations as a function of the time-scales over which the geologic process occurs, however such processes

  20. Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments

    Science.gov (United States)

    Amira, Akila; Merad, Isma; Almeida, C. Marisa R.; Guimarães, Laura; Soltani, Nourredine

    2018-05-01

    The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.

  1. Biomarker responses to environmental contamination in estuaries: A comparative multi-taxa approach.

    Science.gov (United States)

    Duarte, Irina A; Reis-Santos, Patrick; França, Susana; Cabral, Henrique; Fonseca, Vanessa F

    2017-08-01

    Estuaries are highly productive ecosystems subjected to numerous anthropogenic pressures with consequent environmental quality degradation. In this study, multiple biomarker responses [superoxide dismutase (SOD), catalase (CAT), ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities, as well as lipid peroxidation (LPO) and DNA damage (DNAd)] were determined in two fish (Dicentrarchus labrax and Pomatoschistus microps) and four macroinvertebrate species (Carcinus maenas, Crangon crangon, Hediste diversicolor and Scrobicularia plana) from the Ria de Aveiro and Tejo estuaries over distinct months. Two sites per estuarine system were selected based on anthropogenic pressures and magnitude of environmental contamination. Antioxidant enzyme activities in fish species suggested a ubiquitous response to oxidative stress, while biotransformation and effect biomarkers exhibited higher spatial and temporal variation. In invertebrate species, biotransformation enzyme activity was clearly less variable than in fish evidencing lower xenobiotic transformation capability. Overall, largest biomarker responses were found in the most contaminated sites (Tejo), yet species-specific patterns were evident. These should be factored in multi-taxa approaches, considering that the differential functional traits of species, such as habitat use, life-stage, feeding or physiology can influence exposure routes and biomarker responses. The Integrated Biomarker Response index highlighted patterns in biomarker responses which were not immediately evident when analyzing biomarkers individually. Overall, results provided insights into the complexity of species responses to contamination in naturally varying estuarine environments. Ultimately, multi-taxa and multi-biomarker approaches provide a comprehensive and complementary view of ecosystem health, encompassing diverse forms of biological integration and exposure routes, and allow the validation of results among markers

  2. Biomarker monitoring in sports doping control.

    Science.gov (United States)

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  3. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    Science.gov (United States)

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  4. Applying petroleum biomarkers as a tool for confirmation of petroleum hydrocarbons in high organic content soils

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G.; Martin, E.J.; Waddell, J.; Sandau, C.D. [TRIUM Environmental Solutions, Cochrane, AB (Canada); Denham, G. [Nexen Inc., Calgary, AB (Canada); Samis, M.W. [Great Plains Environmental Management Ltd., Medecine Hat, AB (Canada)

    2009-10-01

    It is often difficult to separate naturally occurring phytogenic organic materials from petrogenic sources in routine gas chromatography flame ionization detection (GC-FID) analyses. Phytogenic compounds include tannins, waxes, terpenes, fats and oils. This study examined the use of petroleum biomarkers as a means of determining the nature, sources, type and geological conditions of the formation of petroleum hydrocarbons (PHCs). The analysis was conducted at a former well site consisting of low-lying peat marshlands that had the potential to interfere with the delineation of PHC impacts. Fourteen boreholes and 8 hand auger holes were placed at the site. Soil samples were analyzed for salinity, metals, and PHC constituents. Biomarker targets included acyclic isoprenoid compounds, polycyclic aromatic hydrocarbon (PAH) compounds, terpanes, hopanes, and triaromatic steranes. A grain-size analysis showed the presence of peat materials within the saturated zone. Results of the study demonstrated the presence of PHC constituents that exceeded applicable guidelines. The biomarker analysis was used to statistically determine site-specific background levels of hydrocarbons. Nearly 3000 tonnes of soil were excavated from the site. It was concluded that site-specific conditions should be taken into consideration when evaluating reclamation targets. 3 refs., 6 figs.

  5. Biomarkers in Prodromal Parkinson Disease: a Qualitative Review.

    Science.gov (United States)

    Cooper, Christine A; Chahine, Lama M

    2016-11-01

    Over the past several years, the concept of prodromal Parkinson disease (PD) has been increasingly recognized. This term refers to individuals who do not fulfill motor diagnostic criteria for PD, but who have clinical, genetic, or biomarker characteristics suggesting risk of developing PD in the future. Clinical diagnosis of prodromal PD has low specificity, prompting the need for objective biomarkers with higher specificity. In this qualitative review, we discuss objectively defined putative biomarkers for PD and prodromal PD. We searched Pubmed and Embase for articles pertaining to objective biomarkers for PD and their application in prodromal cohorts. Articles were selected based on relevance and methodology. Objective biomarkers of demonstrated utility in prodromal PD include ligand-based imaging and transcranial sonography. Development of serum, cerebrospinal fluid, and tissue-based biomarkers is underway, but their application in prodromal PD has yet to meaningfully occur. Combining objective biomarkers with clinical or genetic prodromal features increases the sensitivity and specificity for identifying prodromal PD. Several objective biomarkers for prodromal PD show promise but require further study, including their application to and validation in prodromal cohorts followed longitudinally. Accurate identification of prodromal PD will likely require a multimodal approach. (JINS, 2016, 22, 956-967).

  6. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. Imaging biomarkers as surrogate endpoints for drug development

    International Nuclear Information System (INIS)

    Richter, Wolf S.

    2006-01-01

    The employment of biomarkers (including imaging biomarkers, especially PET) in drug development has gained increasing attention during recent years. This has been partly stimulated by the hope that the integration of biomarkers into drug development programmes may be a means to increase the efficiency and effectiveness of the drug development process by early identification of promising drug candidates - thereby counteracting the rising costs of drug development. More importantly, however, the interest in biomarkers for drug development is the logical consequence of recent advances in biosciences and medicine which are leading to target-specific treatments in the framework of ''personalised medicine''. A considerable proportion of target-specific drugs will show effects in subgroups of patients only. Biomarkers are a means to identify potential responders, or patient subgroups at risk for specific side-effects. Biomarkers are used in early drug development in the context of translational medicine to gain information about the drug's potential in different patient groups and disease states. The information obtained at this stage is mainly important for designing subsequent clinical trials and to identify promising drug candidates. Biomarkers in later phases of clinical development may - if properly validated - serve as surrogate endpoints for clinical outcomes. Regulatory agencies in the EU and the USA have facilitated the use of biomarkers early in the development process. The validation of biomarkers as surrogate endpoints is part of FDA's ''critical path initiative''. (orig.)

  8. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage.

    Science.gov (United States)

    Oberbauer, R

    2008-12-01

    Currently, the identification and validation of biomarkers of kidney injury is among the top priorities of many diagnostic biotechnology companies as well as academic research institutes. Specifically, in renal transplantation, validated biomarkers of tissue injury with good discriminatory power between the various renal compartments and the underlying pathophysiology are desired, because sequential allograft biopsies are limited in number and cannot be used as a screening tool. Given the high demands on these markers, it is not surprising that none of those currently under evaluation has been thoroughly validated for a specific entity. Published biomarker candidates for early tubular damage include neutrophil gelatinase-associated lipocalin (NGAL), interleukin (IL)-18, soluble CD30, perforin, and granzyme B. Recently, C4d flow panel reactive antibodies were evaluated as biomarkers for humoral alloimmune responses. Additional biomarkers such as FOXP3 and kidney injury molecule 1 have been studied in the maintenance phase of renal transplantation. Given the complex prerequisites, it is not surprising that no biomarker panel has been sufficiently validated for clinical use. However, in the near future a biomarker for use as an indicator of renal tubule cell injury will be available. Troponin T or transaminase of the kidney may then at least be used to differentiate between functional renal failure (equivalent to a rise in creatinine) and intrinsic kidney injury.

  9. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment.

    Directory of Open Access Journals (Sweden)

    Lee Admoni-Elisha

    Full Text Available In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1, regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in

  10. Technology Development for Detection of Circulating Disease Biomarkers from Liquid Biopsies Using Multifunctional Nanomaterials

    Science.gov (United States)

    Balcioglu, Mustafa

    Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient's life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is 45%. If the diagnosis is made in stages III and IV when the cancer is well established and spreading, 17% of the women survive at five years. However, if ovarian cancer is found (and treated) before the cancer has spread outside the ovary, the survival rate can reach 93%. The sad fact is only 15% of all ovarian cancers are found at this early stage, whereas the vast majority, 70%, are detected in stages three and four. There is therefore an apparent need for the development of highly sensitive and specific noninvasive diagnostic assays for early detection, prognostic evaluation, and recurrence monitoring. This uneasy task, however, is hindered by three existing major limitations; (1) lack of an easy, inexpensive and noninvasive serial sampling method that can replace medical procedures, which is like colonoscopy for colon cancer or mammography for breast cancer. Second, lack of definitive molecular biomarkers for specific diseases as an alternative to protein biomarkers, like PSA for prostate cancer and (3) lack of a rapid multi-marker detection platform with high sensitivity and excellent specificity. Liquid biopsy, a simple non-invasive blood test, is an emerging novel technology has the potential to overcome these restrictions. Because of its non-invasive nature, liquid biopsy can be serially collected to provide a personalized global

  11. Multi-analyte analysis of saliva biomarkers as predictors of periodontal and pre-implant disease

    Science.gov (United States)

    Braun, Thomas; Giannobile, William V; Herr, Amy E; Singh, Anup K; Shelburne, Charlie

    2015-04-07

    The present invention relates to methods of measuring biomarkers to determine the probability of a periodontal and/or peri-implant disease. More specifically, the invention provides a panel of biomarkers that, when used in combination, can allow determination of the probability of a periodontal and/or peri-implant disease state with extremely high accuracy.

  12. Limitations of an ocular surface inflammatory biomarker in impression cytology specimens.

    Science.gov (United States)

    Yafawi, Rolla; Ko, Mira; Sace, Frederick P; John-Baptiste, Annette

    2013-03-01

    A number of ocular conditions, such as dry eye, are associated with inflammation on the surface of the eye leading to irritation and ocular pain. Many drugs such as chemotherapeutics, beta blockers, angiotensin-converting enzymes and so forth also cause dry eye but currently there are no validated ocular surface biomarkers available. We evaluated sample stability, assay sensitivity, reproducibility and overall performance of impression cytology (IC) utilizing the cellular surface biomarker human leukocyte antigen DR-1 (HLA-DR) as an ocular surface inflammatory biomarker by flow cytometry in a fit-for-purpose validation study. Additionally, subjects classified as normal or having various degrees of dry eye were evaluated to determine if HLA-DR could demonstrate a clear separation between normal and dry eye samples. The assay demonstrated high dynamic range detecting a broad range of fluorescent intensities in healthy donors. Additionally, inter, intra and stability assay results demonstrated strong concordance and low variability. Overall CV% for both assays were less than 25% for all measured parameters. However, high variability was observed for donor samples assayed beyond day 10 post IC sample collection (4.2-110.8 CV%). HLA-DR expression demonstrated a progressive increase in patients with mild to severe levels of dry eye disease providing sufficient evidence it is sensitive enough to monitor inflammatory effects of dry eye when coupled with additional biomarkers and/or methodologies such as cytokine analysis or ICAM-1. This biomarker can be used to monitor ocular surface disorders in patients and to evaluate potential treatment options during drug development. Although our results demonstrate this methodology is reproducible for routine evaluation, limitations around sample integrity exist. The ocular cell surface inflammatory biomarker, HLA-DR coupled with impression cytology is a simple non-invasive robust, specific and reproducible assay that can be

  13. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  14. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  15. Reverse phase high performance liquid chromatographic method development based on ultravioletvisible detector for the analysis of 1-hydroxypyrene (PAH biomarker) in human urine.

    Science.gov (United States)

    Kamal, Atif; Gulfraz, Mohammad; Anwar, Mohammad Asad; Malik, Riffat Naseem

    2015-01-01

    1-hydroxypyrene is an important biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), which appears in the urine of exposed human subjects. In developing countries, where advanced instruments are not available, the importance of this biomarker demands convenient and sensitive methods for determination purposes. This study aimed at developing a methodology to quantify 1-hydroxypyrene (a biomarker of PAHs exposure) based on the UV-visible detector in the reverse phase high pressure liquid chromatography (HPLC). A 20 μl injection of sample was used for manual injection into the HPLC Shimadzu, equipped with the SPD-20 A UV-visible detector, the LC-20AT pump and the DGU-20A5 degasser. The C-18 column was used for the purpose of the analysis. The method showed a good linearity (the range: R2 = 0.979-0.989), and high detectability up to the nmol level. The average retention was 6.37, with the accuracy of 2%, and the percentage of recovery remained 108%. The overall performance of this method was comparable (in terms of detection sensitivity) and relatively better than previously reported studies using the HPLC system equipped with the UV-detector. This method is suitable and reliable for the detection/quantification of the 1-OHP in human urine samples, using the UV-detector, however, it is less sensitive as compared to the results of a florescence detector. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    Science.gov (United States)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  17. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  18. A Japanese cross-sectional multicentre study of biomarkers associated with cardiovascular disease in smokers and non-smokers

    OpenAIRE

    L?dicke, Frank; Magnette, John; Baker, Gizelle; Weitkunat, Rolf

    2015-01-01

    Abstract We performed a cross-sectional, multicentre study in Japan to detect the differences in biomarkers of exposure and cardiovascular biomarkers between smokers and non-smokers. Several clinically relevant cardiovascular biomarkers differed significantly between smokers and non-smokers, including lipid metabolism (high-density lipoprotein cholesterol concentrations ? lower in smokers), inflammation (fibrinogen and white blood cell count ? both higher in smokers), oxidative stress (8-epi-...

  19. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice.

    Science.gov (United States)

    Abbas, Muhammad; Habib, Murad; Naveed, Muhammad; Karthik, Kumaragurubaran; Dhama, Kuldeep; Shi, Meiqi; Dingding, Chen

    2017-11-01

    Gastric cancer (GC) is one among the major cancer types, causing human deaths and present noticeable heterogeneity. The incidences and mortality rates are higher in males in comparison to females with a male to female ratio of 2.3:1. A lot of studies have revealed out the molecular basis, pathogenesis, invasion and metastasis related findings of gastric stomach cancer. Present review encompasses the salient information on various biomarkers for the early diagnosis, treatment and prognosis of gastric cancer elaborate the clinical importance of serum tumor markers in patients with this cancer as well as checking the growths, together with epigenetic changes and genetic polymorphisms. A deep and rigorous search was carried out in Pub Med/MEDLINE using specific key words; "gastric cancer", with "tumor marker". Our search yielded 4947 important reports about related topic from books and articles that were published before the end of August 2017. Conclusively, Scientists are utilizing high time and resource to salvage this nemesis which is of global importance and cause health burden. Classical and novel biomarkers are important for treatment as well as pre- and post- diagnosis of GC. Major causes for GC are cigarette smoking, infection by Helicobacter pylori, atrophic gastritis, sex/gender, and high salt intake. Early diagnoses of GC is important for the management, treatment, pathological diagnoses by stage prognosis and metastatic setting; although the treatment outcome proved to be not much fruitful following chemotherapy, and oral medication with oxaliplatin, capecitabine, cisplatin and 5- fluorouracil (5-FU). More research studies and exploring the practical usage of gastric cancer biomarkers in diagnosis, prognosis and pre- and post- chemotherapy in clinical practice for countering gastric cancers would alleviate to some extent the ill health sufferings of humans being caused by this important and common cancerous condition. Copyright © 2017 Elsevier Masson SAS

  20. Red blood cell populations and membrane levels of peroxiredoxin 2 as candidate biomarkers to reveal blood doping.

    Science.gov (United States)

    Marrocco, Cristina; Pallotta, Valeria; D'alessandro, Angelo; Alves, Gilda; Zolla, Lello

    2012-05-01

    Blood doping represents one main trend in doping strategies. Blood doping refers to the practice of boosting the number of red blood cells (RBCs) in the bloodstream in order to enhance athletic performance, by means of blood transfusions, administration of erythropoiesis-stimulating substances, blood substitutes, natural or artificial altitude facilities, and innovative gene therapies. While detection of recombinant EPO and homologous transfusion is already feasible through electrophoretic, mass spectrometry or flow cytometry-based approaches, no method is currently available to tackle doping strategies relying on autologous transfusions. We exploited an in vitro model of autologous transfusion through a 1:10 dilution of concentrated RBCs after 30 days of storage upon appropriate dilution in freshly withdrawn RBCs from the same donor. Western blot towards membrane Prdx2 and Percoll density gradients were exploited to assess their suitability as biomarkers of transfusion. Membrane Prdx2 was visible in day 30 samples albeit not in day 0, while it was still visible in the 1:10 dilution of day 30 in day 0 RBCs. Cell gradients also highlighted changes in the profile of the RBC subpopulations upon dilution of stored RBCs in the fresh ones. From this preliminary in vitro investigation it emerges that Prdx2 and RBC populations might be further tested as candidate biomarkers of blood doping through autologous transfusion, though it is yet to be assessed whether the kinetics in vivo of Prdx2 exposure in the membrane of transfused RBCs will endow a sufficient time-window to allow reliable anti-doping testing.

  1. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation.

    Science.gov (United States)

    Chen, Yan; Zhang, Haibo; Xiao, Xue; Jia, Yixin; Wu, Weili; Liu, Licheng; Jiang, Jun; Zhu, Baoli; Meng, Xu; Chen, Weijun

    2013-10-03

    Peripheral blood-based gene expression patterns have been investigated as biomarkers to monitor the immune system and rule out rejection after heart transplantation. Recent advances in the high-throughput deep sequencing (HTS) technologies provide new leads in transcriptome analysis. By performing Solexa/Illumina's digital gene expression (DGE) profiling, we analyzed gene expression profiles of PBMCs from 6 quiescent (grade 0) and 6 rejection (grade 2R&3R) heart transplant recipients at more than 6 months after transplantation. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out in an independent validation cohort of 47 individuals from three rejection groups (ISHLT, grade 0,1R, 2R&3R). Through DGE sequencing and qPCR validation, 10 genes were identified as informative genes for detection of cardiac transplant rejection. A further clustering analysis showed that the 10 genes were not only effective for distinguishing patients with acute cardiac allograft rejection, but also informative for discriminating patients with renal allograft rejection based on both blood and biopsy samples. Moreover, PPI network analysis revealed that the 10 genes were connected to each other within a short interaction distance. We proposed a 10-gene signature for heart transplant patients at high-risk of developing severe rejection, which was found to be effective as well in other organ transplant. Moreover, we supposed that these genes function systematically as biomarkers in long-time allograft rejection. Further validation in broad transplant population would be required before the non-invasive biomarkers can be generally utilized to predict the risk of transplant rejection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    Science.gov (United States)

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  3. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Biomarkers in Cardiology – Part 1 – In Heart Failure and Specific Cardiomyopathies

    Directory of Open Access Journals (Sweden)

    2014-12-01

    Full Text Available Cardiovascular diseases are the leading causes of mortality and morbidity in Brazil. The primary and secondary preventions of those diseases are a priority for the health system and require multiple approaches to increase their effectiveness. Biomarkers are tools used to more accurately identify high-risk individuals, to speed the diagnosis, and to aid in treatment and prognosis determination. This review aims to highlight the importance of biomarkers in clinical cardiology practice, and to raise relevant points of their use and the promises for the coming years. This document was divided into two parts, and this first one discusses the use of biomarkers in specific cardiomyopathies and heart failure.

  5. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Giovanni Nardo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments.We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC, a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%, and from patients with neurological disorders that may resemble ALS (91%, between two levels of disease severity (90%, and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing.Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  6. High-Sensitive C-Reactive Protein Levels in a Group of Syrian University Male Students and Its Associations with Smoking, Physical Activity, Anthropometric Measurements, and Some Hematologic Inflammation Biomarkers

    Directory of Open Access Journals (Sweden)

    Wafika Zarzour

    2017-01-01

    Full Text Available In Syria, health risk data on young males are limited. Hence, the aim of the present study was to evaluate cardiovascular disease (CVD risk factors along with C-reactive protein levels measured by high-sensitive method (hsCRP in a group of healthy males of university students (n=101, 18–25 years old. Participants’ anthropometric characteristics; alcohol drinking, smoking, and physical activity habits; parents medical history; and some inflammatory biomarkers were inspected for their associations with hsCRP. Results. Regarding hsCRP level, 19 participants were at average (1–3 mg/L and 13 were at high (>3 mg/L risk of CVD. Nonparametric statistical tests (p value < 0.05 revealed that hsCRP level was higher in participants who had high body mass index (BMI, had high BMI with high waist-to-hip ratio (WHR, or did not practice sport frequently. Unexpectedly, it did not vary between smokers and nonsmokers. In general, it correlated positively with anthropometric and erythrocyte sedimentation rate (ESR measurements. Nevertheless, it negatively correlated with sports practicing in overall and nonsmoker groups and in participants whose parents were without medical history. Finally, when participants with high BMI were smokers, did not practice sport frequently, or had a parent with medical history, their hsCRP levels were higher than others who had the same circumstances but with low BMI.

  7. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies

    Directory of Open Access Journals (Sweden)

    Fedele Vita

    2006-06-01

    Full Text Available Abstract Background Recent studies indicate that microRNAs (miRNAs are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. Results Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R2 = 0.81; and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03; as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index. Conclusion In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast

  8. Breast Cancer Biomarkers Based on Nipple and Fine Needle Aspirates

    National Research Council Canada - National Science Library

    Russo, Irma H

    2005-01-01

    ... of the cytological normal breast epithelium of women at high risk for breast cancer. This signature will serve as an intermediate biomarker for evaluating the response of the breast to novel chemopreventive agents...

  9. Multimodal lung cancer screening using the ITALUNG biomarker panel and low dose computed tomography. Results of the ITALUNG biomarker study.

    Science.gov (United States)

    Carozzi, Francesca Maria; Bisanzi, Simonetta; Carrozzi, Laura; Falaschi, Fabio; Lopes Pegna, Andrea; Mascalchi, Mario; Picozzi, Giulia; Peluso, Marco; Sani, Cristina; Greco, Luana; Ocello, Cristina; Paci, Eugenio

    2017-07-01

    Asymptomatic high-risk subjects, randomized in the intervention arm of the ITALUNG trial (1,406 screened for lung cancer), were enrolled for the ITALUNG biomarker study (n = 1,356), in which samples of blood and sputum were analyzed for plasma DNA quantification (cut off 5 ng/ml), loss of heterozygosity and microsatellite instability. The ITALUNG biomarker panel (IBP) was considered positive if at least one of the two biomarkers included in the panel was positive. Subjects with and without lung cancer diagnosis at the end of the screening cycle with LDCT (n = 517) were evaluated. Out of 18 baseline screen detected lung cancer cases, 17 were IBP positive (94%). Repeat screen-detected lung cancer cases were 18 and 12 of them positive at baseline IBP test (66%). Interval cancer cases (2-years) and biomarker tests after a suspect Non Calcific Nodule follow-up were investigated. The single test versus multimodal screening measures of accuracy were compared in a simulation within the screened ITALUNG intervention arm, considering screen-detected and interval cancer cases. Sensitivity was 90% at baseline screening. Specificity was 71 and 61% for LDCT and IBP as baseline single test, and improved at 89% with multimodal, combined screening. The positive predictive value was 4.3% for LDCT at baseline and 10.6% for multimodal screening. Multimodal screening could improve the screening efficiency at baseline and strategies for future implementation are discussed. If IBP was used as primary screening test, the LDCT burden might decrease of about 60%. © 2017 UICC.

  10. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  11. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity

    International Nuclear Information System (INIS)

    Amacher, David E.

    2010-01-01

    biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other 'omics' technologies can provide added

  12. The development and applications of biomarkers

    International Nuclear Information System (INIS)

    Normandy, J.; Peeters, J.

    1994-01-01

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community

  13. Biomarkers in psoriasis and psoriatic arthritis.

    Science.gov (United States)

    Villanova, Federica; Di Meglio, Paola; Nestle, Frank O

    2013-04-01

    Psoriasis is a common immune-mediated disease of the skin, which associates in 20-30% of patients with psoriatic arthritis (PsA). The immunopathogenesis of both conditions is not fully understood as it is the result of a complex interaction between genetic, environmental and immunological factors. At present there is no cure for psoriasis and there are no specific markers that can accurately predict disease progression and therapeutic response. Therefore, biomarkers for disease prognosis and response to treatment are urgently needed to help clinicians with objective indications to improve patient management and outcomes. Although many efforts have been made to identify psoriasis/PsA biomarkers none of them has yet been translated into routine clinical practice. In this review we summarise the different classes of possible biomarkers explored in psoriasis and PsA so far and discuss novel strategies for biomarker discovery.

  14. The development and applications of biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Normandy, J.; Peeters, J. [eds.

    1994-04-15

    This report is a compilation of submitted abstracts of scientific papers presented at the second Department of Energy-supported workshop on the use and applications of biomarkers held in Santa Fe, New Mexico, from April 26--29, 1994. The abstracts present a synopsis of the latest scientific developments in biomarker research and how these developments meet with the practical needs of the occupational physician as well as the industrial hygienist and the health physicist. In addition to considering the practical applications and potential benefits of this promising technology, the potential ethical and legal ramifications of using biomarkers to monitor workers are discussed. The abstracts further present insights on the present benefits that can be derived from using biomarkers as well as a perspective on what further research is required to fully meet the needs of the medical community.

  15. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Gaudreau

    2016-01-01

    Full Text Available Prostate cancer (PC is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.

  16. Search for Breast Cancer Biomarkers in Fractionated Serum Samples by Protein Profiling With SELDI-TOF MS

    NARCIS (Netherlands)

    Opstal - van Winden, A.W.J.; Beijnen, J.H.; de Loof, A.; van Heerde, W.L.; Vermeulen, R.; Peeters, P.H.M.; van Gils, C.H.

    2012-01-01

    BackgroundMany high-abundant acute phase reactants have been previously detected as potential breast cancer biomar-kers. However, they are unlikely to be specific for breast cancer. Cancer-specific biomarkers are thought to be among the lower abundant proteins.MethodsWe aimed to detect lower

  17. Usability of cerebrospinal fluid biomarkers in a tertiary memory clinic

    DEFF Research Database (Denmark)

    Brandt, C.; Bahl, J.C.; Heegaard, N.H.

    2008-01-01

    AIM: Assays for cerebrospinal fluid (CSF) levels of total tau, phospho-tau protein and beta-amyloid 1-42 have been available for some years. The aim of the study was to assess the usability of these biomarkers in a mixed population of tertiary dementia referral patients in a university-based memory......, the sensitivity of a single abnormal value was between 33 and 66%. The specificity was high except when discriminating AD from amnestic mild cognitive impairment. Two or more abnormal markers further increased the specificity and decreased the sensitivity. CONCLUSION: In a tertiary setting, abnormal CSF biomarker...

  18. Effect of moderate- versus high-intensity exercise on vascular function, biomarkers and quality of life in heart transplant recipients: A randomized, crossover trial.

    Science.gov (United States)

    Dall, Christian H; Gustafsson, Finn; Christensen, Stefan B; Dela, Flemming; Langberg, Henning; Prescott, Eva

    2015-08-01

    Growing evidence in long-term treatment of heart transplant (HTx) recipients indicates effects of high-intensity interval training (HIIT) on several parameters, including oxygen uptake, vascular function and psychological distress. In this study we compare the effect of HIIT vs continued moderate training (CON) on vascular function, biomarkers and health-related quality of life (HRQoL) in HTx recipients. A randomized, controlled crossover trial of stable HTx recipients >12 months after transplantation was done on patients with 12 weeks of HIIT or 12 weeks of CON, followed by a 5-month washout and crossover. Outcomes included endothelial function, arterial stiffness, biomarkers, HRQoL and markers of anxiety and depression. Sixteen HTx recipients (mean age 52 years, 75% male) completed the study. HIIT increased VO(2peak) more than CON (between-group difference, p HIIT patients (p = 0.02) and borderline increased in CON patients (p = 0.07), whereas there was no significant effect of exercise on the mental component. Depression score decreased significantly in HIIT patients (p = 0.04) with no change in CON patients (p = 0.75), whereas anxiety score decreased significantly in both HIIT (p 0.05). Arterial stiffness and biomarkers were not changed, nor did endothelial function change after HIIT (p = 0.08) or CON (p = 0.68). HIIT and CON are both well tolerated and induce similar improvements in physical components of HRQoL and in markers of anxiety. Effects of either training modality on vascular function and biomarkers could not be confirmed. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Diagnostic Biomarkers for Posttraumatic Stress Disorder (PTSD): Promising Horizons from Translational Neuroscience Research

    Science.gov (United States)

    Michopoulos, Vasiliki; Norrholm, Seth Davin; Jovanovic, Tanja

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently re-classified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition (DSM-5), the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes. PMID:25727177

  20. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    Science.gov (United States)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  1. Preservation of Lipid Biomarkers Under Prolonged and Extreme Hyperaridity in Atacama Desert Soils

    Science.gov (United States)

    Wilhelm, M. B.; Davila, A. F.; Eigenbrode, J. L.; Parenteau, M. N.; Jahnke, L. L.; Summons, R. E.; Liu, X.; Wray, J. J.; Stamos, B.; O'Reilly, S. S.; Williams, A. J.

    2015-12-01

    Molecular biomarkers are the most direct biosignatures of life on early Earth and a key target in the search for life on Mars. Lipid biomarkers are of particular interest given their ability to survive oxidative degradation and record microbial presence and activity of microorganisms that occurred billions of years ago (Eigenbrode, 2008). Environmental conditions that suspend biotic and abiotic degradative processes prior to lithification can lead to enhanced biomolecular preservation over geological time-scales. The hyperarid core of the Atacama Desert in northern Chile offers a unique environment to investigate lipid biomarker taphonomy under extreme and prolonged dryness. We investigated the accumulation and degree of preservation of lipid biomarkers in million-year-old hyperarid soils where primarily abiotic conditions influence their taphonomy. Soils were extracted and free and membrane bound lipids were analyzed across a vertical profile of 2.5 meters in the Yungay hyper-arid core of the Atacama Desert. Due to the extremely low inventory of biomass in Atacama soils, samples were collected by scientists wearing cleanroom suits to minimize anthropogenic contamination during sampling. Fatty acids were found to be well preserved in Yungay soils, and were most abundant in the clay-rich soils at ~2 m depth (~750 ng of fatty acid methyl ester/g of soil). These buried clays layers were fluvially deposited approximately 2 million years ago, and have been excluded from exposure to rainwater and modern surficial processes since their emplacement (Ewing et al., 2008). Monocarboxylic fatty acid, monohydroxy fatty acid, glycerol tetraether, and n-alkane hydrocarbon content was found to change with depth. Lipid biomarker content in deeper soil layers is suggestive of soils having been formed at a time when environmental conditions were capable of supporting active microbial communities and plants. In short, total lipid extracts reveal a remarkable degree of lipid biomarker

  2. Preservation of Lipid Biomarkers Under Prolonged and Extreme Hyperaridity in Atacama Desert Soils

    Science.gov (United States)

    Wilhelm, Mary Beth

    2015-01-01

    Molecular biomarkers are the most direct biosignatures of life on early Earth and a key target in the search for life on Mars. Lipid biomarkers are of particular interest given their ability to survive oxidative degradation and record microbial presence and activity of microorganisms that occurred billions of years ago (Eigenbrode, 2008). Environmental conditions that suspend biotic and abiotic degradative processes prior to lithification can lead to enhanced biomolecular preservation over geological time-scales. The hyperarid core of the Atacama Desert in northern Chile offers a unique environment to investigate lipid biomarker taphonomy under extreme and prolonged dryness. We investigated the accumulation and degree of preservation of lipid biomarkers in million-year-old hyperarid soils where primarily abiotic conditions influence their taphonomy. Soils were extracted and free and membrane bound lipids were analyzed across a vertical profile of 2.5 meters in the Yungay hyper-arid core of the Atacama Desert. Due to the extremely low inventory of biomass in Atacama soils, samples were collected by scientists wearing cleanroom suits to minimize anthropogenic contamination during sampling. Fatty acids were found to be well preserved in Yungay soils, and were most abundant in the clay-rich soils at approx.2 m depth (approx.750 ng of fatty acid methyl ester/g of soil). These buried clays layers were fluvially deposited approximately 2 million years ago, and have been excluded from exposure to rainwater and modern surficial processes since their emplacement (Ewing et al., 2008). Monocarboxylic fatty acid, monohydroxy fatty acid, glycerol tetraether, and n-alkane hydrocarbon content was found to change with depth. Lipid biomarker content in deeper soil layers is suggestive of soils having been formed at a time when environmental conditions were capable of supporting active microbial communities and plants. In short, total lipid extracts reveal a remarkable degree of

  3. Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes

    International Nuclear Information System (INIS)

    Bugel, Sean M.; Bonventre, Josephine A.; White, Lori A.; Tanguay, Robert L.; Cooper, Keith R.

    2014-01-01

    Highlights: • Reproductive biomarker genes in Newark Bay killifish are desensitized to estrogen. • Gene desensitization indicates pre-transcriptional effects on estrogen signaling. • Desensitization does not have a metabolic or epigenetic basis (gene methylation). • Modulation of vitellogenin and choriogenin genes correlates with reproductive impacts. • Choriogenin L appears less prone to false negatives and may be a sensitive biomarker. - Abstract: Reproductive and endocrine disruption is commonly reported in aquatic species exposed to complex contaminant mixtures. We previously reported that Atlantic killifish (Fundulus heteroclitus) from the chronically contaminated Newark Bay, NJ, exhibit multiple endocrine disrupting effects, including inhibition of vitellogenesis (yolk protein synthesis) in females and false negative vitellogenin biomarker responses in males. Here, we characterized the effects on estrogen signaling and the transcriptional regulation of estrogen-responsive genes in this model population. First, a dose–response study tested the hypothesis that reproductive biomarkers (vtg1, vtg2, chg H, chg Hm, chg L) in Newark Bay killifish are relatively less sensitive to 17β-estradiol at the transcriptional level, relative to a reference (Tuckerton, NJ) population. The second study assessed expression for various metabolism (cyp1a, cyp3a30, mdr) and estrogen receptor (ER α, ER βa, ER βb) genes under basal and estrogen treatment conditions in both populations. Hepatic metabolism of 17β-estradiol was also evaluated in vitro as an integrated endpoint for adverse effects on metabolism. In the third study, gene methylation was evaluated for promoters of vtg1 (8 CpGs) and vtg2 (10 CpGs) in both populations, and vtg1 promoter sequences were examined for single nucleotide polymorphism (SNPs). Overall, these studies show that multi-chemical exposures at Newark Bay have desensitized all reproductive biomarkers tested to estrogen. For example, at 10 ng

  4. Chronic exposure of killifish to a highly polluted environment desensitizes estrogen-responsive reproductive and biomarker genes

    Energy Technology Data Exchange (ETDEWEB)

    Bugel, Sean M., E-mail: Sean.Bugel@oregonstate.edu [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Bonventre, Josephine A. [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); White, Lori A. [Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Cooper, Keith R. [Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States)

    2014-07-01

    Highlights: • Reproductive biomarker genes in Newark Bay killifish are desensitized to estrogen. • Gene desensitization indicates pre-transcriptional effects on estrogen signaling. • Desensitization does not have a metabolic or epigenetic basis (gene methylation). • Modulation of vitellogenin and choriogenin genes correlates with reproductive impacts. • Choriogenin L appears less prone to false negatives and may be a sensitive biomarker. - Abstract: Reproductive and endocrine disruption is commonly reported in aquatic species exposed to complex contaminant mixtures. We previously reported that Atlantic killifish (Fundulus heteroclitus) from the chronically contaminated Newark Bay, NJ, exhibit multiple endocrine disrupting effects, including inhibition of vitellogenesis (yolk protein synthesis) in females and false negative vitellogenin biomarker responses in males. Here, we characterized the effects on estrogen signaling and the transcriptional regulation of estrogen-responsive genes in this model population. First, a dose–response study tested the hypothesis that reproductive biomarkers (vtg1, vtg2, chg H, chg Hm, chg L) in Newark Bay killifish are relatively less sensitive to 17β-estradiol at the transcriptional level, relative to a reference (Tuckerton, NJ) population. The second study assessed expression for various metabolism (cyp1a, cyp3a30, mdr) and estrogen receptor (ER α, ER βa, ER βb) genes under basal and estrogen treatment conditions in both populations. Hepatic metabolism of 17β-estradiol was also evaluated in vitro as an integrated endpoint for adverse effects on metabolism. In the third study, gene methylation was evaluated for promoters of vtg1 (8 CpGs) and vtg2 (10 CpGs) in both populations, and vtg1 promoter sequences were examined for single nucleotide polymorphism (SNPs). Overall, these studies show that multi-chemical exposures at Newark Bay have desensitized all reproductive biomarkers tested to estrogen. For example, at 10 ng

  5. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    Science.gov (United States)

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  6. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study

    DEFF Research Database (Denmark)

    Wakeham, Stuart G.; Amann, Rudi; Freemann, Katherine H.

    2007-01-01

    The stratified water column of the Black Sea is partitioned into oxic, suboxic, and euxinic zones, each characterized by different biogeochemical processes and by distinct microbial communities. In 2003, we collected particulate matter by large volume in situ filtration at the highest resolution...... reduction, and sulfide oxidation at the chemocline, and bacterial sulfate reduction and anaerobic oxidation of methane by archaea in the anoxic zone. Cell densities for archaea and sulfate reducing bacteria are estimated based on water column biomarker concentrations and compared with CARD-FISH results....

  7. Identification of predictive biomarkers of disease state in transition dairy cows.

    Science.gov (United States)

    Hailemariam, D; Mandal, R; Saleem, F; Dunn, S M; Wishart, D S; Ametaj, B N

    2014-05-01

    In dairy cows, periparturient disease states, such as metritis, mastitis, and laminitis, are leading to increasingly significant economic losses for the dairy industry. Treatments for these pathologies are often expensive, ineffective, or not cost-efficient, leading to production losses, high veterinary bills, or early culling of the cows. Early diagnosis or detection of these conditions before they manifest themselves could lower their incidence, level of morbidity, and the associated economic losses. In an effort to identify predictive biomarkers for postpartum or periparturient disease states in dairy cows, we undertook a cross-sectional and longitudinal metabolomics study to look at plasma metabolite levels of dairy cows during the transition period, before and after becoming ill with postpartum diseases. Specifically we employed a targeted quantitative metabolomics approach that uses direct flow injection mass spectrometry to track the metabolite changes in 120 different plasma metabolites. Blood plasma samples were collected from 12 dairy cows at 4 time points during the transition period (-4 and -1 wk before and 1 and 4 wk after parturition). Out of the 12 cows studied, 6 developed multiple periparturient disorders in the postcalving period, whereas the other 6 remained healthy during the entire experimental period. Multivariate data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation between healthy controls and diseased cows at all 4 time points. This analysis allowed us to identify several metabolites most responsible for separating the 2 groups, especially before parturition and the start of any postpartum disease. Three metabolites, carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0, were significantly elevated in diseased cows as compared with healthy controls as early as 4 wk before parturition, whereas 2 metabolites, phosphatidylcholine acyl-alkyl C42:4 and

  8. [Cellular microparticles, potential useful biomarkers in the identification of cerebrovascular accidents].

    Science.gov (United States)

    Anglés-Cano, Eduardo; Vivien, Denis

    2009-10-01

    The clinical utility of biomarkers depends on their ability to identify high-risk individuals in order to establish preventive, diagnostic or therapeutic measures. Currently, no practical, rapid and sensitive test is available for the diagnosis of acute ischemic stroke. A number of soluble molecules have been identified that are merely associated to these cerebrovascular accidents. Despite this association not a single molecule has the characteristics of a true biomarker directly involved in the pathophysiology of ischemic stroke-none of them is organ-specific and may therefore be elevated in the context of medical comorbidities. When explored as a combination of biomarkers, e.g. matrix metalloproteinase 9, brain natriuretic protein, D-dimer, protein S100B, the question still remains whether serial biomarker analysis provides additional prognostic information. Even S100B, a glial activation protein, has a low specificity for acute ischemic stroke because it may originate from extracranial sources. Current knowledge from the field of cell-derived microparticles suggests that these membrane fragments may represent reliable biomarkers as they are cell-specific and are released early in the pathophysiological cascade of a disease. These microparticles can be found not only in the cerebrospinal fluid but also in tears and circulating blood in case of blood-brain barrier dysfunction. They represent a new challenge in stroke diagnosis and management.

  9. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein.

    Science.gov (United States)

    Chen, Jing; He, Qing-hua; Xu, Yang; Fu, Jin-heng; Li, Yan-ping; Tu, Zhui; Wang, Dan; Shu, Mei; Qiu, Yu-lou; Yang, Hong-wei; Liu, Yuan-yuan

    2016-01-15

    Immunoassay for cancer biomarkers plays an important role in cancer prevention and early diagnosis. To the development of immunoassay, the quality and stability of applied antibody is one of the key points to obtain reliability and high sensitivity for immunoassay. The main purpose of this study was to develop a novel immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein (AFP) based on nanobody against AFP. Two nanobodies which bind to AFP were selected from a phage display nanobody library by biopanning strategy. The prepared nanobodies are clonable, thermally stable and applied in both sandwich enzyme linked immunoassay (ELISA) and immuno-PCR assay for ultrasensitive detection of AFP. The limit detection of sandwich ELISA setup with optimized nanobodies was 0.48ng mL(-1), and the half of saturation concentration (SC50) value was 6.68±0.56ng mL(-1). These nanobodies were also used to develop an immuno-PCR assay for ultrasensitive detection of AFP, its limit detection values was 0.005ng mL(-1), and the linear range was 0.01-10,000ng mL(-1). These established immunoassays based on nanobodies were highly specific to AFP and with negligible cross reactivity with other tested caner biomarkers. Furthermore, this novel concept of nanobodies mediated immunoassay may provide potential applications in a general method for the ultrasensitive detection of various cancer biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. IL-8 as a urinary biomarker for the detection of bladder cancer

    Directory of Open Access Journals (Sweden)

    Urquidi Virginia

    2012-05-01

    Full Text Available Abstract Background Current urine-based assays for bladder cancer (BCa diagnosis lack accuracy, so the search for improved biomarkers continues. Through genomic and proteomic profiling of urine, we have identified a panel of biomarkers associated with the presence of BCa. In this study, we evaluated the utility of three of these biomarkers, interleukin 8 (IL-8, Matrix metallopeptidase 9 (MMP-9 and Syndecan in the diagnosis of BCa through urinalysis. Methods Voided urines from 127 subjects, cancer subjects (n = 64, non-cancer subjects (n = 63 were analyzed. The protein concentrations of IL-8, MMP-9, and Syndecan were assessed by enzyme-linked immunosorbent assay (ELISA. Data were also compared to a commercial ELISA-based BCa detection assay (BTA-Trak© and urinary cytology. We used the area under the curve of a receiver operating characteristic (AUROC to compare the performance of each biomarker. Results Urinary protein concentrations of IL-8, MMP-9 and BTA were significantly elevated in BCa subjects. Of the experimental markers compared to BTA-Trak©, IL-8 was the most prominent marker (AUC; 0.79; 95% confidence interval [CI], 0.72-0.86. Multivariate regression analysis revealed that only IL-8 (OR; 1.51; 95% CI, 1.16-1.97, p = 0.002 was an independent factor for the detection of BCa. Conclusions These results suggest that the measurement of IL-8 in voided urinary samples may have utility for urine-based detection of BCa. These findings need to be confirmed in a larger, prospective cohort.

  11. Cardiac Biomarkers and Cycling Race

    Directory of Open Access Journals (Sweden)

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier

    2015-06-01

    Full Text Available In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011, but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac biomarkers: creatin kinase (CK, creating kinase midbrain (CK-MB, myoglobin (MYO, highly sensitive troponin T (hs-TnT and N-terminal brain natriuretic peptide (NT-proBNP. The population studied was a group of young trained cyclists participating in a 177-km cycling race. The group of individuals was selected for maximal homogeneity. Their annual training volume was between 10,000 and 16,000 kilometers. The rhythm of races is comparable and averages 35 km/h, depending on the race’s difficulty. The cardiac frequency was recorded via a heart rate monitor. Three blood tests were taken. The first blood test, T0, was taken approximately 2 hours before the start of the race and was intended to gather values which would act as references for the following tests. The second blood test, T1, was realized within 5 minutes of their arrival. The third and final blood test, T3, was taken 3 hours following their arrival. The CK, CK-MB, MYO, hs-TnT and NT-proBNP were measured on the Roche Diagnostic modular E (Manhein, Germany. For the statistical analysis, an ANOVA and post hoc test of Scheffé were calculated with the Statistica Software version 9.1. We noticed an important significant variation in the cardiac frequency between T0 and T1 (p < 0.0001, T0 and T3 (p < 0.0001, and T1 and T3 (p < 0.01. Table 1 shows the results obtained for the different biomarkers. CK and CK-MB showed significant variation between T0-T1 and T0-T3 (p < 0.0001. Myoglobin increased significantly

  12. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  13. Biomarkers of PTSD: military applications and considerations

    OpenAIRE

    Amy Lehrner; Rachel Yehuda

    2014-01-01

    Background: Although there are no established biomarkers for posttraumatic stress disorder (PTSD) as yet, biological investigations of PTSD have made progress identifying the pathophysiology of PTSD. Given the biological and clinical complexity of PTSD, it is increasingly unlikely that a single biomarker of disease will be identified. Rather, investigations will more likely identify different biomarkers that indicate the presence of clinically significant PTSD symptoms, associate with risk fo...

  14. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  15. Imaging biomarker roadmap for cancer studies

    NARCIS (Netherlands)

    O'Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; Desouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, J. R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid G.; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel B.; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and

  16. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  17. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Catch and measure-mass spectrometry-based immunoassays in biomarker research.

    Science.gov (United States)

    Weiß, Frederik; van den Berg, Bart H J; Planatscher, Hannes; Pynn, Christopher J; Joos, Thomas O; Poetz, Oliver

    2014-05-01

    Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. © 2013.

  19. Possible biomarkers modulating haloperidol efficacy and/or tolerability.

    Science.gov (United States)

    Porcelli, Stefano; Crisafulli, Concetta; Calabrò, Marco; Serretti, Alessandro; Rujescu, Dan

    2016-04-01

    Haloperidol (HP) is widely used in the treatment of several forms of psychosis. Despite of its efficacy, HP use is a cause of concern for the elevated risk of adverse drug reactions. adverse drug reactions risk and HP efficacy greatly vary across subjects, indicating the involvement of several factors in HP mechanism of action. The use of biomarkers that could monitor or even predict HP treatment impact would be of extreme importance. We reviewed the elements that could potentially be used as peripheral biomarkers of HP effectiveness. Although a validated biomarker still does not exist, we underlined the several potential findings (e.g., about cytokines, HP metabolites and genotypic biomarkers) which could pave the way for future research on HP biomarkers.

  20. Self-Reported Versus Accelerometer-Measured Physical Activity and Biomarkers Among NHANES Youth.

    Science.gov (United States)

    Belcher, Britni R; Moser, Richard P; Dodd, Kevin W; Atienza, Audie A; Ballard-Barbash, Rachel; Berrigan, David

    2015-05-01

    Discrepancies in self-report and accelerometer-measured moderate-to-vigorous physical activity (MVPA) may influence relationships with obesity-related biomarkers in youth. Data came from 2003-2006 National Health and Nutrition Examination Surveys (NHANES) for 2174 youth ages 12 to 19. Biomarkers were: body mass index (BMI, kg/m2), BMI percentile, height and waist circumference (WC, cm), triceps and subscapular skinfolds (mm), systolic & diastolic blood pressure (BP, mmHg), high-density lipoprotein (HDL, mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), insulin (μU/ml), C-reactive protein (mg/dL), and glycohemoglobin (%). In separate sex-stratified models, each biomarker was regressed on accelerometer variables [mean MVPA (min/day), nonsedentary counts, and MVPA bouts (mean min/day)] and self-reported MVPA. Covariates were age, race/ethnicity, SES, physical limitations, and asthma. In boys, correlations between self-report and accelerometer MVPA were stronger (boys: r = 0.14-0.21; girls: r = 0.07-0.11; P girls, there were no significant associations between biomarkers and any measures of physical activity. Physical activity measures should be selected based on the outcome of interest and study population; however, associations between PA and these biomarkers appear to be weak regardless of the measure used.

  1. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-08-01

    Full Text Available Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750; COPDGene (N = 590] was used to identify single nucleotide polymorphisms (SNPs associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs. PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs. Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10-392 explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC. Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER, surfactant protein D (gene = SFTPD, and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis, but distant (trans pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2 for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the

  2. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Science.gov (United States)

    Drummond, M. Bradley; Hawkins, Gregory A.; Yang, Jenny; Chen, Ting-huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R. Graham; Bleecker, Eugene R.; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H.; Comellas, Alejandro; Crapo, James D.; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A.; Couper, David J.; Doerschuk, Claire M.; Freeman, Christine M.; Gouskova, Natalia A.; Han, MeiLan K.; Hanania, Nicola A.; Hansel, Nadia N.; Hersh, Craig P.; Hoffman, Eric A.; Kaner, Robert J.; Kanner, Richard E.; Kleerup, Eric C.; Lutz, Sharon; Martinez, Fernando J.; Meyers, Deborah A.; Peters, Stephen P.; Regan, Elizabeth A.; Rennard, Stephen I.; Scholand, Mary Beth; Silverman, Edwin K.; Woodruff, Prescott G.; O’Neal, Wanda K.; Bowler, Russell P.

    2016-01-01

    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the

  3. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul

    2018-05-01

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.

  4. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine.

    Science.gov (United States)

    Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul

    2018-05-07

    High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.

  5. Ongoing search for diagnostic biomarkers in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Tarnaris, Andrew; Toma, Ahmed K; Kitchen, Neil D; Watkins, Laurence D

    2009-12-01

    Idiopathic normal pressure hydrocephalus is a syndrome, which typically has a clinical presentation of gait/balance disturbance, often accompanied by cognitive decline and/or urinary incontinence. Its diagnosis is based on relevant history and clinical examination, appropriate imaging findings and physiological testing. The clinical picture of idiopathic normal pressure hydrocephalus may occasionally be difficult to distinguish from that of Alzheimer's dementia, subcortical ischemic vascular dementia and Parkinson's disease. The aim of this article is to systematically review the literature from the last 29 years in order to identify cerebrospinal fluid (CSF) or imaging biomarkers that may aid in the diagnosis of the syndrome. The authors concluded that no CSF or imaging biomarker is currently fulfilling the criteria required to aid in the diagnosis of the condition. However, a few studies have revealed promising CSF and imaging markers that need to be verified by independent groups. The reasons that the progress in this field has been slow so far is also commented on, as well as steps required to apply the current evidence in the design of future studies within the field.

  6. Periodontitis in coronary heart disease patients: strong association between bleeding on probing and systemic biomarkers.

    Science.gov (United States)

    Bokhari, Syed Akhtar H; Khan, Ayyaz A; Butt, Arshad K; Hanif, Mohammad; Izhar, Mateen; Tatakis, Dimitris N; Ashfaq, Mohammad

    2014-11-01

    Few studies have examined the relationship of individual periodontal parameters with individual systemic biomarkers. This study assessed the possible association between specific clinical parameters of periodontitis and systemic biomarkers of coronary heart disease risk in coronary heart disease patients with periodontitis. Angiographically proven coronary heart disease patients with periodontitis (n = 317), aged >30 years and without other systemic illness were examined. Periodontal clinical parameters of bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) and systemic levels of high-sensitivity C-reactive protein (CRP), fibrinogen (FIB) and white blood cells (WBC) were noted and analyzed to identify associations through linear and stepwise multiple regression analyses. Unadjusted linear regression showed significant associations between periodontal and systemic parameters; the strongest association (r = 0.629; p periodontal and systemic inflammation marker, respectively. Stepwise regression analysis models revealed that BOP was a predictor of systemic CRP levels (p periodontal parameter significantly associated with each systemic parameter (CRP, FIB, and WBC). In coronary heart disease patients with periodontitis, BOP is strongly associated with systemic CRP levels; this association possibly reflects the potential significance of the local periodontal inflammatory burden for systemic inflammation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Imperfect Gold Standards for Kidney Injury Biomarker Evaluation

    Science.gov (United States)

    Betensky, Rebecca A.; Emerson, Sarah C.; Bonventre, Joseph V.

    2012-01-01

    Clinicians have used serum creatinine in diagnostic testing for acute kidney injury for decades, despite its imperfect sensitivity and specificity. Novel tubular injury biomarkers may revolutionize the diagnosis of acute kidney injury; however, even if a novel tubular injury biomarker is 100% sensitive and 100% specific, it may appear inaccurate when using serum creatinine as the gold standard. Acute kidney injury, as defined by serum creatinine, may not reflect tubular injury, and the absence of changes in serum creatinine does not assure the absence of tubular injury. In general, the apparent diagnostic performance of a biomarker depends not only on its ability to detect injury, but also on disease prevalence and the sensitivity and specificity of the imperfect gold standard. Assuming that, at a certain cutoff value, serum creatinine is 80% sensitive and 90% specific and disease prevalence is 10%, a new perfect biomarker with a true 100% sensitivity may seem to have only 47% sensitivity compared with serum creatinine as the gold standard. Minimizing misclassification by using more strict criteria to diagnose acute kidney injury will reduce the error when evaluating the performance of a biomarker under investigation. Apparent diagnostic errors using a new biomarker may be a reflection of errors in the imperfect gold standard itself, rather than poor performance of the biomarker. The results of this study suggest that small changes in serum creatinine alone should not be used to define acute kidney injury in biomarker or interventional studies. PMID:22021710

  8. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis.

    Science.gov (United States)

    Zhang, Xing; Guo, Jing; Fan, Shufeng; Li, Yanyuan; Wei, Liliang; Yang, Xiuyun; Jiang, Tingting; Chen, Zhongliang; Wang, Chong; Liu, Jiyan; Ping, Zepeng; Xu, Dandan; Wang, Jiaxiong; Li, Zhongjie; Qiu, Yunqing; Li, Ji-Cheng

    2013-01-01

    It is very difficult to prevent pulmonary tuberculosis (TB) due to the lack of specific and diagnostic markers, which could lead to a high incidence of pulmonary TB. We screened the differentially expressed serum microRNAs (miRNAs) as potential biomarkers for the diagnosis of pulmonary TB. In this study, serum miRNAs were screened using the Solexa sequencing method as the potential biomarkers for the diagnosis of pulmonary TB. The stem-loop quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was used to verify differentially expressed serum miRNAs. The receiver operating characteristic (ROC) curve and logistic regression model were used to analyze the sensitivity and specificity of the single miRNA and a combination of miRNAs for diagnosis, respectively. Using the predicted target genes, we constructed the regulatory networks of miRNAs and genes that were related to pulmonary TB. The Solexa sequencing data showed that 91 serum miRNAs were differentially expressed in pulmonary TB patients, compared to healthy controls. Following qRT-PCR confirmation, six serum miRNAs (hsa-miR-378, hsa-miR-483-5p, hsa-miR-22, hsa-miR-29c, hsa-miR-101 and hsa-miR-320b) showed significant difference among pulmonary TB patients, healthy controls (P<0.001) and differential diagnosis groups (including patients with pneumonia, lung cancer and chronic obstructive pulmonary disease) (P<0.05). The logistic regression analysis of a combination of six serum miRNAs revealed that the sensitivity and the specificity of TB diagnosis were 95.0% and 91.8% respectively. The miRNAs-gene regulatory networks revealed that several miRNAs may regulate some target genes involved in immune pathways and participate in the pathogenesis of pulmonary TB. Our study suggests that a combination of six serum miRNAs have great potential to serve as non-invasive biomarkers of pulmonary TB.

  9. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach.

    Science.gov (United States)

    Garner, Joseph P; Thogerson, Collette M; Dufour, Brett D; Würbel, Hanno; Murray, James D; Mench, Joy A

    2011-06-01

    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Computational and Experimental Approaches to Cancer Biomarker Discovery

    DEFF Research Database (Denmark)

    Krzystanek, Marcin

    of a patient’s response to a particular treatment, thus helping to avoid unnecessary treatment and unwanted side effects in non-responding individuals.Currently biomarker discovery is facilitated by recent advances in high-throughput technologies when association between a given biological phenotype...... and the state or level of a large number of molecular entities is investigated. Such associative analysis could be confounded by several factors, leading to false discoveries. For example, it is assumed that with the exception of the true biomarkers most molecular entities such as gene expression levels show...... random distribution in a given cohort. However, gene expression levels may also be affected by technical bias when the actual measurement technology or sample handling may introduce a systematic error. If the distribution of systematic errors correlates with the biological phenotype then the risk...

  11. Anti-oxidative feedback and biomarkers in the intertidal seagrass Zostera japonica induced by exposure to copper, lead and cadmium

    International Nuclear Information System (INIS)

    Lin, Haiying; Sun, Tao; Zhou, Yi; Zhang, Xiaomei

    2016-01-01

    To investigate the potential influences of anthropogenic pollutants, we evaluated the responses of the intertidal seagrass Zostera japonica to three heavy metals: copper (Cu), lead (Pb), and cadmium (Cd). Z. japonica was exposed to various concentrations of Cu, Pb , and Cd (0, 0.5, 5, 50 μM) over seven days. The effects were then analyzed using the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and lipid peroxidation measured using malondialdehyde (MDA) as proxy. Metal accumulation in the above-ground tissues and phenotypic changes were also investigated. Our results revealed that heavy metal concentration increased in seagrass exposed to high levels of metals. Z. japonica has great potential for metal accumulation and a suitable candidate for the decontamination of moderately Cu contaminated bodies of water and can also potentially enhanced efforts of environmental decontamination, either through phytoextraction abilities or by functioning as an indicator for monitoring programs that use SOD, CAT, GPX, POD and MDA as biomarkers. - Highlights: • Anti-oxidative feedback of Zostera japonica to the heavy metals Cu, Pb, and Cd was determined. • The endangered intertidal seagrass Z. japonica had a high metal accumulation potential. • Z. japonica might be a potential indicator in monitoring programs using SOD, CAT, GPX, POD and MDA as biomarkers.

  12. Reproducible cancer biomarker discovery in SELDI-TOF MS using different pre-processing algorithms.

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    Full Text Available BACKGROUND: There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. RESULTS: In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR control approach and that the reproducibility of DE peak detection could thereby be increased. CONCLUSIONS: Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.

  13. A fragment of the alarmin prothymosin α as a novel biomarker in murine models of bacteria-induced sepsis.

    Science.gov (United States)

    Samara, Pinelopi; Miriagou, Vivi; Zachariadis, Michael; Mavrofrydi, Olga; Promponas, Vasilis J; Dedos, Skarlatos G; Papazafiri, Panagiota; Kalbacher, Hubert; Voelter, Wolfgang; Tsitsilonis, Ourania

    2017-07-25

    Sepsis is a life-threatening condition that requires urgent care. Thus, the identification of specific and sensitive biomarkers for its early diagnosis and management are of clinical importance. The alarmin prothymosin alpha (proTα) and its decapeptide proTα(100-109) are immunostimulatory peptides related to cell death. In this study, we generated bacterial models of sepsis in mice using two Klebsiella pneumoniae strains (L-78 and ATCC 43816) and monitored sepsis progression using proTα(100-109) as a biomarker. Serum concentration of proTα(100-109) gradually increased as sepsis progressed in mice infected with L-78, a strain which, unlike ATCC 43816, was phagocytosed by monocytes/macrophages. Analysis of splenocytes from L-78-infected animals revealed that post-infection spleen monocytes/macrophages were gradually driven to caspase-3-mediated apoptosis. These results were verified in vitro in L-78-infected human monocytes/macrophages. Efficient phagocytosis of L-78 by monocytes stimulated their apoptosis and the concentration of proTα(100-109) in culture supernatants increased. Human macrophages strongly phagocytosed L-78, but resisted cell death. This is the first report suggesting that high levels of proTα(100-109) correlate, both in vitro and in vivo, with increased percentages of cell apoptosis. Moreover, we showed that low levels of proTα(100-109) early post-infection likely correlate with sepsis resolution and thus, the decapeptide could eventually serve as an early surrogate biomarker for predicting bacteria-induced sepsis outcome.

  14. Predator-prey interaction reveals local effects of high-altitude insect migration

    Science.gov (United States)

    High-altitude nocturnal insect migrations represent significant pulses of resources, yet are difficult to study and poorly understood. Predator-prey interactions, specifically migratory moth consumption by high-flying bats, potentially reveal flows of migratory insects across a landscape. In North...

  15. Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment.

    Science.gov (United States)

    Levey, D F; Niculescu, E M; Le-Niculescu, H; Dainton, H L; Phalen, P L; Ladd, T B; Weber, H; Belanger, E; Graham, D L; Khan, F N; Vanipenta, N P; Stage, E C; Ballew, A; Yard, M; Gelbart, T; Shekhar, A; Schork, N J; Kurian, S M; Sandusky, G E; Salomon, D R; Niculescu, A B

    2016-06-01

    Women are under-represented in research on suicidality to date. Although women have a lower rate of suicide completion than men, due in part to the less-violent methods used, they have a higher rate of suicide attempts. Our group has previously identified genomic (blood gene expression biomarkers) and clinical information (apps) predictors for suicidality in men. We now describe pilot studies in women. We used a powerful within-participant discovery approach to identify genes that change in expression between no suicidal ideation (no SI) and high suicidal ideation (high SI) states (n=12 participants out of a cohort of 51 women psychiatric participants followed longitudinally, with diagnoses of bipolar disorder, depression, schizoaffective disorder and schizophrenia). We then used a Convergent Functional Genomics (CFG) approach to prioritize the candidate biomarkers identified in the discovery step by using all the prior evidence in the field. Next, we validated for suicidal behavior the top-ranked biomarkers for SI, in a demographically matched cohort of women suicide completers from the coroner's office (n=6), by assessing which markers were stepwise changed from no SI to high SI to suicide completers. We then tested the 50 biomarkers that survived Bonferroni correction in the validation step, as well as top increased and decreased biomarkers from the discovery and prioritization steps, in a completely independent test cohort of women psychiatric disorder participants for prediction of SI (n=33) and in a future follow-up cohort of psychiatric disorder participants for prediction of psychiatric hospitalizations due to suicidality (n=24). Additionally, we examined how two clinical instruments in the form of apps, Convergent Functional Information for Suicidality (CFI-S) and Simplified Affective State Scale (SASS), previously tested in men, perform in women. The top CFI-S item distinguishing high SI from no SI states was the chronic stress of social isolation. We

  16. A simulation study on estimating biomarker-treatment interaction effects in randomized trials with prognostic variables.

    Science.gov (United States)

    Haller, Bernhard; Ulm, Kurt

    2018-02-20

    To individualize treatment decisions based on patient characteristics, identification of an interaction between a biomarker and treatment is necessary. Often such potential interactions are analysed using data from randomized clinical trials intended for comparison of two treatments. Tests of interactions are often lacking statistical power and we investigated if and how a consideration of further prognostic variables can improve power and decrease the bias of estimated biomarker-treatment interactions in randomized clinical trials with time-to-event outcomes. A simulation study was performed to assess how prognostic factors affect the estimate of the biomarker-treatment interaction for a time-to-event outcome, when different approaches, like ignoring other prognostic factors, including all available covariates or using variable selection strategies, are applied. Different scenarios regarding the proportion of censored observations, the correlation structure between the covariate of interest and further potential prognostic variables, and the strength of the interaction were considered. The simulation study revealed that in a regression model for estimating a biomarker-treatment interaction, the probability of detecting a biomarker-treatment interaction can be increased by including prognostic variables that are associated with the outcome, and that the interaction estimate is biased when relevant prognostic variables are not considered. However, the probability of a false-positive finding increases if too many potential predictors are included or if variable selection is performed inadequately. We recommend undertaking an adequate literature search before data analysis to derive information about potential prognostic variables and to gain power for detecting true interaction effects and pre-specifying analyses to avoid selective reporting and increased false-positive rates.

  17. Identification and Quantitation of Biomarkers for Radiation-Induced Injury via Mass Spectrometry

    Science.gov (United States)

    Jones, Jace W.; Scott, Alison J.; Tudor, Gregory; Xu, Pu-Ting; Jackson, Isabel L.; Vujaskovic, Zeljko; Booth, Catherine; MacVittie, Thomas J.; Ernst, Robert K.; Kane, Maureen A.

    2013-01-01

    Biomarker identification and validation for radiation exposure is a rapidly expanding field encompassing the need for well-defined animal models and advanced analytical techniques. The resources within the consortium, Medical Countermeasures Against Radiological Threats (MCART), provide a unique opportunity for accessing well-defined animal models that simulate the key sequelae of the acute radiation syndrome and the delayed effects of acute radiation exposure. Likewise, the use of mass spectrometry-based analytical techniques for biomarker discovery and validation enables a robust analytical platform that is amenable to a variety of sample matrices and considered the benchmark for bio-molecular identification and quantitation. Herein, we demonstrate the use of two targeted mass spectrometry approaches to link established MCART animal models to identified metabolite biomarkers. Circulating citrulline concentration was correlated to gross histological gastrointestinal tissue damage and retinoic acid production in lung tissue was established to be reduced at early and late time points post high dose irradiation. Going forward, the use of mass spectrometry-based metabolomics coupled to well-defined animal models provides the unique opportunity for comprehensive biomarker discovery. PMID:24276554

  18. Blood Biomarkers in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Guiot, Julien; Moermans, Catherine; Henket, Monique; Corhay, Jean-Louis; Louis, Renaud

    2017-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease of unknown origin whose incidence has been increasing over the latest decade partly as a consequence of population ageing. New anti-fibrotic therapy including pirfenidone and nintedanib have now proven efficacy in slowing down the disease. Nevertheless, diagnosis and follow-up of IPF remain challenging. This review examines the recent literature on potentially useful blood molecular and cellular biomarkers in IPF. Most of the proposed biomarkers belong to chemokines (IL-8, CCL18), proteases (MMP-1 and MMP-7), and growth factors (IGBPs) families. Circulating T cells and fibrocytes have also gained recent interest in that respect. Up to now, though several interesting candidates are profiling there has not been a single biomarker, which proved to be specific of the disease and predictive of the evolution (decline of pulmonary function test values, risk of acute exacerbation or mortality). Large scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.

  19. In Vivo Imaging Biomarkers in Mouse Models of Alzheimer's Disease: Are We Lost in Translation or Breaking Through?

    Directory of Open Access Journals (Sweden)

    Benoît Delatour

    2010-01-01

    Full Text Available Identification of biomarkers of Alzheimer's Disease (AD is a critical priority to efficiently diagnose the patients, to stage the progression of neurodegeneration in living subjects, and to assess the effects of disease-modifier treatments. This paper addresses the development and usefulness of preclinical neuroimaging biomarkers of AD. It is today possible to image in vivo the brain of small rodents at high resolution and to detect the occurrence of macroscopic/microscopic lesions in these species, as well as of functional alterations reminiscent of AD pathology. We will outline three different types of imaging biomarkers that can be used in AD mouse models: biomarkers with clear translational potential, biomarkers that can serve as in vivo readouts (in particular in the context of drug discovery exclusively for preclinical research, and finally biomarkers that constitute new tools for fundamental research on AD physiopathogeny.

  20. Biomarkers in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Bennike, Tue; Birkelund, Svend; Stensballe, Allan

    2014-01-01

    Unambiguous diagnosis of the two main forms of inflammatory bowel diseases (IBD): Ulcerative colitis (UC) and Crohn's disease (CD), represents a challenge in the early stages of the diseases. The diagnosis may be established several years after the debut of symptoms. Hence, protein biomarkers...... for early and accurate diagnostic could help clinicians improve treatment of the individual patients. Moreover, the biomarkers could aid physicians to predict disease courses and in this way, identify patients in need of intensive treatment. Patients with low risk of disease flares may avoid treatment...... with medications with the concomitant risk of adverse events. In addition, identification of disease and course specific biomarker profiles can be used to identify biological pathways involved in the disease development and treatment. Knowledge of disease mechanisms in general can lead to improved future...

  1. Biomarkers of acute lung injury: worth their salt?

    Directory of Open Access Journals (Sweden)

    Proudfoot Alastair G

    2011-12-01

    Full Text Available Abstract The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy.

  2. Identification of transcriptional biomarkers by RNA-sequencing for improved detection of β2-agonists abuse in goat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Luyao Zhao

    Full Text Available In this paper, high-throughput RNA-sequencing (RNA-seq was used to search for transcriptional biomarkers for β2-agonists. In combination with drug mechanisms, a smaller group of genes with higher detection accuracy was screened out. Unknown samples were first predicted by this group of genes, and liquid chromatograph tandem mass spectrometer (LC-MS/MS was applied to positive samples to validate the biomarkers. The results of principal component analysis (PCA, hierarchical cluster analysis (HCA and discriminant analysis (DA indicated that the eight genes screened by high-throughput RNA-seq were able to distinguish samples in the experimental group and control group. Compared with the nine genes selected from an earlier literature, 17 genes including these nine genes were proven to have a more satisfactory effect, which validated the accuracy of gene selection by RNA-seq. Then, six key genes were selected from the 17 genes according to the variable importance in projection (VIP value of greater than 1. The test results using the six genes and 17 genes were similar, revealing that the six genes were critical genes. By using the six genes, three positive samples possibly treated with drugs were screened out from 25 unknown samples through DA and partial least squares discriminant analysis (PLS-DA. Then, the three samples were verified by a standard method, and mapenterol was detected in a sample. Therefore, the six genes can be used as biomarkers to detect β2-agonists. Compared with the previous study, accurate detection of β2-agonists abuse using six key genes is an improvement method, which show great significance in the monitoring of β2-agonists abuse in animal husbandry.

  3. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  4. Towards a better understanding of biomarker response in field survey: a case study in eight populations of zebra mussels.

    Science.gov (United States)

    Pain-Devin, S; Cossu-Leguille, C; Geffard, A; Giambérini, L; Jouenne, T; Minguez, L; Naudin, B; Parant, M; Rodius, F; Rousselle, P; Tarnowska, K; Daguin-Thiébaut, C; Viard, F; Devin, S

    2014-10-01

    In order to provide reliable information about responsiveness of biomarkers during environmental monitoring, there is a need to improve the understanding of inter-population differences. The present study focused on eight populations of zebra mussels and aimed to describe how variable are biomarkers in different sampling locations. Biomarkers were investigated and summarised through the Integrated Biomarker Response (IBR index). Inter-site differences in IBR index were analysed through comparisons with morphological data, proteomic profiles and genetic background of the studied populations. We found that the IBR index was a good tool to inform about the status of sites. It revealed higher stress in more polluted sites than in cleaner ones. It was neither correlated to proteomic profiles nor to genetic background, suggesting a stronger influence of environment than genes. Meanwhile, morphological traits were related to both environment and genetic background influence. Together these results attest the benefit of using biological tools to better illustrate the status of a population and highlight the need of consider inter-population difference in their baselines. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biomarkers in Diabetic Retinopathy.

    Science.gov (United States)

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  6. Biomarkers of carcinogen exposure and early effects.

    OpenAIRE

    2006-01-01

    The purpose of this review is to summarise the current situation regarding the types and uses of biomarkers of exposure and effect for the main classes of food-derived genotoxic carcinogens, and to consider some aspects of the intercomparison between these biomarkers. The biomarkers of exposure and early effects of carcinogens that have been most extensively developed are those for genotoxic agents and for compounds that generate hydroxyl radicals and other reactive radical species, and it is...

  7. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    Science.gov (United States)

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  8. Use of biomarkers in ALS drug development and clinical trials.

    Science.gov (United States)

    Bakkar, Nadine; Boehringer, Ashley; Bowser, Robert

    2015-05-14

    The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  10. The Biomarker Knowledge System Informatics Pilot Project Supplement To The Biomarker Development Laboratory at Moffitt (Bedlam) — EDRN Public Portal

    Science.gov (United States)

    The Biomarker Knowledge System Informatics Pilot Project goal will develop network interfaces among databases that contain information about existing clinical populations and biospecimens and data relating to those specimens that are important in biomarker assay validation. This protocol comprises one of two that will comprise the Moffitt participation in the Biomarker Knowledge System Informatics Pilot Project. THIS PROTOCOL (58) is the Sput-Epi Database.

  11. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  12. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle

    DEFF Research Database (Denmark)

    Salleh, M. S.; Mazzoni, G.; Höglund, J. K.

    2017-01-01

    -throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate...... genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency....... On average, 57 million reads (short reads or short mRNA sequences ...

  13. Source-identifying biomarker ions between environmental and clinical Burkholderia pseudomallei using whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Niyompanich, Suthamat; Jaresitthikunchai, Janthima; Srisanga, Kitima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2014-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei.

  14. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    Science.gov (United States)

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaobing [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China); Ma, Ben; Lin, Zhi; Qu, Zhe; Huo, Yan; Wang, Jufeng [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Li, Bo, E-mail: libo@nifdc.org.cn [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China)

    2014-10-01

    As kidney is a major target organ affected by drug toxicity, early detection of renal injury is critical in preclinical drug development. In past decades, a series of novel biomarkers of drug-induced nephrotoxicity were discovered and verified in rats. However, limited data regarding the performance of novel biomarkers in non-rodent species are publicly available. To increase the applicability of these biomarkers, we evaluated the performance of 4 urinary biomarkers including neutrophil gelatinase-associated lipocalin (NGAL), clusterin, total protein, and N-acetyl-β-D-glucosaminidase (NAG), relative to histopathology and traditional clinical chemistry in beagle dogs with acute kidney injury (AKI) induced by gentamicin. The results showed that urinary NGAL and clusterin levels were significantly elevated in dogs on days 1 and 3 after administration of gentamicin, respectively. Gene expression analysis further provided mechanistic evidence to support that NGAL and clusterin are potential biomarkers for the early assessment of drug-induced renal damage. Furthermore, the high area (both AUCs = 1.000) under receiver operator characteristics (ROC) curve also indicated that NGAL and clusterin were the most sensitive biomarkers for detection of gentamicin-induced renal proximal tubular toxicity. Our results also suggested that NAG may be used in routine toxicity testing due to its sensitivity and robustness for detection of tissue injury. The present data will provide insights into the preclinical use of these biomarkers for detection of drug-induced AKI in non-rodent species. - Highlights: • Urinary NGAL, clusterin and NAG levels were significantly elevated in canine AKI. • NGAL and clusterin gene expression were increased following treatment with gentamicin. • NGAL and clusterin have high specificity and sensitivity for detection of AKI.

  16. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal.

    Directory of Open Access Journals (Sweden)

    Sun Eun Lee

    Full Text Available Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6-8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP, a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41 than negatively associated (n = 58 with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium, growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of

  17. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    2015-11-01

    Full Text Available Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

  18. Putative transcriptomic biomarkers in the inflammatory cytokine pathway differentiate major depressive disorder patients from control subjects and bipolar disorder patients.

    Directory of Open Access Journals (Sweden)

    Timothy R Powell

    Full Text Available Mood disorders consist of two etiologically related, but distinctly treated illnesses, major depressive disorder (MDD and bipolar disorder (BPD. These disorders share similarities in their clinical presentation, and thus show high rates of misdiagnosis. Recent research has revealed significant transcriptional differences within the inflammatory cytokine pathway between MDD patients and controls, and between BPD patients and controls, suggesting this pathway may possess important biomarker properties. This exploratory study attempts to identify disorder-specific transcriptional biomarkers within the inflammatory cytokine pathway, which can distinguish between control subjects, MDD patients and BPD patients. This is achieved using RNA extracted from subject blood and applying synthesized complementary DNA to quantitative PCR arrays containing primers for 87 inflammation-related genes. Initially, we use ANOVA to test for transcriptional differences in a 'discovery cohort' (total n = 90 and then we use t-tests to assess the reliability of any identified transcriptional differences in a 'validation cohort' (total n = 35. The two most robust and reliable biomarkers identified across both the discovery and validation cohort were Chemokine (C-C motif ligand 24 (CCL24 which was consistently transcribed higher amongst MDD patients relative to controls and BPD patients, and C-C chemokine receptor type 6 (CCR6 which was consistently more lowly transcribed amongst MDD patients relative to controls. Results detailed here provide preliminary evidence that transcriptional measures within inflammation-related genes might be useful in aiding clinical diagnostic decision-making processes. Future research should aim to replicate findings detailed in this exploratory study in a larger medication-free sample and examine whether identified biomarkers could be used prospectively to aid clinical diagnosis.

  19. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances

    Science.gov (United States)

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-01-01

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments. PMID:26855534

  20. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances.

    Science.gov (United States)

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-02-07

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments.

  1. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.

  2. Heritability of Biomarkers of Oxidized Lipoproteins: Twin Pair Study.

    Science.gov (United States)

    Rao, Fangwen; Schork, Andrew J; Maihofer, Adam X; Nievergelt, Caroline M; Marcovina, Santica M; Miller, Elizabeth R; Witztum, Joseph L; O'Connor, Daniel T; Tsimikas, Sotirios

    2015-07-01

    To determine whether biomarkers of oxidized lipoproteins are genetically determined. Lipoprotein(a) (Lp[a]) is a heritable risk factor and carrier of oxidized phospholipids (OxPL). We measured oxidized phospholipids on apolipoprotein B-containing lipoproteins (OxPL-apoB), Lp(a), IgG, and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes in 386 monozygotic and dizygotic twins to estimate trait heritability (h(2)) and determine specific genetic effects among traits. A genome-wide linkage study followed by genetic association was performed. The h(2) (scale: 0-1) for Lp(a) was 0.91±0.01 and for OxPL-apoB 0.87±0.02, which were higher than physiological, inflammatory, or lipid traits. h(2) of IgM malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes were 0.69±0.04, 0.67±0.05, and 0.80±0.03, respectively, and for IgG malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes 0.62±0.05, 0.52±0.06, and 0.53±0.06, respectively. There was an inverse correlation between the major apo(a) isoform and OxPL-apoB (R=-0.49; Plipoprotein and copper oxidized low-density lipoprotein, and apoB-immune complexes. Sib-pair genetic linkage of the Lp(a) trait revealed that single nucleotide polymorphism rs10455872 was significantly associated with OxPL-apoB after adjusting for Lp(a). OxPL-apoB and other biomarkers of oxidized lipoproteins are highly heritable cardiovascular risk factors that suggest novel genetic origins of atherothrombosis. © 2015 American Heart Association, Inc.

  3. Urine stability studies for novel biomarkers of acute kidney injury.

    Science.gov (United States)

    Parikh, Chirag R; Butrymowicz, Isabel; Yu, Angela; Chinchilli, Vernon M; Park, Meyeon; Hsu, Chi-Yuan; Reeves, W Brian; Devarajan, Prasad; Kimmel, Paul L; Siew, Edward D; Liu, Kathleen D

    2014-04-01

    The study of novel urinary biomarkers of acute kidney injury has expanded exponentially. Effective interpretation of data and meaningful comparisons between studies require awareness of factors that can adversely affect measurement. We examined how variations in short-term storage and processing might affect the measurement of urine biomarkers. Cross-sectional prospective. Hospitalized patients from 2 sites: Yale New Haven Hospital (n=50) and University of California, San Francisco Medical Center (n=36). We tested the impact of 3 urine processing conditions on these biomarkers: (1) centrifugation and storage at 4°C for 48 hours before freezing at -80°C, (2) centrifugation and storage at 25°C for 48 hours before freezing at -80°C, and (3) uncentrifuged samples immediately frozen at -80°C. Urine concentrations of 5 biomarkers: neutrophil gelatinase-associated lipocalin (NGAL), interleukin 18 (IL-18), kidney injury molecule 1 (KIM-1), liver-type fatty acid-binding protein (L-FABP), and cystatin C. We measured urine biomarkers by established enzyme-linked immunosorbent assay methods. Biomarker values were log-transformed, and agreement with a reference standard of immediate centrifugation and storage at -80°C was compared using concordance correlation coefficients (CCCs). Neither storing samples at 4°C for 48 hours nor centrifugation had a significant effect on measured levels, with CCCs higher than 0.9 for all biomarkers tested. For samples stored at 25°C for 48 hours, excellent CCC values (>0.9) also were noted between the test sample and the reference standard for NGAL, cystatin C, L-FABP and KIM-1. However, the CCC for IL-18 between samples stored at 25°C for 48 hours and the reference standard was 0.81 (95% CI, 0.66-0.96). No comparisons to fresh, unfrozen samples; no evaluation of the effect of protease inhibitors. All candidate markers tested using the specified assays showed high stability with both short-term storage at 4°C and without centrifugation

  4. Phase II cancer clinical trials for biomarker-guided treatments.

    Science.gov (United States)

    Jung, Sin-Ho

    2018-01-01

    The design and analysis of cancer clinical trials with biomarker depend on various factors, such as the phase of trials, the type of biomarker, whether the used biomarker is validated or not, and the study objectives. In this article, we demonstrate the design and analysis of two Phase II cancer clinical trials, one with a predictive biomarker and the other with an imaging prognostic biomarker. Statistical testing methods and their sample size calculation methods are presented for each trial. We assume that the primary endpoint of these trials is a time to event variable, but this concept can be used for any type of endpoint.

  5. Sputum biomarkers and the prediction of clinical outcomes in patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Theodore G Liou

    Full Text Available Lung function, acute pulmonary exacerbations (APE, and weight are the best clinical predictors of survival in cystic fibrosis (CF; however, underlying mechanisms are incompletely understood. Biomarkers of current disease state predictive of future outcomes might identify mechanisms and provide treatment targets, trial endpoints and objective clinical monitoring tools. Such CF-specific biomarkers have previously been elusive. Using observational and validation cohorts comprising 97 non-transplanted consecutively-recruited adult CF patients at the Intermountain Adult CF Center, University of Utah, we identified biomarkers informative of current disease and predictive of future clinical outcomes. Patients represented the majority of sputum producers. They were recruited March 2004-April 2007 and followed through May 2011. Sputum biomarker concentrations were measured and clinical outcomes meticulously recorded for a median 5.9 (interquartile range 5.0 to 6.6 years to study associations between biomarkers and future APE and time-to-lung transplantation or death. After multivariate modeling, only high mobility group box-1 protein (HMGB-1, mean=5.84 [log ng/ml], standard deviation [SD] =1.75 predicted time-to-first APE (hazard ratio [HR] per log-unit HMGB-1=1.56, p-value=0.005, number of future APE within 5 years (0.338 APE per log-unit HMGB-1, p<0.001 by quasi-Poisson regression and time-to-lung transplantation or death (HR=1.59, p=0.02. At APE onset, sputum granulocyte macrophage colony stimulating factor (GM-CSF, mean 4.8 [log pg/ml], SD=1.26 was significantly associated with APE-associated declines in lung function (-10.8 FEV(1% points per log-unit GM-CSF, p<0.001 by linear regression. Evaluation of validation cohorts produced similar results that passed tests of mutual consistency. In CF sputum, high HMGB-1 predicts incidence and recurrence of APE and survival, plausibly because it mediates long-term airway inflammation. High APE-associated GM

  6. Comprehensive serum profiling for the discovery of epithelial ovarian cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Ping Yip

    Full Text Available FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC=0.933 and CA-125 (AUC=0.907 were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800. To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912. Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the

  7. A New Serum Biomarker for Lung Cancer - Transthyretin

    Directory of Open Access Journals (Sweden)

    Liyun LIU

    2009-04-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer death worldwide and very few specific biomarkers could be used in clinical diagnosis at present. The aim of this study is to find novel potential serum biomarkers for lung cancer using Surface Enhanced Laser Desorption/Ionization (SELDI technique. Methods Serumsample of 227 cases including 146 lung cancer, 13 pneumonia, 28 tuberculous pleurisy and 40 normal individuals were analyzed by CM10 chips. The candidate biomarkers were identified by ESI/MS-MS and database searching, and further confirmed by immunoprecipitation. The same sets of serum sample from all groups were re-measured by ELISA assay. Results Three protein peaks with the molecular weight 13.78 kDa, 13.90 kDa and 14.07 kDa were found significantlydecreased in lung cancer serum compared to the other groups and were all automatically selected as specific biomarkers by Biomarker Wizard software. The candidate biomarkers obtained from 1-D SDS gel bands by matching the molecular weight with peaks on CM10 chips were identified by Mass spectrometry as the native transthyretin (nativeTTR, cysTTR and glutTTR, and the identity was further validated by immunoprecipitation using commercial TTR antibodies. Downregulated of TTR was found in both ELISA and SELDI analysis. Conclusion TTRs acted as the potentially useful biomarkers for lung cancer by SELDI technique.

  8. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.

    Science.gov (United States)

    Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy

    2015-10-01

    In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

  9. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  10. Prospective evaluation of biomarkers for prediction of quality of life in community-acquired pneumonia.

    Science.gov (United States)

    Nickler, Manuela; Schaffner, Daniela; Christ-Crain, Mirjam; Ottiger, Manuel; Thomann, Robert; Hoess, Claus; Henzen, Christoph; Mueller, Beat; Schuetz, Philipp

    2016-11-01

    Most clinical research investigated prognostic biomarkers for their ability to predict cardiovascular events or mortality. It is unknown whether biomarkers allow prediction of quality of life (QoL) after survival of the acute event. Herein, we investigated the prognostic potential of well-established inflammatory/cardiovascular blood biomarkers including white blood cells (WBC), C-reactive protein (CRP), procalcitonin (PCT), pro-adrenomedullin (proADM) and pro-atrial natriuretic peptide (proANP) in regard to a decline in QoL in a well-defined cohort of patients with community-acquired pneumonia (CAP). Within this secondary analysis including 753 patients with a final inpatient diagnosis of CAP from a multicenter trial, we investigated associations between admission biomarker levels and decline in QoL assessed by the EQ-5D health questionnaire from admission to day 30 and after 6 years. Admission proADM and proANP levels significantly predicted decline of the weighted EQ-5D index after 30 days (n=753) with adjusted odds ratios (ORs) of 2.0 ([95% CI 1.1-3.8]; p=0.027) and 3.7 ([95% CI 2.2-6.0]; pscale (VAS). Initial WBC, PCT and CRP values did not well predict QoL at any time point. ProADM and proANP accurately predict short- and long-term decline in QoL across most dimensions in CAP patients. It will be interesting to reveal underlying physiopathology in future studies.

  11. amphibian_biomarker_data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amphibian metabolite data used in Snyder, M.N., Henderson, W.M., Glinski, D.G., Purucker, S. T., 2017. Biomarker analysis of american toad (Anaxyrus americanus) and...

  12. Profiling biomarkers of traumatic axonal injury: From mouse to man.

    Science.gov (United States)

    Manivannan, Susruta; Makwana, Milan; Ahmed, Aminul Islam; Zaben, Malik

    2018-05-18

    Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points. Copyright © 2018. Published by Elsevier B.V.

  13. Challenging homeostasis to define biomarkers for nutrition related health

    NARCIS (Netherlands)

    Ommen, van B.; Keijer, J.; Heil, S.G.; Kaput, J.

    2009-01-01

    A primary goal of nutrition research is to optimize health and prevent or delay disease. Biomarkers to quantify health optimization are needed since many if not most biomarkers are developed for diseases. Quantifying normal homeostasis and developing validated biomarkers are formidable tasks because

  14. Spatial variations in biomarkers of Mytilus edulis mussels at four polluted regions spanning the Northern Hemisphere

    International Nuclear Information System (INIS)

    Gagne, F.; Burgeot, T.; Hellou, J.; St-Jean, S.; Farcy, E.; Blaise, C.

    2008-01-01

    Economic and social developments have taken place at the expense of the health of the environment, both locally and on a global scale. In an attempt to better understand the large-scale effects of pollution and other stressors like climate change on the health status of Mytilus edulis, mussels were collected during the first two weeks of June 2005 at three sites (one pristine and two affected by pollution) located in each of the regions of the Canadian West Coast, the St. Lawrence estuary, the Atlantic East Coast and the northwestern coast of France, covering a total distance of some 11 000 km. The mussels were analyzed for morphologic integrity (condition factor), gametogenic activity (gonado-somatic and gonad maturation index, vitellogenin(Vtg)-like proteins), energy status (temperature-dependent mitochondrial electron transport activity and gonad lipid stores), defense mechanisms (glutathione S-transferase, metallothioneins, cytochrome P4503A activity and xanthine oxidoreductase-XOR), and tissue damage (lipid peroxidation-LPO and DNA strand breaks). The results showed that data from the reference sites in each region were usually not normally distributed, with discriminant factors reaching the number of regions (i.e. four), except for the biomarkers gonadal lipids, XOR and LPO in digestive gland. The integrated responses of the biomarkers revealed that biomarkers of stress were significantly more pronounced in mussels from the Seine estuary, suggesting that the impacts of pollution are more generalized in this area. Mussels from the Seine estuary and the Atlantic East Coast (Halifax Harbor) responded more strongly for Vtg-like proteins, but was not related to gonad maturation and gonado-somatic indexes, suggesting the presence of environmental estrogens. Moreover, these mussels displayed reduced DNA repair activity and increased LPO. Factorial analyses revealed that energy status, cytochrome P4503A activity and Vtg-like proteins were the most important

  15. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status.

    Science.gov (United States)

    Bergamo, Paolo; Volpe, Maria Grazia; Lorenzetti, Stefano; Mantovani, Alberto; Notari, Tiziana; Cocca, Ennio; Cerullo, Stefano; Di Stasio, Michele; Cerino, Pellegrino; Montano, Luigi

    2016-12-01

    The Campania region in Italy is facing an environmental crisis due to the illegal disposal of toxic waste. Herein, a pilot study (EcoFoodFertility initiative) was conducted to investigate the use of human semen as an early biomarker of pollution on 110 healthy males living in various areas of Campania with either high or low environmental impact. The semen from the "high impact" group showed higher zinc, copper, chromium and reduced iron levels, as well as reduced sperm motility and higher sperm DNA Fragmentation Index (DFI). Redox biomarkers (total antioxidant capacity, TAC, and glutathione, GSH) and the activity of antioxidant enzymes in semen were lower in the "high impact" group. The percentage of immotile spermatozoa showed a significant inverse correlation with TAC and GSH. Overall, several semen parameters (reduced sperm quality and antioxidant defenses, altered chemical element pattern), which were associated with residence in a high polluted environment, could be used in a further larger scale study, as early biomarkers of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Toxicological biomarkers in the analysis of Orbetello lagoon (Italy); Biomarkers nella valutazione della qualita' di un sistema lagunare

    Energy Technology Data Exchange (ETDEWEB)

    Fossi, M. C.; Mori, G.; Baroni, D.; Bianchi, N. [Siena Univ., Siena (Italy). Dipt. di Scienze Ambientali

    2001-08-01

    Toxicological risk assessment in the Orbetello lagoon (Grosseto, Italy) was carried by two approaches: biomonitoring based on estimates of residue levels in indicator species and biomarkers studies by which their responses to chemical and environmental stress were evaluated. In specimens of Carcinus aestuarii sampled in three differently impacted areas of the lagoon, levels of chlorinated hydrocarbons (DDTs, PCBs and HCBs), heavy metals (Pb, Cd and Hg) and 3 specific biomarkers (mixed function oxidase (MFO) induction, butyrylcholinesterase (BChE) inhibition and porphyrin accumulation) were measured. Overall results indicate that the lagoon is highly polluted. Of the three study sites, the highest concentrations of HCBs, DDTs and PCBs were observed in specimens from the mouth of the river Albegna, in which butyrylcholinesterase induction usually attributed to organophosphates (OPs) and carbamates (CBs), was considerable, as well. Specimens from S. Liberata, once known to be the most pristine site, showed clear signs of environmental degradation with high levels of Pb, Cd and organochlorine compounds, including PCBs. Benzopyrene monooxygenase (BPMO) values also seem to confirm such chemical stress. High levels of Hg and largely accumulated protoporphyrins and total porphyrins in C. aestuarii of the Sitoco site are only partially ascribed to the occurrence of Hg, as the presence of some unknown xenobiotics is likely. [Italian] In questo studio e' stato valutato il potenziale pericolo di composti inquinanti su una comunita' naturale della Laguna di Orbetello (Grosseto) utilizzando sia indagini di biomonitoraggio basate sulla stima dei livelli di residui in organismi bioindicatori, si una metodologia innovativa come lo studio di biomarkers (intendendo con cio' la valutazione delle risposte che un organismo genera nei confronti di uno strss chimico-ambientale). Su esemplari di Carcinus aestuarii, scelti come organismi bioindicatori e campionati in tre aree

  17. Preservation of terrestrial plant biomarkers from Nachukui Formation sediments and their viability for stable isotope analysis

    Science.gov (United States)

    Kahle, E.; Uno, K. T.; Polissar, P. J.; Lepre, C. J.; deMenocal, P. B.

    2013-12-01

    Plio-Pleistocene sedimentary records from the Turkana Basin in eastern Africa provide a unique opportunity to compare a high-resolution record of climate and terrestrial vegetation with important changes in the record of human evolution. Molecular biomarkers from terrestrial vegetation can yield stable isotope ratios of hydrogen and carbon that reflect ancient climate and vegetation. However, the preservation of long-chain plant wax biomarkers in these paleosol, fluvial, and lacustrine sediments is not known, and this preservation must be studied to establish their utility for molecular stable isotope studies. We investigated leaf wax biomarkers in Nachukui Formation sediments deposited between 2.3 and 1.7 Ma to assess biomarker preservation. We analyzed n alkane and n alkanoic acid concentrations and, where suitable, molecular carbon and hydrogen isotope ratios. Molecular abundance distributions show a great deal of variance in biomarker preservation and plant-type source as indicated by the carbon preference index and average chain length. This variation suggests that some samples are suitable for isotopic analysis, while other samples lack primary terrestrial plant biomarker signatures. The biomarker signal in many samples contains significant additional material from unidentified sources. For example, the n-alkane distributions contain an unresolved complex mixture underlying the short and mid-chain n-alkanes. Samples from lacustrine intervals include long-chain diacids, hydroxy acids and (ω-1) ketoacids that suggest degradation of the original acids. Degradation of poorly preserved samples and the addition of non-terrestrial plant biomarkers may originate from a number of processes including forest fire or microbial alteration. Isotopic analysis of well-preserved terrestrial plant biomarkers will be presented along with examples where the original biomarker distribution has been altered.

  18. Simultaneous detection of diagnostic biomarkers of alkaptonuria, ornithine carbamoyltransferase deficiency, and neuroblastoma disease by high-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Hsu, Wei-Yi; Chen, Ching-Ming; Tsai, Fuu-Jen; Lai, Chien-Chen

    2013-05-01

    Urinary homovanillic acid (HVA)/vanillylmandelic acid (VMA), orotic acid (OA), and homogentisic acid (HGA) are diagnostic biomarkers of neuroblastoma, ornithine carbamoyl transferase deficiency (OCTD), and alkaptonuria (AKU), respectively. In this study, a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous quantification of HVA, VMA, OA, and HGA in urine. After sample preparation, which involved only the dilution procedure, samples were quantified by LC-MS/MS. Full-scan MS/MS mode enabled the urinary markers to be quantified with a high degree of specificity and sensitivity. Rather than using a separate enzymatic method to normalize the concentration of creatinine in urine, we quantified the level of creatinine in urine in one LC-MS run. The limits of detection were 10 μg/l for HGA, 25 μg/l for HVA/VMA, and 50 μg/l for OA with a single-to-noise ratio of 3; the limits of quantification were 50 μg/l for HVA and HGA, 100 μg/l for VMA, and 250 μg/l for OA. The linear dynamic range for quantification of the analytes covered 2 to 3 orders of magnitude, depending on the analyte. The relative standard deviation of the developed LC-MS/MS method was less than 4% for the intra-day validation and 10% for the inter-day validation. The results show that our LC-MS/MS technique is a highly sensitive and rapid method for screening for biomarkers that are diagnostic of three metabolic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents.

    Directory of Open Access Journals (Sweden)

    Valerie Carson

    Full Text Available BACKGROUND: The minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample. METHODS: The study is based on 1,731 adolescents, aged 12-19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100-799 counts/min, high light-intensity activity (800 counts/min to <4 METs and moderate- to vigorous-intensity activity (≥ 4 METs, Freedson age-specific equation were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of β-cell function (HOMA-%B and insulin sensitivity (HOMA-%S were also measured in a fasting sub-sample (n=807. RESULTS: Adjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18-0.01 mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94-0.39 mmHG lower diastolic blood pressure and 0.04 (0.001-0.07 mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73-1.35 mmHG lower systolic blood pressure, 5.49 (1.11-9.77% lower waist circumference, 25.87 (6.08-49.34% lower insulin, and 16.18 (4.92-28.53% higher HOMA-%S. CONCLUSIONS: Time spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to

  20. Biomarkers of Immunotoxicity for Environmental and Public Health Research

    Directory of Open Access Journals (Sweden)

    Nina T. Holland

    2011-05-01

    Full Text Available The immune response plays an important role in the pathophysiology of numerous diseases including asthma, autoimmunity and cancer. Application of biomarkers of immunotoxicity in epidemiology studies and human clinical trials can improve our understanding of the mechanisms that underlie the associations between environmental exposures and development of these immune-mediated diseases. Immunological biomarkers currently used in environmental health studies include detection of key components of innate and adaptive immunity (e.g., complement, immunoglobulin and cell subsets as well as functional responses and activation of key immune cells. The use of high-throughput assays, including flow cytometry, Luminex, and Multi-spot cytokine detection methods can further provide quantitative analysis of immune effects. Due to the complexity and redundancy of the immune response, an integrated assessment of several components of the immune responses is needed. The rapidly expanding field of immunoinformatics will also aid in the synthesis of the vast amount of data being generated. This review discusses and provides examples of how the identification and development of immunological biomarkers for use in studies of environmental exposures and immune-mediated disorders can be achieved.

  1. Biomarkers of Immunotoxicity for Environmental and Public Health Research

    Science.gov (United States)

    Duramad, Paurene; Holland, Nina T.

    2011-01-01

    The immune response plays an important role in the pathophysiology of numerous diseases including asthma, autoimmunity and cancer. Application of biomarkers of immunotoxicity in epidemiology studies and human clinical trials can improve our understanding of the mechanisms that underlie the associations between environmental exposures and development of these immune-mediated diseases. Immunological biomarkers currently used in environmental health studies include detection of key components of innate and adaptive immunity (e.g., complement, immunoglobulin and cell subsets) as well as functional responses and activation of key immune cells. The use of high-throughput assays, including flow cytometry, Luminex, and Multi-spot cytokine detection methods can further provide quantitative analysis of immune effects. Due to the complexity and redundancy of the immune response, an integrated assessment of several components of the immune responses is needed. The rapidly expanding field of immunoinformatics will also aid in the synthesis of the vast amount of data being generated. This review discusses and provides examples of how the identification and development of immunological biomarkers for use in studies of environmental exposures and immune-mediated disorders can be achieved. PMID:21655126

  2. Biomarkers for the Diagnosis of Cholangiocarcinoma: A Systematic Review.

    Science.gov (United States)

    Tshering, Gyem; Dorji, Palden Wangyel; Chaijaroenkul, Wanna; Na-Bangchang, Kesara

    2018-06-01

    Cholangiocarcinoma (CCA), a malignant tumor of the bile duct, is a major public health problem in many Southeast Asian countries, particularly Thailand. The slow progression makes it difficult for early diagnosis and most patients are detected in advanced stages. This study aimed to review all relevant articles related to the biomarkers for the diagnosis of CCA and point out potential biomarkers. A thorough search was performed in PubMed and ScienceDirect for CCA biomarker articles. Required data were extracted. A total of 46 articles that fulfilled the inclusion and had none of the exclusion criteria were included in the analysis (17, 22, 3, 4, and 1 articles on blood, tissue, bile, both blood and tissue, and urine biomarkers, respectively). Carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA), either alone or in combination with other biomarkers, are the most commonly studied biomarkers in the serum. Their sensitivity and specificity ranged from 47.2% to 98.2% and 89.7% to 100%, respectively. However, in the tissue, gene methylations and DNA-related markers were the most studied CCA biomarkers. Their sensitivity and specificity ranged from 58% to 87% and 98% to 100%, respectively. Some articles investigated biomarkers both in blood and tissues, particularly CA19-9 and CEA, with sensitivity and specificity ranging from 33% to 100% and 50% to 97.7%, respectively. Although quite a number of biomarkers with a potential role in the early detection of CCA have been established, it is difficult to single out any particular marker that could be used in the routine clinical settings.

  3. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    International Nuclear Information System (INIS)

    Wang Gensheng; Fowler, Bruce A.

    2008-01-01

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted

  4. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  5. A tuberculosis biomarker database: the key to novel TB diagnostics

    Directory of Open Access Journals (Sweden)

    Seda Yerlikaya

    2017-03-01

    Full Text Available New diagnostic innovations for tuberculosis (TB, including point-of-care solutions, are critical to reach the goals of the End TB Strategy. However, despite decades of research, numerous reports on new biomarker candidates, and significant investment, no well-performing, simple and rapid TB diagnostic test is yet available on the market, and the search for accurate, non-DNA biomarkers remains a priority. To help overcome this ‘biomarker pipeline problem’, FIND and partners are working on the development of a well-curated and user-friendly TB biomarker database. The web-based database will enable the dynamic tracking of evidence surrounding biomarker candidates in relation to target product profiles (TPPs for needed TB diagnostics. It will be able to accommodate raw datasets and facilitate the verification of promising biomarker candidates and the identification of novel biomarker combinations. As such, the database will simplify data and knowledge sharing, empower collaboration, help in the coordination of efforts and allocation of resources, streamline the verification and validation of biomarker candidates, and ultimately lead to an accelerated translation into clinically useful tools.

  6. Biomarkers in pancreatic adenocarcinoma: current perspectives

    Directory of Open Access Journals (Sweden)

    Swords DS

    2016-12-01

    Full Text Available Douglas S Swords, Matthew A Firpo, Courtney L Scaife, Sean J Mulvihill Department of Surgery, University of Utah Health Sciences, Salt Lake City, UT, USA Abstract: Pancreatic ductal adenocarcinoma (PDAC has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9, which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA, CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC. Keywords: pancreatic cancer, biomarkers, screening, CA 19-9, CEA

  7. WONOEP appraisal: Development of epilepsy biomarkers-What we can learn from our patients?

    Science.gov (United States)

    Jozwiak, Sergiusz; Becker, Albert; Cepeda, Carlos; Engel, Jerome; Gnatkovsky, Vadym; Huberfeld, Gilles; Kaya, Mehmet; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A

    2017-06-01

    Current medications for patients with epilepsy work in only two of three patients. For those medications that do work, they only suppress seizures. They treat the symptoms, but do not modify the underlying disease, forcing patients to take these drugs with significant side effects, often for the rest of their lives. A major limitation in our ability to advance new therapeutics that permanently prevent, reduce the frequency of, or cure epilepsy comes from a lack of understanding of the disease coupled with a lack of reliable biomarkers that can predict who has or who will get epilepsy. The main goal of this report is to present a number of approaches for identifying reliable biomarkers from observing patients with brain disorders that have a high probability of producing epilepsy. A given biomarker, or more likely a profile of biomarkers, will have both a quantity and a time course during epileptogenesis that can be used to predict who will get the disease, to confirm epilepsy as a diagnosis, to identify coexisting pathologies, and to monitor the course of treatments. Additional studies in patients and animal models could identify common and clinically valuable biomarkers to successfully translate animal studies into new and effective clinical trials. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  8. Knowledge-based identification of soluble biomarkers: hepatic fibrosis in NAFLD as an example.

    Science.gov (United States)

    Page, Sandra; Birerdinc, Aybike; Estep, Michael; Stepanova, Maria; Afendy, Arian; Petricoin, Emanuel; Younossi, Zobair; Chandhoke, Vikas; Baranova, Ancha

    2013-01-01

    The discovery of biomarkers is often performed using high-throughput proteomics-based platforms and is limited to the molecules recognized by a given set of purified and validated antigens or antibodies. Knowledge-based, or systems biology, approaches that involve the analysis of integrated data, predominantly molecular pathways and networks may infer quantitative changes in the levels of biomolecules not included by the given assay from the levels of the analytes profiled. In this study we attempted to use a knowledge-based approach to predict biomarkers reflecting the changes in underlying protein phosphorylation events using Nonalcoholic Fatty Liver Disease (NAFLD) as a model. Two soluble biomarkers, CCL-2 and FasL, were inferred in silico as relevant to NAFLD pathogenesis. Predictive performance of these biomarkers was studied using serum samples collected from patients with histologically proven NAFLD. Serum levels of both molecules, in combination with clinical and demographic data, were predictive of hepatic fibrosis in a cohort of NAFLD patients. Our study suggests that (1) NASH-specific disruption of the kinase-driven signaling cascades in visceral adipose tissue lead to detectable changes in the levels of soluble molecules released into the bloodstream, and (2) biomarkers discovered in silico could contribute to predictive models for non-malignant chronic diseases.

  9. Knowledge-based identification of soluble biomarkers: hepatic fibrosis in NAFLD as an example.

    Directory of Open Access Journals (Sweden)

    Sandra Page

    Full Text Available The discovery of biomarkers is often performed using high-throughput proteomics-based platforms and is limited to the molecules recognized by a given set of purified and validated antigens or antibodies. Knowledge-based, or systems biology, approaches that involve the analysis of integrated data, predominantly molecular pathways and networks may infer quantitative changes in the levels of biomolecules not included by the given assay from the levels of the analytes profiled. In this study we attempted to use a knowledge-based approach to predict biomarkers reflecting the changes in underlying protein phosphorylation events using Nonalcoholic Fatty Liver Disease (NAFLD as a model. Two soluble biomarkers, CCL-2 and FasL, were inferred in silico as relevant to NAFLD pathogenesis. Predictive performance of these biomarkers was studied using serum samples collected from patients with histologically proven NAFLD. Serum levels of both molecules, in combination with clinical and demographic data, were predictive of hepatic fibrosis in a cohort of NAFLD patients. Our study suggests that (1 NASH-specific disruption of the kinase-driven signaling cascades in visceral adipose tissue lead to detectable changes in the levels of soluble molecules released into the bloodstream, and (2 biomarkers discovered in silico could contribute to predictive models for non-malignant chronic diseases.

  10. Network-Based Logistic Classification with an Enhanced L1/2 Solver Reveals Biomarker and Subnetwork Signatures for Diagnosing Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hai-Hui Huang

    2015-01-01

    Full Text Available Identifying biomarker and signaling pathway is a critical step in genomic studies, in which the regularization method is a widely used feature extraction approach. However, most of the regularizers are based on L1-norm and their results are not good enough for sparsity and interpretation and are asymptotically biased, especially in genomic research. Recently, we gained a large amount of molecular interaction information about the disease-related biological processes and gathered them through various databases, which focused on many aspects of biological systems. In this paper, we use an enhanced L1/2 penalized solver to penalize network-constrained logistic regression model called an enhanced L1/2 net, where the predictors are based on gene-expression data with biologic network knowledge. Extensive simulation studies showed that our proposed approach outperforms L1 regularization, the old L1/2 penalized solver, and the Elastic net approaches in terms of classification accuracy and stability. Furthermore, we applied our method for lung cancer data analysis and found that our method achieves higher predictive accuracy than L1 regularization, the old L1/2 penalized solver, and the Elastic net approaches, while fewer but informative biomarkers and pathways are selected.

  11. Crevicular fluid biomarkers and periodontal disease progression.

    Science.gov (United States)

    Kinney, Janet S; Morelli, Thiago; Oh, Min; Braun, Thomas M; Ramseier, Christoph A; Sugai, Jim V; Giannobile, William V

    2014-02-01

    Assess the ability of a panel of gingival crevicular fluid (GCF) biomarkers as predictors of periodontal disease progression (PDP). In this study, 100 individuals participated in a 12-month longitudinal investigation and were categorized into four groups according to their periodontal status. GCF, clinical parameters and saliva were collected bi-monthly. Subgingival plaque and serum were collected bi-annually. For 6 months, no periodontal treatment was provided. At 6 months, patients received periodontal therapy and continued participation from 6 to 12 months. GCF samples were analysed by ELISA for MMP-8, MMP-9, Osteoprotegerin, C-reactive Protein and IL-1β. Differences in median levels of GCF biomarkers were compared between stable and progressing participants using Wilcoxon Rank Sum test (p = 0.05). Clustering algorithm was used to evaluate the ability of oral biomarkers to classify patients as either stable or progressing. Eighty-three individuals completed the 6-month monitoring phase. With the exception of GCF C-reactive protein, all biomarkers were significantly higher in the PDP group compared to stable patients. Clustering analysis showed highest sensitivity levels when biofilm pathogens and GCF biomarkers were combined with clinical measures, 74% (95% CI = 61, 86). Signature of GCF fluid-derived biomarkers combined with pathogens and clinical measures provides a sensitive measure for discrimination of PDP (ClinicalTrials.gov NCT00277745). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Biomarkers: in medicine, drug discovery, and environmental health

    National Research Council Canada - National Science Library

    Vaidya, Vishal S; Bonventre, Joseph V

    2010-01-01

    ... Identification Using Mass Spectrometry Sample Preparation Protein Quantitation Examples of Biomarker Discovery and Evaluation Challenges in Proteomic Biomarker Discovery The Road Forward: Targeted ...

  13. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Natalie Turner

    2014-03-01

    Full Text Available Circulating tumor cell (CTC count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  14. The Growing Need for Validated Biomarkers and Endpoints for Dry Eye Clinical Research.

    Science.gov (United States)

    Roy, Neeta S; Wei, Yi; Kuklinski, Eric; Asbell, Penny A

    2017-05-01

    Biomarkers with minimally invasive and reproducible objective metrics provide the key to future paradigm shifts in understanding of the underlying causes of dry eye disease (DED) and approaches to treatment of DED. We review biomarkers and their validity in providing objective metrics for DED clinical research and patient care. The English-language literature in PubMed primarily over the last decade was surveyed for studies related to identification of biomarkers of DED: (1) inflammation, (2) point-of-care, (3) ocular imaging, and (4) genetics. Relevant studies in each group were individually evaluated for (1) methodological and analytical details, (2) data and concordance with other similar studies, and (3) potential to serve as validated biomarkers with objective metrics. Significant work has been done to identify biomarkers for DED clinical trials and for patient care. Interstudy variation among studies dealing with the same biomarker type was high. This could be attributed to biologic variations and/or differences in processing, and data analysis. Correlation with other signs and symptoms of DED was not always clear or present. Many of the biomarkers reviewed show the potential to serve as validated and objective metrics for clinical research and patient care in DED. Interstudy variation for a given biomarker emphasizes the need for detailed reporting of study methodology, including information on subject characteristics, quality control, processing, and analysis methods to optimize development of nonsubjective metrics. Biomarker development offers a rich opportunity to significantly move forward clinical research and patient care in DED. DED is an unmet medical need - a chronic pain syndrome associated with variable vision that affects quality of life, is common with advancing age, interferes with the comfortable use of contact lenses, and can diminish results of eye surgeries, such as cataract extraction, LASIK, and glaucoma procedures. It is a worldwide

  15. Altered metabolomic-genomic signature: A potential noninvasive biomarker of epilepsy.

    Science.gov (United States)

    Wu, Helen C; Dachet, Fabien; Ghoddoussi, Farhad; Bagla, Shruti; Fuerst, Darren; Stanley, Jeffrey A; Galloway, Matthew P; Loeb, Jeffrey A

    2017-09-01

    This study aimed to identify noninvasive biomarkers of human epilepsy that can reliably detect and localize epileptic brain regions. Having noninvasive biomarkers would greatly enhance patient diagnosis, patient monitoring, and novel therapy development. At the present time, only surgically invasive, direct brain recordings are capable of detecting these regions with precision, which severely limits the pace and scope of both clinical management and research progress in epilepsy. We compared high versus low or nonspiking regions in nine medically intractable epilepsy surgery patients by performing integrated metabolomic-genomic-histological analyses of electrically mapped human cortical regions using high-resolution magic angle spinning proton magnetic resonance spectroscopy, cDNA microarrays, and histological analysis. We found a highly consistent and predictive metabolite logistic regression model with reduced lactate and increased creatine plus phosphocreatine and choline, suggestive of a chronically altered metabolic state in epileptic brain regions. Linking gene expression, cellular, and histological differences to these key metabolites using a hierarchical clustering approach predicted altered metabolic vascular coupling in the affected regions. Consistently, these predictions were validated histologically, showing both neovascularization and newly discovered, millimeter-sized microlesions. Using a systems biology approach on electrically mapped human cortex provides new evidence for spatially segregated, metabolic derangements in both neurovascular and synaptic architecture in human epileptic brain regions that could be a noninvasively detectable biomarker of epilepsy. These findings both highlight the immense power of a systems biology approach and identify a potentially important role that magnetic resonance spectroscopy can play in the research and clinical management of epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  16. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma

    Directory of Open Access Journals (Sweden)

    Hamid Omid

    2011-11-01

    Full Text Available Abstract Background Ipilimumab, a fully human monoclonal antibody that blocks cytotoxic T-lymphocyte antigen-4, has demonstrated an improvement in overall survival in two phase III trials of patients with advanced melanoma. The primary objective of the current trial was to prospectively explore candidate biomarkers from the tumor microenvironment for associations with clinical response to ipilimumab. Methods In this randomized, double-blind, phase II biomarker study (ClinicalTrials.gov NCT00261365, 82 pretreated or treatment-naïve patients with unresectable stage III/IV melanoma were induced with 3 or 10 mg/kg ipilimumab every 3 weeks for 4 doses; at Week 24, patients could receive maintenance doses every 12 weeks. Efficacy was evaluated per modified World Health Organization response criteria and safety was assessed continuously. Candidate biomarkers were evaluated in tumor biopsies collected pretreatment and 24 to 72 hours after the second ipilimumab dose. Polymorphisms in immune-related genes were also evaluated. Results Objective response rate, response patterns, and safety were consistent with previous trials of ipilimumab in melanoma. No associations between genetic polymorphisms and clinical activity were observed. Immunohistochemistry and histology on tumor biopsies revealed significant associations between clinical activity and high baseline expression of FoxP3 (p = 0.014 and indoleamine 2,3-dioxygenase (p = 0.012, and between clinical activity and increase in tumor-infiltrating lymphocytes (TILs between baseline and 3 weeks after start of treatment (p = 0.005. Microarray analysis of mRNA from tumor samples taken pretreatment and post-treatment demonstrated significant increases in expression of several immune-related genes, and decreases in expression of genes implicated in cancer and melanoma. Conclusions Baseline expression of immune-related tumor biomarkers and a post-treatment increase in TILs may be positively associated with

  17. Biomarkers in patients treated with BCG: an update.

    Science.gov (United States)

    Klap, Julia; Schmid, Marianne; Loughlin, Kevin R

    2014-08-01

    Bacillus Calmette-Guerin (BCG) instillations are the recommended treatment for non-muscle invasive bladder cancer but high recurrence and progression rates remain after treatment. Despite patients risk stratification, BCG effectiveness remains unpredictable. A close, invasive and expensive follow up is mandatory. To improve or even replace this heavy surveillance in this high risk population, validated biomarkers were developed. To identify the useful tools for the urologist in monitoring bladder cancer patients, we reviewed the literature focusing on plasma and urinary biomarkers of BCG-therapy outcome. Articles dated from 1988 to 2013 including specific keywords (urinary bladder neoplasm, biological markers, intravesical administration, recurrence) were examined and relevant papers were selected. Before treatment initiation, genetic polymorphisms of multiple agents (cytokines, matrix-metalloproteinases) were found to become very useful to tailor therapy and monitoring. Those biomarkers belong to personalized medicine which is a topic of great interest today, but still need to be validated in cohorts from different ethnicities. During instillations, cytokines (IL-2, IL-8, IL-6/IL-10) were reported to be reliable to determine treatment response and efficacy. Further studies are needed to confirm results and standardize thresholds. After treatment, UroVysion, the FDA-approved fluorescence in situ hybridization (FISH), appeared to be the most robust marker of all the clinical parameters reviewed; but is not yet validated for BCG-treated patients. No recommendations for everyday practice can be established today, but a combination of several markers and clinicopathological characteristics may be the future. As bladder cancer diagnosis and management are evolving, practicing urologists should be aware of and utilize bladder cancer markers in clinical practice.

  18. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    OpenAIRE

    Lezhnina, Ksenia; Kovalchuk, Olga; Zhavoronkov, Alexander A.; Korzinkin, Mikhail B.; Zabolotneva, Anastasia A.; Shegay, Peter V.; Sokov, Dmitry G.; Gaifullin, Nurshat M.; Rusakov, Igor G.; Aliper, Alexander M.; Roumiantsev, Sergey A.; Alekseev, Boris Y.; Borisov, Nikolay M.; Buzdin, Anton A.

    2014-01-01

    We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression ...

  19. Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research.

    Science.gov (United States)

    W Adams, Zachary; McClure, Erin A; Gray, Kevin M; Danielson, Carla Kmett; Treiber, Frank A; Ruggiero, Kenneth J

    2017-02-01

    Psychiatric disorders are linked to a variety of biological, psychological, and contextual causes and consequences. Laboratory studies have elucidated the importance of several key physiological and behavioral biomarkers in the study of psychiatric disorders, but much less is known about the role of these biomarkers in naturalistic settings. These gaps are largely driven by methodological barriers to assessing biomarker data rapidly, reliably, and frequently outside the clinic or laboratory. Mobile health (mHealth) tools offer new opportunities to study relevant biomarkers in concert with other types of data (e.g., self-reports, global positioning system data). This review provides an overview on the state of this emerging field and describes examples from the literature where mHealth tools have been used to measure a wide array of biomarkers in the context of psychiatric functioning (e.g., psychological stress, anxiety, autism, substance use). We also outline advantages and special considerations for incorporating mHealth tools for remote biomarker measurement into studies of psychiatric illness and treatment and identify several specific opportunities for expanding this promising methodology. Integrating mHealth tools into this area may dramatically improve psychiatric science and facilitate highly personalized clinical care of psychiatric disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of miR-122 as a Serum Biomarker for Hepatotoxicity in Investigative Rat Toxicology Studies.

    Science.gov (United States)

    Sharapova, T; Devanarayan, V; LeRoy, B; Liguori, M J; Blomme, E; Buck, W; Maher, J

    2016-01-01

    MicroRNAs are short noncoding RNAs involved in regulation of gene expression. Certain microRNAs, including miR-122, seem to have ideal properties as biomarkers due to good stability, high tissue specificity, and ease of detection across multiple species. Recent reports have indicated that miR-122 is a highly liver-specific marker detectable in serum after liver injury. The purpose of the current study was to assess the performance of miR-122 as a serum biomarker for hepatotoxicity in short-term (5-28 days) repeat-dose rat toxicology studies when benchmarked against routine clinical chemistry and histopathology. A total of 23 studies with multiple dose levels of experimental compounds were examined, and they included animals with or without liver injury and with various hepatic histopathologic changes. Serum miR-122 levels were quantified by reverse transcription quantitative polymerase chain reaction. Increases in circulating miR-122 levels highly correlated with serum elevations of liver enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH). Statistical analysis showed that miR-122 outperformed ALT as a biomarker for histopathologically confirmed liver toxicity and was equivalent in performance to AST and GLDH. Additionally, an increase of 4% in predictive accuracy was obtained using a multiparameter approach incorporating miR-122 with ALT, AST, and GLDH. In conclusion, serum miR-122 levels can be utilized as a biomarker of hepatotoxicity in acute and subacute rat toxicology studies, and its performance can rival or exceed those of standard enzyme biomarkers such as the liver transaminases. © The Author(s) 2015.

  1. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  2. Biomarkers, Trauma, and Sepsis in Pediatrics: A Review

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2016-01-01

    Full Text Available Context: There is a logical connection with biomarkers, trauma, and sepsis. This review paper provides new information and clinical practice implications. Biomarkers are very important especially in pediatrics. Procalcitonin and other biomarkers are helpful in identifying neonatal sepsis, defense mechanisms of the immune system. Pediatric trauma and sepsis is very important both in infants and in children. Stress management both in trauma is based upon the notion that stress causes an immune imbalance in susceptible individuals. Evidence Acquisition: Data sources included studies indexed in PubMed, a meta- analysis, predictive values, research strategies, and quality assessments. A recent paper by one of the authors stated marked increase in serum procalcitonin during the course of a septic process often indicates an exacerbation of the illness, and a decreasing level is a sign of improvement. A review of epidemiologic studies on pediatric soccer patients was also addressed. Keywords for searching included biomarkers, immunity, trauma, and sepsis. Results: Of 50 reviewed articles, 34 eligible articles were selected including biomarkers, predictive values for procalcitonin, identifying children at risk for intra-abdominal injuries, blunt trauma, and epidemiology, a meta-analysis. Of neonatal associated sepsis, the NF-kappa B pathway by inflammatory stimuli in human neutrophils, predictive value of gelsolin for the outcomes of preterm neonates, a meta-analysis interleukin-8 for neonatal sepsis diagnosis. Conclusions: Biomarkers are very important especially in pediatrics. Procalcitonin and other biomarkers are helpful in identifying neonatal sepsis, defense mechanisms, and physiological functions of the immune system. Pediatric trauma and sepsis is very important both in infants and in children. Various topics were covered such as biomarkers, trauma, sepsis, inflammation, innate immunity, role of neutrophils and IL-8, reactive oxygen species

  3. Biomarkers in Diabetic Retinopathy

    Science.gov (United States)

    Jenkins, Alicia J.; Joglekar, Mugdha V.; Hardikar, Anandwardhan A.; Keech, Anthony C.; O'Neal, David N.; Januszewski, Andrzej S.

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  4. Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy.

    Science.gov (United States)

    Hu, Jun; Kong, Min; Ye, Yuanzhen; Hong, Siqi; Cheng, Li; Jiang, Li

    2014-06-01

    Creatine kinase has been utilized as a diagnostic marker for Duchenne muscular dystrophy (DMD), but it correlates less well with the DMD pathological progression. In this study, we hypothesized that muscle-specific microRNAs (miR-1, -133, and -206) in serum may be useful for monitoring the DMD pathological progression, and explored the possibility of these miRNAs as potential non-invasive biomarkers for the disease. By using real-time quantitative reverse transcription-polymerase chain reaction in a randomized and controlled trial, we detected that miR-1, -133, and -206 were significantly over-expressed in the serum of 39 children with DMD (up to 3.20 ± 1.20, 2(-ΔΔCt) ): almost 2- to 4-fold enriched in comparison to samples from the healthy controls (less than 1.15 ± 0.34, 2(-ΔΔCt) ). To determine whether these miRNAs were related to the clinical features of children with DMD, we analyzed the associations compared to creatine kinase. There were very good inverse correlations between the levels of these miRNAs, especially miR-206, and functional performances: high levels corresponded to low muscle strength, muscle function, and quality of life. Moreover, by receiver operating characteristic curves analyses, we revealed that these miRNAs, especially miR-206, were able to discriminate DMD from controls. Thus, miR-206 and other muscle-specific miRNAs in serum are useful for monitoring the DMD pathological progression, and hence as potential non-invasive biomarkers for the disease. There has been a long-standing need for reliable, non-invasive biomarkers for Duchenne muscular dystrophy (DMD). We found that the levels of muscle-specific microRNAs, especially miR-206, in the serum of DMD were 2- to 4-fold higher than in the controls. High levels corresponded to low muscle strength, muscle function, and quality of life (QoL). These miRNAs were able to discriminate DMD from controls by receiver operating characteristic (ROC) curves analyses. Thus, miR-206 and other

  5. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event

    DEFF Research Database (Denmark)

    Pareek, Manan; Bhatt, Deepak L; Vaduganathan, Muthiah

    2017-01-01

    Aims To assess the incremental value of biomarkers, including N-terminal prohormone of brain natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hs-TnT), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), and procollagen type 1...

  6. [Biomarkers of Alzheimer disease].

    Science.gov (United States)

    Rachel, Wojciech; Grela, Agatha; Zyss, Tomasz; Zieba, Andrzej; Piekoszewski, Wojciech

    2014-01-01

    Cognitive impairment is one of the most abundant age-related psychiatric disorders. The outcome of cognitive impairment in Alzheimer's disease has both individual (the patients and their families) and socio-economic effects. The prevalence of Alzheimer's disease doubles after the age of 65 years, every 4.5 years. An etiologically heterogenic group of disorders related to aging as well as genetic and environmental interactions probably underlie the impairment in Alzheimer's disease. Those factors cause the degeneration of brain tissue which leads to significant cognitive dysfunction. There are two main hypotheses that are linked to the process of neurodegeneration: (i) amyloid cascade and (ii) the role of secretases and dysfunction of mitochondria. From the therapeutic standpoint it is crucial to get an early diagnosis and start with an adequate treatment. The undeniable progress in the field of biomarker research should lead to a better understanding of the early stages of the disorder. So far, the best recognised and described biomarkers of Alzheimer's disease, which can be detected in both cerebrospinal fluid and blood, are: beta-amyloid, tau-protein and phosphorylated tau-protein (phospho-tau). The article discusses the usefulness of the known biomarkers of Alzheimer's disease in early diagnosis.

  7. Blood-Based Biomarker Candidates of Cerebral Amyloid Using PiB PET in Non-Demented Elderly

    Science.gov (United States)

    Westwood, Sarah; Leoni, Emanuela; Hye, Abdul; Lynham, Steven; Khondoker, Mizanur R.; Ashton, Nicholas J.; Kiddle, Steven J.; Baird, Alison L.; Sainz-Fuertes, Ricardo; Leung, Rufina; Graf, John; Hehir, Cristina Tan; Baker, David; Cereda, Cristina; Bazenet, Chantal; Ward, Malcolm; Thambisetty, Madhav; Lovestone, Simon

    2018-01-01

    Increasingly, clinical trials for Alzheimer’s disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aβ measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature. PMID:27031486

  8. Metabolomics as a tool in the identification of dietary biomarkers.

    Science.gov (United States)

    Gibbons, Helena; Brennan, Lorraine

    2017-02-01

    Current dietary assessment methods including FFQ, 24-h recalls and weighed food diaries are associated with many measurement errors. In an attempt to overcome some of these errors, dietary biomarkers have emerged as a complementary approach to these traditional methods. Metabolomics has developed as a key technology for the identification of new dietary biomarkers and to date, metabolomic-based approaches have led to the identification of a number of putative biomarkers. The three approaches generally employed when using metabolomics in dietary biomarker discovery are: (i) acute interventions where participants consume specific amounts of a test food, (ii) cohort studies where metabolic profiles are compared between consumers and non-consumers of a specific food and (iii) the analysis of dietary patterns and metabolic profiles to identify nutritypes and biomarkers. The present review critiques the current literature in terms of the approaches used for dietary biomarker discovery and gives a detailed overview of the currently proposed biomarkers, highlighting steps needed for their full validation. Furthermore, the present review also evaluates areas such as current databases and software tools, which are needed to advance the interpretation of results and therefore enhance the utility of dietary biomarkers in nutrition research.

  9. Implementation of proteomic biomarkers : Making it work

    NARCIS (Netherlands)

    Mischak, Harald; Ioannidis, John P. A.; Argiles, Angel; Attwood, Teresa K.; Bongcam-Rudloff, Erik; Broenstrup, Mark; Charonis, Aristidis; Chrousos, George P.; Delles, Christian; Dominiczak, Anna; Dylag, Tomasz; Ehrich, Jochen; Egido, Jesus; Findeisen, Peter; Jankowski, Joachim; Johnson, Robert W.; Julien, Bruce A.; Lankisch, Tim; Leung, Hing Y.; Maahs, David; Magni, Fulvio; Manns, Michael P.; Manolis, Efthymios; Mayer, Gert; Navis, Gerarda; Novak, Jan; Ortiz, Alberto; Persson, Frederik; Peter, Karlheinz; Riese, Hans H.; Rossing, Peter; Sattar, Naveed; Spasovski, Goce; Thongboonkerd, Visith; Vanholder, Raymond; Schanstra, Joost P.; Vlahou, Antonia

    Eur J Clin Invest 2012; 42 (9): 10271036 Abstract While large numbers of proteomic biomarkers have been described, they are generally not implemented in medical practice. We have investigated the reasons for this shortcoming, focusing on hurdles downstream of biomarker verification, and describe

  10. Taking a new biomarker into routine use – A perspective from the routine clinical biochemistry laboratory

    Science.gov (United States)

    Sturgeon, Catharine; Hill, Robert; Hortin, Glen L; Thompson, Douglas

    2010-01-01

    There is increasing pressure to provide cost-effective healthcare based on “best practice.” Consequently, new biomarkers are only likely to be introduced into routine clinical biochemistry departments if they are supported by a strong evidence base and if the results will improve patient management and outcome. This requires convincing evidence of the benefits of introducing the new test, ideally reflected in fewer hospital admissions, fewer additional investigations and/or fewer clinic visits. Carefully designed audit and cost-benefit studies in relevant patient groups must demonstrate that introducing the biomarker delivers an improved and more effective clinical pathway. From the laboratory perspective, pre-analytical requirements must be thoroughly investigated at an early stage. Good stability of the biomarker in relevant physiological matrices is essential to avoid the need for special processing. Absence of specific timing requirements for sampling and knowledge of the effect of medications that might be used to treat the patients in whom the biomarker will be measured is also highly desirable. Analytically, automation is essential in modern high-throughput clinical laboratories. Assays must therefore be robust, fulfilling standard requirements for linearity on dilution, precision and reproducibility, both within- and between-run. Provision of measurements by a limited number of specialized reference laboratories may be most appropriate, especially when a new biomarker is first introduced into routine practice. PMID:21137030

  11. Biomarkers and low risk in heart failure. Data from COACH and TRIUMPH.

    Science.gov (United States)

    Meijers, Wouter C; de Boer, Rudolf A; van Veldhuisen, Dirk J; Jaarsma, Tiny; Hillege, Hans L; Maisel, Alan S; Di Somma, Salvatore; Voors, Adriaan A; Peacock, W Frank

    2015-12-01

    Traditionally, risk stratification in heart failure (HF) emphasizes assessment of high risk. We aimed to determine if biomarkers could identify patients with HF at low risk for death or HF rehospitalization. This analysis was a substudy of The Coordinating Study Evaluating Outcomes of Advising and Counselling in Heart Failure (COACH) trial. Enrolment of HF patients occurred before discharge. We defined low risk as the absence of death and/or HF rehospitalizations at 180 days. We tested a diverse group of 29 biomarkers on top of a clinical risk model, with and without N-terminal pro-B-type natriuretic peptide (NT-proBNP), and defined the low risk biomarker cut-off at the 10th percentile associated with high positive predictive value. The best performing biomarkers together with NT-proBNP and cardiac troponin I (cTnI) were re-evaluated in a validation cohort of 285 HF patients. Of 592 eligible COACH patients, the mean (± SD) age was 71 (± 11) years and median (IQR) NT-proBNP was 2521 (1301-5634) pg/mL. Logistic regression analysis showed that only galectin-3, fully adjusted, was significantly associated with the absence of events at 180 days (OR 8.1, 95% confidence interval 1.06-50.0, P = 0.039). Galectin-3, showed incremental value when added to the clinical risk model without NT-proBNP (increase in area under the curve from 0.712 to 0.745, P = 0.04). However, no biomarker showed significant improvement by net reclassification improvement on top of the clinical risk model, with or without NT-proBNP. We confirmed our results regarding galectin-3, NT-proBNP, and cTnI in the independent validation cohort. We describe the value of various biomarkers to define low risk, and demonstrate that galectin-3 identifies HF patients at (very) low risk for 30-day and 180-day mortality and HF rehospitalizations after an episode of acute HF. Such patients might be safely discharged. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of

  12. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable.

    Science.gov (United States)

    Boyd, Lara A; Hayward, Kathryn S; Ward, Nick S; Stinear, Cathy M; Rosso, Charlotte; Fisher, Rebecca J; Carter, Alexandre R; Leff, Alex P; Copland, David A; Carey, Leeanne M; Cohen, Leonardo G; Basso, D Michele; Maguire, Jane M; Cramer, Steven C

    2017-07-01

    The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.

  13. A new approach towards biomarker selection in estimation of human exposure to chiral chemicals: a case study of mephedrone.

    Science.gov (United States)

    Castrignanò, Erika; Mardal, Marie; Rydevik, Axel; Miserez, Bram; Ramsey, John; Shine, Trevor; Pantoș, G Dan; Meyer, Markus R; Kasprzyk-Hordern, Barbara

    2017-11-02

    Wastewater-based epidemiology is an innovative approach to estimate public health status using biomarker analysis in wastewater. A new compound detected in wastewater can be a potential biomarker of an emerging trend in public health. However, it is currently difficult to select new biomarkers mainly due to limited human metabolism data. This manuscript presents a new framework, which enables the identification and selection of new biomarkers of human exposure to drugs with scarce or unknown human metabolism data. Mephedrone was targeted to elucidate the assessment of biomarkers for emerging drugs of abuse using a four-step analytical procedure. This framework consists of: (i) identification of possible metabolic biomarkers present in wastewater using an in-vivo study; (ii) verification of chiral signature of the target compound; (iii) confirmation of human metabolic residues in in-vivo/vitro studies and (iv) verification of stability of biomarkers in wastewater. Mephedrone was selected as a suitable biomarker due to its high stability profile in wastewater. Its enantiomeric profiling was studied for the first time in biological and environmental matrices, showing stereoselective metabolism of mephedrone in humans. Further biomarker candidates were also proposed for future investigation: 4'-carboxy-mephedrone, 4'-carboxy-normephedrone, 1-dihydro-mephedrone, 1-dihydro-normephedrone and 4'-hydroxy-normephedrone.

  14. MALDI imaging reveals NCOA7 as a potential biomarker in oral squamous cell carcinoma arising from oral submucous fibrosis.

    Science.gov (United States)

    Xie, Xiaoyan; Jiang, Yuchen; Yuan, Yao; Wang, Peiqi; Li, Xinyi; Chen, Fangman; Sun, Chongkui; Zhao, Hang; Zeng, Xin; Jiang, Lu; Zhou, Yu; Dan, Hongxia; Feng, Mingye; Liu, Rui; Chen, Qianming

    2016-09-13

    Oral squamous cell carcinoma (OSCC) ranks among the most common cancer worldwide, and is associated with severe morbidity and high mortality. Oral submucous fibrosis (OSF), characterized by fibrosis of the mucosa of the upper digestive tract, is a pre-malignant lesion, but the molecular mechanisms underlying this malignant transformation remains to be elucidated. In this study, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS)-based proteomic strategy was employed to profile the differentially expressed peptides/proteins between OSCC tissues and the corresponding adjacent non-cancerous OSF tissues. Sixty-five unique peptide peaks and nine proteins were identified with altered expression levels. Of them, expression of NCOA7 was found to be up-regulated in OSCC tissues by immunohistochemistry staining and western blotting, and correlated with a pan of clinicopathologic parameters, including lesion site, tumor differentiation status and lymph node metastasis. Further, we show that overexpression of NCOA7 promotes OSCC cell proliferation in either in vitro or in vivo models. Mechanistic study demonstrates that NCOA7 induces OSCC cell proliferation probably by activating aryl hydrocarbon receptor (AHR). The present study suggests that NCOA7 is a potential biomarker for early diagnosis of OSF malignant transformation, and leads to a better understanding of the molecular mechanisms responsible for OSCC development.

  15. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure

    Science.gov (United States)

    Deng, Yongfeng; Zhang, Yan; Lemos, Bernardo; Ren, Hongqiang

    2017-04-01

    Microplastics (MPs) are a significant environmental health issue and increasingly greater source of concern. MPs have been detected in oceans, rivers, sediments, sewages, soil and even table salts. MPs exposure on marine organisms and humans has been documented, but information about the toxicity of MPs in mammal is limited. Here we used fluorescent and pristine polystyrene microplastics (PS-MPs) particles with two diameters (5 μm and 20 μm) to investigate the tissue distribution, accumulation, and tissue-specific health risk of MPs in mice. Results indicated that MPs accumulated in liver, kidney and gut, with a tissue-accumulation kinetics and distribution pattern that was strongly depended on the MPs particle size. In addition, analyses of multiple biochemical biomarkers and metabolomic profiles suggested that MPs exposure induced disturbance of energy and lipid metabolism as well as oxidative stress. Interestingly, blood biomarkers of neurotoxicity were also altered. Our results uncovered the distribution and accumulation of MPs across mice tissues and revealed significant alteration in several biomarkers that indicate potential toxicity from MPs exposure. Collectively, our data provided new evidence for the adverse consequences of MPs.

  16. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

    Science.gov (United States)

    Nath, Anjali K.; Roberts, Lee D.; Liu, Yan; Mahon, Sari B.; Kim, Sonia; Ryu, Justine H.; Werdich, Andreas; Januzzi, James L.; Boss, Gerry R.; Rockwood, Gary A.; MacRae, Calum A.; Brenner, Matthew; Gerszten, Robert E.; Peterson, Randall T.

    2013-01-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. PMID:23345455

  17. Biomarkers for hepatocellular carcinoma: diagnostic and therapeutic utility

    Directory of Open Access Journals (Sweden)

    Ferrín G

    2015-04-01

    Full Text Available Gustavo Ferrín,1,2 Patricia Aguilar-Melero,1 Manuel Rodríguez-Perálvarez,1,2 José Luis Montero-Álvarez,1,2 Manuel de la Mata1,2 1Liver Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Hospital Universitario Reina Sofía, Córdoba, Spain; 2Centro de Investigación Biomédica en Red (CIBER, Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain Abstract: Because of the high prevalence and associated-mortality of hepatocellular carcinoma (HCC, early diagnosis of the disease is vital for patient survival. In this regard, tumor size is one of the two main prognostic factors for surgical resection, which constitutes the only curative treatment for HCC along with liver transplantation. However, techniques for HCC surveillance and diagnosis that are currently used in clinical practice have certain limitations that may be inherent to the tumor development. Thus, it is important to continue efforts in the search for biomarkers that increase diagnostic accuracy for HCC. In this review, we focus on different biological sources of candidate biomarkers for HCC diagnosis. Although those biomarkers identified from biological samples obtained by noninvasive methods have greater diagnostic value, we have also considered those obtained from liver tissue because of their potential therapeutic value. To date, sorafenib is the only US Food and Drug Administration-approved antineoplastic for HCC. However, this therapeutic agent shows very low tumor response rates and frequently causes acquired resistance in HCC patients. We discuss the use of HCC biomarkers as therapeutic targets themselves, or as targets to increase sensitivity to sorafenib treatment. Keywords: diagnosis, sorafenib, therapy

  18. Biomarkers of Renal Function : Towards Clinical Actionability

    NARCIS (Netherlands)

    Binnenmars, S Heleen; Hijmans, R S; Navis, G; de Borst, M H

    This review provides an overview of the clinical value of themost relevant renal biomarkers, focusing on two main clinical conditions: acute kidney injury and chronic kidney disease. We categorize biomarkers according to their actionability, in terms of a documented response to treatment in relation

  19. Serum quantitative proteomic analysis reveals potential zinc-associated biomarkers for nonbacterial prostatitis.

    Science.gov (United States)

    Yang, Xiaoli; Li, Hongtao; Zhang, Chengdong; Lin, Zhidi; Zhang, Xinhua; Zhang, Youjie; Yu, Yanbao; Liu, Kun; Li, Muyan; Zhang, Yuening; Lv, Wenxin; Xie, Yuanliang; Lu, Zheng; Wu, Chunlei; Teng, Ruobing; Lu, Shaoming; He, Min; Mo, Zengnan

    2015-10-01

    Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies. © 2015 Wiley Periodicals, Inc.

  20. Biomarker Detection using PS2-Thioaptamers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AM Biotechnologies (AM) will develop a system to detect and quantify bone demineralization biomarkers as outlined in SBIR Topic "Technologies to Detect Biomarkers"....