WorldWideScience

Sample records for biological invasion molecular

  1. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata

    Directory of Open Access Journals (Sweden)

    Sbordoni Valerio

    2009-05-01

    Full Text Available Abstract Background Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. Results We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Conclusion Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a

  2. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata).

    Science.gov (United States)

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-05-18

    Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential growth from a single propagule

  3. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  4. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  5. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  6. The mathematics behind biological invasions

    CERN Document Server

    Lewis, Mark A; Potts, Jonathan R

    2016-01-01

    This book investigates the mathematical analysis of biological invasions. Unlike purely qualitative treatments of ecology, it draws on mathematical theory and methods, equipping the reader with sharp tools and rigorous methodology. Subjects include invasion dynamics, species interactions, population spread, long-distance dispersal, stochastic effects, risk analysis, and optimal responses to invaders. While based on the theory of dynamical systems, including partial differential equations and integrodifference equations, the book also draws on information theory, machine learning, Monte Carlo methods, optimal control, statistics, and stochastic processes. Applications to real biological invasions are included throughout. Ultimately, the book imparts a powerful principle: that by bringing ecology and mathematics together, researchers can uncover new understanding of, and effective response strategies to, biological invasions. It is suitable for graduate students and established researchers in mathematical ecolo...

  7. A systematic review of context bias in invasion biology.

    Directory of Open Access Journals (Sweden)

    Robert J Warren

    Full Text Available The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  8. A systematic review of context bias in invasion biology.

    Science.gov (United States)

    Warren, Robert J; King, Joshua R; Tarsa, Charlene; Haas, Brian; Henderson, Jeremy

    2017-01-01

    The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  9. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular

  10. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  11. Overlooking the smallest matter: viruses impact biological invasions.

    Science.gov (United States)

    Faillace, Cara A; Lorusso, Nicholas S; Duffy, Siobain

    2017-04-01

    Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single-stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self-sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  13. Barrett's esophagus: cancer and molecular biology.

    Science.gov (United States)

    Gibson, Michael K; Dhaliwal, Arashinder S; Clemons, Nicholas J; Phillips, Wayne A; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E Daniel; Räsänen, Jari; Krasna, Mark J; Parikh, Kaushal; Krishnadath, Kausilia K; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J; Farrant, J Mark; Tosh, David; Das, Kiron M; Bajpai, Manisha

    2013-10-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the merits of minimally invasive esophagectomy versus open surgery; outcomes for patients with pharyngolaryngoesophagectomy; the applications of neoadjuvant chemotherapy and chemoradiotherapy; animal models examining the surgical models of BE and esophageal adenocarcinoma; the roles of various morphogens and Cdx2 in BE; and the use of in vitro BE models for chemoprevention studies. © 2013 New York Academy of Sciences.

  14. Economic Analysis of Biological Invasions in Forests

    Science.gov (United States)

    Tomas P. Holmes; Julian Aukema; Jeffrey Englin; Robert G. Haight; Kent Kovacs; Brian Leung

    2014-01-01

    Biological invasions of native forests by nonnative pests result from complex stochastic processes that are difficult to predict. Although economic optimization models describe efficient controls across the stages of an invasion, the ability to calibrate such models is constrained by lack of information on pest population dynamics and consequent economic damages. Here...

  15. A proposed unified framework for biological invasions

    Czech Academy of Sciences Publication Activity Database

    Blackburn, T. M.; Pyšek, Petr; Bacher, S.; Carlton, J. T.; Duncan, R. P.; Jarošík, Vojtěch; Wilson, J. R. U.; Richardson, D. M.

    2011-01-01

    Roč. 26, č. 7 (2011), s. 333-339 ISSN 0169-5347 R&D Projects: GA ČR GA206/09/0563; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * invasion process * general framework Subject RIV: EF - Botanics Impact factor: 15.748, year: 2011

  16. Global patterns in threats to vertebrates by biological invasions

    Science.gov (United States)

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  17. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  18. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  19. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  20. Successful biological invasion despite a severe genetic load.

    Directory of Open Access Journals (Sweden)

    Amro Zayed

    2007-09-01

    Full Text Available Understanding the factors that influence the success of ecologically and economically damaging biological invasions is of prime importance. Recent studies have shown that invasive populations typically exhibit minimal, if any, reductions in genetic diversity, suggesting that large founding populations and/or multiple introductions are required for the success of biological invasions, consistent with predictions of the propagule pressure hypothesis. Through population genetic analysis of neutral microsatellite markers and a gene experiencing balancing selection, we demonstrate that the solitary bee Lasioglossum leucozonium experienced a single and severe bottleneck during its introduction from Europe. Paradoxically, the success of L. leucozonium in its introduced range occurred despite the severe genetic load caused by single-locus complementary sex-determination that still turns 30% of female-destined eggs into sterile diploid males, thereby substantially limiting the growth potential of the introduced population. Using stochastic modeling, we show that L. leucozonium invaded North America through the introduction of a very small number of propagules, most likely a singly-mated female. Our results suggest that chance events and ecological traits of invaders are more important than propagule pressure in determining invasion success, and that the vigilance required to prevent invasions may be considerably greater than has been previously considered.

  1. Contributions to the National Status Report on Biological Invasions in South Africa

    Directory of Open Access Journals (Sweden)

    John R.U. Wilson

    2017-03-01

    Full Text Available South Africa has committed to producing a National Status Report on Biological Invasions by October 2017 and thereafter every three years. This will be the first status report at a national level specifically on biological invasions. As part of soliciting input, a workshop was held in May 2016 that led to this special issue of 19 papers in the journal Bothalia: African Biodiversity and Conservation. This editorial introduces the symposium, discusses the special issue and summarises how each contribution provides an estimate of ‘status’. Papers focus on key pathways, taxa, areas, and evaluations of interventions, specifically the movement of taxa between South Africa and neighbouring countries; the dispersal pathways of amphibians; a review of alien animals; a report on changes in the number and abundance of alien plants; in-depth reviews of the status of invasions for cacti, fishes, fungi and grasses; an assessment of the impact of widespread invasive plants on animals; reviews on invasions in municipalities, protected areas and subAntarctic Islands; assessments of the efficacy of biological control and other control programmes; and recommendations for how to deal with conflict species, to conduct scientific assessments and to improve risk assessments. The papers in this special issue confirm that South Africa is an excellent place to study invasions that can provide insights for understanding and managing invasions in other countries. Negative impacts seem to be largely precipitated by certain taxa (especially plants, whereas invasions by a number of other groups do not, yet, seem to have caused the widespread negative impacts felt in other countries. Although South Africa has effectively managed a few biological invasions (e.g. highly successful biological control of some invasive plants, the key challenge seems to be to establish and maintain a strong link between implementation, monitoring, reporting and planning.

  2. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer?

    Science.gov (United States)

    Halliday, C L; Kidd, S E; Sorrell, T C; Chen, S C-A

    2015-04-01

    Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.

  3. Structural Molecular Biology 2017 | SSRL

    Science.gov (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  4. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  5. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    Science.gov (United States)

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.

  6. Molecular genetics and genomics generate new insights into invertebrate pest invasions.

    Science.gov (United States)

    Kirk, Heather; Dorn, Silvia; Mazzi, Dominique

    2013-07-01

    Invertebrate pest invasions and outbreaks are associated with high social, economic, and ecological costs, and their significance will intensify with an increasing pressure on agricultural productivity as a result of human population growth and climate change. New molecular genetic and genomic techniques are available and accessible, but have been grossly underutilized in studies of invertebrate pest invasions, despite that they are useful tools for applied pest management and for understanding fundamental features of pest invasions including pest population demographics and adaptation of pests to novel and/or changing environments. Here, we review current applications of molecular genetics and genomics in the study of invertebrate pest invasions and outbreaks, and we highlight shortcomings from the current body of research. We then discuss recent conceptual and methodological advances in the areas of molecular genetics/genomics and data analysis, and we highlight how these advances will further our understanding of the demographic, ecological, and evolutionary features of invertebrate pest invasions. We are now well equipped to use molecular data to understand invertebrate dispersal and adaptation, and this knowledge has valuable applications in agriculture at a time when these are critically required.

  7. Biological invasions, ecological resilience and adaptive governance.

    Science.gov (United States)

    Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R

    2016-12-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services. Copyright © 2016. Published by Elsevier Ltd.

  8. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    Directory of Open Access Journals (Sweden)

    Mark S. Hoddle

    2014-12-01

    Full Text Available Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect.

  9. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  10. Biological Invasions of Geminiviruses: Case Study of TYLCV and Bemisia tabaci in Reunion Island

    Science.gov (United States)

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-01-01

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470

  11. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  12. Biological invasions on oceanic islands: Implications for island ecosystems and avifauna

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    Biological invasions present a global threat to biodiversity, but oceanic islands are the systems hardest hit by invasions. Islands are generally depauperate in species richness, trophic complexity, and functional diversity relative to comparable mainland ecosystems. This situation results in low biotic resistance to invasion and many empty niches for invaders to...

  13. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.

    Science.gov (United States)

    Jiang, W G; Sanders, A J; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, S K; Zollo, M; Spano, D; Dhawan, P; Sliva, D; Subbarayan, P R; Sarkar, M; Honoki, K; Fujii, H; Georgakilas, A G; Amedei, A; Niccolai, E; Amin, A; Ashraf, S S; Ye, L; Helferich, W G; Yang, X; Boosani, C S; Guha, G; Ciriolo, M R; Aquilano, K; Chen, S; Azmi, A S; Keith, W N; Bilsland, A; Bhakta, D; Halicka, D; Nowsheen, S; Pantano, F; Santini, D

    2015-12-01

    Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  15. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  16. Biological invasions and natural colonisations are different: the need for invasion science

    Czech Academy of Sciences Publication Activity Database

    Wilson, J. R. U.; García-Díaz, P.; Cassey, P.; Richardson, D. M.; Pyšek, Petr; Blackburn, T. M.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 87-98 ISSN 1619-0033 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * species spread * colonization Subject RIV: EH - Ecology, Behaviour

  17. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  20. Natural biology and management of nonmuscle invasive bladder cancer

    DEFF Research Database (Denmark)

    Scarpato, Kristen R; Tyson, Mark D; Clark, Peter E

    2016-01-01

    PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... in low-risk patients. SUMMARY: NMIBC represents a variety of disease states and continues to pose management challenges. As our understanding of tumor biology improves and technology advances, achieving better outcomes through individualized care may be possible.......PURPOSE OF REVIEW: This article reviews the natural biology of noninvasive bladder cancer and its management strategies while summarizing the most recent advances in the field. RECENT FINDINGS: Nonmuscle invasive bladder cancer (NMIBC) has a tendency to recur and progress. Risk stratification has...... helped triage patients but improved tools, including biomarkers, are still needed. Enhanced endoscopy with photodynamic imaging, narrow band imaging, optical coherence tomography and confocal laser endomicroscopy show promise for diagnosis, risk stratification and disease monitoring. Attempts at better...

  1. Red swamp crayfish: biology, ecology and invasion - an overview

    Directory of Open Access Journals (Sweden)

    Tainã Gonçalves Loureiro

    Full Text Available ABSTRACTAlien species have been transported and traded by humans for many centuries. However, with the era of globalization, biological invasions have reached notable magnitudes. Currently, introduction of alien species is one of the major threats to biodiversity and ecosystem functioning. The North American crayfish Procambarus clarkii is one of the most widely introduced freshwater species in the world, especially due to its high economic importance. It is responsible for great modifications in invaded environments causing irreparable ecological and economic damages. Its impressive ability to successfully colonize a wide range of environments is a consequence of its behavioural and biological characteristics that can adapt to features of the invaded location, conferring to this species a notable ecological plasticity. This review summarizes the available information regarding P. clarkii's biology and invasive dynamics around the world in order to contribute to the understanding of the threats posed by its establishment, as well as to support management and impact mitigation efforts.

  2. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  3. Monod and the spirit of molecular biology

    OpenAIRE

    Morange , Michel

    2015-01-01

    International audience; The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly,...

  4. Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun

    2018-04-01

    We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.

  5. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    Science.gov (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  7. History of the molecular biology of cytomegaloviruses.

    Science.gov (United States)

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  8. Dynamic models in research and management of biological invasions.

    Science.gov (United States)

    Buchadas, Ana; Vaz, Ana Sofia; Honrado, João P; Alagador, Diogo; Bastos, Rita; Cabral, João A; Santos, Mário; Vicente, Joana R

    2017-07-01

    Invasive species are increasing in number, extent and impact worldwide. Effective invasion management has thus become a core socio-ecological challenge. To tackle this challenge, integrating spatial-temporal dynamics of invasion processes with modelling approaches is a promising approach. The inclusion of dynamic processes in such modelling frameworks (i.e. dynamic or hybrid models, here defined as models that integrate both dynamic and static approaches) adds an explicit temporal dimension to the study and management of invasions, enabling the prediction of invasions and optimisation of multi-scale management and governance. However, the extent to which dynamic approaches have been used for that purpose is under-investigated. Based on a literature review, we examined the extent to which dynamic modelling has been used to address invasions worldwide. We then evaluated how the use of dynamic modelling has evolved through time in the scope of invasive species management. The results suggest that modelling, in particular dynamic modelling, has been increasingly applied to biological invasions, especially to support management decisions at local scales. Also, the combination of dynamic and static modelling approaches (hybrid models with a spatially explicit output) can be especially effective, not only to support management at early invasion stages (from prevention to early detection), but also to improve the monitoring of invasion processes and impact assessment. Further development and testing of such hybrid models may well be regarded as a priority for future research aiming to improve the management of invasions across scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  10. Monod and the spirit of molecular biology.

    Science.gov (United States)

    Morange, Michel

    2015-06-01

    The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly, Monod anticipated some recent evolutions of this discipline. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Ciriello, Giovanni; Gatza, Michael L; Beck, Andrew H; Wilkerson, Matthew D; Rhie, Suhn K; Pastore, Alessandro; Zhang, Hailei; McLellan, Michael; Yau, Christina; Kandoth, Cyriac; Bowlby, Reanne; Shen, Hui; Hayat, Sikander; Fieldhouse, Robert; Lester, Susan C; Tse, Gary M K; Factor, Rachel E; Collins, Laura C; Allison, Kimberly H; Chen, Yunn-Yi; Jensen, Kristin; Johnson, Nicole B; Oesterreich, Steffi; Mills, Gordon B; Cherniack, Andrew D; Robertson, Gordon; Benz, Christopher; Sander, Chris; Laird, Peter W; Hoadley, Katherine A; King, Tari A; Perou, Charles M

    2015-10-08

    Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Robert Lesurf

    2016-07-01

    Full Text Available Breast cancer consists of at least five main molecular “intrinsic” subtypes that are reflected in both pre-invasive and invasive disease. Although previous studies have suggested that many of the molecular features of invasive breast cancer are established early, it is unclear what mechanisms drive progression and whether the mechanisms of progression are dependent or independent of subtype. We have generated mRNA, miRNA, and DNA copy-number profiles from a total of 59 in situ lesions and 85 invasive tumors in order to comprehensively identify those genes, signaling pathways, processes, and cell types that are involved in breast cancer progression. Our work provides evidence that there are molecular features associated with disease progression that are unique to the intrinsic subtypes. We additionally establish subtype-specific signatures that are able to identify a small proportion of pre-invasive tumors with expression profiles that resemble invasive carcinoma, indicating a higher likelihood of future disease progression.

  14. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  15. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  16. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  17. Biological invasions: recommendations for U.S. policy and management.

    Science.gov (United States)

    Lodge, David M; Williams, Susan; MacIsaac, Hugh J; Hayes, Keith R; Leung, Brian; Reichard, Sarah; Mack, Richard N; Moyle, Peter B; Smith, Maggie; Andow, David A; Carlton, James T; McMichael, Anthony

    2006-12-01

    The Ecological Society of America has evaluated current U.S. national policies and practices on biological invasions in light of current scientific knowledge. Invasions by harmful nonnative species are increasing in number and area affected; the damages to ecosystems, economic activity, and human welfare are accumulating. Without improved strategies based on recent scientific advances and increased investments to counter invasions, harm from invasive species is likely to accelerate. Federal leadership, with the cooperation of state and local governments, is required to increase the effectiveness of prevention of invasions, detect and respond quickly to new potentially harmful invasions, control and slow the spread of existing invasions, and provide a national center to ensure that these efforts are coordinated and cost effective. Specifically, the Ecological Society of America recommends that the federal government take the following six actions: (1) Use new information and practices to better manage commercial and other pathways to reduce the transport and release of potentially harmful species; (2) Adopt more quantitative procedures for risk analysis and apply them to every species proposed for importation into the country; (3) Use new cost-effective diagnostic technologies to increase active surveillance and sharing of information about invasive species so that responses to new invasions can be more rapid and effective; (4) Create new legal authority and provide emergency funding to support rapid responses to emerging invasions; (5) Provide funding and incentives for cost-effective programs to slow the spread of existing invasive species in order to protect still uninvaded ecosystems, social and industrial infrastructure, and human welfare; and (6) Establish a National Center for Invasive Species Management (under the existing National Invasive Species Council) to coordinate and lead improvements in federal, state, and international policies on invasive species

  18. A vision for global monitoring of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Latombe, G.; Pyšek, Petr; Jeschke, J.M.; Blackburn, T. M.; Bacher, S.; Capinha, C.; Costello, M. J.; Fernández, M.; Gregory, R. D.; Hobern, D.; Hui, C.; Jetz, W.; Kumschick, S.; McGrannachan, C.; Pergl, Jan; Roy, H. E.; Scalera, R.; Squires, Z. E.; Wilson, J. R. U.; Winter, M.; Genovesi, P.; McGeoch, M. A.

    2017-01-01

    Roč. 213, part B (2017), s. 295-308 ISSN 0006-3207 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * monitoring * management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Biodiversity conservation Impact factor: 4.022, year: 2016

  19. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  20. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  1. Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions.

    Science.gov (United States)

    McConnachie, Matthew M; van Wilgen, Brian W; Ferraro, Paul J; Forsyth, Aurelia T; Richardson, David M; Gaertner, Mirijam; Cowling, Richard M

    2016-03-01

    Prioritizing limited conservation funds for controlling biological invasions requires accurate estimates of the effectiveness of interventions to remove invasive species and their cost-effectiveness (cost per unit area or individual). Despite billions of dollars spent controlling biological invasions worldwide, it is unclear whether those efforts are effective, and cost-effective. The paucity of evidence results from the difficulty in measuring the effect of invasive species removal: a researcher must estimate the difference in outcomes (e.g. invasive species cover) between where the removal program intervened and what might have been observed if the program had not intervened. In the program evaluation literature, this is called a counterfactual analysis, which formally compares what actually happened and what would have happened in the absence of an intervention. When program implementation is not randomized, estimating counterfactual outcomes is especially difficult. We show how a thorough understanding of program implementation, combined with a matching empirical design can improve the way counterfactual outcomes are estimated in nonexperimental contexts. As a practical demonstration, we estimated the cost-effectiveness of South Africa's Working for Water program, arguably the world's most ambitious invasive species control program, in removing invasive alien trees from different land use types, across a large area in the Cape Floristic Region. We estimated that the proportion of the treatment area covered by invasive trees would have been 49% higher (5.5% instead of 2.7% of the grid cells occupied) had the program not intervened. Our estimates of cost per hectare to remove invasive species, however, are three to five times higher than the predictions made when the program was initiated. Had there been no control (counter-factual), invasive trees would have spread on untransformed land, but not on land parcels containing plantations or land transformed by

  2. Common market, shared problems: time for a coordinated response to biological invasions in Europe?

    Czech Academy of Sciences Publication Activity Database

    Hulme, P. E.; Nentwig, W.; Pyšek, Petr; Vila, M.

    2009-01-01

    Roč. 8, - (2009), s. 3-19 ISSN 1619-0033. [European Conference on Biological Invasions /5./. Prague, 23.09.2008-26.09.2008] R&D Projects: GA MŠk LC06073 Grant - others:Evropská komise(XE) GOCE-CT-506675; Evropská komise(XE) SSPI-CT-2003-511202; Evropská komise(XE) KBBE-212459 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * policy Subject RIV: EF - Botanics

  3. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  4. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-05-24

    The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  5. Reproductive biology and early establishment of Pinus elliottii var. elliottii in Brazilian sandy coastal plain vegetation: implications for biological invasion

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Bechara

    2013-04-01

    Full Text Available Pinus is the most invasive woody taxon, exceeded only by herbaceous plants. This study reports the reproductive biology and early establishment of Pinus elliottii Engelm. var. elliottii, describing its invasive properties in a protected natural area of the Brazilian coastal sandy plains. We evaluated the seed germination and rain, longevity of seed viability and the initial dynamics of the seedlings of Pinus elliottii var elliottii through field and laboratory experiments. We recorded a continuous seed rain of about 204.0 viable seeds m- 2 per year, with a 90 % germination rate. The seeds exhibited a low longevity of viability in the soil and a dense, permanent seedling bank that may explain the high levels of pine invasion. The environmental impact caused by the pine's biological invasion suggests the recommendation for its immediate eradication, together with a restoration plan to restitute the native biodiversity gradually.

  6. Crossing frontiers in tackling pathways of biological invasions

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Bacher, S.; Blackburn, T. M.; Booy, O.; Brundu, G.; Brunel, S.; Cardoso, A.-C.; Eschen, R.; Gallardo, B.; Galil, B.; García-Berthou, E.; Genovesi, P.; Groom, Q.; Harrower, C.; Hulme, P. E.; Katsanevakis, S.; Kenis, M.; Kühn, I.; Kumschick, S.; Martinou, A. F.; Nentwig, W.; O´Flynn, C.; Pagad, S.; Pergl, Jan; Pyšek, Petr; Rabitsch, W.; Richardson, D. M.; Roques, A.; Roy, H. E.; Sclarea, R.; Schindler, S.; Seebens, H.; Vanderhoeven, S.; Vila, M.; Wilson, J. R. U.; Zenetos, A.; Jeschke, J.M.

    2015-01-01

    Roč. 65, č. 8 (2015), s. 769-782 ISSN 0006-3568 R&D Projects: GA ČR GB14-36079G; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * pathways * management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.294, year: 2015

  7. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  8. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  9. Invasion Success by Plant Breeding Evolutionary Changes as a Critical Factor for the Invasion of the Ornamental Plant Mahonia aquifolium

    CERN Document Server

    Ross, Christel Anne

    2009-01-01

    Invasive species are a major threat to global biodiversity and cause significant economic costs. Studying biological invasions is both essential for preventing future invasions and is also useful in order to understand basic ecological processes. Christel Ross investigates whether evolutionary changes by plant breeding are a relevant factor for the invasion success of Mahonia aquifolium in Germany. Her findings show that invasive populations differ from native populations in quantitative-genetic traits and molecular markers, whereas their genetic diversity is similar. She postulates that these evolutionary changes are rather a result of plant breeding, which includes interspecific hybridisation, than the result of a genetic bottleneck or the releases from specialist herbivores.

  10. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  11. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  12. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    Salas, M.

    2009-01-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  13. Isotopes in molecular biology

    International Nuclear Information System (INIS)

    Goldfarb, P.S.G.

    1988-01-01

    The use of radioisotopes in molecular biology, with particular reference to the structure and functions of DNA, RNA and the cellular synthesis of proteins, is discussed. The use of labelled DNA and RNA in diagnostic techniques is presented. (U.K.)

  14. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa

    Directory of Open Access Journals (Sweden)

    He Ji

    2007-05-01

    Full Text Available Abstract Background The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. Results As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. Conclusion The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  15. Insights into invasion and restoration ecology: Time to collaborate towards a holistic approach to tackle biological invasions

    Directory of Open Access Journals (Sweden)

    Mirijam Gaertner

    2012-02-01

    Full Text Available The aim of our study is to provide an integrated framework for the management of alien plant invasions, combining insights and experiences from the fields of invasion and restoration ecology to enable more effective management of invasive species. To determine linkages between the scientific outputs of the two disciplines we used an existing data base on restoration studies between 2000 and 2008 and did a bibliometric analysis. We identified the type of restoration applied, determined by the aim of the study, and conducted a content analysis on 208 selected studies with a link to biological invasions (invasion-restoration studies. We found a total of 1075 articles on ecosystem restoration, with only eight percent of the studiesthe main objective to control alien invasions. The content analysis of 208 invasion-restoration studies showed that the majority of the studies focused on causes of degradation other than alien invasions. If invaders were referred to as the main driver of degradation, the prevalent cause for degradation was invaders outcompeting and replacing native species. Mechanical control of alien plant invasions was by far the most common control method used. Measures that went beyond the removal of alien plants were implemented in sixty-five percent of the studies.Although invasion control was not as common as other types of restoration, a closer look at the sub-group of invasion-restoration studies shows a clear link between restoration and invasion ecology. Concerns, as identified in the literature review, are firstly that restoration activities mostly focus on controlling the invader while other underlying causes for degradation are neglected, and secondly that the current approach of dealing with alien invasions lacks a combination of theoretical and practical aspects. We suggest that closer collaboration between invasion and restoration ecologists can help to improve the management of alien plant invasions. We conclude with a

  16. Biological Invasion and Loss of Endemic Biodiversity in the Thar ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Nature Watch - Biological Invasion and Loss of Endemic Biodiversity in the Thar Desert. Ishwar Prakash. Feature Article Volume 6 Issue 3 March 2001 pp 76-85. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  18. Support for major hypotheses in invasion biology is uneven and declining

    Czech Academy of Sciences Publication Activity Database

    Jeschke, J.M.; Aparicio, L.G.; Haider, S.; Heger, T.; Lortie, C. J.; Pyšek, Petr; Strayer, D.L.

    2012-01-01

    Roč. 2012, č. 14 (2012), s. 1-20 ISSN 1619-0033 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * hypotheses * testing Subject RIV: EF - Botanics

  19. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    Science.gov (United States)

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. The role of adaptive trans-generational plasticity in biological invasions of plants

    OpenAIRE

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-01-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple hab...

  1. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    Science.gov (United States)

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  2. Costs and benefits of biological control of invasive alien plants: case studies from South Africa

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2004-01-01

    Full Text Available Invasive alien species can have significant negative environmental and economic impacts. Such species are often controlled biologically by means of introducing host-specific insects or pathogens that can reduce the species' invasive potential...

  3. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.).

    Science.gov (United States)

    Adkins, Steve; Shabbir, Asad

    2014-07-01

    Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry.

  4. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  5. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  6. Remote Sensing Dynamic Monitoring of Biological Invasive Species Based on Adaptive PCNN and Improved C-V Model

    Directory of Open Access Journals (Sweden)

    PENG Gang

    2014-12-01

    Full Text Available Biological species invasion problem bring serious damage to the ecosystem, and have become one of the six major enviromental problems that affect the future economic development, also have become one of the hot topic in domestic and foreign scholars. Remote sensing technology has been successfully used in the investigation of coastal zone resources, dynamic monitoring of the resources and environment, and other fields. It will cite a new remote sensing image change detection algorithm based on adaptive pulse coupled neural network (PCNN and improved C-V model, for remote sensing dynamic monitoring of biological species invasion. The experimental results show that the algorithm is effective in the test results of biological species invasions.

  7. Confronting challenges to economic analysis of biological invasions in forests

    Science.gov (United States)

    Thomas P Holmes

    2010-01-01

    Biological invasions of forests by non-indigenous organisms present a complex, persistent, and largely irreversible threat to forest ecosystems around the globe. Rigorous assessments of the economic impacts of introduced species, at a national scale, are needed to provide credible information to policy makers. It is proposed here that microeconomic models of damage due...

  8. Prevalence and molecular diversity of invasive Streptococcus dysgalactiae and Streptococcus pyogenes in a German tertiary care medical centre.

    Science.gov (United States)

    Rößler, S; Berner, R; Jacobs, E; Toepfner, N

    2018-05-03

    Prevalence of invasive ß-haemolytic streptococci (BHS) at a tertiary care hospital and molecular diversity of S. pyogenes and S. dysgalactiae was studied. Between 2012 and 2016, all blood culture sets (n = 55,839), CSF (n = 8413) and soft tissue (n = 20,926) samples were analysed for BHS positivity using HYBASE software. Molecular profiles of 99 S. pyogenes and S. dysgalactiae were identified by sequencing of M protein genes (emm types) and multiplex PCR typing of 20 other virulence determinants. Streptococci contributed to 6.2% of blood, 10.7% of CSF and 14.5% of soft tissue isolates, being among the most common invasive isolates. The overall rates of invasive S. pyogenes, S. agalactiae, S. dysgalactiae and S. pneumoniae were 2.4, 4.4, 2.1, and 5.3%. Whereas S. pneumoniae was 1.5% more common in CSF samples, BHS isolates were 2-fold and 11-fold higher in bacteraemia and invasive soft tissue infections. Genetic BHS typing revealed wide molecular diversity of invasive and noninvasive group A and group G BHS, whereas one emm-type (stG62647.0) and no other virulence determinants except scpA were detected in invasive group C BHS. BHS were important invasive pathogens, outpacing S. pneumoniae in bacteraemia and invasive soft tissue infections. The incidence of S. dysgalactiae infections was comparable to that of S. pyogenes even with less diversity of molecular virulence. The results of this study emphasise the need for awareness of BHS invasiveness in humans and the need to develop BHS prevention strategies.

  9. Assessing the status of biological control as a management tool for suppression of invasive alien plants in South Africa

    OpenAIRE

    Zachariades, Costas; Paterson, Iain D.; Strathie, Lorraine W.; Hill, Martin P.; van Wilgen, Brian W.

    2017-01-01

    Background: Biological control of invasive alien plants (IAPs) using introduced natural enemies contributes significantly to sustained, cost-effective management of natural resources in South Africa. The status of, and prospects for, biological control is therefore integral to National Status Reports (NSRs) on Biological Invasions, the first of which is due in 2017. Objectives: Our aim was to evaluate the status of, and prospects for, biological control of IAPs in South Africa. We discuss...

  10. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  11. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  12. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  13. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  14. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  15. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  16. Progress on molecular imaging

    International Nuclear Information System (INIS)

    Chen Quan; Zhang Yongxue

    2011-01-01

    Molecular imaging is a new era of medical imaging,which can non-invasively monitor biological processes at the cellular and molecular level in vivo, including molecular imaging of nuclear medicine, magnetic resonance molecular imaging, ultrasound molecular imaging,optical molecular imaging and molecular imaging with X-ray. Recently, with the development of multi-subjects amalgamation, multimodal molecular imaging technology has been applied in clinical imaging, such as PET-CT and PET-MRI. We believe that with development of molecular probe and multi-modal imaging, more and more molecular imaging techniques will be applied in clinical diagnosis and treatment. (authors)

  17. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Science.gov (United States)

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  18. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  19. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  20. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  1. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  2. Evaluating efficacy of an environmental policy to prevent biological invasions.

    Science.gov (United States)

    Bailey, Sarah A; Deneau, Matthew G; Jean, Laurent; Wiley, Chris J; Leung, Brian; MacIsaac, Hugh J

    2011-04-01

    Enactment of any environmental policy should be followed by an evaluation of its efficacy to ensure optimal utilization of limited resources, yet measuring the success of these policies can be a challenging task owing to a dearth of data and confounding factors. We examine the efficacy of ballast water policies enacted to prevent biological invasions in the Laurentian Great Lakes. We utilize four criteria to assess the efficacy of this environmental regulation: (1) Is the prescribed management action demonstrably effective? (2) Is the management action effective under operational conditions? (3) Can compliance be achieved on a broad scale? (4) Are desired changes observed in the environment? The four lines of evidence resulting from this analysis indicate that the Great Lakes ballast water management program provides robust, but not complete, protection against ship-mediated biological invasions. Our analysis also indicates that corresponding inspection and enforcement efforts should be undertaken to ensure that environmental policies translate into increased environmental protection. Similar programs could be implemented immediately around the world to protect the biodiversity of the many freshwater ecosystems which receive ballast water discharges by international vessels. This general framework can be extended to evaluate efficacy of other environmental policies.

  3. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  4. Molecular infection biology : interactions between microorganisms and cells

    National Research Council Canada - National Science Library

    Hacker, Jörg (Jörg Hinrich); Heesemann, Jurgen

    2002-01-01

    ... and epidemiology of infectious diseases. Investigators, specialists, clinicians, and graduate students in biology, pharmacy, and medicine will find Molecular Infection Biology an invaluable addition to their professional libraries...

  5. Status of biological control projects on terrestrial invasive alien weeds in California

    Science.gov (United States)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  6. Impacts of biological invasions: what´s what and the way forward

    Czech Academy of Sciences Publication Activity Database

    Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D. A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; Pyšek, Petr; Sousa, R.; Tabacchi, E.; Vila, M.

    2013-01-01

    Roč. 28, č. 1 (2013), s. 58-66 ISSN 0169-5347 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * impact * human perception Subject RIV: EF - Botanics Impact factor: 15.353, year: 2013

  7. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  8. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Jacobs, A.H.; Heiss, W.D.; Li, H.; Knoess, C.; Schaller, B.; Kracht, L.; Monfared, P.; Vollmar, S.; Bauer, B.; Wagner, R.; Graf, R.; Wienhard, K.; Winkeler, A.; Rueger, A.; Klein, M.; Hilker, R.; Galldiks, N.; Herholz, K.; Sobesky, J.

    2003-01-01

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  9. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    2001-01-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  10. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches...

  11. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics

    DEFF Research Database (Denmark)

    Mercer, Louise K; Askling, Johan; Raaschou, Pauline

    2017-01-01

    -specific general population of each register as reference, age, sex and calendar year standardised incidence ratios (SIRs) of invasive histology-confirmed cutaneous melanoma were calculated within each register. Pooled SIR and incidence rate ratios (IRRs) comparing biologic cohorts to biologic-naïve were...... calculated across countries by taking the size of the register into account. RESULTS: Overall 130 315 RA patients with a mean age of 58 years contributing 579 983 person-years were available for the analysis and 287 developed a first melanoma. Pooled SIRs for biologic-naïve, TNFi and rituximab...... with TNF inhibitors (TNFi), other biologic disease modifying drugs and non-biologic therapy. METHODS: Eleven biologic registers from nine European countries participated in this collaborative project. According to predefined exposure definitions, cohorts of patients with RA were selected. Using the country...

  12. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    Science.gov (United States)

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the

  13. Molecular biology - Part I: Techniques, terminology, and concepts

    International Nuclear Information System (INIS)

    Brown, J. Martin

    1996-01-01

    Purpose/Objective: One of the barriers to understanding modern molecular biology is the lack of a clear understanding of the relevant terminology, techniques, and concepts. This refresher course is intended to address these deficiencies starting from a basic level. The lecture will cover many of the common uses of recombinant DNA, including gene cloning and manipulation. The goal is to enable the nonspecialist to increase his or her understanding of molecular biology in order to more fully enjoy reading current publications and/or listening seminars. Radiation biologists trying to understand a little more molecular biology should also benefit. The following concepts will be among those explained and illustrated: restriction endonucleases, gel electrophoresis, gene cloning, use of vectors such as plasmids, bacteriophage, cosmids and viruses, cDNA and genomic libraries, Southern, Northern, and Western blotting, fluorescent in situ hybridization, polymerase chain reaction (PCR), gel retardation, and reporter gene assays

  14. Biología molecular y cáncer de tiroides Molecular biology and thyroid cancer

    Directory of Open Access Journals (Sweden)

    Juan Cassola Santana

    2010-12-01

    Full Text Available Se realiza una revisión actualizada sobre aspectos de biología molecular que servirán de base al cirujano actuante para un mejor conocimiento del cáncer tiroideo. El objetivo radica en alertar a los cirujanos sobre las nuevas evaluaciones a las que podrán someterse los tumores de la tiroides, que implicarán cambios en toda la gama de conductas actuales en estos casos. Se señalan aspectos que sin duda cambiarán los conceptos que se manejan hoy día.A updating review is carry out on the features of molecular biology as a basis for acting surgeon to a better knowledge of thyroid cancer. The objective is to alert surgeons on the new assessments for this type of cancer, implicating changes in all the range of current behaviors in these cases. The features that will change the nowadays concepts in this respect.

  15. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  16. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  17. Beneficial liaisons: radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1995-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology and molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  18. The Correlation Between Candida Colonization of Distinct Body Sites and Invasive Candidiasis in Emergency Intensive Care Units: Statistical and Molecular Biological Analysis.

    Science.gov (United States)

    Li, Zhen; Jiang, Cen; Dong, Danfeng; Zhang, Lihua; Tian, Yuan; Ni, Qi; Mao, Enqiang; Peng, Yibing

    2016-08-01

    Both statistical and molecular biological methods were used to evaluate the association between Candida colonization of different body sites and invasive candidiasis (IC) and analyse the potential infection sources of IC. Candida surveillance cultures from the urine, sputum, rectum and skin were performed on patients admitted to an emergency intensive care units (EICU) of a tertiary care hospital in Shanghai, China, from February 2014 to January 2015. Specimens were collected once a week at admission and thereafter. The patients' clinical data were collected, and Candida isolates were genotyped using polymorphic microsatellite markers. A total of 111 patients were enrolled. Patients with positive urine (23.3 vs. 2.5 %, p = 0.001) and rectal swab (13.6 vs. 0 %, p = 0.010) cultures were more likely to develop IC. However, the risk for IC was not significantly different among patients with and without respiratory (10.0 vs. 5.8 %, p = 0.503) and skin (33.3 vs. 6.5 %, p = 0.056) colonization. Gene microevolution frequently occurred at rectal swab and urine sites, and IC with possible source of infection was caused by rectal isolates (2/7), urine isolates (4/7) and sputum isolate (1/7).The colonization of gut and urinary tract maybe more relevant indicators of IC, which should be taken into consideration when selecting practical body sites for Candida surveillance cultures.

  19. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  20. South African programme for the SCOPE project on the ecology of biological invasions

    CSIR Research Space (South Africa)

    Ferrar, AA

    1983-07-01

    Full Text Available A description of the aims of the international SCOPE programme on biological invasions is provided, together with a proposed four year time table of international activities. This is followed by a brief account of the history, organization...

  1. The role and future of in-vitro isotopic techniques in molecular biology

    International Nuclear Information System (INIS)

    Dar, L.; Khan, B.K.

    2004-01-01

    In this review we discuss isotopic in-vitro molecular biology techniques, and their advantages and applications. Isotopic methods have helped to shape molecular biology since its early days. Despite the availability of non-isotopic alternatives, isotopic methods continue to be used in molecular biology due to certain advantages, especially related to sensitivity and cost-effectiveness. Numerous techniques involving the use of isotopes help in the characterization of genes, including the detection of single nucleotide polymorphisms (SNPs) or mutations. Other isotopic molecular methods are utilized to study the phenotypic expression of gene sequences and their mutation. Emerging branches of molecular biology like functional genomics and proteomics are extremely important for exploiting the rapidly growing data derived from whole genomic sequencing of human and microbial genomes. Recent molecular biology applications like the high-throughput array techniques are relevant in the context of both structural and functional genomics. In proteomics, stable isotope based technology has found applications in the analysis of protein structure and interactions. (author)

  2. Microbial ecology of biological invasions

    NARCIS (Netherlands)

    Van der Putten, W.H.; Klironomos, J.N.; Wardle, D.A.

    2007-01-01

    Invasive microbes, plants and animals are a major threat to the composition and functioning of ecosystems; however, the mechanistic basis of why exotic species can be so abundant and disruptive is not well understood. Most studies have focused on invasive plants and animals, although few have

  3. European Conference on Molecular Biology EMBO

    CERN Multimedia

    1967-01-01

    European Conference on Molecular Biology, which eventually led to the setting up of EMBO, was held at CERN in April. Olivier Reverdin is adressing the delegates. Bernard Gregory is on the left and Willy Spuhler in the centre.

  4. Molecular imaging in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.

    2007-01-01

    Molecular imaging is generally defined as noninvasive and quantitative imaging of targeted macromolecules and biological processes in living organisms. A characteristic of molecular imaging is the ability to perform repeated studies and assess changes in biological processes over time. Thus molecular imaging lends itself well for monitoring the effectiveness of tumor therapy. In animal models a variety of techniques can be used for molecular imaging. These include optical imaging (bioluminescence and fluorescence imaging), magnetic resonance imaging (MRI) and nuclear medicine techniques. In the clinical setting, however, nuclear medicine techniques predominate, because so far only radioactive tracers provide the necessary sensitivity to study expression and function of macromolecules non-invasively in patients. Nuclear medicine techniques allows to study a variety of biological processes in patients. These include the expression of various receptors (estrogen, androgen, somatostatin receptors and integrins). In addition, tracers are available to study tumor cell proliferation and hypoxia. The by far most commonly used molecular imaging technique in oncology is, however, positron emission tomography (PET) with the glucose analog [ 18 F]fluorodeoxyglucose (FDG-PET). FDG-PET permits non-invasive quantitative assessment of the accelerated exogenous glucose use of malignant tumors. Numerous studies have now shown that reduction of tumor FDG-uptake during therapy allows early prediction of tumor response and patient survival. Clinical studies are currently underway to determine whether FDG-PET can be used to individualize tumor therapy by signaling early in the course of therapy the need for therapeutic adjustments in patients with likely non-responding tumors. (orig.)

  5. The role of adaptive trans-generational plasticity in biological invasions of plants.

    Science.gov (United States)

    Dyer, Andrew R; Brown, Cynthia S; Espeland, Erin K; McKay, John K; Meimberg, Harald; Rice, Kevin J

    2010-03-01

    High-impact biological invasions often involve establishment and spread in disturbed, high-resource patches followed by establishment and spread in biotically or abiotically stressful areas. Evolutionary change may be required for the second phase of invasion (establishment and spread in stressful areas) to occur. When species have low genetic diversity and short selection history, within-generation phenotypic plasticity is often cited as the mechanism through which spread across multiple habitat types can occur. We show that trans-generational plasticity (TGP) can result in pre-adapted progeny that exhibit traits associated with increased fitness both in high-resource patches and in stressful conditions. In the invasive sedge, Cyperus esculentus, maternal plants growing in nutrient-poor patches can place disproportional number of propagules into nutrient-rich patches. Using the invasive annual grass, Aegilops triuncialis, we show that maternal response to soil conditions can confer greater stress tolerance in seedlings in the form of greater photosynthetic efficiency. We also show TGP for a phenological shift in a low resource environment that results in greater stress tolerance in progeny. These lines of evidence suggest that the maternal environment can have profound effects on offspring success and that TGP may play a significant role in some plant invasions.

  6. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    Science.gov (United States)

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  7. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  8. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2006-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. 1...

  9. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George

    2003-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  10. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2004-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  11. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  12. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  13. MMP19 is upregulated during melanoma progression and increases invasion of melanoma cells

    Czech Academy of Sciences Publication Activity Database

    Muller, M.; Beck, Inken; Gadesmann, J.; Karschuk, N.; Paschen, A.; Proksch, E.; Djonov, V.; Reiss, K.; Sedláček, Radislav

    2010-01-01

    Roč. 23, č. 4 (2010), s. 511-521 ISSN 0893-3952 Institutional research plan: CEZ:AV0Z50520514 Keywords : melanoma * invasion * matrix metalloproteinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.176, year: 2010

  14. Profiling Invasiveness in Head and Neck Cancer: Recent Contributions of Genomic and Transcriptomic Approaches

    International Nuclear Information System (INIS)

    Nisa, Lluís; Aebersold, Daniel Matthias; Giger, Roland; Caversaccio, Marco Domenico; Borner, Urs; Medová, Michaela; Zimmer, Yitzhak

    2015-01-01

    High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches

  15. Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns

    Science.gov (United States)

    Basil V. Iannone III; Kevin M. Potter; Qinfeng Guo; Andrew M. Liebhold; Bryan C. Pijanowski; Christopher M. Oswalt; Songlin Fei

    2015-01-01

    Invader traits (including plant growth form) may play an important, and perhaps overlooked, role in determining macroscale patterns of biological invasions and therefore warrant greater consideration in future investigations aimed at understanding these patterns. To assess this need, we used empirical data from a national-level survey of forest in the contiguous 48...

  16. Simple Calculation Programs for Biology Methods in Molecular ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Methods in Molecular Biology. GMAP: A program for mapping potential restriction sites. RE sites in ambiguous and non-ambiguous DNA sequence; Minimum number of silent mutations required for introducing a RE sites; Set ...

  17. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  18. The Central Dogma of Molecular Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. The Central Dogma of Molecular Biology - A Retrospective after Fifty Years. Michel Morange. General Article Volume 14 Issue 3 March 2009 pp 236-247. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  20. Non-invasive biological dosimetry of the skin

    International Nuclear Information System (INIS)

    Barton, S.; Marks, R.; Charles, M.W.; Wells, J.

    1986-01-01

    Investigations designed to identify a potential biological dosimetry technique to examine the effects of X-ray doses down to 0.1 Gy on human skin, are described. In a variety of parameters assessed, the most important changes observed were a significant depression in epidermal cell production in the basal layer after X-ray doses between 0.5 Gy and 1 Gy and a concomitant reduction in the desquamation rate of corneocytes after doses above 1 Gy. Changes in non-specific esterase (NSE) activity were also observed. Further work is described which applies these results to several non-invasive techniques which may have potential for routine application. Preliminary data from irradiated human skin are presented on the measurement of forced desquamation, the evaluation of NSE activity from hair samples and the evaluation of stratum corneum turnover time using the fluorescent dye, dansyl chloride. (author)

  1. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  2. Barrett's esophagus: cancer and molecular biology

    NARCIS (Netherlands)

    Gibson, Michael K.; Dhaliwal, Arashinder S.; Clemons, Nicholas J.; Phillips, Wayne A.; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E. Daniel; Räsänen, Jari; Krasna, Mark J.; Parikh, Kaushal; Krishnadath, Kausilia K.; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J.; Farrant, J. Mark; Tosh, David; Das, Kiron M.; Bajpai, Manisha

    2013-01-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the

  3. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  4. Cellular and Molecular Defects Underlying Invasive Fungal Infections—Revelations from Endemic Mycoses

    Directory of Open Access Journals (Sweden)

    Pamela P. Lee

    2017-06-01

    Full Text Available The global burden of fungal diseases has been increasing, as a result of the expanding number of susceptible individuals including people living with human immunodeficiency virus (HIV, hematopoietic stem cell or organ transplant recipients, patients with malignancies or immunological conditions receiving immunosuppressive treatment, premature neonates, and the elderly. Opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus, Rhizopus, and Pneumocystis jiroveci are distributed worldwide and constitute the majority of invasive fungal infections (IFIs. Dimorphic fungi such as Histoplasma capsulatum, Coccidioides spp., Paracoccidioides spp., Blastomyces dermatiditis, Sporothrix schenckii, Talaromyces (Penicillium marneffei, and Emmonsia spp. are geographically restricted to their respective habitats and cause endemic mycoses. Disseminated histoplasmosis, coccidioidomycosis, and T. marneffei infection are recognized as acquired immunodeficiency syndrome (AIDS-defining conditions, while the rest also cause high rate of morbidities and mortalities in patients with HIV infection and other immunocompromised conditions. In the past decade, a growing number of monogenic immunodeficiency disorders causing increased susceptibility to fungal infections have been discovered. In particular, defects of the IL-12/IFN-γ pathway and T-helper 17-mediated response are associated with increased susceptibility to endemic mycoses. In this review, we put together the various forms of endemic mycoses on the map and take a journey around the world to examine how cellular and molecular defects of the immune system predispose to invasive endemic fungal infections, including primary immunodeficiencies, individuals with autoantibodies against interferon-γ, and those receiving biologic response modifiers. Though rare, these conditions provide importance insights to host defense mechanisms against endemic fungi, which can only be appreciated in unique

  5. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  6. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  7. Profiling Invasiveness in Head and Neck Cancer: Recent Contributions of Genomic and Transcriptomic Approaches

    Directory of Open Access Journals (Sweden)

    Lluís Nisa

    2015-03-01

    Full Text Available High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.

  8. [The molecular biology of epithelial ovarian cancer].

    Science.gov (United States)

    Leary, Alexandra; Pautier, Patricia; Tazi, Youssef; Morice, Philippe; Duvillard, Pierre; Gouy, Sébastien; Uzan, Catherine; Gauthier, Hélène; Balleyguier, Corinne; Lhommé, Catherine

    2012-12-01

    Epithelial ovarian cancer frequently presents at an advanced stage where the cornerstone of management remains surgery and platinum-based chemotherapy. Unfortunately, despite sometimes dramatic initial responses, advanced ovarian cancer almost invariably relapses. Little progress has been made in the identification of effective targeted-therapies for ovarian cancer. The majority of clinical trials investigating novel agents have been negative and the only approved targeted-therapy is bevacizumab, for which reliable predictive biomarkers still elude us. Ovarian cancer is treated as a uniform disease. Yet, biological studies have highlighted the heterogeneity of this malignancy with marked differences in histology, oncogenesis, prognosis, chemo-responsiveness, and molecular profile. Recent high throughput molecular analyses have identified a huge number of genomic/phenotypic alterations. Broadly speaking, high grade serous carcinomas (type II) display significant genomic instability and numerous amplifications and losses; low grade (type I) tumors are genomically stable but display frequent mutations. Importantly, many of these genomic alterations relate to known oncogenes for which targeted-therapies are available or in development. There is today a real potential for personalized medicine in ovarian cancer. We will review the current literature regarding the molecular characterization of epithelial ovarian cancer and discuss the biological rationale for a number of targeted strategies. In order to translate these biological advances into meaningful clinical improvements for our patients, it is imperative to incorporate translational research in ovarian cancer trials, a number of strategies will be proposed such as the acquisition of quality tumor samples, including sequential pre- and post-treatment biopsies, the potential of liquid biopsies, and novel trial designs more adapted to the molecular era of ovarian cancer research.

  9. The molecular biology of ilarviruses.

    Science.gov (United States)

    Pallas, Vicente; Aparicio, Frederic; Herranz, Mari C; Sanchez-Navarro, Jesus A; Scott, Simon W

    2013-01-01

    Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A spatial-dynamic value transfer model of economic losses from a biological invasion

    Science.gov (United States)

    Thomas P. Holmes; Andrew M. Liebhold; Kent F. Kovacs; Betsy. Von Holle

    2010-01-01

    Rigorous assessments of the economic impacts of introduced species at broad spatial scales are required to provide credible information to policy makers. We propose that economic models of aggregate damages induced by biological invasions need to link microeconomic analyses of site-specific economic damages with spatial-dynamic models of value change associated with...

  11. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, J. F.; van der Wall, Elsken; Mali, Willem P Th M; Derksen, Patrick W B; van Diest, Paul J; van Bergen En Henegouwen, Paul M P

    PURPOSE: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  12. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, Jeroen F.; van der Wall, Elsken; Mali, W.P.T.M.; Derksen, Patrick W B; van Diest, Paul J.; van Bergen En Henegouwen, Paul M P

    Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. Procedures: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  13. Invasion ecology meets parasitology: Advances and challenges

    Directory of Open Access Journals (Sweden)

    Robert Poulin

    2017-12-01

    Full Text Available Biological invasions threaten the diversity and functioning of native ecosystems, and the rate at which species are being introduced to new areas shows no sign of slowing down. Parasites play roles in biological invasions, for instance when native parasites interact with exotic hosts, or when parasites themselves are introduced to new areas. However, publication trends show clearly that research on parasitism in the context of biological invasions is lagging far behind research on biological invasions in general. The different articles in this special issue of International Journal for Parasitology–Parasites and Wildlife on ‘Invasions’ address various aspects of the interface between parasitology and invasion biology, including how invasive free-living species lose or gain parasites on the invasion front as they move away from their site of introduction, how these invasive species affect the dynamics of native parasites, and how exotic parasites become established and impact native hosts. Together, they highlight the challenges facing researchers in this area, and set the agenda for the next few years of research. Keywords: alien species, Biological invasions, Enemy release, Non-natives, Parasites

  14. [Progress in molecular biology of a semi-mangrove, Millettia pinnata].

    Science.gov (United States)

    Huang, Jianzi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2015-04-01

    Millettia pinnata L. is a leguminous tree with great potential in biodiesel applications and also a typical semi-mangrove. In this review, we presented several aspects about the recent research progress in molecular biology of M. pinnata. We descrived several types of molecular markers used to assess the genetic diversity and phylogeny of this species, genome and transcriptome analyses based on high-throughput sequencing platform accomplished for this species, and several gene and genomic sequences of this species isolated for further research. Finally, based on the current research progress, we proposed some orientations for future molecular biology research on M. pinnata.

  15. Systematic Representation of Molecular Biology Knowledge.

    Science.gov (United States)

    Fisher, Kathleen M.

    A small set of relationships has been identified which appears to be sufficient for describing all molecular and cellular reactions and structures discussed in an introductory biology course. A precise definition has been developed for each relationship. These 20 relationships are of four types: (1) analytical; (2) spatial; (3) temporal; and (4)…

  16. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  17. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  18. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  19. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  20. Use of Recombinant Antigens for the Diagnosis of Invasive Candidiasis

    Directory of Open Access Journals (Sweden)

    Ana Laín

    2008-01-01

    Full Text Available Invasive candidiasis is a frequent and often fatal complication in immunocompromised and critically ill patients. Unfortunately, the diagnosis of invasive candidiasis remains difficult due to the lack of specific clinical symptoms and a definitive diagnostic method. The detection of antibodies against different Candida antigens may help in the diagnosis. However, the methods traditionally used for the detection of antibodies have been based on crude antigenic fungal extracts, which usually show low-reproducibility and cross-reactivity problems. The development of molecular biology techniques has allowed the production of recombinant antigens which may help to solve these problems. In this review we will discuss the usefulness of recombinant antigens in the diagnosis of invasive candidiasis.

  1. Information theory in molecular biology

    OpenAIRE

    Adami, Christoph

    2004-01-01

    This article introduces the physics of information in the context of molecular biology and genomics. Entropy and information, the two central concepts of Shannon's theory of information and communication, are often confused with each other but play transparent roles when applied to statistical ensembles (i.e., identically prepared sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predict the secondary structure of ribozymes, and detect the...

  2. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  3. Disentangling the role of environmental and human pressures on biological invasions across Europe

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Jarošík, Vojtěch; Wild, Jan; Hejda, Martin; Pergl, Jan

    2010-01-01

    Roč. 107, č. 27 (2010), s. 12157-12162 ISSN 0027-8424 R&D Projects: GA MŠk 7E09053 Grant - others:ALARM(XE) GOCE-CT-2003-506675; European Comission(XE) SSPI-CT-2003-511202 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * Europe * economy Subject RIV: EF - Botanics Impact factor: 9.771, year: 2010

  4. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  5. E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: evidence from a retrospective study and meta-analysis.

    Science.gov (United States)

    Liu, Jiang-Bo; Feng, Chen-Yi; Deng, Miao; Ge, Dong-Feng; Liu, De-Chun; Mi, Jian-Qiang; Feng, Xiao-Shan

    2017-08-01

    This retrospective study and meta-analysis was designed to explore the relationship between E-cadherin (E-cad) expression and the molecular subtypes of invasive non-lobular breast cancer, especially in early-stage invasive ductal carcinoma (IDC). A total of 156 post-operative cases of early-stage IDCs were retrospectively collected for the immunohistochemistry (IHC) detection of E-cad expression. The association of E-cad expression with molecular subtypes of early-stage IDCs was analyzed. A literature search was conducted in March 2016 to retrieve publications on E-cad expression in association with molecular subtypes of invasive non-lobular breast cancer, and a meta-analysis was performed to estimate the relational statistics. E-cad was expressed in 82.7% (129/156) of early-stage IDCs. E-cad expression was closely associated with the molecular types of early-stage IDCs (P cancer (TNBC) than in other molecular subtypes (TNBC vs. luminal A: RR = 3.45, 95% CI = 2.79-4.26; TNBC vs. luminal B: RR = 2.41, 95% CI = 1.49-3.90; TNBC vs. HER2-enriched: RR = 1.95, 95% CI = 1.24-3.07). Early-stage IDCs or invasive non-lobular breast cancers with the TNBC molecular phenotype have a higher risk for the loss of E-cad expression than do tumors with non-TNBC molecular phenotypes, suggesting that E-cad expression phenotypes were closely related to molecular subtypes and further studies are needed to clarify the underlying mechanism.

  6. Molecular Biology and Prevention of Endometrial Cancer. Addendum

    National Research Council Canada - National Science Library

    Maxwell, George L

    2008-01-01

    Objective: To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. Methods: 1...

  7. From data to decision - learning by probabilistic risk analysis of biological invasions

    OpenAIRE

    Sahlin, Ullrika

    2010-01-01

    Predicting an uncertain future with uncertain knowledge is a challenge. The success of efforts to preserve biodiversity, to maintain biosecurity and to reduce a negative impact from climate change, depend on scientifically based predictions of future events. The ongoing introduction of non-indigenous species threatens ecological systems for which empirical data is sparse and scientific knowledge is uncertain. Since biological invasions constitute a type of risk characterized by small probabil...

  8. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transcriptomic and genomic features of invasive lobular breast cancer.

    Science.gov (United States)

    Desmedt, Christine; Zoppoli, Gabriele; Sotiriou, Christos; Salgado, Roberto

    2017-06-01

    Accounting for 10-15% of all breast neoplasms, invasive lobular breast cancer (ILC) is the second most common histological subtype of breast cancer after invasive ductal breast cancer (IDC). Understanding ILC biology, which differs from IDC in terms of clinical presentation, treatment response, relapse timing and patterns, is essential in order to adopt novel, disease-specific management strategies. While the contribution of the histological subtypes to tumour biology has been poorly investigated and acknowledged in the past, recently several major, independent efforts have led to the assembly and molecular characterization of well-annotated ILC case sets. In this review, we provide a critical overview of the literature exploring ILC, through comprehensive and multiomic methods. The first part specifically focuses on ILC transcriptomic features by reviewing the intrinsic molecular subtypes, the application of gene expression scores for the prediction of recurrence, and the identification of gene expression subtypes. The second part describes the main research efforts that lead to the identification of the genomic landscape of ILC, with a special focus to findings that differentiate ILC from IDC and carry potential clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recommendations for accreditation of laboratories in molecular biology of hematologic malignancies.

    Science.gov (United States)

    Flandrin-Gresta, Pascale; Cornillet, Pascale; Hayette, Sandrine; Gachard, Nathalie; Tondeur, Sylvie; Mauté, Carole; Cayuela, Jean-Michel

    2015-01-01

    Over recent years, the development of molecular biology techniques has improved the hematological diseases diagnostic and follow-up. Consequently, these techniques are largely used in the biological screening of these diseases; therefore the Hemato-oncology molecular diagnostics laboratories must be actively involved in the accreditation process according the ISO 15189 standard. The French group of molecular biologists (GBMHM) provides requirements for the implementation of quality assurance for the medical molecular laboratories. This guideline states the recommendations for the pre-analytical, analytical (methods validation procedures, quality controls, reagents), and post-analytical conditions. In addition, herein we state a strategy for the internal quality control management. These recommendations will be regularly updated.

  11. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Lim, Nicole C H; Jackson, Sophie E

    2015-01-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  12. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    George H Sakorafas; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  13. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  14. Book review: Encyclopedia of biological invasions

    Science.gov (United States)

    Qinfeng Guo

    2011-01-01

    Species introductions and consequent biotic invasions and homogenization are major components of global change that are drawing increasing concern and various levels of actions and reactions around the world. Invasion ecology has advanced rapidly during the last few decades, and the discipline is now increasingly integrated with the social and economic sciences. A...

  15. Molecular and biological interactions in colorectal cancer

    NARCIS (Netherlands)

    Heer, Pieter de

    2007-01-01

    The current thesis discusses the use of molecular and biological tumor markers to predict clinical outcome. By studying several key processes in the develepment of cancer as regulation of cell motility (non-receptor protein tyrosin adesion kinases, FAK, Src and paxillin, Apoptosis (caspase-3

  16. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  17. [Lobular neoplasms and invasive lobular breast cancer].

    Science.gov (United States)

    Sinn, H-P; Helmchen, B; Heil, J; Aulmann, S

    2014-02-01

    The term lobular neoplasia (LN) comprises both atypical lobular hyperplasia (ALH), and lobular carcinoma in situ (LCIS) and thus a spectrum of morphologically heterogeneous but clinically and biologically related lesions. LN is regarded as a nonobligatory precursor lesion of invasive breast cancer and at the same time as an indicator lesion for ipsilateral and contralateral breast cancer risk of the patient. Rare pleomorphic or florid variants of LCIS must be differentiated from classical LCIS. The classical type of invasive lobular carcinoma (ILC) can be distinguished from the non-special type of invasive breast cancer (NST) by E-cadherin inactivation, loss of E-cadherin related cell adhesion and the subsequent discohesive growth pattern. Variant forms of ILC may show different molecular features, and solid and pleomorphic differentiation patterns in cases of high grade variants. Important parameters for the prognostic assessment of ILC are tumor grading and the recognition of morphological variants.

  18. Biological control of alien and invasive species in agriculture

    International Nuclear Information System (INIS)

    Calvitti, Maurizio; Moretti Riccardo; Lampazzi, Elena

    2015-01-01

    Agricultural production in Europe faces many challenges including limited availability of water, nitrogen input and fossil fuels. It is necessary, therefore, to identify methods of production and new technologies to increase the efficiency of the primary systems, guaranteeing amount of food, quality, safety and eco-sustainability . One of the most important aspects, though often undervalued in relation to the food chain, is the adversity of biological management of agricultural crops due to pests, pathogens or fitomizi with potential invasive already present in the territory or of recent origin alien. In this context, two main objectives should be implemented at the same time reduce production losses and protect the agro-ecosystem. To meet these expectations, as of January 1, 2015 all farms in the European Union countries are bound to the application of the Integrated Defense principles, as indicated by the Directive on the sustainable use of plant protection products (128/09 / EC) .In response to this and other new entomological emergencies plant health and medical-veterinary entomologist researchers of the Laboratory sustainable management of Agro-Ecosystems in ENEA, have directed their research towards the development of innovative systems for the sustainable control of invasive species of insects is in the agricultural sector that health. [it

  19. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  20. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  1. Applications of neutron scattering in molecular biological research

    International Nuclear Information System (INIS)

    Nierhaus, K.H.

    1984-01-01

    The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de

  2. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  3. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  4. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  5. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    Science.gov (United States)

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-05

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.

  6. The early years of molecular biology: personal recollections.

    Science.gov (United States)

    Holliday, Robin

    2003-05-01

    The early years of molecular biology were characterized by a strong interaction between theory and experiment. This included the elucidation of the structure of DNA itself; genetic fine structure, recombination and repair; DNA replication; template-directed protein synthesis; the universality of the triplet genetic code, and the co-linearity of the DNA sequence of structural genes and the sequence of amino acids in proteins. The principle of co-linearity was later modified when split genes were discovered. It is suggested that accurate splicing of gene transcripts might also be template directed. In 1958 Crick proposed a 'central dogma' of molecular biology stating that information could not be transmitted from proteins to DNA. Nevertheless, proteins can chemically modify DNA, and this is now known to have strong effects on gene expression.

  7. A comparative cellular and molecular biology of longevity database.

    Science.gov (United States)

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  8. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  9. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  10. Molecular markers in disease detection and follow-up of patients with non-muscle invasive bladder cancer.

    Science.gov (United States)

    Maas, Moritz; Walz, Simon; Stühler, Viktoria; Aufderklamm, Stefan; Rausch, Steffen; Bedke, Jens; Stenzl, Arnulf; Todenhöfer, Tilman

    2018-05-01

    Diagnosis and surveillance of non-muscle invasive bladder cancer (NMIBC) is mainly based on endoscopic bladder evaluation and urine cytology. Several assays for determining additional molecular markers (urine-, tissue- or blood-based) have been developed in recent years but have not been included in clinical guidelines so far. Areas covered: This review gives an update on different molecular markers in the urine and evaluates their role in patients with NMIBC in disease detection and surveillance. Moreover, the potential of recent approaches such as DNA methylation assays, multi-panel RNA gene expression assays and cell-free DNA analysis is assessed. Expert commentary: Most studies on various molecular urine markers have mainly focused on a potential replacement of cystoscopy. New developments in high throughput technologies and urine markers may offer further advantages as they may represent a non-invasive approach for molecular characterization of the disease. This opens new options for individualized surveillance strategies and may help to choose the best therapeutic option. The implementation of these technologies in well-designed clinical trials is essential to further promote the use of urine diagnostics in the management of patients with NMIBC.

  11. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents.

    Directory of Open Access Journals (Sweden)

    Matthys Strydom

    Full Text Available Australian Acacia are invasive in many parts of the world. Despite significant mechanical and biological efforts to control their invasion and spread, soil-stored seed banks prevent their effective and sustained removal. In response South Africa has had a strong focus on employing seed reducing biological control agents to deal with Australian Acacia invasion, a programme that is considered as being successful. To provide a predictive understanding for their management, seed banks of four invasive Australian acacia species (Acacia longifolia, A. mearnsii, A. pycnantha and A. saligna were studied in the Western Cape of South Africa. Across six to seven sites for each species, seed bank sizes were estimated from dense, monospecific stands by collecting 30 litter and soil samples. Average estimated seed bank size was large (1017 to 17261 seed m-2 as was annual input into the seed bank, suggesting that these seed banks are not residual but are replenished in size annually. A clear relationship between seed bank size and stem diameter was established indicating that mechanical clearing should be conducted shortly after fire-stimulated recruitment events or within old populations when seed banks are small. In dense, monospecific stands seed-feeding biological control agents are not effective in reducing seed bank size.

  12. Factors influencing plant invasiveness

    Science.gov (United States)

    Yvette Ortega; Dean Pearson

    2009-01-01

    Invasiveness of spotted knapweed and biological control agents. Dean and Yvette are examining the influence of drought on the invasiveness of spotted knapweed (Centaurea maculosa) and its susceptibility to herbivory by biological control agents. In collaboration with the University of Montana and Forest Health Protection, researchers have constructed 150...

  13. Molecular biology-based diagnosis and therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Fujita, Hayato; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Tanaka, Masao

    2011-01-01

    Mainly described are author's investigations of the title subject through clinical and basic diagnosis/therapeutic approach. Based on their consideration of carcinogenesis and pathological features of pancreatic cancer (PC), analysis of expression of cancer-related genes in clinically available samples like pancreatic juice and cells biopsied can result in attaining their purposes. Desmoplasia, a pathological feature of PC, possibly induces resistance to therapy and one of strategies is probably its suppression. Targeting stem cells of the mesenchyma as well as those of PC is also a strategy in future. Authors' studies have revealed that quantitation of hTERT (coding teromerase) mRNA levels in PC cells micro-dissected from cytological specimens is an accurate molecular biological diagnostic method applicable clinically. Other cancer-related genes are also useful for the diagnosis and mucin (MUC) family genes are shown to be typical ones for differentiating the precancerous PC, PC and chronic pancreatisis. Efficacy of standard gemcitabine chemotherapy can be individualized with molecular markers concerned to metabolism of the drug like dCK. Radiotherapy/radio-chemotherapy are not so satisfactory for PC treatment now. Authors have found elevated MMP-2 expression and HGF/c-Met signal activation in irradiated PC cells, which can increase the invasive capability; and stimulation of phosphorylation and activation of c-Met/MARK in co-culture of irradiated PC cells with messenchymal cells from PC, which possibly leads to progression of malignancy of PC through their interaction, of which suppression, therefore, can be a new approach to increase the efficacy of radiotherapy. Authors are making effort to introducing adenovirus therapy in clinic; exempli gratia (e.g.), the virus carrying wild type p53, a cancer-suppressive gene, induces apoptosis of PC cells often having its mutated gene. (T.T.)

  14. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  15. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  16. Increase in male reproductive success and female reproductive investment in invasive populations of the harlequin ladybird Harmonia axyridis.

    Directory of Open Access Journals (Sweden)

    Guillaume J M Laugier

    Full Text Available Reproductive strategy affects population dynamics and genetic parameters that can, in turn, affect evolutionary processes during the course of biological invasion. Life-history traits associated with reproductive strategy are therefore potentially good candidates for rapid evolutionary shifts during invasions. In a series of mating trials, we examined mixed groups of four males from invasive and native populations of the harlequin ladybird Harmonia axyridis mating freely during 48 hours with one female of either type. We recorded the identity of the first male to copulate and after the 48 h-period, we examined female fecundity and share of paternity, using molecular markers. We found that invasive populations have a different profile of male and female reproductive output. Males from invasive populations are more likely to mate first and gain a higher proportion of offspring with both invasive and native females. Females from invasive populations reproduce sooner, lay more eggs, and have offspring sired by a larger number of fathers than females from native populations. We found no evidence of direct inbreeding avoidance behaviour in both invasive and native females. This study highlights the importance of investigating evolutionary changes in reproductive strategy and associated traits during biological invasions.

  17. Invasion ecology meets parasitology: Advances and challenges

    OpenAIRE

    Robert Poulin

    2017-01-01

    Biological invasions threaten the diversity and functioning of native ecosystems, and the rate at which species are being introduced to new areas shows no sign of slowing down. Parasites play roles in biological invasions, for instance when native parasites interact with exotic hosts, or when parasites themselves are introduced to new areas. However, publication trends show clearly that research on parasitism in the context of biological invasions is lagging far behind research on biological ...

  18. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  19. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces

    Czech Academy of Sciences Publication Activity Database

    Rosel, D.; Brabek, J.; Tolde, O.; Mierke, C.T.; Zitterbart, D.P.; Raupach, C.; Bicanova, K.; Kollmannsberger, P.; Pánková, D.; Veselý, Pavel; Folk, P.; Fabry, B.

    2008-01-01

    Roč. 6, č. 9 (2008), s. 1410-1420 ISSN 1541-7786 Institutional research plan: CEZ:AV0Z50520514 Keywords : Rho kinase ROCK * traction force microscopy * ameboid invasion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2008

  20. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  1. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  2. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.; Woolley, T.E.; Scott, J.G.; Maini, P.K.; Gaffney, E.A.

    2013-01-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  3. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  4. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  5. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  6. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  7. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  8. Molecular biology of gastric cancer.

    Science.gov (United States)

    Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I

    2007-04-01

    Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.

  9. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  10. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    Science.gov (United States)

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  11. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  12. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  13. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  14. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  15. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  16. Editorial: Molecular Organization of Membranes: Where Biology Meets Biophysics

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek; Holowka, D.

    2017-01-01

    Roč. 5, č. 113 (2017), s. 1-3 ISSN 2296-634X Institutional support: RVO:61388955 Keywords : nanodomains * membrane properties * cell membrane Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  17. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm.

    Science.gov (United States)

    Vargas, Hebert Alberto; Grimm, Jan; F Donati, Olivio; Sala, Evis; Hricak, Hedvig

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. • Advanced imaging techniques allow direct visualisation of molecular interactions in prostate cancer. • MRI/PET, optical and Cerenkov imaging facilitate the translation of molecular biology. • Multiple compounds targeting PSMA expression are currently undergoing clinical translation. • Other targets (e.g., PSA, prostate-stem cell antigen, GRPR) are in development.

  18. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    Marko, A.M.

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  19. Proceedings of the symposium on molecular biology and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Marko, A M [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection; Myers, D K; Atchison, R J [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection. Secretariat; Gentner, N E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually.

  20. [Molecular Biology for Surgical Treatment of Lung Cancer].

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2017-01-01

    Progress in lung cancer research achieved during the last 10 years was summarized. These include identification of novel driver mutations and application of targeted therapies, resistance mechanisms to targeted therapies, and immunotherapy with immune checkpoint inhibitors. Molecular biology also affects the field of surgical treatment. Several molecular markers have been reported to predict benign/ malignant or stable/growing tumors, although far from clinical application. In perioperative period, there is a possibility of atrial natriuretic peptide to prevent cancer metastasis. As adjuvant settings, although biomarker-based cytotoxic therapies failed to show clinical efficacy, several trials are ongoing employing molecular targeted agents (EGFR-TKI or ALK-TKI) or immune checkpoint inhibitors. In clinical practice, mutational information is sometimes used to distinguish 2nd primary tumors from pulmonary metastases of previous cancers. Surgery also has important role for oligo-progressive disease during molecular targeted therapies.

  1. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  2. Biologia molecular do câncer cervical Molecular biology of cervical cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Augusto Rivoire

    2006-01-01

    . How HPV immortalizes cervical cells is not fully understood. Advances have been made in the application of molecular biology techniques in the understanding of this mechanism. Once established, these techniques will lead to a better assessment of cervical neoplasias and help the development of new therapies, hopefully less invasive and more effective.

  3. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  4. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    International Nuclear Information System (INIS)

    Vermeulen, Jeroen F; Brussel, Aram SA van; Groep, Petra van der; Morsink, Folkert HM; Bult, Peter; Wall, Elsken van der; Diest, Paul J van

    2012-01-01

    Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. The combination of highly tumor-specific markers glucose transporter 1 (GLUT1), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF1-R), human epidermal growth factor receptor 2 (HER2), hepatocyte growth factor receptor (MET), and carbonic anhydrase 9 (CAIX) 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6) resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R) that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate

  5. Molecular biology applications to infectious diseases diagnostic; Aplicaciones de la Biologica Molecular al diagnostico de enfermedades infecciosas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus.

  6. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    Science.gov (United States)

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  7. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  8. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  9. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  10. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  11. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species [v1; ref status: indexed, http://f1000r.es/33c

    Directory of Open Access Journals (Sweden)

    Heike Zimmermann

    2014-05-01

    Full Text Available Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density remain poorly understood. Invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the abundance of invasive species may be partly explained by the level of human activity or landscape maintenance, with intermediate levels of human activity providing optimal conditions for high abundance. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important additional or complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  12. The diagnosis and management of pre-invasive breast disease: Promise of new technologies in understanding pre-invasive breast lesions

    International Nuclear Information System (INIS)

    Jeffrey, Stefanie S; Pollack, Jonathan R

    2003-01-01

    Array-based comparative genomic hybridization, RNA expression profiling, and proteomic analyses are new molecular technologies used to study breast cancer. Invasive breast cancers were originally evaluated because they provided ample quantities of DNA, RNA, and protein. The application of these technologies to pre-invasive breast lesions is discussed, including methods that facilitate their implementation. Data indicate that atypical ductal hyperplasia and ductal carcinoma in situ are precursor lesions molecularly similar to adjacent invasive breast cancer. It is expected that molecular technologies will identify breast tissue at risk for the development of unfavorable subtypes of invasive breast cancer and reveal strategies for targeted chemoprevention or eradication

  13. Importancia de la biología molecular para la Fisioterapia moderna Importance of molecular biology for the modern Physical Therapy

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez Ramírez

    2011-12-01

    Full Text Available Para que el cuerpo de conocimiento de una profesión crezca y se fortalezca debe estar al día con los avances científicos y tecnológicos que surgen continuamente para incluirlos en el repertorio de recursos que usa para la investigación de problemas específicos de su saber. Recientemente el desciframiento del código genético y la secuenciación del genoma humano creó la base para el surgimiento de metodologías y técnicas en el área de la biología molecular, las cuales permitieron profundizar en el conocimiento de la estructura y función de los tejidos humanos y también mejoraron el entendimiento de los mecanismos por los cuales actúan formas de intervención usadas cotidianamente por profesionales en salud. La Fisioterapia utiliza modalidades físicas que interactúan con los tejidos corporales, por ello la biología molecular permite un mejor entendimiento de los efectos que las dichas modalidades generan en el tejido sobre el cual son aplicadas. Por tanto el objetivo de este artículo es reflexionar sobre la necesidad de que el Fisioterapeuta se apropie del conocimiento en ésta área de las ciencias básicas, usarlo como herramienta para la solución de preguntas relevantes de su quehacer clínico y así contribuir de manera efectiva con la generación de nuevo conocimiento que promueva la práctica basada en la evidencia y fomente el crecimiento de la profesión. Salud UIS 2011; 43 (3: 317-320A profession can be improved through the development and application of scientific and technological advances around the issues relating to their expertise. Recently, the deciphering of the genetic code and human genome sequencing creates the basis for the development of methodologies and techniques of molecular biology. These resources have allowed a deeper understanding of the human tissue structure and function, and intervention mechanisms used by health professionals. Physiotherapy uses physical modalities affecting the tissues of the

  14. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  15. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Directory of Open Access Journals (Sweden)

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  16. Disentangling the role of environmental and human pressures on biological invasions across Europe.

    Science.gov (United States)

    Pysek, Petr; Jarosík, Vojtech; Hulme, Philip E; Kühn, Ingolf; Wild, Jan; Arianoutsou, Margarita; Bacher, Sven; Chiron, Francois; Didziulis, Viktoras; Essl, Franz; Genovesi, Piero; Gherardi, Francesca; Hejda, Martin; Kark, Salit; Lambdon, Philip W; Desprez-Loustau, Marie-Laure; Nentwig, Wolfgang; Pergl, Jan; Poboljsaj, Katja; Rabitsch, Wolfgang; Roques, Alain; Roy, David B; Shirley, Susan; Solarz, Wojciech; Vilà, Montserrat; Winter, Marten

    2010-07-06

    The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.

  17. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  18. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    Science.gov (United States)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  19. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  20. Nutritional education from Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Zaida Ramona Betancourt Betancourt

    2014-12-01

    Full Text Available The nutritional education is current topic, constituting a necessity in the contemporary world, given mainly by the contribution that it makes in maintaining the human health under good conditions. Starting from this problem, it is presented this article whose objective is: to show the potential ities that the discipline Cellular and Molecular Biology offers, for the treatment of these contents, since this discipline is worked in the second semester of first year and first semester of in the formation of professors of the Biology - Geography and Bio logy - C hemistry careers which can contribute to the development of knowledge, habits and abilities that allows them to appropriate of responsible behaviours for the achievement of correct nutritional habits.

  1. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  2. Invasion of Flukes of the Echinostomatidae Family in Racing Pigeon ( Columba livia var. domestica) Lofts.

    Science.gov (United States)

    Ledwoń, Aleksandra; Dolka, Beata; Piasecki, Tomasz; Dolka, Izabella; Szeleszczuk, Piotr

    2016-06-01

    Over 4 years, only two known cases of fluke invasions were diagnosed in racing pigeons ( Columba livia ) originating from different regions of Poland. In both cases, the invasion was characterized by a very high mortality (approximately 70%), and the source of the infestation was snails of the Lymnaeidae family eaten by pigeons. Fluke invasions in pigeons are extremely rare and to date have not been described in Poland. Therefore, the occurrence of the symptoms of hemorrhagic diarrhea and sudden deaths of either adult pigeons or nestlings were suspected to be associated with poisoning. Autopsy revealed an invasion of flukes causing hemorrhagic enteritis. Renal failure and spleen atrophy were also found in the birds. Using molecular biology techniques, infestation with the fluke Echinostoma revolutum was determined in the second case.

  3. Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts

    Science.gov (United States)

    Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…

  4. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  5. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    NARCIS (Netherlands)

    Ren, Yjin

    2005-01-01

    : Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the

  6. Preoperative core needle biopsy is accurate in determining molecular subtypes in invasive breast cancer

    International Nuclear Information System (INIS)

    Chen, Xiaosong; Yuan, Ying; Fei, Xiaochun; Jin, Xiaolong; Shen, Kunwei; Sun, Long; Mao, Yan; Zhu, Siji; Wu, Jiayi; Huang, Ou; Li, Yafen; Chen, Weiguo; Wang, Jianhua

    2013-01-01

    Estrogen receptor (ER), progesterone receptor (PgR), HER2, and Ki67 have been increasingly evaluated by core needle biopsy (CNB) and are recommended for classifying breast cancer into molecular subtypes. However, the concordance rate between CNB and open excision biopsy (OEB) has not been well documented. Patients with paired CNB and OEB samples from Oct. 2009 to Feb. 2012 in Ruijin Hospital were included. ER, PgR, HER2, and Ki67 were determined by immunohistochemistry (IHC). Patients with HER2 IHC 2+ were further examined by FISH. Cutoff value for Ki67 high expression was 14%. Molecular subtypes were constructed as follows: Luminal A, Luminal B, Triple Negative, and HER2 positive. There were 298 invasive breast cancer patients analyzed. Concordance rates for ER, PgR, and HER2 were 93.6%, 85.9%, and 96.3%, respectively. Ki67 expression was slightly higher in OEB than in CNB samples (29.3% vs. 26.8%, P = 0.046). Good agreement (κ = 0.658) was demonstrated in evaluating molecular subtypes between CNB and OEB, with a concordance rate of 77.2%. We also used a different Ki67 cutoff value (20%) for determining Luminal A and B subtypes in HR (hormone receptor) +/HER2- diseases and the overall concordance rate was 79.2%. However, using a cut-point of Ki67 either 14% or 20% for both specimens, there will be about 14% of HR+/HER2- specimens that are called Luminal A on CNB and Luminal B on OEB. CNB was accurate in determining ER, PgR, and HER2 status as well as non-Luminal molecular subtypes in invasive breast cancer. Ki67 should be retested on OEB samples in HR+/HER2- patients to accurately distinguish Luminal A from B tumors

  7. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  8. The emerging molecular biology toolbox for the study of long noncoding RNA biology.

    Science.gov (United States)

    Fok, Ezio T; Scholefield, Janine; Fanucchi, Stephanie; Mhlanga, Musa M

    2017-10-01

    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.

  9. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  10. Egyptian Journal of Biochemistry and Molecular Biology - Vol 32, No ...

    African Journals Online (AJOL)

    The Egyptian Journal of Biochemistry and Molecular Biology. ... Therapeutic Impacts of Almond Oil and Olive Oil on Cholesterol Dynamics and ... Multidrug Resistance Proteins in Pancreatic Carcinoma · EMAIL FULL TEXT EMAIL FULL TEXT

  11. Script, code, information: how to differentiate analogies in the "prehistory" of molecular biology.

    Science.gov (United States)

    Kogge, Werner

    2012-01-01

    The remarkable fact that twentieth-century molecular biology developed its conceptual system on the basis of sign-like terms has been the object of numerous studies and debates. Throughout these, the assumption is made that this vocabulary's emergence should be seen in the historical context of mathematical communication theory and cybernetics. This paper, in contrast, sets out the need for a more differentiated view: whereas the success of the terms "code" and "information" would probably be unthinkable outside that historical context, general semiotic and especially scriptural concepts arose far earlier in the "prehistory" of molecular biology, and in close association with biological research and phenomena. This distinction, established through a reconstruction of conceptual developments between 1870 and 1950, makes it possible to separate off a critique of the reductive implications of particular information-based concepts from the use of semiotic and scriptural concepts, which is fundamental to molecular biology. Gene-centrism and determinism are not implications of semiotic and scriptural analogies, but arose only when the vocabulary of information was superimposed upon them.

  12. The contribution of neutron scattering to molecular biology

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.

    1983-01-01

    About half of the atoms of living cells are hydrogens, and nearly all biological applications of neutron scattering rely on the well-known difference in the scattering lengths of the proton and the deuteron. This introduces us to a wide variety of biological problems, which are related with hydrogen in water, proteins, nucleic acids and lipids. Neutron scattering gives an answer to both structural and dynamical aspects of the system in question. With deuterium labelled samples unambiguous information about molecular structure and motion becomes accessible. The architecture of viruses, cell membranes and gene expressing molecules has become a lot clearer with neutron scattering. (author)

  13. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  14. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  15. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    Science.gov (United States)

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Future directions for radiological physics: An interface with molecular biology

    International Nuclear Information System (INIS)

    Braby, L.A.

    1987-01-01

    Recent experiments with low energy x-rays and fast molecular ions have shown that the products of the interaction of several ionizations within a few nanometers dominate radiation effects. However, the authors still can only make assumptions about the physical and chemical nature of this initial damage. Enzymatic repair of DNA damage is another key factor, but they have little idea of what governs the success or failure (misrepair) of these processes. Unresolved problems like these dictate the future direction of radiological physics. Molecular biology techniques are being applied to determine molecular alterations which result in observed damage. Interpretation of these experiments will require new data on the physics of energy transfer to macromolecules and the stochastics of energy deposition in time. Future studies will attempt to identify the initial damage, before biological processes have amplified it. This will require a detailed understanding of the role of chromatin structure in governing gene expression, the transport of energy within macromolecules, the transport of ions and radicals in the semiordered environment near DNA strands, and many other physical characteristics within the living cell

  17. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    2009-08-03

    Aug 3, 2009 ... Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity ...

  18. Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles.

    Science.gov (United States)

    García-Díaz, Pablo; Ross, Joshua V; Ayres, César; Cassey, Phillip

    2015-03-01

    Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure

  19. Implications of molecular heterogeneity for the cooperativity of biological macromolecules.

    Science.gov (United States)

    Solomatin, Sergey V; Greenfeld, Max; Herschlag, Daniel

    2011-06-01

    Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, through simulations and single-molecule FRET (smFRET) experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.

  20. Disturbance promotes non-indigenous bacterial invasion in soil microcosms

    DEFF Research Database (Denmark)

    Liu, Manqiang; Strandmark, Lisa Bjørnlund; Rønn, Regin

    2012-01-01

    Invasion-biology is largely based on non-experimental observation of larger organisms. Here, we apply an experimental approach to the subject. By using microbial-based microcosm-experiments, invasion-biology can be placed on firmer experimental, and hence, less anecdotal ground. A better...... understanding of the mechanisms that govern invasion-success of bacteria in soil communities will provide knowledge on the factors that hinder successful establishment of bacteria artificially inoculated into soil, e.g. for remediation purposes. Further, it will yield valuable information on general principles...... of invasion biology in other domains of life....

  1. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

    Science.gov (United States)

    Mech, Franziska; Wilson, Duncan; Lehnert, Teresa; Hube, Bernhard; Thilo Figge, Marc

    2014-02-01

    Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for

  2. Immunophenotyping invasive breast cancer: paving the road for molecular imaging

    Directory of Open Access Journals (Sweden)

    Vermeulen Jeroen F

    2012-06-01

    Full Text Available Abstract Background Mammographic population screening in The Netherlands has increased the number of breast cancer patients with small and non-palpable breast tumors. Nevertheless, mammography is not ultimately sensitive and specific for distinct subtypes. Molecular imaging with targeted tracers might increase specificity and sensitivity of detection. Because development of new tracers is labor-intensive and costly, we searched for the smallest panel of tumor membrane markers that would allow detection of the wide spectrum of invasive breast cancers. Methods Tissue microarrays containing 483 invasive breast cancers were stained by immunohistochemistry for a selected set of membrane proteins known to be expressed in breast cancer. Results The combination of highly tumor-specific markers glucose transporter 1 (GLUT1, epidermal growth factor receptor (EGFR, insulin-like growth factor-1 receptor (IGF1-R, human epidermal growth factor receptor 2 (HER2, hepatocyte growth factor receptor (MET, and carbonic anhydrase 9 (CAIX 'detected' 45.5% of tumors, especially basal/triple negative and HER2-driven ductal cancers. Addition of markers with a 2-fold tumor-to-normal ratio increased the detection rate to 98%. Including only markers with >3 fold tumor-to-normal ratio (CD44v6 resulted in an 80% detection rate. The detection rate of the panel containing both tumor-specific and less tumor-specific markers was not dependent on age, tumor grade, tumor size, or lymph node status. Conclusions In search of the minimal panel of targeted probes needed for the highest possible detection rate, we showed that 80% of all breast cancers express at least one of a panel of membrane markers (CD44v6, GLUT1, EGFR, HER2, and IGF1-R that may therefore be suitable for molecular imaging strategies. This study thereby serves as a starting point for further development of a set of antibody-based optical tracers with a high breast cancer detection rate.

  3. Climate change and biological invasions: evidence, expectations, and response options.

    Science.gov (United States)

    Hulme, Philip E

    2017-08-01

    A changing climate may directly or indirectly influence biological invasions by altering the likelihood of introduction or establishment, as well as modifying the geographic range, environmental impacts, economic costs or management of alien species. A comprehensive assessment of empirical and theoretical evidence identified how each of these processes is likely to be shaped by climate change for alien plants, animals and pathogens in terrestrial, freshwater and marine environments of Great Britain. The strongest contemporary evidence for the potential role of climate change in the establishment of new alien species is for terrestrial arthropods, as a result of their ectothermic physiology, often high dispersal rate and their strong association with trade as well as commensal relationships with human environments. By contrast, there is little empirical support for higher temperatures increasing the rate of alien plant establishment due to the stronger effects of residence time and propagule pressure. The magnitude of any direct climate effect on the number of new alien species will be small relative to human-assisted introductions driven by socioeconomic factors. Casual alien species (sleepers) whose population persistence is limited by climate are expected to exhibit greater rates of establishment under climate change assuming that propagule pressure remains at least at current levels. Surveillance and management targeting sleeper pests and diseases may be the most cost-effective option to reduce future impacts under climate change. Most established alien species will increase their distribution range in Great Britain over the next century. However, such range increases are very likely be the result of natural expansion of populations that have yet to reach equilibrium with their environment, rather than a direct consequence of climate change. To assess the potential realised range of alien species will require a spatially explicit approach that not only

  4. The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs?

    Science.gov (United States)

    Hume, Benjamin C. C.; D'Angelo, Cecilia; Cunnington, Anna; Smith, Edward G.; Wiedenmann, Jörg

    2014-03-01

    Fatal infestations of land-based Acropora cultures with so-called Acropora- eating flatworms (AEFWs) are a global phenomenon. We evaluate the hypothesis that AEFWs represent a risk to coral reefs by studying the biology and the invasive potential of an AEFW strain from the UK. Molecular analyses identified this strain as Amakusaplana acroporae, a new species described from two US aquaria and one natural location in Australia. Our molecular data together with life history strategies described here suggest that this species accounts for most reported cases of AEFW infestations. We show that local parasitic activity impairs the light-acclimation capacity of the whole host colony. A. acroporae acquires excellent camouflage by harbouring photosynthetically competent, host-derived zooxanthellae and pigments of the green-fluorescent protein family. It shows a preference for Acropora valida but accepts a broad host range. Parasite survival in isolation (5-7 d) potentially allows for an invasion when introduced as non-native species in coral reefs.

  5. Epidemiology and Molecular Biology of Head and Neck Cancer.

    Science.gov (United States)

    Jou, Adriana; Hess, Jochen

    2017-01-01

    Head and neck cancer is a common and aggressive malignancy with a high morbidity and mortality profile. Although the large majority of cases resemble head and neck squamous cell carcinoma (HNSCC), the current classification based on anatomic site and tumor stage fails to capture the high level of biologic heterogeneity, and appropriate clinical management remains a major challenge. Hence, a better understanding of the molecular biology of HNSCC is urgently needed to support biomarker development and personalized care for patients. This review focuses on recent findings based on integrative genomics analysis and multi-scale modeling approaches and how they are beginning to provide more sophisticated clues as to the biological and clinical diversity of HNSCC. © 2017 S. Karger GmbH, Freiburg.

  6. In vitro studies. Contribution of radioactive marking to molecular biology development

    International Nuclear Information System (INIS)

    Sentenac, A.

    1997-01-01

    The spectacular and rapid development of molecular biology is essentially related to the utilization of marked molecules which leads to quantitative and qualitative information; the use of radioactive tracers allowed for the observation of the biosynthesis of biological polymers, and thus, for example, the formation of DNA, RNA or proteins. A historical review of the great discoveries in this field, is presented

  7. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  8. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  9. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  10. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  11. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  12. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Noerenberg, Dominik; Ebersberger, Hans U.; Diederichs, Gerd; Hamm, Bernd; Botnar, Rene M.; Makowski, Marcus R.

    2016-01-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  13. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Panov, S.Z.

    2005-01-01

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the h allmarks of lung cancer . Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  14. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  15. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  16. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  17. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    Science.gov (United States)

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  20. Stress in biological invasions: Introduced invasive grey squirrels increase physiological stress in native Eurasian red squirrels.

    Science.gov (United States)

    Santicchia, Francesca; Dantzer, Ben; van Kesteren, Freya; Palme, Rupert; Martinoli, Adriano; Ferrari, Nicola; Wauters, Lucas Armand

    2018-05-23

    Invasive alien species can cause extinction of native species through processes including predation, interspecific competition for resources or disease-mediated competition. Increases in stress hormones in vertebrates may be associated with these processes and contribute to the decline in survival or reproduction of the native species. Eurasian red squirrels (Sciurus vulgaris) have gone extinct across much of the British Isles and parts of Northern Italy following the introduction of North American invasive grey squirrels (Sciurus carolinensis). We extracted glucocorticoid metabolites from faecal samples to measure whether the presence of the invasive species causes an increase in physiological stress in individuals of the native species. We show that native red squirrels in seven sites where they co-occurred with invasive grey squirrels had glucocorticoid concentrations that were three times higher than those in five sites without the invasive species. Moreover, in a longitudinal study, stress hormones in native red squirrels increased after colonisation by grey squirrels. When we experimentally reduced the abundance of the invasive grey squirrels, the concentration of faecal glucocorticoid metabolites in co-occurring red squirrels decreased significantly between pre- and postremoval periods. Hence, we found that the invasive species acts as a stressor which significantly increases the concentrations of glucocorticoids in the native species. Given that sustained elevations in glucocorticoids could reduce body growth and reproductive rate, our results are consistent with previous studies where the co-occurrence of the invasive grey squirrel was associated with smaller size and lower reproductive output in red squirrels. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  1. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  3. Using Whole Mount in situ Hybridization to Link Molecular and Organismal Biology

    OpenAIRE

    Jacobs, Nicole L.; Albertson, R. Craig; Wiles, Jason R.

    2011-01-01

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the ...

  4. Non invasive methods for genetic analysis applied to ecological and behavioral studies in Latino-America

    Directory of Open Access Journals (Sweden)

    Susana González

    2007-07-01

    Full Text Available Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.

  5. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  7. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    OpenAIRE

    Williams, Wyatt I; Friedman, Jonathan M; Gaskin, John F; Norton, Andrew P

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgressi...

  8. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  9. Characterisation of a novel transmission Raman spectroscopy platform for non-invasive detection of breast micro-calcifications

    Science.gov (United States)

    Ghita, Adrian; Matousek, Pavel; Stone, Nick

    2018-02-01

    Our work focuses on the development of a medical Raman spectroscopy based platform to non-invasively detect and determine in-vivo molecular information deep inside biological tissues by monitoring the chemical composition of breast calcifications. The ultimate goal is to replace a needle biopsy which typically follows the detection of an abnormality in mammographic images. Here we report the non-invasive detection of calcium oxalate monohydrate in tissue through 40 mm of phantom tissues using our recently developed advanced Raman instrument complementing our previous detection of calcium hydroxyapatite through this thickness of tissue. The ability to detect these two key types of calcifications opens avenues for the development of non-invasive in-vivo breast cancer diagnostic tool in the future.

  10. Invasive plants affect prairie soil biology

    Science.gov (United States)

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  11. Above-belowground interactions govern the course and impact of biological invasions

    DEFF Research Database (Denmark)

    Vestergård, Mette; Rønn, Regin; Ekelund, Flemming

    2015-01-01

    understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its...... former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears......Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon...

  12. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  13. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  14. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  16. Molecular biological aspects of acquired bullous diseases

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1998-01-01

    Bullous diseases of the oral mucosa and skin were originally classified on the basis of clinical and histological criteria. The discovery of autoantibodies in some of these patients and the introduction of molecular biology have resulted in a new understanding of the pathological mechanisms of many...... of the bullous lesions. In this article, updated topics of the immune-mediated bullous lesions which involve oral mucosa and skin are reviewed. Pemphigus antigens, which are desmosomal-associated proteins and belong to the cadherin superfamily of cell adhesion proteins, have been isolated, and their genes have...

  17. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study

    Czech Academy of Sciences Publication Activity Database

    Makrodouli, E.; Oikonomou, E.; Koc, Michal; Anděra, Ladislav; Sasazuki, T.; Shirasawa, S.; Pintzas, A.

    2011-01-01

    Roč. 10, - (2011), e118 ISSN 1476-4598 Grant - others:GSRT(GR) 03ED562; EK(XE) LSHC-CT-2006-037278 Institutional research plan: CEZ:AV0Z50520514 Keywords : colorectal cancer * invasiveness * oncogenes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.993, year: 2011

  18. Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects

    International Nuclear Information System (INIS)

    Vitousek, P.M.; Walker, L.R.

    1989-01-01

    Myrica faya, an introduced actinorhizal nitrogen fixer, in invading young volcanic sites in Hawaii Volcanoes National Park. We examined the population biology of the invader and ecosystem-level consequences of its invasion in open-canopied forests resulting from volcanic cinder-fall. Although Myrica faya is nominally dioecious, both males and females produce large amounts of fruit that are utilized by a number of exotic and native birds, particularly the exotic Zosterops japonica. In areas of active colonization, Myrica seed rain under perch trees of the dominant native Metrosideros polymorpha ranged from 6 to 60 seeds m -2 yr -1 ; no seeds were captured in the open. Planted seeds of Myrica also germinated an established better under isolated individuals of Metrosideros than in the open. Diameter growth of Myrica is > 15-fold greater than that of Metrosideros, and the Myrica population is increasing rapidly. Rates of nitrogen fixation were measured using the acetylene reduction assay calibrated with 15 N. Myrica nodules reduced acetylene at between 5 and 20 μmol g -1 h -1 , a rate that extrapolated to nitrogen fixation of 18 kg ha -1 in a densely colonized site. By comparison, all native sources of nitrogen fixation summed to 0.2 kg ha -1 yr -1 , and precipitation added -1 yr -1 . Measurements of litter decomposition and nitrogen release, soil nitrogen mineralization, and plant growth in bioassays all demonstrated that nitrogen fixed by Myrica becomes available to other organisms as well. We conclude that biological invasion by Myrica faya alters ecosystem-level properties in this young volcanic area; at least in this case, the demography and physiology of one species controls characteristics of a whole ecosystem

  19. Cryptic invasions: a review

    Czech Academy of Sciences Publication Activity Database

    Morais, Pedro Miguel; Reichard, Martin

    613-614, February (2018), s. 1438-1448 ISSN 0048-9697 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : Conspecific invader * Biological invasions * Bibliometric * Invasiveness Subject RIV: EG - Zoology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.900, year: 2016

  20. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  1. [Molecular biology, darwinism and nomogenesis].

    Science.gov (United States)

    Vol'kenshteĭn, M V

    1987-01-01

    The theory of nomogenesis put forward by L. S. Berg in 1922 is discussed. It is shown that side by side with some erroneous anti-darwinian ideas the theory contains a series of important suggestions which anticipate the further development of the synthetic theory of evolution. Berg has foreseen the development of molecular biology. Thus he was the fore-teller of our branch of science. The theory of nomogenesis emphasized the limitations of natural selection which determine the directionality of evolution. Berg treated the speciation as a kind of phase transition. Even the most conscientious critics of Berg have misrepresented the real sense of his works. It is totally groundless to treat nomogenesis as an idealistic of Lamarkian theory. Berg was superior to his critics. However the enthusiasm about nomogenesis in our time shows the inability to separate "the grains from weeds".

  2. molecular biology approach to the search for novel hiv proteases ...

    African Journals Online (AJOL)

    ... which could be tested in the animal models of HIV infection before subjection to clinical trials. Optimistically, the magic HIV therapeutics may be hidden in such insects and may require the application of molecular biology techniques to unravel. KEY WORDS: Antiretroviral drugs, malaria, proteases, restriction enzymes, ...

  3. The mammographic correlations of a new immunohistochemical classification of invasive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, S. [Nottingham Breast Institute, City Hospital, Hucknall Road, Nottingham NG5 1PB (United Kingdom)], E-mail: sheeba_taneja@yahoo.co.uk; Evans, A.J. [Nottingham Breast Institute, City Hospital, Hucknall Road, Nottingham NG5 1PB (United Kingdom); Rakha, E.A.; Green, A.R. [Division of Pathology, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham (United Kingdom); Ball, G. [Nottingham Trent University, School of Biomedical and Natural Sciences, Nottingham (United Kingdom); Ellis, I.O. [Division of Pathology, School of Molecular Medical Sciences, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham (United Kingdom)

    2008-11-15

    Aim: Recent protein expression profiling of breast cancer has identified specific subtypes with clinical, biological, and therapeutic implications. The aim of this study was to identify the mammographic correlates of these novel molecular classes of invasive breast cancer. Materials and methods: The mammographic findings of 415 patients with operable breast cancer were correlated with the previously described protein expression classes identified by our group using immunohistochemical (IHC) assessment of a large series of breast cancer cases prepared as tissue microarrays (TMAs). Twenty-five proteins of known relevance in breast cancer were assessed, including hormone receptors, HER-2 status, basal and luminal markers, p53 expression, and E-cadherin. Results: The mammographic background pattern and proportion of lesions that were mammographically occult were similar in all groups. Groups characterized by luminal and hormone receptor positivity had significantly more spiculate lesions at mammography. Groups characterized by HER-2 overexpression, basal characteristics, and E-cadherin positivity had a significantly higher proportion of ill-defined masses. These findings were independent of histological grade. Conclusion: The mammographic features of breast cancer show significant correlation with molecular classes of invasive breast cancer identified by protein expression IHC analysis. The biological reasons for the findings and implications of these regarding imaging protocols require further study and may provide mechanisms for improvement of detection of these lesions.

  4. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  5. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1998-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  6. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1997-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  7. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.

    Science.gov (United States)

    Wang, Minghao; Dong, Qianze; Wang, Yunjie

    2016-08-01

    Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

  8. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  9. Parallel computing and molecular dynamics of biological membranes

    International Nuclear Information System (INIS)

    La Penna, G.; Letardi, S.; Minicozzi, V.; Morante, S.; Rossi, G.C.; Salina, G.

    1998-01-01

    In this talk I discuss the general question of the portability of molecular dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision of the today available platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on possible programming strategies. Liquids can be satisfactorily simulated using the ''systolic'' method. For more complex systems, like the biological ones at which we are ultimately interested in, the ''domain decomposition'' approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of atoms of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed. (orig.)

  10. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all...... are important human pathogens. Chlamydia is obligate intracellular bacteria with a unique biphasic life cycle. The extracellularly chlamydial elementary bodies (EB) are small, metabolic inactive, infectious particles with a tight outer cell membrane. After internalization into host cells the chlamydial...... of chlamydia have not yet been found. The adhesin(s) is unknown, and no factor of importance for the inhibition of fusion between phagosome and host cell lysosomes has been described. A protein similar to the mip gene product of Legionella pneumofila may be a possible candidate for a pathogenicity factor...

  11. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    Science.gov (United States)

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers.

  12. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  13. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  14. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  15. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding

    NARCIS (Netherlands)

    Ghahramanzadeh, R.; Esselink, G.; Kodde, L.P.; Duistermaat, H.; Valkenburg, van J.L.C.H.; Marashi, S.H.; Smulders, M.J.M.; Wiel, van de C.C.M.

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to

  16. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints

    Science.gov (United States)

    Gurr, Geoff M.; You, Minsheng

    2016-01-01

    Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225

  17. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  18. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  19. [Molecular markers: an important tool in the diagnosis, treatment and epidemiology of invasive aspergillosis].

    Science.gov (United States)

    Frías-de León, María Guadalupe; Acosta-Altamirano, Gustavo; Duarte-Escalante, Esperanza; Martínez-Hernández, José Enrique; Martínez-Rivera, María de Los Ángeles; Reyes-Montes, María Del Rocío

    2014-01-01

    Increase in the incidence of invasive aspergillosis has represented a difficult problem for management of patients with this infection due to its high rate of mortality, limited knowledge concerning its diagnosis, and therapeutic practice. The difficulty in management of patients with aspergillosis initiates with detection of the fungus in the specimens of immunosuppressed patients infected with Aspergillus fumigatus; in addition, difficulty exists in terms of the development of resistance to antifungals as a consequence of their indiscriminate use in prophylactic and therapeutic practice and to ignorance concerning the epidemiological data of aspergillosis. With the aim of resolving these problems, molecular markers is employed at present with specific and accurate results. However, in Mexico, the use of molecular markers has not yet been implemented in the routine of intrahospital laboratories; despite the fact that these molecular markers has been widely referred in the literature, it is necessary for it to validated and standardized to ensure that the results obtained in any laboratory would be reliable and comparable. In the present review, we present an update on the usefulness of molecular markers in accurate identification of A. fumigatus, detection of resistance to antifugal triazoles, and epidemiological studies for establishing the necessary measures for prevention and control of aspergillosis.

  20. Doctoral conceptual thresholds in cellular and molecular biology

    Science.gov (United States)

    Feldon, David F.; Rates, Christopher; Sun, Chongning

    2017-12-01

    In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To establish a foundation from which to investigate the developmental trajectory of biologists' research skills, it is necessary to identify those skills which are integral to doctoral study and distinct from skills acquired earlier in students' educational pathways. In this context, the current study engages the framework of threshold concepts to identify candidate skills that are both obstacles and significant opportunities for developing proficiency in conducting research. Such threshold concepts are typically characterised as transformative, integrative, irreversible, and challenging. The results from interviews and focus groups with current and former doctoral students in cellular and molecular biology suggest two such threshold concepts relevant to their subfield: the first is an ability to effectively engage primary research literature from the biological sciences in a way that is critical without dismissing the value of its contributions. The second is the ability to conceptualise appropriate control conditions necessary to design and interpret the results of experiments in an efficient and effective manner for research in the biological sciences as a discipline. Implications for prioritising and sequencing graduate training experiences are discussed on the basis of the identified thresholds.

  1. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  2. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  3. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  4. Günter Blobel: Pioneer of molecular cell biology (1936-2018).

    Science.gov (United States)

    2018-04-02

    Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81. © 2018 Rockefeller University Press.

  5. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  6. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  7. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  8. Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Seiler, Roland; Ashab, Hussam Al Deen; Erho, Nicholas; van Rhijn, Bas W G; Winters, Brian; Douglas, James; Van Kessel, Kim E; Fransen van de Putte, Elisabeth E; Sommerlad, Matthew; Wang, Natalie Q; Choeurng, Voleak; Gibb, Ewan A; Palmer-Aronsten, Beatrix; Lam, Lucia L; Buerki, Christine; Davicioni, Elai; Sjödahl, Gottfrid; Kardos, Jordan; Hoadley, Katherine A; Lerner, Seth P; McConkey, David J; Choi, Woonyoung; Kim, William Y; Kiss, Bernhard; Thalmann, George N; Todenhöfer, Tilman; Crabb, Simon J; North, Scott; Zwarthoff, Ellen C; Boormans, Joost L; Wright, Jonathan; Dall'Era, Marc; van der Heijden, Michiel S; Black, Peter C

    2017-10-01

    An early report on the molecular subtyping of muscle-invasive bladder cancer (MIBC) by gene expression suggested that response to neoadjuvant chemotherapy (NAC) varies by subtype. To investigate the ability of molecular subtypes to predict pathological downstaging and survival after NAC. Whole transcriptome profiling was performed on pre-NAC transurethral resection specimens from 343 patients with MIBC. Samples were classified according to four published molecular subtyping methods. We developed a single-sample genomic subtyping classifier (GSC) to predict consensus subtypes (claudin-low, basal, luminal-infiltrated and luminal) with highest clinical impact in the context of NAC. Overall survival (OS) according to subtype was analyzed and compared with OS in 476 non-NAC cases (published datasets). Gene expression analysis was used to assign subtypes. Receiver-operating characteristics were used to determine the accuracy of GSC. The effect of GSC on survival was estimated by Cox proportional hazard regression models. The models generated subtype calls in expected ratios with high concordance across subtyping methods. GSC was able to predict four consensus molecular subtypes with high accuracy (73%), and clinical significance of the predicted consensus subtypes could be validated in independent NAC and non-NAC datasets. Luminal tumors had the best OS with and without NAC. Claudin-low tumors were associated with poor OS irrespective of treatment regimen. Basal tumors showed the most improvement in OS with NAC compared with surgery alone. The main limitations of our study are its retrospective design and comparison across datasets. Molecular subtyping may have an impact on patient benefit to NAC. If validated in additional studies, our results suggest that patients with basal tumors should be prioritized for NAC. We discovered the first single-sample classifier to subtype MIBC, which may be suitable for integration into routine clinical practice. Different molecular

  9. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae).

    Science.gov (United States)

    Fischbein, D; Corley, J C

    2015-02-01

    Classical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoid Ibalia leucospoides. The species is a natural enemy of Sirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success by I. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to which S. noctilio population is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest-parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.

  10. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    Grimm, J.; Wunder, A.

    2005-01-01

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  11. Delimiting invasive Myriophyllum aquaticum in Kashmir Himalaya using a molecular phylogenetic approach.

    Science.gov (United States)

    Shah, M A; Ali, M A; Al-Hemaid, F M; Reshi, Z A

    2014-09-12

    Myriophyllum aquaticum (Vell.) Verdc. (family Haloragaceae) is one of the most invasive and destructive South American aquatic plant species and is present in a wide range of geographic regions, including the Kashmir Himalaya. Confusion regarding the taxonomic delimitation of M. aquaticum in the Himalayan region impedes effective and targeted management. Hence, our goal was improve the identification of M. aquaticum for exclusive delimitation from other related species in the study region using a molecular phylogenetic approach. A maximum parsimony tree recovered from phylogenetic analyses of the internal transcribed spacer sequences of nuclear ribosomal DNA was used to authenticate the identification of M. aquaticum. The results of this study can be used for targeted management of this tropical invader into the temperate Kashmir Himalaya.

  12. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  13. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2001-01-01

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  14. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    Science.gov (United States)

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  15. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  16. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  17. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The genetic and molecular basis of bacterial invasion of epithelial cells

    African Journals Online (AJOL)

    Invasion of epithelial cells was demonstrated to be triggered by invasion plasmid antigens B, C, and D ( IpaB, IpaC and IpaD ) which is accomplished by intracellular spread gene icsA. The invasion of epithelial cells by some individual species of bacteria were also reviewed.Yersinia enterocolitica invasiveness was shown ...

  19. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  20. Risk analysis and bioeconomics of invasive species to inform policy and management

    Science.gov (United States)

    David M. Lodge; Paul W. Simonin; Stanley W. Burgiel; Reuben P. Keller; Jonathan M. Bossenbroek; Christopher L. Jerde; Andrew M. Kramer; Edward S. Rutherford; Matthew A. Barnes; Marion E. Wittmann; W. Lindsay Chadderton; Jenny L. Apriesnig; Dmitry Beletsky; Roger M. Cooke; John M. Drake; Scott P. Egan; David C. Finnoff; Crysta A. Gantz; Erin K. Grey; Michael H. Hoff; Jennifer G. Howeth; Richard A. Jensen; Eric R. Larson; Nicholas E. Mandrak; Doran M. Mason; Felix A. Martinez; Tammy J. Newcomb; John D. Rothlisberger; Andrew J. Tucker; Travis W. Warziniack; Hongyan. Zhang

    2016-01-01

    Risk analysis of species invasions links biology and economics, is increasingly mandated by international and national policies, and enables improved management of invasive species. Biological invasions proceed through a series of transition probabilities (i.e., introduction, establishment, spread, and impact), and each of these presents opportunities for...

  1. Abstracts of the 28. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1999-01-01

    Biochemistry, genetic and molecular biology aspects of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  2. International Conference on Medical and Biological Engineering 2017

    CERN Document Server

    2017-01-01

    This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering.

  3. Tortricid moths (Lepidopotera: Tortricidae) reared from the invasive weed Parkinsonia aculeta (Fabaceae), with comments on their host specificity, biology, and geographic distribution

    Science.gov (United States)

    During efforts to identify native herbivores of Parkinsonia aculeata L. (Fabaceae: Caesalpiniodeae) as potential biological control agents against this invasive weed in Australia, seven species of Tortricidae were reared in Mexico, Guatemala, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Pla...

  4. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  5. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  7. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  8. Molecular biological features of male germ cell differentiation

    Science.gov (United States)

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  9. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2000-01-01

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay and nuclear magnetic resonance are the most applied techniques

  10. Population biology of establishment in New Zealand hedgehogs inferred from genetic and historical data: conflict or compromise?

    Science.gov (United States)

    Bolfíková, Barbora; Konečný, Adam; Pfäffle, Miriam; Skuballa, Jasmin; Hulva, Pavel

    2013-07-01

    The crucial steps in biological invasions, related to the shaping of genetic architecture and the current evolution of adaptations to a novel environment, usually occur in small populations during the phases of introduction and establishment. However, these processes are difficult to track in nature due to invasion lag, large geographic and temporal scales compared with human observation capabilities, the frequent depletion of genetic variance, admixture and other phenomena. In this study, we compared genetic and historical evidence related to the invasion of the West European hedgehog to New Zealand to infer details about the introduction and establishment. Historical information indicates that the species was initially established on the South Island. A molecular assay of populations from Great Britain and New Zealand using mitochondrial sequences and nuclear microsatellite loci was performed based on a set of analyses including approximate Bayesian computation, a powerful approach for disentangling complex population demographies. According to these analyses, the population of the North Island was most similar to that of the native area and showed greatest reduction in genetic variation caused by founder demography and/or drift. This evidence indicated the location of the establishment phase. The hypothesis was corroborated by data on climate and urbanization. We discuss the contrasting results obtained by the molecular and historical approaches in the light of their different explanatory power and the possible biases influencing the description of particular aspects of invasions, and we advocate the integration of the two types of approaches in invasion biology. © 2013 John Wiley & Sons Ltd.

  11. Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer

    International Nuclear Information System (INIS)

    Alexopoulou, Annika N; Ho-Yen, Colan M; Papalazarou, Vassilis; Elia, George; Jones, J Louise; Hodivala-Dilke, Kairbaan

    2014-01-01

    Breast cancer is a heterogeneous disease that can be classified into one of 4 main molecular sub-types: luminal A, luminal B, Her2 over-expressing and basal-like (BL). These tumour sub-types require different treatments and have different risks of disease progression. BL cancers can be considered a sub-group of Triple negative (TN) cancers since they lack estrogen (ER), progesterone (PR) and Her2 expression. No targeted treatment currently exists for TN/BL cancers. Thus it is important to identify potential therapeutic targets and describe their relationship with established prognostic factors. Focal adhesion kinase (FAK) is upregulated in several human cancers and also plays a functional role in tumour angiogenesis. However, the association between breast cancer sub-types and tumour endothelial-FAK expression is unknown. Using immunofluorescence, we quantified FAK expression in tumour endothelial and tumour cell compartments in 149 invasive breast carcinomas and correlated expression with clinical, pathological and molecular parameters. Low endothelial-FAK expression was independently associated with luminal A tumours at univariate (p < 0.001) and multivariate (p = 0.001) analysis. There was a positive correlation between FAK expression in the vascular and tumour cell compartments (Spearman’s correlation co-efficient = 0.394, p < 0.001). Additionally, endothelial and tumour cell FAK expression were significantly increased in TN tumours (p = 0.043 and p = 0.033 respectively), in tumours with negative ER and PR status, and in high grade tumours at univariate analysis. Our findings establish a relationship between endothelial-FAK expression levels and the molecular sub-type of invasive breast cancer, and suggest that endothelial-FAK expression is potentially more clinically relevant than tumour cell FAK expression in breast cancer

  12. Correlativity study on MRI morphologic features, pathology, and molecular biology of breast cancer

    International Nuclear Information System (INIS)

    Chen Rong; Gong Shuigen; Zhang Weiguo; Chen Jinhua; He Shuangwu; Liu Baohua; Li Zengpeng

    2004-01-01

    Objective: To investigate the correlation among MRI morphologic features, pathology, and molecular biology of breast cancer. Methods: MR scanning was performed in 78 patients with breast cancer before operation and MRI morphologic features of breast cancer were analyzed. The mastectomy specimens of the breast neoplasm were stained with immunohistochemistry, and the expression of estrogen receptor (ER), progesterone receptor (PR), C-erbB-2, p53, and the distribution of microvessel density (MVD) was measured. The pathologic results were compared with MRI features. Results: Among the 80 breast cancers, ER positive expression was positively correlated with the spiculate margin of breast cancer (P 0.05). Among the 41 breast cancers with dynamic MR scans, there was positive correlation between the spatial distribution of contrast agent and MVD (P<0.01). Conclusion: There exists some correlation among MRI morphologic features, pathology, and molecular biology factors in breast cancer to certain extent. The biologic behavior and prognosis of the breast cancer can be assessed according to MRI features

  13. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  14. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  15. Biological invasions, ecological resilience and adaptive governance

    Science.gov (United States)

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much...

  16. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis.

    Science.gov (United States)

    Armignacco, R; Cantini, G; Canu, L; Poli, G; Ercolino, T; Mannelli, M; Luconi, M

    2018-05-01

    Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.

  17. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  18. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    Schneider, T.

    1995-01-01

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  19. Placenta accreta: diagnosis, management and the molecular biology of the morbidly adherent placenta.

    Science.gov (United States)

    Goh, William A; Zalud, Ivica

    2016-01-01

    Placenta accreta is now the chief cause of postpartum hemorrhage resulting in maternal and neonatal morbidity. Prenatal diagnosis decreases blood loss at delivery and intra and post-partum complications. Ultrasound is critical for diagnosis and MRI is a complementary tool when the diagnosis is uncertain. Peripartum hysterectomy has been the standard of therapy but conservative management is increasingly being used. The etiology of accreta is due to a deficiency of maternal decidua resulting in placental invasion into the uterine myometrium. The molecular basis for the development of invasive placentation is yet to be elucidated but may involve abnormal paracrine/autocrine signaling between the deficient maternal decidua and the trophoblastic tissue. The interaction of hormones such as Relaxin which is abundant in maternal decidua and insulin-like 4, an insulin-like peptide found in placental trophoblastic tissue may play role in the formation of placenta accreta.

  20. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  1. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  2. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields

    International Nuclear Information System (INIS)

    Binhi, V.N.; Savin, A.V.

    2002-01-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display 'windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 μT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those 'windows'. It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ -1 of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 Aa

  4. Stochastic narrow escape in molecular and cellular biology analysis and applications

    CERN Document Server

    Holcman, David

    2015-01-01

    This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small sp...

  5. On the shoulders of giants: Molecular Biology in Public Health

    Directory of Open Access Journals (Sweden)

    Carmine Melino

    2005-03-01

    Full Text Available

    We accepted with great pleasure the invitation by professor Walter Ricciardi,our friend and colleague, to write an editorial in order to introduce this special issue dedicated to Molecular Biology in Hygiene. We are delighted for two connected reasons.

    First, Carmine,as a former professor of Hygiene,has passed his concepts of Hygiene on to his family and, despite significant difficulties, keeps working on the problems of preventive medicine in the work environment and in geriatrics. Second, Gerry, raised in an environment of hygienists, has dedicated all his professional efforts to Molecular Biology. As these two distinct experiences have constantly mixed within our family over time, we appreciate the promiscuous intermingling of these two disciplines in this thematic issue.

    The result is a useful common effort aiming at understanding the problems of diseases in the work environment and in the human environment in general.

    These problems have a profound social meaning, for which it is necessary to create an essential collaboration with scientific research.

    This is the only way to benefit human society.

  6. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  7. The potential role of podoplanin in tumour invasion

    Science.gov (United States)

    Wicki, A; Christofori, G

    2006-01-01

    Podoplanin is a small mucin-like transmembrane protein, widely expressed in various specialised cell types throughout the body. Here, we revisit the mechanism of podoplanin-mediated tumour invasion. We compare molecular pathways leading to single and collective cell invasion and discuss novel distinct concepts of tumour cell invasion. PMID:17179989

  8. In vivo molecular and genomic imaging: new challenges for imaging physics.

    Science.gov (United States)

    Cherry, Simon R

    2004-02-07

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field.

  9. In vivo molecular and genomic imaging: new challenges for imaging physics

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Simon R [Department of Biomedical Engineering, University of California, Davis, CA (United States)

    2004-02-07

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field. (topical review)

  10. In vivo molecular and genomic imaging: new challenges for imaging physics

    International Nuclear Information System (INIS)

    Cherry, Simon R

    2004-01-01

    The emerging and rapidly growing field of molecular and genomic imaging is providing new opportunities to directly visualize the biology of living organisms. By combining our growing knowledge regarding the role of specific genes and proteins in human health and disease, with novel ways to target these entities in a manner that produces an externally detectable signal, it is becoming increasingly possible to visualize and quantify specific biological processes in a non-invasive manner. All the major imaging modalities are contributing to this new field, each with its unique mechanisms for generating contrast and trade-offs in spatial resolution, temporal resolution and sensitivity with respect to the biological process of interest. Much of the development in molecular imaging is currently being carried out in animal models of disease, but as the field matures and with the development of more individualized medicine and the molecular targeting of new therapeutics, clinical translation is inevitable and will likely forever change our approach to diagnostic imaging. This review provides an introduction to the field of molecular imaging for readers who are not experts in the biological sciences and discusses the opportunities to apply a broad range of imaging technologies to better understand the biology of human health and disease. It also provides a brief review of the imaging technology (particularly for x-ray, nuclear and optical imaging) that is being developed to support this new field. (topical review)

  11. An investigation on non-invasive fungal sinusitis; Molecular identification of etiologic agents

    Directory of Open Access Journals (Sweden)

    Abdolrasoul Mohammadi

    2017-01-01

    Full Text Available Background: Fungal sinusitis is increasing worldwide in the past two decades. It is divided into two types including invasive and noninvasive. Noninvasive types contain allergic fungal sinusitis (AFS and fungus ball. AFS is a hypersensitivity reaction to fungal allergens in the mucosa of the sinonasal tract in atopic individuals. The fungus ball is a different type of noninvasive fungal rhinosinusitis which is delineated as an accumulation of debris and fungal elements inside a paranasal sinus. Fungal sinusitis caused by various fungi such as Aspergillus species, Penicillium, Mucor, Rhizopus, and phaeohyphomycetes. The aim of the present study is to identify fungal species isolated from noninvasive fungal sinusitis by molecular methods. Materials and Methods: During 2015–2016, a total of 100 suspected patients were examined for fungal sinusitis. Functional endoscopic sinus surgery was performed using the Messerklinger technique. Clinical samples were identified by phenotypic and molecular methods. Polymerase chain reaction (PCR sequencing of ITS1-5.8S-ITS2 region and PCR-restriction fragment length polymorphism with Msp I restriction enzyme was performed for molecular identification of molds and yeasts, respectively. Results: Twenty-seven out of 100 suspected cases (27% had fungal sinusitis. Nasal congestion (59% and headache (19% were the most common clinical signs among patients. Fifteen patients (55.5% were male and 12 patients (44.5% were female. Aspergillus flavus was the most prevalent fungal species (26%, followed by Penicillium chrysogenum (18.5% and Candida glabrata species complex (15%. Conclusion: Since clinical manifestations, computed tomography scan, endoscopy, and histopathological findings are very nonspecific in AFS and fungus ball; therefore, molecular investigations are compulsory for precise identification of etiologic agents and appropriate management of these fungal infections.

  12. Molecular biological factors in the diagnosis of cervical intraepithelial neoplasias

    Directory of Open Access Journals (Sweden)

    Yu. N. Ponomareva

    2010-01-01

    Full Text Available The authors have made a complex analysis of the molecular biological factors associated with cervical intraepithelial neoplasia. They have revealed that infection by oncogenic human papillomavirus types is associated with suppressed apoptosis and enhanced cellular proliferative activity, which can be effectively used in the diagnosis and prediction of cervical neoplasias to optimize management tac- tics and to improve the results of treatment.

  13. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  14. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  15. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  16. The isolated Leptospira Spp. Identification by molecular biological techniques

    Directory of Open Access Journals (Sweden)

    Duangjai Suwancharoen

    2017-01-01

    Full Text Available Leptospirosis is a zoonotic disease caused by the bacteria of Leptospira spp. Identification of this bacterium relies on serotyping and genotyping. Data base for animal causative serovars in Thailand is limited. As the unknown serovars are found in the laboratory, they need to be sent overseas for referent identification. To reduce the cost, this research intended to develop a leptospiral identification method which is user–friendly and able to classify efficiently. Ten Leptospira isolations were cultured from urine samples. They were identified by three molecular biological techniques, including Pulsed-Field Gel Electrophoresis (PFGE, Variable Number Tandem Repeat (VNTR and Multilocus Sequence Typing (MLST. These methods were developed and compared to find the most suitable one for leptospiral identification. VNTR was found to be inappropriate since it could not identify the agents and it did not show the PCR product. PFGE and MLST gave the same results of the unknown 1 and 2 which were L.weilii sv Samin st Samin. Unknown 4 showed different results by each technique. Unknown 5 to 10 were likely to be L.meyeri sv Ranarum st ICF and Leptonema illini sv Illini st 3055 by PFGE but MLST could not identify the serovar. However, molecular biological technique for Leptospira identification should be done by several methods in order to confirm the result of each other.

  17. Simulations on the Teaching of Molecular Biology: Experience’s Report

    Directory of Open Access Journals (Sweden)

    A.L.S. Silva

    2013-05-01

    Full Text Available INTRODUCTION: The comprehension of techniques used in Molecular Biology neither always is easy.Therefore, the objective of this work was to apply simulations in Molecular Biology for graduating students of a Pharmacy course froma private educational institution, to allow them to practice the apparent difficult protocols. MATERIALS AND METHODS: Three groups of students (50 each were evaluated. Two of them were submitted to different simulatory activities,such as: a visiting the virtual laboratory of Utah University (USA to understand gel electrophoresis and polymerasechain reaction (PCR techniques, b extracting DNA from oral mucosa by means of a homemade protocol, c investigating simulatory paternity tests, d proposing their own microarrays by painting them on paper and then interpreted the results according to the colors, e designing primers (small fragments of DNA to PCR with the free software Primer3 and testing them in silico PCR. The third group of students was only submitted to oral theoretical classes about all these themes. The progress of the understanding was qualitatively evaluated and compared by the analysis of questionnaires. RESULTS AND DISCUSSION: The groups submitted to the virtual classes were responsive during the development of activities and had a better performance in the examinations than the group that had only theoretical classes, showing better comprehension about the themes. Their greatest difficult was the limitation in the English language to interact with the websites (they often asked about an alternative site in Portuguese. CONCLUSION: The didactical sequence involving exercises in websites by using freeware and recreational activities in classroom with graduating students of Pharmacy proved to be an effective tool in the learning of some of the techniques in Molecular Biology, mainly when a lab and some equipment are not available to perform practical activities

  18. MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2005-03-01

    Full Text Available Abstract Background MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. Results We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. Conclusion MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

  19. E-commerce trade in invasive plants.

    Science.gov (United States)

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. © 2015 Society for

  20. The Global Garlic Mustard Field Survey (GGMFS: challenges and opportunities of a unique, large-scale collaboration for invasion biology

    Directory of Open Access Journals (Sweden)

    Robert Colautti

    2014-04-01

    Full Text Available To understand what makes some species successful invaders, it is critical to quantify performance differences between native and introduced regions, and among populations occupying a broad range of environmental conditions within each region. However, these data are not available even for the world’s most notorious invasive species. Here we introduce the Global Garlic Mustard Field Survey, a coordinated distributed field survey to collect performance data and germplasm from a single invasive species: garlic mustard (Alliaria petiolata across its entire distribution using minimal resources. We chose this species for its ecological impacts, prominence in ecological studies of invasion success, simple life history, and several genetic and life history attributes that make it amenable to experimental study. We developed a standardised field survey protocol to estimate population size (area and density, age structure, plant size and fecundity, as well as damage by herbivores and pathogens in each population, and to collect representative seed samples. Across four years and with contributions from 164 academic and non-academic participants from 16 countries in North America and Europe thus far, we have collected 45,788 measurements and counts of 137,811 plants from 383 populations and seeds from over 5,000 plants. All field data and seed resources will be curated for release to the scientific community. Our goal is to establish A. petiolata as a model species for plant invasion biology and to encourage large collaborative studies of other invasive species.

  1. A guide on instrument of biochemistry and molecular biology

    International Nuclear Information System (INIS)

    1995-10-01

    This book is about instrument on biochemistry and molecular biology, which consists of six chapters. It deals with introduction of advanced bio-instrument, common utilization and maintain, explanation of each instrument like capillary electrophoresis, interactive laser cytometer, personal computer and software, an electron microscope and DNA/RNS synthesis instrument, large equipment and special system like information system and network, analysis system for genome and large spectro graph, outside donation, examples for common utilization and appendix on data like application form for use.

  2. Quantifying the invasiveness of species

    Czech Academy of Sciences Publication Activity Database

    Colautti, R. I.; Parker, J. D.; Cadotte, M. W.; Pyšek, Petr; Brown, C. S.; Sax, D. F.; Richardson, D. M.

    2014-01-01

    Roč. 21, č. 1 (2014), s. 7-27 ISSN 1619-0033 R&D Projects: GA ČR(CZ) GAP505/11/1112; GA ČR(CZ) GAP504/11/1028 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * biogeographical comparison * invasiveness Subject RIV: EH - Ecology, Behaviour

  3. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  4. Nanobody: the "magic bullet" for molecular imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.

  5. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  6. Molecular imaging of small animals with dedicated PET tomographs

    International Nuclear Information System (INIS)

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  7. Using whole mount in situ hybridization to link molecular and organismal biology.

    Science.gov (United States)

    Jacobs, Nicole L; Albertson, R Craig; Wiles, Jason R

    2011-03-31

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the embryology and gross anatomy of several organisms representing various chordate taxa primarily via traditional dissections and the use of models. The final portion of the course involved an innovative approach to teaching anatomy through observation of vertebrate development employing molecular techniques in which WISH was performed on zebrafish embryos. A heterozygous fibroblast growth factor 8 a (fgf8a) mutant line, ace, was used. Due to Mendelian inheritance, ace intercrosses produced wild type, heterozygous, and homozygous ace/fgf8a mutants in a 1:2:1 ratio. RNA probes with known expression patterns in the midline and in developing anatomical structures such as the heart, somites, tailbud, myotome, and brain were used. WISH was performed using zebrafish at the 13 somite and prim-6 stages, with students performing the staining reaction in class. The study of zebrafish embryos at different stages of development gave students the ability to observe how these anatomical structures changed over ontogeny. In addition, some ace/fgf8a mutants displayed improper heart looping, and defects in somite and brain development. The students in this lab observed the normal development of various organ systems using both external anatomy as well as gene expression patterns. They also identified and described embryos displaying improper anatomical development and gene expression (i.e., putative mutants). For instructors at institutions that do not already own the necessary equipment or where

  8. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  9. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  10. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies.

    Science.gov (United States)

    Groseth, Allison; Hoenen, Thomas

    2017-01-01

    Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.

  11. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  12. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  13. Centre for Cellular and Molecular Biology to breed vultures for Parsis

    African Journals Online (AJOL)

    Hyderabad – Parsis worried about the growing pile of bodies in their 'Towers of Silence' can take heart. The Centre for Cellular and Molecular Biology. (CCMB) has decided to take up, on an express basis, the job of breeding vultures, which can later be transported to various parts of the country. Though the problem of ...

  14. Molecular and immunohistochemical profiling of invasive micropapillary carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Thomas A

    2014-10-01

    Full Text Available Alexandra Thomas,1 Ryan W Askeland,2 Natalya V Guseva,2 Ramakrishna Sompallae,2,3 Deqin Ma2 1Department of Internal Medicine, 2Department of Pathology, 3Bioinformatics Division, Iowa Institute of Human Genetics, University of Iowa Hospitals and Clinics, Iowa City, IA, USABackground: In this study, molecular and immunohistochemical profiling of invasive micropapillary carcinoma of the breast was used to identify potentially useful markers for targeted therapies with a focus on BRAF V600E mutation.Methods: Formalin-fixed, paraffin-embedded tumor blocks from seven patients were identified from the archives at our institution and tumor registry from 1997 to 2012. Massively parallel (Next-generation sequencing was performed using the Ion AmpliSeq™ Cancer Hotspot Panel version 2 (Life Technologies, Carlsbad, CA, USA. Mutation analysis for BRAF V600E was performed using a single nucleotide primer extension assay. Immunohistochemistry studies for estrogen receptor (ER, progesterone receptor (PR, Her2/Neu, phosphatase and tensin homolog (PTEN, and non-metastatic protein 23 homologue 1 (NM23H1 were performed using the same tumor blocks. Staining for ER, PR, and Her2/Neu was scored according to American Society of Clinical Oncology/College of American Pathologists guidelines, and a four-tier system, ie, strong homogenous, heterogeneous, positive with negative foci, reduced in more than 50%, and lost in all or majority was used for PTEN and NM23H1 staining.Results: No pathogenic mutations were identified in the tumors by next-generation sequencing. The lack of BRAF V600E mutation was confirmed by single nucleotide primer extension assay. All tumors were positive for ER and PR, and showed no overexpression of Her2/Neu. Loss of or reduced PTEN expression was observed in six of seven cases and was associated with lymph node metastasis. Reduced NM23H1 expression was observed in three of seven cases, all of which had concurrent PTEN loss.Conclusion: No somatic

  15. Biological Control of the Invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae - an Overview and the First Trials in Croatia

    Directory of Open Access Journals (Sweden)

    Dinka Matošević

    2014-06-01

    Full Text Available Background and Purpose: Dryocosmus kuriphilus is a globally invasive insect pest, spreading very quickly in new habitats and making serious damage to sweet chestnut forests in Croatia and in several other European countries. Indigenous parasitoid species trophically associated with oak gallwasps have adapted to this new host but cannot effectively regulate its population density. Classical biological control using parasitoid Torymus sinensis has been proven to be the only effective method of controlling the populations of D. kuriphilus and has been successfully applied in Japan, South Korea, the USA and Italy. The aim of this review paper is to provide overview and up-to date knowledge about biological control of D. kurphilus and to describe first steps of introduction of T. sinensis to sweet chestnut forests in Croatia. Conclusions and Future Prospects: Results presented in this paper show adapted biology and behavioural traits of T. sinensis to its host D. kuriphilus. The history and results of introductions of T. sinensis to Japan, the USA, Italy, France and Hungary are shown. The first report of release of T. sinensis to sweet chestnut forests in Croatia is given with discussion on native parasitoids attacking D. kuriphilus. Possible negative effects of T. sinensis on native parasitoid fauna and risks that could influence the successful establishment of T. sinensis in Croatia are discussed. Previous experiences have shown that T. sinensis can successfully control the population density of D. kuriphilus, slowing down the spread and mitigating negative impact of this invasive chestnut pest and keeping the damage of D. kuriphilus at acceptable level. High specificity of T. sinensis suggests that it has limited potential of exploiting native hosts but further detailed monitoring of native parasitoid and possible interactions with introduced T. sinensis is strongly suggested.

  16. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  17. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Directory of Open Access Journals (Sweden)

    Mohieddin Jafari

    Full Text Available It is nearly half a century past the age of the introduction of the Central Dogma (CD of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  18. Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses.

    Science.gov (United States)

    Crosley, E J; Elliot, M G; Christians, J K; Crespi, B J

    2013-02-01

    Recent evidence from chimpanzees and gorillas has raised doubts that preeclampsia is a uniquely human disease. The deep extravillous trophoblast (EVT) invasion and spiral artery remodeling that characterizes our placenta (and is abnormal in preeclampsia) is shared within great apes, setting Homininae apart from Hylobatidae and Old World Monkeys, which show much shallower trophoblast invasion and limited spiral artery remodeling. We hypothesize that the evolution of a more invasive placenta in the lineage ancestral to the great apes involved positive selection on genes crucial to EVT invasion and spiral artery remodeling. Furthermore, identification of placentally-expressed genes under selection in this lineage may identify novel genes involved in placental development. We tested for positive selection in approximately 18,000 genes using the ratio of non-synonymous to synonymous amino acid substitution for protein-coding DNA. DAVID Bioinformatics Resources identified biological processes enriched in positively selected genes, including processes related to EVT invasion and spiral artery remodeling. Analyses revealed 295 and 264 genes under significant positive selection on the branches ancestral to Hominidae (Human, Chimp, Gorilla, Orangutan) and Homininae (Human, Chimp, Gorilla), respectively. Gene ontology analysis of these gene sets demonstrated significant enrichments for several functional gene clusters relevant to preeclampsia risk, and sets of placentally-expressed genes that have been linked with preeclampsia and/or trophoblast invasion in other studies. Our study represents a novel approach to the identification of candidate genes and amino acid residues involved in placental pathologies by implicating them in the evolution of highly-invasive placenta. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Book review: Biology and management of invasive quagga and zebra mussels in the western United States

    Science.gov (United States)

    Benson, Amy J.

    2017-01-01

    Water is a precious and limited commodity in the western United States and its conveyance is extremely important. Therefore, it is critical to do as much as possible to prevent the spread of two species of dreissenid mussels, both non-native and highly invasive aquatic species already well-established in the eastern half of the United States. This book addresses the occurrences of the two dreissenid mussels in the West, the quagga mussel and the zebra mussel, that are both known to negatively impact water delivery systems and natural ecosystems. It is edited by two researchers whom have extensive experience working with the mussels in the West and is composed of 34 chapters, or articles, written by a variety of experts.Book information: Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States. Edited by Wai Hing Wong and Shawn L. Gerstenberger. Boca Raton (Florida): CRC Press (Taylor & Francis Group). $149.95. xx + 545 p.; ill.; index. ISBN: 978-1-4665-9561-3. [Compact Disc included.] 2015.

  20. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Science.gov (United States)

    Deschênes, Georges; Fila, Marc

    2011-01-01

    Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653

  1. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Directory of Open Access Journals (Sweden)

    Georges Deschênes

    2011-01-01

    Full Text Available Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.

  2. Biological traits explain the distribution and colonisation ability of the invasive shore crab Hemigrapsus takanoi

    Science.gov (United States)

    Gothland, M.; Dauvin, J. C.; Denis, L.; Dufossé, F.; Jobert, S.; Ovaert, J.; Pezy, J. P.; Tous Rius, A.; Spilmont, N.

    2014-04-01

    Comprehending marine invasions requires a better knowledge of the biological traits of invasive species, and the future spread of invasive species may be predicted through comprehensive overviews of their distribution. This study thus presents the current distribution of a non-indigenous species, the Asian shore crab Hemigrapsus takanoi, as well as the species population characteristics (size distribution and cohorts), based on a five-year survey (2008-2012) along the French coast of the English Channel. Two large populations were found near harbours: one on the Opal Coast (where density reached 61 ± 22 ind.m-2, mean ± s.d., in Dunkirk harbour) and one on the Calvados coast (density up to 26 ± 6 ind.m-2, mean ± s.d, in Honfleur harbour). H. takanoi exhibited a short life cycle, a rapid growth, an early sexual maturity and a high adult mortality. These features, combined with previously described high fecundity and high dispersal ability, endow this species with an 'r-selected strategy'. This strategy, which usually characterises species with a high colonisation ability, would explain the success of H. takanoi for colonising the French coast of the Channel. However, the species was found only in harbours and their vicinity; H. takanoi thus exhibited a discontinuous distribution along the 700 km of coastline. These results are discussed regarding sediment preference and potential introduction vectors. Hemigrapsus takanoi is now considered as established on the French coast and further studies are needed to evaluate the consequences of its introduction on the structure and functioning of the impacted shores.

  3. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    Science.gov (United States)

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  4. Farmer to Pharmacist: Curcumin as an Anti-invasive and Antimetastatic Agent for the Treatment of Cancer

    Science.gov (United States)

    Bandyopadhyay, Debasish

    2014-12-01

    A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems) of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric) is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials.

  5. Farmer to Pharmacist: Curcumin as an Anti-invasive and Antimetastatic Agent for the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Debasish eBandyopadhyay

    2014-12-01

    Full Text Available A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials.

  6. Molecular Biology and Infection of Hepatitis E Virus

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2016-09-01

    Full Text Available Hepatitis E virus (HEV is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotype 3 and 4 are zoonotic, whereas those from genotype 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.

  7. Molecular insights into the biology of Greater Sage-Grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Quinn, Thomas W.

    2011-01-01

    Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.

  8. Invasive Species Biology, Control, and Research. Part 1: Kudzu (Pueraria montana)

    National Research Council Canada - National Science Library

    Guertin, Patrick J; Denight, Michael L; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as uncontrolled vegetation, six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  9. Progress in nucleic acid research and molecular biology

    International Nuclear Information System (INIS)

    Cohn, W.E.; Moldave, K.

    1988-01-01

    Complementary Use of Chemical Modification and Site-Directed Mutagenesis to Probe Structure-Activity Relationships in Enzymes. Mechanisms of the Antiviral Action of Inteferons. Modulation of Cellular Genes by Oncogenes. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Human Ferritin Gene Expression. Molecular Biology of the Insulin Receptor. Cap-Binding Proteins of Eukaryotic Messenger RNA: Functions in Initiation and Control of Translation. Physical Monitoring of Meiotic and Mitotic Recombination in Yeast. Early Signals Underlying the Induction of the c-fos and c-myc Genes in Quiescent Fibroblasts: Studies with Bombesin and Other Growth Factors. Each chapter includes references

  10. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    Science.gov (United States)

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  11. The hallmarks of premalignant conditions: a molecular basis for cancer prevention.

    Science.gov (United States)

    Ryan, Bríd M; Faupel-Badger, Jessica M

    2016-02-01

    The hallmarks of premalignant lesions were first described in the 1970s, a time when relatively little was known about the molecular underpinnings of cancer. Yet it was clear there must be opportunities to intervene early in carcinogenesis. A vast array of molecular information has since been uncovered, with much of this stemming from studies of existing cancer or cancer models. Here, examples of how an understanding of cancer biology has informed cancer prevention studies are highlighted and emerging areas that may have implications for the field of cancer prevention research are described. A note of caution accompanies these examples, in that while there are similarities, there are also fundamental differences between the biology of premalignant lesions or premalignant conditions and invasive cancer. These differences must be kept in mind, and indeed leveraged, when exploring potential cancer prevention measures. Published by Elsevier Inc.

  12. Historical freshwater fish ecology: a long-term view of distribution changes and biological invasions

    Directory of Open Access Journals (Sweden)

    Miguel Clavero

    2015-12-01

    Full Text Available Past processes and events may have an important influence on contemporaneous ecological patterns, including current human impacts on landscapes and organisms. In spite of that, most of the ecological knowledge has been built upon short-term studies, which very rarely exceed one decade. Ecology and Conservation Biology have an important lack of historical approaches, a deficiency that may become a hindrance for the management of natural systems. In this talk I will present examples of how historical information on the distribution of freshwater fish and other aquatic organisms can be used to address ecological questions. Most analyses are based on two important Spanish historical written sources: the Relaciones de Felipe II (16th century and the Madoz Dictionary (19th century. The examples considered include the European eel (Anguilla anguilla, the brown trout (Salmo trutta, the common carp (Cyprinus carpio and the white clawed crayfish (Austropotamobius italicus, among other species, as well as questions related to biological invasions, habitat loss and the impacts of global warming. The outputs of ecological research based on historical data often become useful tools for present-day biodiversity conservation planning and actions.

  13. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    Science.gov (United States)

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  14. Dictionary of microbiology and molecular biology. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, P.; Sainsbury, D.

    1988-01-01

    A newly revised edition of the standard reference for microbiology and molecular biology. Includes a multitude of new terms and designations which, although widely used in the literature, are seldom defined outside the book or paper in which they first appeared. Also accounts for the changes in the meanings of older terms brought about by advances in knowledge. Definition of all terms reflects their actual usage in current journals and texts, and also given (where appropriate) are former meanings, alternative meanings, and synonyms. Includes terms from such fields as mycology, protozoology, virology, etc.

  15. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

    OpenAIRE

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecul...

  16. Nanobody: The “Magic Bullet” for Molecular Imaging?

    Science.gov (United States)

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  17. ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion.

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    Full Text Available Aldehyde dehydrogenases (ALDH is a family of enzymes including 19 members. For now, ALDH activity had been wildly used as a marker of cancer stem cells (CSCs. But biological functions of relevant isoforms and their clinical applications are still controversial. Here, we investigate the clinical significance and potential function of ALDH1A3 in gliomas. By whole-genome transcriptome microarray and mRNA sequencing analysis, we compared the expression of ALDH1A3 in high- and low- grade gliomas as well as different molecular subtypes. Microarray analysis was performed to identify the correlated genes of ALDH1A3. We further used Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways analysis to explore the biological function of ALDH1A3. Finally, by mRNA knockdown we revealed the relationship between ALDH1A3 and the ability of tumor invasion. ALDH1A3 overexpression was significantly associated with high grade as well as the higher mortality of gliomas in survival analysis. ALDH1A3 was characteristically highly expressed in Mesenchymal (Mes subtype gliomas. Moreover, we found that ALDH1A3 was most relevant to extracellular matrix organization and cell adhesion biological process, and the ability of tumor invasion was suppressed after ALDH1A3 knockdown in vitro. In conclusion, ALDH1A3 can serve as a novel marker of Mes phenotype in gliomas with potential clinical prognostic value. The expression of ALDH1A3 is associated with tumor cell invasion.

  18. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  19. Molecular evidence for the predation of Critically Endangered endemic Aphanius transgrediens from the stomach contents of world wide invasive Gambusia affinis.

    Science.gov (United States)

    Keskin, Emre

    2016-01-01

    Predation and competition among native and invasive species are difficult to study in aquatic environments. Identification of preys from semi-digested body parts sampled from stomach contents of the predator is very challenging. Recent studies were mainly based on use of DNA extracted from stomach content to identify the prey species. This study presents the molecular evidence that reveals the predation of critically endangered Aphanius transgrediens by world-wide invasive Gambusia affinis for a better understanding of the link between the invasion and the extinction of native species in freshwater ecosystems. DNA samples were extracted from semi-digested stomach contents of the invader and short fragments of mitochondrial NADH1 gene were amplified using species-specific primers designed in this study to make identification at species level. Existence of both the prey and the predator species were also confirmed using environmental DNA extracted from water samples.

  20. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    Science.gov (United States)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  1. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion

    Directory of Open Access Journals (Sweden)

    Alison Roos

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent primary brain tumor in adults with a 5-year survival rate of 5% despite intensive research efforts. The poor prognosis is due, in part, to aggressive invasion into the surrounding brain parenchyma. Invasion is a complex process mediated by cell-intrinsic pathways, extrinsic microenvironmental cues, and biophysical cues from the peritumoral stromal matrix. Recent data have attributed GBM invasion to the glioma stem-like cell (GSC subpopulation. GSCs are slowly dividing, highly invasive, therapy resistant, and are considered to give rise to tumor recurrence. GSCs are localized in a heterogeneous cellular niche, and cross talk between stromal cells and GSCs cultivates a fertile environment that promotes GSC invasion. Pro-migratory soluble factors from endothelial cells, astrocytes, macrophages, microglia, and non-stem-like tumor cells can stimulate peritumoral invasion of GSCs. Therefore, therapeutic efforts designed to target the invasive GSCs may enhance patient survival. In this review, we summarize the current understanding of extrinsic pathways and major stromal and immune players facilitating GSC maintenance and survival.

  2. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  3. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 26. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  4. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 27. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  5. Molecular pathology and prostate cancer therapeutics: from biology to bedside.

    Science.gov (United States)

    Rodrigues, Daniel Nava; Butler, Lisa M; Estelles, David Lorente; de Bono, Johann S

    2014-01-01

    Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men and has an extremely heterogeneous clinical behaviour. The vast majority of PCas are hormonally driven diseases in which androgen signalling plays a central role. The realization that castration-resistant prostate cancer (CRPC) continues to rely on androgen signalling prompted the development of new, effective androgen blocking agents. As the understanding of the molecular biology of PCas evolves, it is hoped that stratification of prostate tumours into distinct molecular entities, each with its own set of vulnerabilities, will be a feasible goal. Around half of PCas harbour rearrangements involving a member of the ETS transcription factor family. Tumours without this rearrangement include SPOP mutant as well as SPINK1-over-expressing subtypes. As the number of targeted therapy agents increases, it is crucial to determine which patients will benefit from these interventions and molecular pathology will be key in this respect. In addition to directly targeting cells, therapies that modify the tumour microenvironment have also been successful in prolonging the lives of PCa patients. Understanding the molecular aspects of PCa therapeutics will allow pathologists to provide core recommendations for patient management. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  7. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  8. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  9. PET for molecular imaging of cancer: a tool for tailored therapy

    International Nuclear Information System (INIS)

    Kjaer, Andreas

    2014-01-01

    The concept of personalised medicine has led to a need for improved phenotyping as well as prediction of treatment response early after therapy initiation. Most of the molecular biology methods used today need tissue sampling for in vitro analysis. In contrast, molecular imaging allows for non-invasive studies at the molecular level in living, intact organisms. Accordingly, molecular imaging with PET has been one of the most successful techniques in such phenotyping and response prediction using FDG. In addition, recent development of new PET tracers has further improved the value of PET in tumor characterization. Such new PET tracers allow for visualization of tumor specific receptors and tissue characteristics such as ability to metastasize. Furthermore, PET has a high sensitivity and allows for quantification and is not prone to sampling error as seen with biopsies. We will present examples of development of probes targeting the somatostatin receptor type 2, over-expressed in neuroendocrine tumors, including our first-in-man studies of 64 Cu-DOTATATE. Also development in probes for visualization of the invasive phenotype will be presented. Finally, with the most recent development of true integrated PET/MRI scanners has now become possible to add information from MRI. The value of such hybrid imaging will also be briefly discussed. (author)

  10. PET for molecular imaging of cancer: a tool for tailored therapy

    International Nuclear Information System (INIS)

    Kjaer, Andreas

    2013-01-01

    The concept of personalised medicine has led to a need for improved phenotyping as well as prediction of treatment response early after therapy initiation. Most of the molecular biology methods used today need tissue sampling for in vitro analysis. In contrast, molecular imaging allows for non-invasive studies at the molecular level in living, intact organisms. Accordingly, molecular imaging with PET has been one of the most successful techniques in such phenotyping and response prediction using FDG. In addition, recent development of new PET tracers has further improved the value of PET in tumor characterization. Such new PET tracers allow for visualization of tumor specific receptors and tissue characteristics such as ability to metastasize. Furthermore, PET has a high sensitivity and allows for quantification and is not prone to sampling error as seen with biopsies. We will present examples of development of probes targeting the somatostatin receptor type 2, over-expressed in neuroendocrine tumors, including our first-in-man studies of 64Cu-DOTATATE. Also development in probes for visualization of the invasive phenotype will be presented. Finally, with the most recent development of true integrated PET/MRI scanners it has now become possible to add information from MRI. The value of such hybrid imaging will also be briefly discussed. (author)

  11. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  12. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events.

    Science.gov (United States)

    Gaskin, John F; Schwarzländer, Mark; Gibson, Robert D; Simpson, Heather; Marshall, Diane L; Gerber, Esther; Hinz, Hariet

    2018-04-01

    Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift and founding events. Some invasions are also molded by specific human activities such as selection for cultivars and intentional introduction of desired phenotypes, which can lead to low genetic diversity in the resulting invasion. We investigated the population structure, diversity and origins of a species with both accidental and intentional introduction histories, as well as long-term selection as a cultivar. Dyer's woad ( Isatis tinctoria ; Brassicaceae) has been used as a dye source for at least eight centuries in Eurasia, was introduced to eastern USA in the 1600s, and is now considered invasive in the western USA. Our analyses of amplified fragment length polymorphisms (AFLPs) from 645 plants from the USA and Eurasia did not find significantly lower gene diversity ( H j ) in the invaded compared to the native range. This suggests that even though the species was under cultivation for many centuries, human selection of plants may not have had a strong influence on diversity in the invasion. We did find significantly lower genetic differentiation ( F st ) in the invasive range but our results still suggested that there are two distinct invasions in the western USA. Our data suggest that these invasions most likely originated from Switzerland, Ukraine and Germany, which correlates with initial biological control agent survey findings. Genetic information on population structure, diversity and origins assists in efforts to control invasive species, and continued combination of ecological and molecular analyses will help bring us closer to sustainable management of plant invasions.

  13. Pancreatic cancer stromal biology and therapy

    Science.gov (United States)

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  14. Cancer invasion and the microenvironment: plasticity and reciprocity.

    NARCIS (Netherlands)

    Friedl, P.H.A.; Alexander, S.

    2011-01-01

    Cancer invasion is a cell- and tissue-driven process for which the physical, cellular, and molecular determinants adapt and react throughout the progression of the disease. Cancer invasion is initiated and maintained by signaling pathways that control cytoskeletal dynamics in tumor cells and the

  15. Retracted: Molecular Characterization and Biological Activity of Interferon-α in Indian Peafowl (Pavo cristatus).

    Science.gov (United States)

    Zhao, Hongjing; Wang, Yu; Liu, Juanjuan; Shao, Yizhi; Li, Jinglun; Chai, Hongliang; Xing, Mingwei

    2017-08-07

    DNA and Cell Biology (DNA&CB) is officially retracting the paper by Zhao H, Wang Y, Liu J, Shao Y, Li J, Chai H, Xing M, entitled, "Molecular Characterization and Biological activity of Interferon-α in Indian Peafowl (Pavo cristatus)," [Epub ahead of print]; 2017, DOI: 10.1089/dna.2017.3798. The Editor-in-Chief of DNA&CB, Dr. Carol Shoshkes Reiss, was alerted to a discrepancy between the findings in the article by Zhao et al., and those of others, about the absence of expression of ISG15 in chickens. Dr. Reiss requested from the authors a clarification in their observations and inquired about the failure to include relevant citations in the reference section of the paper. Based on the response from the authors, it appeared that they did not have the confidence in the data as they were not able to repeat the experiments, and were also unsure of the molecular probes that were used in the study. Therefore, the Editor has determined that the paper should be officially retracted from DNA and Cell Biology.

  16. Review on Invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat.

    Science.gov (United States)

    Sladonja, Barbara; Sušek, Marta; Guillermic, Julia

    2015-10-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. One of the most widespread invasive alien plant species in Europe and North America, Tree of Heaven (Ailanthus altissima (Mill.) Swingle) was introduced intentionally for use as an ornamental plant in the 18th century. Since then, it has spread and is now frequently found in a number of countries. Today, Tree of Heaven is considered one of the worst invasive plant species in Europe and is also listed as invasive in North America and many other countries. Millennium Ecosystem Assessment is one of many systems trying to list and categorize biological services to humans and to provide a tool for identifying services delivered by natural ecosystems. Invasive species have generally caused degradation of the services, have a major impact on the environment, and are threatening biodiversity and reducing overall species abundance and diversity. On the other hand, some invasive species can provide services useful to human well-being. In the present review A. altissima impacts on ecosystems are identified and positive influences on some ecosystem services are weighed against the negative effects on the environment and human health. The aim of the present review is to resume the general knowledge of A. altissima, group available references on distribution and ecology according to countries, compare ecosystem services provided or enhanced by A. altissima presence and the negative effects it causes, identify gaps in current knowledge, and give recommendations for future lines of research.

  17. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Investigating Viruses during the Transformation of Molecular Biology.

    Science.gov (United States)

    Moss, Bernard

    2017-03-10

    This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The molecular genetics of the telomere biology disorders.

    Science.gov (United States)

    Bertuch, Alison A

    2016-08-02

    The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.

  20. Diagnosis and management of differentiated thyroid cancer using molecular biology.

    Science.gov (United States)

    Witt, Robert L; Ferris, Robert L; Pribitkin, Edmund A; Sherman, Steven I; Steward, David L; Nikiforov, Yuri E

    2013-04-01

    To define molecular biology in clinical practice for diagnosis, surgical management, and prognostication of differentiated thyroid cancer. Ovid Medline 2006-2012 Manuscripts with clinical correlates. Papillary thyroid carcinomas harbor point mutations of the BRAF and RAS genes or RET/PTC rearrangements, all of which activate the mitogen-activated protein kinase pathway. These mutually exclusive mutations are found in 70% of PTC. BRAF mutation is found in 45% of papillary thyroid cancer and is highly specific. Follicular carcinomas are known to harbor RAS mutation or PAX8/PPARγ rearrangement. These mutations are also mutually exclusive and identified in 70% of follicular carcinomas. Molecular classifiers measure the expression of a large number of genes on a microarray chip providing a substantial negative predictive value pending further validation. 1) 20% to 30% of cytologically classified Follicular Neoplasms and Follicular Lesion of Undetermined Significance collectively are malignant on final pathology. Approximately 70% to 80% of thyroid lobectomies performed solely for diagnostic purposes are benign. Molecular alteration testing may reduce the number of unnecessary thyroid procedures, 2) may reduce the number of completion thyroidectomies, and 3) may lead to more individualized operative and postoperative management. Molecular testing for BRAF, RAS, RET/PTC, and PAX8/PPARγ for follicular lesion of undetermined significance and follicular neoplasm improve specificity, whereas molecular classifiers may add negative predictive value to fine needle aspiration diagnosis. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. [Etiologic diagnosis in meningitis and encephalitis molecular biology techniques].

    Science.gov (United States)

    Conca, Natalia; Santolaya, María Elena; Farfan, Mauricio J; Cofré, Fernanda; Vergara, Alejandra; Salazar, Liliana; Torres, Juan Pablo

    2016-01-01

    The aetiological study of infections of the central nervous system has traditionally been performed using bacterial cultures and, more recently, using polymerase chain reaction (PCR) for herpes simplex virus (HSV). Bacterial cultures may not have good performance, especially in the context of patients who have received antibiotics prior to sampling, and a request for HSV only by PCR reduces the information to only one aetiological agent. The aim of this study is to determine the infectious causes of meningitis and encephalitis, using traditional microbiology and molecular biology to improve the aetiological diagnosis of these diseases. A prospective study was conducted on 19 patients with suspected meningitis, admitted to the Luis Calvo Mackenna Hospital in Santiago, Chile, from March 1, 2011 to March 30, 2012. After obtaining informed consent, the CSF samples underwent cytochemical study, conventional culture, multiplex PCR for the major producing bacterial meningitis (N. meningitidis, S. pneumoniae, H. influenzae), real-time single PCR for HSV-1 and 2, VZV, EBV, CMV, HHV-6 and enterovirus. Clinical and epidemiological data were also collected from the clinical records. Of the 19 patients analysed, 2 were diagnosed by conventional methods and 7 by adding molecular biology (increase to 37%). Three patients had meningitis due to S. pneumoniae, one due to Enterobacter cloacae, 2 patients meningoencephalitis HSV-1, and one VZV meningitis. The addition of PCR to conventional diagnostic methods in CNS infections increases the probability of finding the causal agent. This allows a more adequate, timely and rational management of the disease. Copyright © 2014. Publicado por Elsevier España, S.L.U.

  2. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D.

    2006-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In

  3. Pokemon and MEF2D co-operationally promote invasion of hepatocellular carcinoma.

    Science.gov (United States)

    Hong, Xin; Hong, Xing-Yu; Li, Tao; He, Cheng-Yan

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most deadly human malignancy, and frequent invasion and metastasis is closely associated with its poor prognosis. However, the molecular mechanism underlying HCC invasion is still not completely elucidated. Pokemon is a well-established oncogene for HCC growth, but its contribution to HCC invasion has not been studied yet. In this paper, Pokemon was found to be overexpressed in MHCC-97H HCC cell line, which possesses higher invasiveness. Downregulation of Pokemon abolished the invasion of MHCC-97H HCC cell lines. Pokemon overexpression was able to enhance the invasion of MHCC-97L cells with lower invasiveness. MEF2D, an oncogene promoting the invasion of HCC cells, was further detected to be upregulated and downregulated when Pokemon was overexpressed and silenced, respectively. Online database analysis indicated that one Pokemon recognition site was located within the promoter of MEF2D. Chromatin co-precipitation, luciferase, and qPCR assays all proved that Pokemon can promote the expression of MEF2D in HCC cells. Restoration of MEF2D expression can prevent the impaired invasion of HCC cells with Pokemon silencing, while suppression of MEF2D abolished the effect of Pokemon overexpression on HCC invasion. More interestingly, MEF2D was also found to increase the transcription of Pokemon by binding myocyte enhancer factor 2 (MEF2) sites within its promoter region, implying an auto-regulatory circuit consisting of these two oncogenes that can promote HCC invasion. Our findings can contribute to the understanding of molecular mechanism underlying HCC invasion, and provided evidence that targeting this molecular loop may be a promising strategy for anti-invasion therapy.

  4. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  5. [Epithelial cadherins and associated molecules in invasive lobular breast cancer].

    Science.gov (United States)

    Brilliant, Yu M; Brilliant, A A; Sazonov, S V

    to estimate the expression of cell adhesion molecules E- and P-cadherin, as well as that of cadherin-catenin complexes in invasive lobular breast cancer (BC) cells. 250 cases of postoperative material from patients diagnosed with invasive lobular BC were studied. The expressions of cell adhesion molecules E-cadherin, P-cadherin, β-catenin, p120 catenin, and vimentin were determined by immunohistochemical assay in all cases. The examined cases were divided into molecular biological subtypes, based on the evaluation of estrogen receptors (ER), progesterone receptors (PR), HER-2/neu, and Ki-67 proliferative index. The membrane expression of E-cadherin on the tumor cells was found to be preserved in 93%; the cytoplasmic expression of β-catenin and p120-catenin appeared in 60 and 72% of cases, respectively. The expression of P-cadherin was detected in 82% of cases. The coexpression of E- and P-cadherin was noted in 90% of all the examined cases. There was a correlation between the expression of E- and P-cadherins (V=0.34; pcancer and its metastasis.

  6. Invasion Biology of Aedes japonicus japonicus (Diptera: Culicidae)

    Science.gov (United States)

    Fonseca, Dina M.

    2014-01-01

    Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii. PMID:24397520

  7. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Science.gov (United States)

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  8. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  9. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  10. Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology

    OpenAIRE

    Verbeke, Caroline S

    2010-01-01

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal...

  11. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  12. Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Science.gov (United States)

    P. F. Hendrix; G. H. Baker; M. A. Callaham Jr; G. A. Damoff; Fragoso C.; G. Gonzalez; S. W. James; S. L. Lachnicht; T. Winsome; X. Zou

    2006-01-01

    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...

  13. Biología y regulación molecular de la micorriza arbuscular

    Directory of Open Access Journals (Sweden)

    S. Guzmán-González

    2005-01-01

    Full Text Available Las micorrizas arbusculares son asociaciones simbióticas formadas entre un amplio rango de especies de plantas y hongos del orden Glomales. El hongo coloniza el apoplasto y células corticales de la raíz. El desarrollo de esta asociación, altamente compatible, requiere de la diferenciación celular y molecular coordinada de ambos simbiontes, para formar una interface especializada en la cual ocurre la transferencia bidireccional de nutrimentos. Esta revisión resume los resultados obtenidos con el uso de técnicas de biología molecular en el entendimiento del desarrollo de la simbiosis micorrízica arbuscular.

  14. Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions?

    Science.gov (United States)

    Guiu, Séverine; Wolfer, Anita; Jacot, William; Fumoleau, Pierre; Romieu, Gilles; Bonnetain, Franck; Fiche, Maryse

    2014-12-01

    The WHO classification of breast tumors distinguishes, besides invasive breast cancer 'of no special type' (former invasive ductal carcinoma, representing 60-70% of all breast cancers), 30 special types, of which invasive lobular carcinoma (ILC) is the most common (5-15%). We review the literature on (i) the specificity and heterogeneity of ILC biology as documented by various analytical techniques, including the results of molecular testing for risk of recurrence; (ii) the impact of lobular histology on prediction of prognosis and effect of systemic therapies in patients. Though it is generally admitted that ILC has a better prognosis than IDC, is endocrine responsive, and responds poorly to chemotherapy, currently available data do not unanimously support these assumptions. This review demonstrates some lack of specific data and a need for improving clinical research design to allow oncologists to make informed systemic therapy decisions in patients with ILC. Importantly, future studies should compare various endpoints in ILC breast cancer patients among the group of hormonosensitive breast cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Biochemistry and Molecular Biology of Flaviviruses.

    Science.gov (United States)

    Barrows, Nicholas J; Campos, Rafael K; Liao, Kuo-Chieh; Prasanth, K Reddisiva; Soto-Acosta, Ruben; Yeh, Shih-Chia; Schott-Lerner, Geraldine; Pompon, Julien; Sessions, October M; Bradrick, Shelton S; Garcia-Blanco, Mariano A

    2018-04-25

    Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.

  16. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology.

    Science.gov (United States)

    Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A

    2017-11-01

    The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.

  17. Economic assessment of the contribution of biological control to the management of invasive alien plants and to the protection of ecosystem services in South Africa

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2010-07-01

    Full Text Available This study is a first attempt at a holistic economic evaluation of South African endeavours to manage invasive alien plants using biological control. The author’s focus was on the delivery of ecosystem services from habitats that are invaded...

  18. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  19. The Molecular Biology of Soft-Tissue Sarcomas and Current Trends in Therapy

    Directory of Open Access Journals (Sweden)

    Jorge Quesada

    2012-01-01

    Full Text Available Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.

  20. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Science.gov (United States)

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  1. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  3. Invasive Species Biology, Control, and Research. Part 2. Multiflora Rose (Rosa multiflora)

    National Research Council Canada - National Science Library

    Denight, Michael L; Guertin, Patrick J; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as "uncontrolled vegetation," six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  4. Shifts in dynamic regime of an invasive lady beetle are linked to the invasion and insecticidal management of its prey

    NARCIS (Netherlands)

    Bahlai, C.A.; Werf, van der W.; O'Neal, M.; Hemerik, L.; Landis, D.A.

    2015-01-01

    The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. Here we investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive

  5. Exotic biological control agents

    NARCIS (Netherlands)

    Hajek, Ann E.; Hurley, Brett P.; Kenis, Marc; Garnas, Jeffrey R.; Bush, Samantha J.; Wingfield, Michael J.; Lenteren, van Joop C.; Cock, Matthew J.W.

    2016-01-01

    Biological control is a valuable and effective strategy for controlling arthropod pests and has been used extensively against invasive arthropods. As one approach for control of invasives, exotic natural enemies from the native range of a pest are introduced to areas where control is needed.

  6. Livestock as a potential biological control agent for an invasive wetland plant

    NARCIS (Netherlands)

    Silliman, Brian R.; Mozdzer, Thomas; Angelini, Christine; Brundage, Jennifer E.; Esselink, Peter; Bakker, Jan P.; Gedan, Keryn B.; van de Koppel, Johan; Baldwin, Andrew H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughoutmuch of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in

  7. Artificial microRNAs and their applications in plant molecular biology

    Directory of Open Access Journals (Sweden)

    Pérez-Quintero Álvaro Luis

    2010-11-01

    Full Text Available

    Artificial microRNAs (amiRNAs are modified endogenous microRNA precursors in which the miRNA:miRNA* duplex is replaced with sequences designed to silence any desired gene. amiRNAs are used as part of new genetic transformation techniques in eukaryotes and have proven to be effective and to excel over other RNA-mediated gene silencing methods in both specificity and stability. amiRNAs can be designed to silence single or multiple genes, it is also possible to construct dimeric amiRNA precursors to silence two non-related genes simultaneously. amiRNA expression is quantitative and allows using constitutive, inducible, or tissue-specific promoters. One main application of amiRNAs is gene functional validation and to this end they have been mostly used in model plants; however, their use can be extended to any species or variety. amiRNA-mediated antiviral defense is another important application with great potential for plant molecular biology and crop improvement, but it still needs to be optimized to prevent the escape of viruses from the silencing mechanism. Furthermore, amiRNAs have propelled research in related areas allowing the development of similar tools like artificial trans-acting small interference RNAs (tasiARNs and artificial target mimicry. In this review, some applications and advantages of amiRNAs in plant molecular biology are analyzed. 

  8. Errant life, molecular biology, and biopower: Canguilhem, Jacob, and Foucault.

    Science.gov (United States)

    Talcott, Samuel

    2014-01-01

    This paper considers the theoretical circumstances that urged Michel Foucault to analyse modern societies in terms of biopower. Georges Canguilhem's account of the relations between science and the living forms an essential starting point for Foucault's own later explorations, though the challenges posed by the molecular revolution in biology and François Jacob's history of it allowed Foucault to extend and transform Canguilhem's philosophy of error. Using archival research into his 1955-1956 course on "Science and Error," I show that, for Canguilhem, it is inauthentic to treat a living being as an error, even if living things are capable of making errors in the domain of knowledge. The emergent molecular biology in the 1960s posed a grave challenge, however, since it suggested that individuals could indeed be errors of genetic reproduction. The paper discusses how Canguilhem and Foucault each responded to this by examining, among other texts, their respective reviews of Jacob's The Logic of the Living. For Canguilhem this was an opportunity to reaffirm the creativity of life in the living individual, which is not a thing to be evaluated, but the source of values. For Foucault, drawing on Jacob's work, this was the opportunity to develop a transformed account of valuation by posing biopower as the DNA of society. Despite their disagreements, the paper examines these three authors as different iterations of a historical epistemology attuned to errancy, error, and experimentation.

  9. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  10. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    Science.gov (United States)

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes.

    Science.gov (United States)

    Lee, Michael S; Menter, David G; Kopetz, Scott

    2017-03-01

    Although clinical management of colon cancer generally has not accounted for the primary tumor site, left-sided and right-sided colon cancers harbor different clinical and biologic characteristics. Right-sided colon cancers are more likely to have genome-wide hypermethylation via the CpG island methylator phenotype (CIMP), hypermutated state via microsatellite instability, and BRAF mutation. There are also differential exposures to potential carcinogenic toxins and microbiota in the right and left colon. Gene expression analyses further shed light on distinct biologic subtypes of colorectal cancers (CRCs), with 4 consensus molecular subtypes (CMSs) identified. Importantly, these subtypes are differentially distributed between right- and left-sided CRCs, with greater proportions of the "microsatellite unstable/immune" CMS1 and the "metabolic" CMS3 subtypes found in right-sided colon cancers. This review summarizes important biologic distinctions between right- and left-sided CRCs that likely impact prognosis and may predict for differential responses to biologic therapy. Given the inferior prognosis of stage III-IV right-sided CRCs and emerging data suggesting that anti-epidermal growth factor receptor antibody therapy is associated with worse survival in right-sided stage IV CRCs compared with left-sided cancers, these biologic differences between right- and left-sided CRCs provide critical context and may provide opportunities to personalize therapy. Copyright © 2017 by the National Comprehensive Cancer Network.

  12. Livestock as a potential biological control agent for an invasive wetland plant

    NARCIS (Netherlands)

    Silliman, B.R.; Mozdzer, T.; Angelini, C.; Brundage, J.E.; Esselink, P.; Bakker, J.P.; Gedan, K.B.; van de Koppel, J.; Baldwin, A.H.

    2014-01-01

    Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in

  13. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  14. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  15. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  16. Reply to Keller and Springborn: No doubt about invasion debt

    Czech Academy of Sciences Publication Activity Database

    Essl, F.; Dullinger, S.; Rabitsch, W.; Hulme, P. E.; Hülber, K.; Jarošík, Vojtěch; Kleinbauer, I.; Krausmann, F.; Kühn, I.; Nentwig, W.; Vila, M.; Genovesi, P.; Gherardi, F.; Desprez-Loustau, M.-L.; Roques, A.; Pyšek, Petr

    2011-01-01

    Roč. 108, č. 25 (2011), s. 221-221 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z60050516 Keywords : biological invasions * invasion debt * economics Subject RIV: EF - Botanics Impact factor: 9.681, year: 2011

  17. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  18. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems

    Czech Academy of Sciences Publication Activity Database

    Catford, J.A.; Vesk, P.A.; Richardson, D. M.; Pyšek, Petr

    2012-01-01

    Roč. 18, č. 1 (2012), s. 44-62 ISSN 1354-1013 R&D Projects: GA ČR(CZ) GAP505/11/1112 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : level of invasion * standard metrics * abundance Subject RIV: EF - Botanics Impact factor: 6.910, year: 2012

  19. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  20. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  1. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

    Science.gov (United States)

    Ansell, Brendan R E; Schnyder, Manuela; Deplazes, Peter; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Mangiola, Stefano; Boag, Peter R; Hofmann, Andreas; Sternberg, Paul W; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention. © 2013.

  2. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  3. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  4. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  5. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  6. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  7. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday.

    Science.gov (United States)

    Cramer, Patrick

    2017-08-18

    Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  9. Characterization of microbial communities in pest colonized books by molecular biology tools

    OpenAIRE

    Franco Palla

    2011-01-01

    This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR), sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of man...

  10. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    Science.gov (United States)

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  11. Molecular and Biological Analysis of Potato virus M (PVM) Isolates from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Vaculík, Petr; Čeřovská, Noemi; Moravec, Tomáš; Dědič, P.

    2015-01-01

    Roč. 163, 11-12 (2015), s. 1031-1035 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional support: RVO:61389030 Keywords : Czech Republic * phylogeny * Potato virus M Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.945, year: 2015

  12. Proceedings of the 3. international symposium on applied microbiology and molecular biology in oil systems: ISMOS 3

    Energy Technology Data Exchange (ETDEWEB)

    Rooijen, Gijs van; Caffrey, Sean M. [Genome Alberta (Canada); Lund Skovhus, Torben [DTI Oil and Gas (Denmark); Whitby, Corinne [University of Essex (United Kingdom)

    2011-07-01

    The 3rd international symposium on applied microbiology and molecular biology in oil systems was held in Calgary, Alberta, Canada, from June 13th to June 15th, 2011. This conference, organized by ISMOS TSC, gathered experts to discuss the application of microbial and molecular biology in the hydrocarbon sector. The conference was attended by key players from the oil and gas industry and provided them with the opportunity to learn about some of the latest technologies in areas such as the application of molecular microbiological methods for oil field systems, biodegradation of hydrocarbons in oil production, biofuels and downstream petroleum microbiology and challenges in biofuels and oil sands developments, and to network with their peers and share their expertise. 17 of the 31 papers presented during this conference have been catalogued separately for inclusion in this database.

  13. Molecular biology of hyperthermophilic Archaea.

    Science.gov (United States)

    van der Oost, J; Ciaramella, M; Moracci, M; Pisani, F M; Rossi, M; de Vos, W M

    1998-01-01

    The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.

  14. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  15. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  16. Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions?

    Directory of Open Access Journals (Sweden)

    Coughlan Neil E.

    2017-01-01

    Full Text Available Vectors that underpin the natural dispersal of invasive alien species are frequently unknown. In particular, the passive dispersal (zoochory of one organism (or propagule by another, usually more mobile animal, remains poorly understood. Field observations of the adherence of invasive freshwater bivalves to other organisms have prompted us to assess the importance of zoochory in the spread of three prolific invaders: zebra mussel Dreissena polymorpha; quagga mussel Dreissena bugensis; and Asian clam Corbicula fluminea. An extensive, systematic search of the literature was conducted across multiple on-line scientific databases using various search terms and associated synonyms. In total, only five publications fully satisfied the search criteria. It appears that some fish species can internally transport viable adult D. polymorpha and C. fluminea specimens. Additionally, literature indicates that veligers and juvenile D. polymorpha can adhere to the external surfaces of waterbirds. Overall, literature suggests that zoochorous dispersal of invasive bivalves is possible, but likely a rare occurrence. However, even the establishment of a few individuals (or a single self-fertilising C. fluminea specimen can, over-time, result in a substantial population. Here, we highlight knowledge gaps, identify realistic opportunities for data collection, and suggest management protocols to mitigate the spread of invasive alien species.

  17. Global networks for invasion science: benefits, challenges and guidelines

    DEFF Research Database (Denmark)

    Packer, Jasmin G.; Meyerson, Laura A.; Richardson, David M.

    2017-01-01

    Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Ques...

  18. Separating habitat invasibility by alien plants from the actual level of invasion

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Jarošík, Vojtěch; Pyšek, Petr; Hájek, O.; Knollová, I.; Tichý, L.; Danihelka, Jiří

    2008-01-01

    Roč. 89, č. 6 (2008), s. 1541-1553 ISSN 0012-9658 R&D Projects: GA MŠk(CZ) LC06073 Grant - others:ALARM(XE) GOCE-CT-2003-506675 Institutional research plan: CEZ:AV0Z60050516 Keywords : archaeophyte * biological invasions * Central Europe Subject RIV: EF - Botanics Impact factor: 4.874, year: 2008

  19. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  20. Differential invasion success of salmonids in southern Chile: patterns and hypotheses

    Science.gov (United States)

    Ivan Arismendi; Brooke E. Penaluna; Jason B. Dunham; Carlos Garcia de Leaniz; Doris Soto; Ian A. Fleming; Daniel Gomez-Uchida; Gonzalo Gajardo; Pamela V. Varga; Jorge León-Muñoz

    2014-01-01

    Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including...