WorldWideScience

Sample records for biological fate transport

  1. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  2. Summer nitrogenous nutrient transport and its fate in the Taiwan Strait: A coupled physical-biological modeling approach

    Science.gov (United States)

    Wang, Jia; Hong, Huasheng; Jiang, Yuwu; Chai, Fei; Yan, Xiao-Hai

    2013-09-01

    In order to understand the fate of nutrients in the Taiwan Strait during summer, we built a coupled physical-biological numerical ocean model, which can capture the basic hydrographic and biological features within the strait. The nutrient that we chose to model is dissolved inorganic nitrogen (DIN). The model includes individual reservoirs for nitrate (NO3) and ammonium (NH4). Both the observational evidence and model results show that NO3 in the strait originates primarily from the upwelling subsurface water in the northern South China Sea (SCS) that enters the strait via the eastern and western routes separated by the Taiwan Bank. The coupled physical and biological effects on the NO3 transport at these two routes are highlighted in the study. For the western route, the shallow topography and the coastal upwelling intensify the biological uptake of NO3 in the whole water column. Consequently, the nitrogenous contribution by this route is mainly in form of the particulate organic nitrogen (PON). In contrast, NO3 is transported conservatively below the nitricline at the deep eastern route, contributing the whole NO3 supply in the TWS. The model estimates the fluxes of DIN and PON into the TWS, from the northern SCS, are 1.8 and 4 kmol s-1, respectively. Over half (˜1 kmol s-1) of the DIN is synthesized into PON by the phytoplankton in the strait. Overall, this study estimates the physical and biological effects on the nutrient transport in the TWS during summer.

  3. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    Abdelghani, A.; Hartley, W.; Bart, H.; Ide, C.; Ellgaard, E.; Sherry, T.; Devall, M.; Thien, L.; Horner, E.; Mizell, M.

    1993-01-01

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  4. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  5. Radionuclide fate and effects

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The studies reported here deal with the full range of contaminant behavior and fate, from the initial physicochemical factors that govern radionuclide availability in terrestrial and aquatic environments to studies of contaminant transport by biological means. By design, we focus more on the biologically and chemically mediated transport processes and food-chain pathways than on the purely physical forms of contaminant transport, such as transport by wind and water

  6. Transport and fate of microorganisms in porous media: A theoretical investigation

    Science.gov (United States)

    Yavuz Corapcioglu, M.; Haridas, A.

    1984-04-01

    Bacteria and viruses found in groundwater are a proven health hazard as evidenced by the large number of outbreaks of water-borne diseases caused by contaminated groundwater. To analyze the fate of biological contaminants in soils and groundwater, we studied various transport processes including dispersion, convection, Brownian motion, chemotaxis and tumbling of bacteria. The differences between bacteria and viruses in their transport mechanisms, decay and growth kinetics have also been investigated. It has been shown that the rate of deposition terms can be incorporated by a first-order and an adsorption isotherm for bacteria and viruses, respectively. The movement of bacteria is coupled with the transport of a bacterial nutrient present in seeping wastewater.

  7. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    Science.gov (United States)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  8. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  9. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts.

    Science.gov (United States)

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J; Oughton, Deborah; Smith, John N

    2017-01-03

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  10. Geochemical Fate and Transport of Sildenafil and Vardenafil

    Science.gov (United States)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  11. Pollutant transport and fate in ecosystems

    International Nuclear Information System (INIS)

    Coughtrey, P.J.; Martin, M.H.; Unsworth, M.H.

    1987-01-01

    This publication contains a selection of the papers that were presented at a meeting of the Industrial Ecology Group of the British Ecological Society, held at the University of Bristol 1-4 April 1985. The aim of the meeting was to discuss the processes and mechanisms underlying the transfer of pollutants and contaminants in ecological systems. The discussion of the impact of pollutants on individual organisms, populations and communities was specifically excluded. Parallels between transfer, distribution and fate of a wide range of materials were identified. The papers presented at the meeting provided examples of mechanisms and processes involved in pollutant transport through ecosystems as well as of the significance of long-term or widespread investigations in the identification of temporal or geographical trends. Examples were also provided of studies involving complex systems and diverse materials with the aim of identifying underlying principles. Topics of current environmental concern e.g. acid deposition, heavy metals, radioactivity, etc. for which information is being collated in order to provide a basis for assessments concerning future impact were presented. Such assessments will require a combination of the information on transport and fate within ecosystems with knowledge of the effects of pollutants on the system. The interpretation of data concerning effects of a pollutant needs to be placed in the wider context of the occurrence, distribution and fate of that pollutant. The purpose of this publication is to provide that wider context. (author)

  12. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  13. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  15. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  16. Building 235-F Goldsim Fate And Transport Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Phifer, M. A.

    2012-01-01

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D and D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ρCi/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ρCi/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met

  17. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2014-12-01

    Full Text Available Soo-Jin Choi,1 Jin-Ho Choy2 1Department of Food Science and Technology, Seoul Women's University, 2Center for Intelligent Nano Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, South Korea Abstract: Biokinetic studies of zinc oxide (ZnO nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. Keywords: ZnO nanoparticles, biokinetics, distribution, excretion, fate, interaction

  18. Fate and transport of pathogens in lakes and reservoirs.

    Science.gov (United States)

    Brookes, Justin D; Antenucci, Jason; Hipsey, Matthew; Burch, Michael D; Ashbolt, Nicholas J; Ferguson, Christobel

    2004-07-01

    Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.

  19. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  20. Geochemical, hydrological and biological cycling of energy residuals. Research plan: subsurface transport program

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1985-09-01

    Because natural processes associated with the release and the transport of organic compounds, trace metals, and radionuclides are incompletely understood, research in this area is critical if the long term scientific uncertainties about contaminant transport are to be resolved. The processes that control mobilization and attenuation of energy residuals in soils and geological strata, their hydrological transport to and within ground water regimes, and their accumulation in biological systems require research attention. A summary of DOE's core research program is described. It is designed to provide a base of fundamental scientific information so that the geochemical hydrological, and biophysical mechanics that contribute to the transport and long term fate of energy related contaminants in natural systems can be understood

  1. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  2. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  3. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Nakles, D.V.

    1999-01-01

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  4. Fate and Transport of Shale-derived, Biogenic Methane.

    Science.gov (United States)

    Hendry, M Jim; Schmeling, Erin E; Barbour, S Lee; Huang, M; Mundle, Scott O C

    2017-07-07

    Natural gas extraction from unconventional shale gas reservoirs is the subject of considerable public debate, with a key concern being the impact of leaking fugitive natural gases on shallow potable groundwater resources. Baseline data regarding the distribution, fate, and transport of these gases and their isotopes through natural formations prior to development are lacking. Here, we define the migration and fate of CH 4 and δ 13 C-CH 4 from an early-generation bacterial gas play in the Cretaceous of the Williston Basin, Canada to the water table. Our results show the CH 4 is generated at depth and diffuses as a conservative species through the overlying shale. We also show that the diffusive fractionation of δ 13 C-CH 4 (following glaciation) can complicate fugitive gas interpretations. The sensitivity of the δ 13 C-CH 4 profile to glacial timing suggests it may be a valuable tracer for characterizing the timing of geologic changes that control transport of CH 4 (and other solutes) and distinguishing between CH 4 that rapidly migrates upward through a well annulus or other conduit and CH 4 that diffuses upwards naturally. Results of this study were used to provide recommendations for designing baseline investigations.

  5. State of Academic Knowledge on Toxicity and Biological Fate of Quantum Dots

    Science.gov (United States)

    Pelley, Jennifer L.; Daar, Abdallah S.; Saner, Marc A.

    2009-01-01

    Quantum dots (QDs), an important class of emerging nanomaterial, are widely anticipated to find application in many consumer and clinical products in the near future. Premarket regulatory scrutiny is, thus, an issue gaining considerable attention. Previous review papers have focused primarily on the toxicity of QDs. From the point of view of product regulation, however, parameters that determine exposure (e.g., dosage, transformation, transportation, and persistence) are just as important as inherent toxicity. We have structured our review paper according to regulatory risk assessment practices, in order to improve the utility of existing knowledge in a regulatory context. Herein, we summarize the state of academic knowledge on QDs pertaining not only to toxicity, but also their physicochemical properties, and their biological and environmental fate. We conclude this review with recommendations on how to tailor future research efforts to address the specific needs of regulators. PMID:19684286

  6. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  7. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  8. FATE AND TRANSPORT OF PETROLEUM RELEASED FROM UNDERGROUND STORAGE TANKS in Areas of Karst Topography

    Science.gov (United States)

    The study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers

  9. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  10. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  11. Development and application of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, E.; Park, Y.; Muirhead, R.; Jeong, J.; Pachepsky, Y. A.

    2017-12-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. Based on calibration and testing results, the APEX with the microbe module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water under various agricultural

  12. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura J.P.; Flores Alsina, Xavier; Plósz, Benedek Gy

    2014-01-01

    This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics...... approach; and, iii) future pathways to improve the overall modelling of micropollutants...

  13. Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    International Nuclear Information System (INIS)

    Schaumann, Gabriele E.; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra

    2015-01-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO 2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag 2 S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO 2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO 2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of

  14. Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model.

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Jeong, Jaehak; Pachepsky, Yakov A

    2018-02-15

    The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and in streams with the APEX model. The bacteria model utilizes manure erosion rates to estimate the amount of edge-of-field bacteria export. Bacteria survival in manure is simulated as a two-stage process separately for each manure application event. In-stream microbial fate and transport processes include bacteria release from streambeds due to sediment resuspension during high flow events, active release from the streambed sediment during low flow periods, bacteria settling with sediment, and survival. Default parameter values were selected from published databases and evaluated based on field observations. The APEX model with the newly developed microbial fate and transport module was applied to simulate fate and transport of the fecal indicator bacterium Escherichia coli in the Toenepi watershed, New Zealand that was monitored for seven years. The stream network of the watershed ran through grazing lands with daily bovine waste deposition. Results show that the APEX with the bacteria module reproduced well the monitored pattern of E. coli concentrations at the watershed outlet. The APEX with the microbial fate and transport module will be utilized for predicting microbial quality of water as affected by various agricultural practices, evaluating monitoring protocols, and supporting the selection of management practices based on regulations that rely on fecal indicator bacteria concentrations. Published by Elsevier B.V.

  15. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  16. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  17. Development and evaluation of the microbial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

    Science.gov (United States)

    Hong, Eun-Mi; Park, Yongeun; Muirhead, Richard; Pachepsky, Yakov

    2017-04-01

    Pathogenic microorganisms in recreational and irrigation waters remain the subject of concern. Water quality models are used to estimate microbial quality of water sources, to evaluate microbial contamination-related risks, to guide the microbial water quality monitoring, and to evaluate the effect of agricultural management on the microbial water quality. The Agricultural Policy/Environmental eXtender (APEX) is the watershed-scale water quality model that includes highly detailed representation of agricultural management. The APEX currently does not have microbial fate and transport simulation capabilities. The objective of this work was to develop the first APEX microbial fate and transport module that could use the APEX conceptual model of manure removal together with recently introduced conceptualizations of the in-stream microbial fate and transport. The module utilizes manure erosion rates found in the APEX. The total number of removed bacteria was set to the concentrations of bacteria in soil-manure mixing layer and eroded manure amount. Bacteria survival in soil-manure mixing layer was simulated with the two-stage survival model. Individual survival patterns were simulated for each manure application date. Simulated in-stream microbial fate and transport processes included the reach-scale passive release of bacteria with resuspended bottom sediment during high flow events, the transport of bacteria from bottom sediment due to the hyporheic exchange during low flow periods, the deposition with settling sediment, and the two-stage survival. Default parameter values were available from recently published databases. The APEX model with the newly developed microbial fate and transport module was applied to simulate seven years of monitoring data for the Toenepi watershed in New Zealand. The stream network of the watershed ran through grazing lands with the daily bovine waste deposition. Based on calibration and testing results, the APEX with the microbe module

  18. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    International Nuclear Information System (INIS)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results

  19. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    Energy Technology Data Exchange (ETDEWEB)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  20. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: philippe@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: sondra.klitzke@tu-berlin.de [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: rakcheev@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: alexg@uni-koblenz.de [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  1. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  2. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  3. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  4. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  5. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  6. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Alison [Arup, 50 Ringsend Road, Dublin 4 (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Nitsche, Janka [RPS, West Pier Business Campus, Dun Laoghaire, Co. Dublin (Ireland); School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Archbold, Marie [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom); Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Deakin, Jenny [Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14 (Ireland); Department of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland); Ofterdinger, Ulrich; Flynn, Raymond [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast (United Kingdom)

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ{sup 15}N and δ{sup 18}O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. - Graphical abstract: Contrasting nitrate isotope signatures of groundwater in a free draining catchment underlain by a karstified aquifer and a poorly drained catchment underlain by a low transmissivity aquifer. - Highlights: • Comparison of N fate and

  7. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  8. Flow Dependence Assessment for Fate and Transport of DNAPL in Karst Media

    Science.gov (United States)

    Carmona, M.; Padilla, I. Y.

    2017-12-01

    DNAPLs are a group of organic compounds, which exhibit high fluid density, relatively aqueous solubility, and a high level of toxicity. It is also very persistent and remains in the environment long after been released. Massive production of these compounds, their constant use and poor disposal methods have increased the occurrence of these contaminants in groundwater systems. The physico-chemical properties of DNAPL, combined with the high variation of groundwater flow causes contaminants to behave unpredictably in such aquifer. This research focuses on fate and transport of trichloroethylene (which is one of the most frequent DNAPL found) in a karstified limestone physical model (KLPM) at two different flow rates. The KLPM represents a real case of a saturated confined karst aquifer consisting of a porous limestone block enclosed in a stainless-steel tank with fifteen horizontal sampling ports. After injection of pure TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed volumetrically and analytically with HPLC. Data show pure TCE volumes are collected at the beginnings of the experiment in sampling ports located near the injection port. Results from the constructed temporal distributions curves at different spatial locations show spatial variations related to the limestone block heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing is indicative of diffusive transport in the rock matrix and mass transport rates limitations. Although, high flow rates show greater mass removal of TCE by dissolving its NAPL, pure TCE accumulates at all flow rates studied. Overall, results show that karstified limestone has a high capacity to rapidly transport, as well as store and slowly release TCE pure and dissolved phase for long periods of time. They also show that fate and transport of contaminants in karst environments is significantly flow dependent.

  9. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  10. Interaction of Physical and Chemical Processes Controlling the Environmental Fate and Transport of Lampricides Through Stream-Hyporheic Systems

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.

    2016-12-01

    The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  11. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  12. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    Science.gov (United States)

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  13. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment].

    Science.gov (United States)

    Ren, Wen-Jie; Teng, Ying

    2014-09-01

    Graphene is one of the most popular research topics in carbon nanomaterials. Because of its special physical and chemical properties, graphene will have wide applications. As the production and application amount is increasing, graphene will be inevitably released to the environment, resulting in risks of ecological environment and human health. It is of very vital significance for evaluating environmental risks of graphene scientifically and objectively to understand its environmental behavior and fate and explore its effect on the environmental behaviors of pollutants. This paper reviewed the environmental behavior of graphene, such as colloid properties and its stability in the aqueous environment and its transport through porous media. Additionally, the paper reviewed the effect of graphene on the transport and fate of pollutants. The interactions between graphene and heavy metals or organic compounds were especially discussed. Important topics should be explored including sorption mechanisms, interactions between graphene and soil components, influence of graphene on the transport and bioavailability of pollutants in environment, as well as approaches to quantifying graphene. The review might identify potential new ideas for further research in applications of graphene.

  14. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  15. Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Science.gov (United States)

    Caruso, B.S.; Cox, T.J.; Runkel, Robert L.; Velleux, M.L.; Bencala, Kenneth E.; Nordstrom, D. Kirk; Julien, P.Y.; Butler, B.A.; Alpers, Charles N.; Marion, A.; Smith, Kathleen S.

    2008-01-01

    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high

  16. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.

    Science.gov (United States)

    Arye, Gilboa; Dror, Ishai; Berkowitz, Brian

    2011-01-01

    The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Transport and fate of engineered silver nanoparticles in aquifer media

    Science.gov (United States)

    Adrian, Y.; Schneidewind, U.; Azzam, R.

    2016-12-01

    Engineered silver nanoparticles (AgNPs) are used in various consumer and medical products due to their antimicrobial properties. Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNPs in test systems with pure quartz sand or top soil materials, but studies investigating aquifer material are rare. However, the protection of groundwater resources is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport, behavior and fate of engineered nanoparticles as potential contaminants in aquifers is essential. The transport and retention behavior of two commercially available engineered AgNPs (one stabilized with a polymere and one with a surfactant) in natural silicate-dominated aquifer material was investigated in saturated laboratory columns. For the experiments a mean grain size diameter of 0.7 mm was chosen with varying silt and clay contents to investigate their effect on the transport behavior of the AgNPs. Typical flow velocities were chosen to represent natural conditions. Particle concentration in the effluent was measured using ICP-MS and the finite element code HYDRUS-1D was used to model the transport and retention processes. The size of the silver nanoparticles in the effluent was analyzed using Flow Field-Flow Fractionation. The obtained results show that silt and clay contents as well as the stabilization of the AgNPs control the transport and retention of AgNPs. Increasing breakthrough was observed with decreasing clay and silt content.

  18. Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry

    Science.gov (United States)

    Rascol, Estelle; Daurat, Morgane; Da Silva, Afitz; Maynadier, Marie; Dorandeu, Christophe; Charnay, Clarence; Garcia, Marcel; Lai-Kee-Him, Joséphine; Bron, Patrick; Auffan, Mélanie; Angeletti, Bernard; Devoisselle, Jean-Marie; Guari, Yannick; Gary-Bobo, Magali; Chopineau, Joël

    2017-01-01

    The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe3O4@MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg−1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones. PMID:28665317

  19. California GAMA Special Study: Nitrate Fate and Transport in the Salinas Valley

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Jean E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hillegonds, Darren [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtz, Marianne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Sarah K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-05-13

    The Groundwater Ambient Monitoring and Assessment (GAMA) Program is a comprehensive groundwater quality monitoring program managed by the California State Water Resources Control Board (SWRCB). Under the GAMA program, Lawrence Livermore National Laboratory carries out special studies that address groundwater quality issues of statewide relevance. The study described here is one in a series of special studies that address the fate and transport of nitrate in basins where groundwater is the main source of water for both irrigation and public drinking water supply.

  20. Transport and fate of viruses in sediment and stormwater from a managed aquifer recharge site

    Science.gov (United States)

    Enteric viruses are one of the major concerns in water reclamation and reuse at managed aquifer recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and FX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column ex...

  1. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  2. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  3. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  4. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    Science.gov (United States)

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  5. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  6. Toward a community coastal sediment transport modeling system: the second workshop

    Science.gov (United States)

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  7. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  8. Sensitivity analysis of the noble gas transport and fate model: CASCADR9

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Barker, L.E.

    1994-03-01

    CASCADR9 is a desert alluvial soil site-specific noble gas transport and fate model. Input parameters for CASCADR9 are: man-made source term, background concentration of radionuclides, radon half-life, soil porosity, period of barometric pressure wave, amplitude of barometric pressure wave, and effective eddy diffusivity. Using average flux, total flow, and radon concentration at the 40 day mark as output parameters, a sensitivity analysis for CASCADR9 is carried out, under a variety of scenarios. For each scenario, the parameter to which output parameters are most sensitive are identified

  9. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  10. Fate of nano- and microplastic in freshwater systems: A modeling study

    NARCIS (Netherlands)

    Besseling, Ellen; Quik, Joris T.K.; Sun, Muzhi; Koelmans, Bart

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles

  11. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The term organic matter refers to the remnants of all living material. This can include fallen leaves, yard waste, animal waste, downed timber, or the remains of any other plant and animal life. Organic matter is abundant both on land and in water. Investigating organic matter is necessary for understanding the fate and transport of carbon (a major constituent of organic matter).

  12. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  13. Remediation challenges posed by the fate and transport properties of MTBE

    International Nuclear Information System (INIS)

    Day, M.J.

    2002-01-01

    Releases of fuel from underground tank systems have been a major source of groundwater contamination for several decades. The fate and transport characteristics of fuel components significantly influence the potential risk to groundwater supplies and the methodologies to manage and remediate contamination at fuel release sites. The recognition that MTBE can be more mobile in groundwater systems than other components of oxygenated fuels has put an increased emphasis on early detection and response to fuel leaks and spills. Remediation of oxygenated fuel releases usually follows a sequence of tasks: receptor protection, source control, residual and dissolved phase remediation, and monitored natural attenuation. Good characterization of hydrogeological and geochemical conditions is required because understanding the fate and transport of fuel components is critical to developing an appropriate management plan and an efficient remediation program. Understanding the specific site conditions allows appropriate selection and sequencing of remedial technologies. The physical and chemical characteristics of MTBE can result in a higher mobility in the subsurface, compared with the BTEX components of a gasoline release. These same characteristics make MTBE more readily extractable from the subsurface compared with BTEX. There is an impression that remediating gasoline releases containing MTBE requires costly, specialized technologies compared with those employed to deal with non-oxygenated fuel releases. However, the characteristics of MTBE are well suited to traditional, physical remedial approaches that have proven to be effective with the other components of gasoline. Technologies such as groundwater extraction, soil vapor extraction (SVE), and thermal desorption work exceptionally well with MTBE due to its low adsorptive and high vapor pressure characteristics. Similarly, recent studies have demonstrated that MTBE is biodegradable under a wide variety of conditions

  14. PATHOGEN TRANSPORT AND FATE MODELING IN THE UPPER SALEM RIVER WATERSHED USING SWAT MODEL - PEER-REVIEWED JOURNAL ARTICLE

    Science.gov (United States)

    Simulation of the fate and transport of pathogen contamination was conducted with SWAT for the Upper Salem River Watershed, located in Salem County, New Jersey. This watershed is 37 km2 and land uses are predominantly agricultural. The watershed drains to a 32 km str...

  15. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    Science.gov (United States)

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  16. A multimedia fate model to evaluate the fate of PAHs in Songhua River, China

    International Nuclear Information System (INIS)

    Wang Ce; Feng Yujie; Sun Qingfang; Zhao Shanshan; Gao Peng; Li Bailian

    2012-01-01

    A multimedia fate model coupling dynamic water flow with a level IV fugacity model has been developed and applied to simulate the temporal and spatial fate of Polycyclic Aromatic Hydrocarbons (PAHs) in the Songhua River, China. The model has two components: in the first, the one-dimensional network kinematic wave equation is used to calculate varying water flow and depth. In the second, Fugacity IV equations are implemented to predict contaminant distributions in four environmental media. The estimated concentrations of eight PAHs in Songhua River are obtained, and all simulated results are in acceptable agreement with monitoring data, as verified with the Theil’s inequality coefficient test. The sensitivity of PAH concentration in each environmental phase to input parameters are also evaluated. Our results show the model predicts reasonably accurate contaminant concentrations in natural rivers, and that it can be used to supply necessary information for control and management of water pollution. - Highlights: ► The model used was developed based on kinematic wave equation and level IV fugacity principle. ► The model was applied to describe the fate and transport of organic chemicals in natural river. ► The concentrations of PAHs in water column were satisfactorily simulated when compared with monitoring data. ► Temporal and spatial variability of PAHs concentration among multimedia environmental phases was illustrated. - A dynamic water flow based multimedia fate model is developed to characterize the fate and transport of organic contaminant in natural rivers.

  17. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  18. A CASE STUDY OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ACCIDENTAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Hunter, C.; Werth, D.; Whiteside, M.; Chen, K.; Mazzola, C.

    2012-08-01

    A train derailment that occurred in Graniteville, South Carolina during the early morning hours of 06 January, 2005 resulted in the prompt release of approximately 60 tons of chlorine to the environment. Comprehensive modeling of the transport and fate of this release was performed including the characterization of the initial three-phased chlorine release, a detailed determination of the local atmospheric conditions acting to generate, disperse, and deplete the chlorine vapor cloud, the establishment of physical exchange mechanisms between the airborne vapor and local surface waters, and local aquatic dilution and mixing.

  19. Transport and Fate of Nutrients Along the U.S. East Coast

    Science.gov (United States)

    Hofmann, E. E.; Narvaez, D.; Friedrichs, M. A. M.; Najjar, R.; Tian, H.; Hyde, K.; Mannino, A.; Signorini, S. R.; Wilkin, J.; St-Laurent, P.

    2017-12-01

    As part of a NASA-funded multi-investigator project, a land-estuarine-ocean biogeochemical modeling system was implemented and verified with remote sensing and in situ data to examine processes controlling fluxes on land, their coupling to riverine systems, the delivery of materials to estuaries and the coastal ocean, and marine ecosystem responses to these changing riverine inputs and changing climate forcing. This modeling system is being used to develop nutrient budgets for the U.S. east coast continental shelf and to examine seasonal and interannual variability in nutrient fluxes. An important aspect of these nutrient budgets is the transport and fate of nutrients released along the inner shelf. Results from a five-year simulation (2004 to 2008) that used tracer releases from the main rivers along the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) provide insights into transport pathways that connect the inner and outer continental shelf. Tracers released along the inner MAB spread along the shelf with a general southward and offshore transport. Inner shelf inputs from the large estuarine systems are transported to the mid and outer MAB shelf. Tracers that reach the mid to outer shelf can be entrained in the Gulf Stream. Export from the MAB to the SAB occurs during periods of southerly winds. Transport processes along the SAB are similar, but Gulf Stream entrainment is a larger component of tracer transport. Superimposed on the MAB and SAB transport patterns is considerable seasonal and interannual variability. The results from these retrospective simulations improve understanding of the coupling at the land-water interface and shelf-wide transport patterns that advance the ability to predict the effects of localized human impacts and broader-scale climate-related impacts on the U.S. east coast continental shelf system.

  20. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  1. The effects of surface aging on nanoparticle fate and transport in natural and engineered porous media

    Science.gov (United States)

    Mittelman, Anjuliee M.

    Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that

  2. The fate and transport of reproductive hormones and their conjugates in the environment (Invited)

    Science.gov (United States)

    Casey, F. X.; Shrestha, S. L.; Hakk, H.; Smith, D. J.; Larsen, G. L.; Padmanabhan, G.

    2009-12-01

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17β-estradiol (E2) and estrone (E1), undergo various fate and transport processes, and laboratory studies have shown that they do not persist long (hours to few days), and have very little if any mobility in soil. Nonetheless, steroid hormones are detected at frequencies and concentrations of concern in the natural environment that would suggest their moderate persistence and mobility. One theory that may partially explain the disparity between field and laboratory studies is that conjugated forms of hormones are more mobile than their deconjugated counterparts. Glucuronide and sulfate conjugates are found in abundance in animal waste and are more soluble than their deconjugated forms. Laboratory studies were conducted to study the fate of a major urinary E2 conjugate, 17β-estradiol glucuronide (E2G), in a Hamar soil (Sandy, mixed, frigid typic Endoaquolls) from the surface and subsurface horizons. Speciation studies using batch sorption indicated that E2G degraded to E2 and E1 within 24 hours in the upper horizon soil with organic carbon content (OC) of 1.35%; whereas it persisted more in the lower horizon soil containing 0.32% OC. For initial concentrations of 2.8-28 mg/L, more than 15% of the applied dose concentration was still intact in the conjugate form in the aqueous phase for 3 - 14 days, in the lower horizon soil. The decline of E2G in the aqueous phase in the upper horizon soil was approximated with a first-order rate constant (k), which ranged from -0.208 to -0.279/h. The k values ranged from -0.006 to -0.016/h for the lower soil horizon. The differences in k values between the two horizons could be attributed to differences in bacterial activity and/or differences in sorption capacities

  3. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: state of the science and future opportunities

    Science.gov (United States)

    Natural waters provide habitats for various groups of fecal indicator organisms (FIOs) and pathogenic microorganisms originating from animal manures and animal waste. A number of watershed modeling works have been carried out to have a better understanding to the fate and transport of fecal indicato...

  4. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  5. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.

    1997-06-01

    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  6. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  7. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  8. Ecological fate and effects of solvent-refined-coal (SRC) materials: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A. III; Vaughan, B.E. (eds.)

    1981-10-01

    Non-occupational health effects associated with SRC operation will be determined by environmental factors governing the form, transport, and persistence of SRC materials and wastes - factors which also mediate exposure to man. Accordingly, the research described is an attempt to determine the fate of disposed solid wastes and spilled SRC materials, and it necessarily focuses on water soluble, persistent materials with greatest potential for mobility and incorporation into water and food supplies. Initially, aqueous equilibrations of SRC-II liquid material and SRC-I nongasified mineral residue were subjected to chemical characterization. Subsequently, laboratory studies were performed on the interaction of aqueous equilibrates of SRC-II liquid and SRC-I non-gasified mineral residue with soil materials isolated suspended sediments, and bottom sediments. These studies were designed to identify effects of specific sorption reactions ion or induced-ion exchange reactions, and toxicity of water soluble, biologically active materials derived from liquid and solid wastes. Results of these experiments have applicability to the environmental fate and effects of biologically active compounds released under different scenarios from product spills and solid waste disposal.

  9. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  10. Estimation of light transport parameters in biological media using ...

    Indian Academy of Sciences (India)

    Estimation of light transport parameters in biological media using coherent backscattering ... backscattered light for estimating the light transport parameters of biological media has been investigated. ... Pramana – Journal of Physics | News.

  11. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media

    Science.gov (United States)

    Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei

    2018-04-01

    It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.

  12. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    Science.gov (United States)

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  14. Myrmecochory and short-term seed fate in Rhamnus alaternus: Ant species and seed characteristics

    Science.gov (United States)

    Bas, J. M.; Oliveras, J.; Gómez, C.

    2009-05-01

    Benefits conferred on plants in ant-mediated seed dispersal mutualisms (myrmecochory) depend on the fate of transported seeds. We studied the effects of elaiosome presence, seed size and seed treatment (with and without passage through a bird's digestive tract) on short-term seed fate in Rhamnus alaternus. In our study, we define short-term seed, or initial, seed fate, as the location where ants release the seeds after ant contact with it. The elaiosomes had the most influence on short-term fate, i.e. whether or not seeds were transported to the nest. The workers usually transported big seeds more often than small ones, but small ants did not transport large seeds. Effect of seed size on transport depended on the ant species and on the treatment of the seed (manual extraction simulating a direct fall from the parent plant vs. bird deposition corresponding to preliminary primary dispersal). Probability of removal of elaiosome-bearing seeds to the nest by Aphaenogaster senilis increased with increasing seed weight.

  15. Final Report; Arsenic Fate, Transport and Stability Study; Groundwater, Surface Water, Soil And Sediment Investigation, Fort Devens Superfund Site, Devens, Massachusetts

    Science.gov (United States)

    This document presents results from the Fiscal Years 2006-2008 field investigation at the Fort Devens Superfund Site, Operable Unit 1 (Shepley's Hill Landfill) to fulfill the research objectives outlined in the proposal entitled, 'Fate and Transport of Arsenic in an Urban, Milita...

  16. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?

    Science.gov (United States)

    Özcan, Zeynep; Başkan, Oğuz; Düzgün, H Şebnem; Kentel, Elçin; Alp, Emre

    2017-10-01

    Fate and transport models are powerful tools that aid authorities in making unbiased decisions for developing sustainable management strategies. Application of pollution fate and transport models in semi-arid regions has been challenging because of unique hydrological characteristics and limited data availability. Significant temporal and spatial variability in rainfall events, complex interactions between soil, vegetation and topography, and limited water quality and hydrological data due to insufficient monitoring network make it a difficult task to develop reliable models in semi-arid regions. The performances of these models govern the final use of the outcomes such as policy implementation, screening, economical analysis, etc. In this study, a deterministic distributed fate and transport model, SWAT, is applied in Lake Mogan Watershed, a semi-arid region dominated by dry agricultural practices, to estimate nutrient loads and to develop the water budget of the watershed. To minimize the discrepancy due to limited availability of historical water quality data extensive efforts were placed in collecting site-specific data for model inputs such as soil properties, agricultural practice information and land use. Moreover, calibration parameter ranges suggested in the literature are utilized during calibration in order to obtain more realistic representation of Lake Mogan Watershed in the model. Model performance is evaluated using comparisons of the measured data with 95%CI for the simulated data and comparison of unit pollution load estimations with those provided in the literature for similar catchments, in addition to commonly used evaluation criteria such as Nash-Sutcliffe simulation efficiency, coefficient of determination and percent bias. These evaluations demonstrated that even though the model prediction power is not high according to the commonly used model performance criteria, the calibrated model may provide useful information in the comparison of the

  17. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  18. Risk assessment framework of fate and transport models applied to hazardous waste sites

    International Nuclear Information System (INIS)

    Hwang, S.T.

    1993-06-01

    Risk assessment is an increasingly important part of the decision-making process in the cleanup of hazardous waste sites. Despite guidelines from regulatory agencies and considerable research efforts to reduce uncertainties in risk assessments, there are still many issues unanswered. This paper presents new research results pertaining to fate and transport models, which will be useful in estimating exposure concentrations and will help reduce uncertainties in risk assessment. These developments include an approach for (1) estimating the degree of emissions and concentration levels of volatile pollutants during the use of contaminated water, (2) absorption of organic chemicals in the soil matrix through the skin, and (3) steady state, near-field, contaminant concentrations in the aquifer within a waste boundary

  19. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  20. Application of OILMAP and SIMAP to predict the transport and fate of the North Cape spill, Narragansett, RI

    International Nuclear Information System (INIS)

    Spaulding, M.L.; Opishinski, T.

    1996-01-01

    Several spill model systems developed by ASA (Applied Science Associates, Inc.) were tested during the North Cape oil spill in which 828,000 gallons of oil were released into Narragansett Bay, Rhode Island. The OILMAP spill model was applied to forecast the spill movement during the event. Input on the currents was obtained by a pre-existing tidal hydrodynamic model entitled COASTMAP, and wind data was obtained from a real time wind observation station. A careful comparison between the predictions and the observations showed that the model did very well in predicting the general path and spatial coverage of the spill. The model was also able to forecast features of the spill evolution including the entrance of oil into Pt. Judith Harbor, and the impact location and time of arrival on Block Island. SIMAP was developed to predict the transport, fate and biological impacts from an oil spill in marine waters. However, it was found that SIMAP did not have the algorithms to estimate entrainment in the surf zone, which was the dominant mechanisms for oil dispersion in the water. 15 refs., 17 figs

  1. The fate and importance of radionuclides produced in nuclear events

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B; Anspaugh, L; Chertok, R; Gofman, J; Harrison, F; Heft, R; Koranda, J; Ng, Y; Phelps, P; Potter, G; Tamplin, A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1969-07-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  2. The fate and importance of radionuclides produced in nuclear events

    International Nuclear Information System (INIS)

    Shore, B.; Anspaugh, L.; Chertok, R.; Gofman, J.; Harrison, F.; Heft, R.; Koranda, J.; Ng, Y.; Phelps, P.; Potter, G.; Tamplin, A.

    1969-01-01

    Some of the major program at the Bio-Medical Division concerned with the fate and importance of the fission products, the radionuclides induced in the device materials, the radionuclides induced in the environment surrounding the device, and the tritium produced in Plowshare cratering events will be discussed. These programs include (1) critical unknowns in predicting organ and body burdens from radionuclides produced in cratering events; (2) the analysis with a high-resolution solid state gamma ray spectrometer of radionuclides in complex biological and environmental samples; (3) the characterization of radioactive particles from cratering detonation; (4) the biological availability to beagles, pigs and goats of radionuclides in Plowshare debris; (5) the biological availability to aquatic animals of radionuclides in Plowshare and other nuclear debris and the biological turnover of critical nuclides in specific aquatic animals; (6) the biological availability of Plowshare and other nuclear debris radionuclides to dairy cows and the transplacental transport of debris radionuclides in the dairy cow; (7) the persistence and behavior of radionuclides, particularly tritium, at sites of Plowshare and other nuclear detonations; and (8) somatic effects of Low Dose Radiation: Chromosome studies. (author)

  3. Wetland influence on mercury fate and transport in a temperate forested watershed

    International Nuclear Information System (INIS)

    Selvendiran, Pranesh; Driscoll, Charles T.; Bushey, Joseph T.; Montesdeoca, Mario R.

    2008-01-01

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 μg/m 2 -year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands

  4. Wetland influence on mercury fate and transport in a temperate forested watershed

    Energy Technology Data Exchange (ETDEWEB)

    Selvendiran, Pranesh [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: pselvend@syr.edu; Driscoll, Charles T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: ctdrisco@syr.edu; Bushey, Joseph T. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: jtbushey@syr.edu; Montesdeoca, Mario R. [Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244 (United States)], E-mail: mmontesd@syr.edu

    2008-07-15

    The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27 ng/L) than values during the non-growing season (0.10 ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092 {mu}g/m{sup 2}-year respectively. - Wetlands are sources of THg and MeHg; the production of MeHg is seasonally dependent and driven by sulfate reduction in wetlands.

  5. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  6. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  7. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  8. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  10. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  11. Transport and Fate of Cyanide in Soil : Case Study of Mooteh Valley

    Directory of Open Access Journals (Sweden)

    Amir Taebi

    2006-01-01

    Full Text Available Cyanide, a generic term referring to all compounds containing the cyanide group –CN, is a highly potent and fast-acting poison to humans and other living organisms when exposed to high levels. Cyanide is a widely and essential chemical used in mining and minerals processing industries and many other industries such as metal processing and production of organic chemicals. While some industrial cyanide-containing wastes are treated or recovered, there are cases such as certain gold extraction plants where wastes are released in the environment. The objective of this research is to study the transport and fate of cyanide in soil in vicinity of a specific pollution source. For the purpose of this study, Mooteh valley, in the vicinity of Mooteh gold mine and factory, in the north of Isfahan province, Iran, was investigated. In Mooteh's Plant, the cyanide-containing waste (slurry tailings is discharged to tailings ponds and there is potential for cyanide to migrate from them. Eight boreholes with 6 m depth were dug and from every 0.5 m a soil sample was taken. Statistical analysis of the results show that soil cyanide concentration decreases with distance from the tailings ponds (as a pollution source and increases with depth. A regression model consisting of a power term for distance and an exponential term for soil depth can appropriately predict the soil cyanide concentration in the vicinity of a pollution source. As soil depth decreases, the rate of natural cyanide fate processes considerably increases. So, soil turn over practices is recommended to improve remediation of polluted sites

  12. Extending the BSM platform with occurrence, transport and fate of micro-pollutants using the ASM-X framework

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Plósz, Benedek; Lindblom, Erik

    The objective of this paper is to demonstrate how occurrence, transport and fate of trace chemicals can be assessed when modelling wastewater treatment plants (WWTP). A modified version of the International Water Association (IWA) Benchmark Simulation Model No 1 (BSM1) used to evaluate control......) is modelled using an influent generator. Administration patterns, bioavailability and body residence time are the basis to generate the user-defined profiles that will describe SMX daily variation patterns in the raw wastewater. Additional simulations also show that transport conditions such as sewer length...... is complemented with: i) a critical discussion of the presented results; ii) a thorough analysis of the limitations of the proposed approach; and, iii) future pathways to improve the overall modelling of trace chemicals....

  13. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  14. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  15. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  16. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  17. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  18. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  19. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    the comprehension of XTC fate, and thus the predictive capabilities of fate models: (i) at process scale, with a focus on sorption and biological transformation of XTCs in biological treatment systems; (ii) in full-scale WWTPs, assessing the impact of retransformation and WWTP operation on XTC elimination; and (iii......) in integrated WWTP-agricultural systems. Different modelling tools, suiting the specific purposes of our investigations, were developed, extended and/or innovatively applied. Fate models used as reference in this thesis include: the Activated Sludge Modelling framework for Xenobiotics (ASM-X); the generic WWTP...... model SimpleTreat Activity; and the dynamic soil-plant model for fate prediction in agricultural systems. Experimental and model-based observations were combined to assess sorption of ionizable XTCs onto activated sludge and XTC biotransformation in moving bed biofilm reactors (MBBRs). Most XTCs...

  20. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lead, Jamie R., E-mail: Jlead@mailbox.sc.edu [School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States); Baalousha, Mohammed, E-mail: Mbaalous@mailbox.sc.edu [Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia 29208 (United States)

    2016-10-15

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  1. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment

    International Nuclear Information System (INIS)

    Ellis, Laura-Jayne A.; Valsami-Jones, Eugenia; Lead, Jamie R.; Baalousha, Mohammed

    2016-01-01

    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water – MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV–visible spectrometry (UV–vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28 days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96 h (4 days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. - Highlights: • Aquatic microcosms were used to study the transport and behavior of AgNPs • Experiments were conducted in low

  2. Fate of acetone in water

    Science.gov (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.

    1982-01-01

    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  3. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  4. A study to estimate the fate and transport of bacteria in river water from birds nesting under a bridge.

    Science.gov (United States)

    Nayamatullah, M M M; Bin-Shafique, S; Sharif, H O

    2013-01-01

    To investigate the effect of input parameters, such as the number of bridge-dwelling birds, decay rate of the bacteria, flow at the river, water temperature, and settling velocity, a parametric study was conducted using a water quality model developed with QUAL2Kw. The reach of the bacterial-impaired section from the direct droppings of bridge-nesting birds at the Guadalupe River near Kerrville, Texas was estimated using the model. The concentration of Escherichia coli bacteria were measured upstream, below the bridge, and downstream of the river for one-and-a-half years. The decay rate of the indicator bacteria in the river water was estimated from the model using measured data, and was found to be 6.5/day. The study suggests that the number of bridge-dwelling birds, the decay rate, and flow at the river have the highest impact on the fate and transport of bacteria. The water temperature moderately affects the fate and transport of bacteria, whereas, the settling velocity of bacteria did not show any significant effect. Once the decay rates are estimated, the reach of the impaired section was predicted from the model using the average flow of the channel. Since the decay rate does not vary significantly in the ambient environment at this location, the length of the impaired section primarily depends on flow.

  5. Factors associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States

    Science.gov (United States)

    Squillace, P.J.; Moran, M.J.

    2007-01-01

    Factors associated with sources, transport, and fate of volatile organic compounds (VOCs) in groundwater from aquifers throughout the United States were evaluated using statistical methods. Samples were collected from 1631 wells throughout the conterminous United States between 1996 and 2002 as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. Water samples from wells completed in aquifers used to supply drinking water were analyzed for more than 50 VOCs. Wells were primarily rural domestic water supplies (1184), followed by public water supplies (216); the remaining wells (231) supplied a variety of uses. The median well depth was 50 meters. Age-date information shows that about 60% of the samples had a fraction of water recharged after 1953. Chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene were some of the frequently detected VOCs. Concentrations generally were less than 1 ??g/L. Source factors include, in order of importance, general land-use activity, septic/sewer density, and sites where large concentrations of VOCs are potentially released, such as leaking underground storage tanks. About 10% of all samples had VOC mixtures that were associated with concentrated sources; 20% were associated with dispersed sources. Important transport factors included well/screen depth, precipitation/groundwater recharge, air temperature, and various soil characteristics. Dissolved oxygen was strongly associated with VOCs and represents the fate of many VOCs in groundwater. Well type (domestic or public water supply) was also an important explanatory factor. Results of multiple analyses show the importance of (1) accounting for both dispersed and concentrated sources of VOCs, (2) measuring dissolved oxygen when sampling wells to help explain the fate of VOCs, and (3) limiting the type of wells sampled in monitoring networks to avoid unnecessary variance in the data, or controlling for this variance during data analysis.

  6. Modeling the transport and fate of radioactive noble gases in very dry desert alluvium: Realistic scenarios

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-01-01

    US DOE Order 5820.2A (1988) requires that a performance assessment of all new and existing low-level radioactive waste management sites be made. An integral part of every performance assessment is the mathematical modeling of the transport and fate of noble gas radionuclides in the gas phase. Current in depth site characterization of the high desert alluvium in Area 5 of the Nevada Test Site (NTS) is showing that the alluvium is very very dry all the way to the water table (240 meters below land surface). The potential for radioactive noble gas (e.g. Rn-220 and Rn-222) transport to the atmosphere from shallow land burial of Thorium and Uranium waste is very high. Objectives of this modeling effort include: Construct a physics based sits specific noble gas transport model; Include induced advection due to barometric pressure changes at the atmospheric boundary layer (thin) - dry desert alluvium interface; User selected option for use of NOAA barometric pressure or a ''home brewed'' barometric pressure wave made up of up to 15 sinusoids and cosinusoids; Use the model to help make engineering decisions on the design of the burial pits and associated closure caps

  7. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  8. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  9. Biogeochemical Attributes That Affect the Fate and Transport of Military Relevant Contaminants Under Freeze-thaw Conditions

    Science.gov (United States)

    LeMonte, J.; Price, C. L.; Seiter, J.; Crocker, F. H.; Douglas, T.; Chappell, M. A.

    2017-12-01

    The roles and missions that the U.S. Department of Defense (DoD) undertakes in the Arctic are being reshaped by significant changes in the operational environment as a result of rising global temperatures and increased development of the vast training ranges available in Alaska. The Arctic is warming faster than any other region on Earth resulting in changing seasonality and precipitation patterns that, in turn, are leading to alterations in above ground vegetation, permafrost stability and summer sea ice extent. Collectively, these poorly defined ecosystem changes play critical roles in affecting the transport and eventual fate of persistent military relevant contaminants through unique Arctic and Subarctic terrestrial environments. As a result, management of military contaminants in a changing Arctic represents a unique and potentially significant liability to the Army and the DoD. The United States footprint in the Arctic region falls within the state of Alaska and U.S. Army Alaska manages 10% of all active Army training lands worldwide, which cover nearly 2,500 square miles in total land area. Primary recalcitrant contaminants of concern at active training ranges and at legacy sites include energetics (i.e. RDX and 2,4-dinitrotoluene) and heavy metals (i.e. antimony and lead). Through a series of field sampling and laboratory experiments, the objectives of this work are to: 1) quantify soil biogeochemical attributes that effect the physical fate and transport of military relevant contaminants in Arctic and subarctic soils under freeze-thaw conditions with a focus on near surface processes, and 2) quantify microbial diversity in Arctic and subarctic soils and the environmental constraints on community activity while exploring the effects of amendments on community function as they relate to contaminant transformation.

  10. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    Science.gov (United States)

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.

  11. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    Directory of Open Access Journals (Sweden)

    Lee JA

    2015-03-01

    Full Text Available Jeong-A Lee,1,* Mi-Kyung Kim,1,* Hyoung-Mi Kim,2,* Jong Kwon Lee,3 Jayoung Jeong,4 Young-Rok Kim,5 Jae-Min Oh,2 Soo-Jin Choi1 1Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea; 2Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Republic of Korea; 3Hazard Substances Analysis Division, Gwangju Regional Food and Drug Administration, Ministry of Food and Drug Safety, Gwangju, Republic of Korea; 4Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea; 5Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea *These authors contributed equally to this work Background: Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics.Methods: We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats.Results: N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen

  12. Shaken, Not Stirred: How Tidal Advection and Dispersion Mechanisms Rather Than Turbulent Mixing Impact the Movement and Fate of Aquatic Constituents and Fish in the California Central Valley

    Science.gov (United States)

    Sridharan, V. K.; Fong, D.; Monismith, S. G.; Jackson, D.; Russel, P.; Pope, A.; Danner, E.; Lindley, S. T.

    2016-12-01

    River deltas worldwide - home to nearly a billion people, thousands of species of flora and fauna, and economies worth trillions of dollars - have experienced massive ecosystem decline caused by urbanization, pollution, and water withdrawals. Habitat restoration in these systems is imperative not only for preserving endangered biomes, but also in sustaining human demand for freshwater and long term commercial viability. The sustainable management of heavily engineered, multi-use, branched tidal estuaries such as the Sacramento-San Joaquin Delta (henceforth, the Delta) requires utilizing physical transport and mixing process models. These inform us about the movement and fate of water quality constituents and aquatic organisms. This study identifies and quantifies the effects of various hydrodynamic mechanisms in the Delta across multiple spatio-temporal scales. A particle tracking model with accurate channel junction physics and an agent based model with realistic biological hypotheses of fish behavior were developed to study the movement and fate of tracers (surrogates for water quality constituents) and fish in the Delta. Simulations performed with these models were used to (1) determine the transport pathways through the Delta, (2) quantify the magnitude of transport and mixing processes along those pathways, and (3) describe the effects of physical stressors on fates of juvenile salmon. The Delta is largely dominated by large spatial scale advection by river flows, tidal pumping, and significantly increased dispersion through chaos due to the interaction of tidal flows with channel junctions. The movement and fate of simulated tracers and juvenile salmon are governed largely by the water diversion and pumping operations, transport pathways and chaotic tidal mixing mechanisms along those pathways. There is also a significant effect of predation on fish. These transport pathway and mechanistic dependencies indicate that restoration efforts which are harmonious

  13. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  14. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  15. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  16. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension

    Directory of Open Access Journals (Sweden)

    Ueno Kazuko

    2009-04-01

    Full Text Available Abstract Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in

  17. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.

    Science.gov (United States)

    Yan, Nieng

    2017-08-18

    The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    Science.gov (United States)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  19. FATE OF PAH COMPOUNDS IN TWO SOIL TYPES: INFLUENCE OF VOLATILIZATION, ABIOTIC LOSS, AND BIOLOGICAL ACTIVITY

    Science.gov (United States)

    The fate of 14 polycyclic aromatic hydrocarbon (PAH) compounds was evaluated with regard to interphase transfer potential and mechanisms of treatment in soil under unsaturated conditions. Volatilization and abiotic and biotic fate of the PAHs were determined using two soils not p...

  20. Mass Transfer Behavior of Perfluorinated Chemicals in Saturated Clay-rich Sands: A Laboratory-based Study on Fate and Transport in Groundwater and Sediments

    Science.gov (United States)

    Greenberg, R. R.; Tick, G. R.; Abbott, J. B., III; Carroll, K. C.

    2017-12-01

    Perfluoroalkyl substances (PFAS) are a class of emerging contaminants that pose a threat to the human health and the quality of groundwater, surface water, and drinking water supplies. This study aims to elucidate the primary physicochemical factors controlling the fate and transport of the PFAS contaminants, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), in groundwater. Physicochemical processes of intercalation, adsorption, and desorption were investigated for the retention of PFAS at different initial aqueous-phase concentrations in modified-natural sediments composed of sand (40/50 accusand; foc = 0.04% unmodified) with low, medium, and high organic carbon contents (foc = 10, 20, and 50%) and various pre-conditioned clay-fractions. Diffusional mass-transfer limitations were evaluated based on initial PFAS concentration, specific clay structure, and resulting contaminant intercalation (d-spacing changes). A series of short- (48 hr), medium- (7 day) and long-term (30 day) batch and column experiments were conducted to determine physicochemical processes as a function of compound chemistry, sediment geochemistry, sorbent crystalline structure, and contaminant/sediment contact-time. Physicochemical parameters, PFAS concentrations, and sediment characterization were conducted using high performance liquid chromatography (HPLC), X-ray diffraction (XRD), and furnace combustion analytical techniques. The results of PFAS contaminant transport, under the different conditions tested, provide a scientific contribution with application to the development of improved risk assessments, predictions of fate and transport, and more effective remediation strategies for emerging perfluorinated contaminants in soil and groundwater.

  1. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  2. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  3. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    Science.gov (United States)

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  4. Selection of organic chemicals for subsurface transport. Subsurface transport program interaction seminar series. Summary

    International Nuclear Information System (INIS)

    Zachara, J.M.; Wobber, F.J.

    1984-11-01

    Model compounds are finding increasing use in environmental research. These individual compounds are selected as surrogates of important contaminants present in energy/defense wastes and their leachates and are used separately or as mixtures in research to define the anticipated or ''model'' environmental behavior of key waste components and to probe important physicochemical mechanisms involved in transport and fate. A seminar was held in Germantown, Maryland, April 24-25, 1984 to discuss the nature of model organic compounds being used for subsurface transport research. The seminar included participants experienced in the fields of environmental chemistry, microbiology, geohydrology, biology, and analytic chemistry. The objectives of the seminar were two-fold: (1) to review the rationale for the selection of organic compounds adopted by research groups working on the subsurface transport of organics, and (2) to evaluate the use of individual compounds to bracket the behavior of compound classes and compound constructs to approximate the behavior of complex organic mixtures

  5. Environmental Fate and Transport of Poly- and Perfluoroalkyl Substances at Aqueous Film-Forming Foam Impacted Sites

    Science.gov (United States)

    Higgins, C.

    2017-12-01

    Poly and perfluoroalkyl substances (PFASs) are constituents in aqueous film-forming foam (AFFF) used to extinguish fuel fires. Substantially elevated PFAS groundwater concentrations have been observed at firefighter protection training areas, where co-contaminants such as chlorinated solvents and fuel hydrocarbons are also commonly present. Research into the fate and transport potential of PFASs at AFFF-impacted sites will be presented, with a particular focus on how co-contaminants and co-contaminant remediation technologies may alter the composition and transport behavior of PFASs at these sites. A detailed analysis of data collected from a U.S. Air Force site (Ellsworth Air Force Base, South Dakota) indicates that that conversion of polyfluoroalkyl chemicals to perfluoroalkyl acids (PFAAs) in situ due to natural and enhanced remediation of petroleum hydrocarbons. In addition, bench-scale studies examining the effects of various chemical oxidants, typically employed via in situ chemical oxidation (ISCO), indicates that oxidation-based remediation technologies have the potential to alter the release and composition of PFASs in AFFF-impacted source zones. Future challenges in addressing PFAS contamination will be discussed, particularly with respect to closing the mass balance on PFAAs and their precursors at AFFF-impacted sites.

  6. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and

  7. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.

    1996-01-01

    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  8. Biological effects of petroleum hydrocarbons: Predictions of long-term effects and recovery

    International Nuclear Information System (INIS)

    Capuzzo, J.M.

    1990-01-01

    Biological effects of petroleum hydrocarbons on marine organisms and ecosystems are dependent on the persistence and bioavailability of specific hydrocarbons, the ability of organisms to accumulate and metabolize various hydrocarbons, the fate of metabolized products, and the interference of specific hydrocarbons with normal metabolic processes that may alter an organism's chances for survival and reproduction in the environment. In considering the long-term effects of petroleum hydrocarbons on marine ecosystems it is important to ascertain what biological effects may result in subtle ecological changes, changes in community structure and function, and possible impairment of fisheries resources. It is also important to understand which hydrocarbons persist in benthic environments and the sublethal effects that lead to reduced growth, delayed development and reduced reproductive effort, population decline and the loss of that population's function in marine communities. Only through a multi-disciplinary approach to the study of the fate, transport and effects of petroleum hydrocarbons on marine ecosystems will there be a significant improvement in the ability to predict the long-term effects of oil spills and to elucidate the mechanisms of recovery

  9. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout

    2011-01-01

    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  10. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  11. Fate and transport of 1278-TCDD, 1378-TCDD, and 1478-TCDD in soil-water systems

    International Nuclear Information System (INIS)

    Fan Zhaosheng; Casey, Francis X.M.; Larsen, Gerald L.; Hakk, Heldur

    2006-01-01

    The most toxic dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (2378-TCDD), and obtaining comprehensive experimental data for this compound is challenging. However, several nontoxic isomers of 2378-TCDD exist, and can provide significant experimental evidence about this highly toxic dioxin. The goal of this study was to obtain experimental evidence for the fate and transport of 2378-TCDD in natural soils using its nontoxic isomers, 1,2,7,8-tetrachlorodibenzo-p-dioxin (1278-TCDD), 1,3,7,8-tetrachlorodibenzo-p-dioxin (1378-TCDD), and 1,4,7,8-tetrachlorodibenzo-p-dioxin (1478-TCDD). Batch sorption and miscible-displacement experiments, in various soils, were done using [4- 14 C]-radiolabeled TCDDs, while metabolism of these compounds was monitored. The results from the batch experiments indicated a high sorption affinity of all the TCDD isomers to soils and a strong correlation to organic matter (OM) content. 1278-TCDD, 1378-TCDD and 1478-TCDD (TCDDs) were more tightly bound to the soil with high OM than to the soil with low OM; however, it took a longer contact time to approach sorption equilibrium of TCDDs in the soil with high OM. Miscible-displacement breakthrough curves indicated chemical nonequilibrium transport, where there was a rate-limited or kinetic sorption that was likely caused by OM. Combustion analyses of extracted soil from the soil columns showed that most TCDDs were adsorbed in the top 1-5 cm of the column. These column combustion results also showed that sorption was correlated to specific surface and soil depth, which suggested the possibility of colloidal transport

  12. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    Science.gov (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  13. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    Science.gov (United States)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  14. Biological fate of butylated hydroxytoluene (BHT) in rats, (2)

    International Nuclear Information System (INIS)

    Nakagawa, Yoshio; Ikawa, Mieko; Hiraga, Kogo

    1976-01-01

    The fate of butylated hydroxytoluene (BHT) in hepatocytes was examined. 14 C-labelled BHT was administered once orally to rats, and the fractionation of hepatocytes was made in course of time to detect the subcellular distribution of radioactivity. The BHT incorporation into livers reached the maximum 6 hours after the administration. Most of the radioactivity was localized in the supernatant fraction at the beginning of the administration, but it decreased gradually, and the radioactivity in microsome fraction increased in time course. The radioactivity in the supernatant fraction and in serum assumed two forms; namely high molecular compound bound with protein and free low molecular compound. (Kobatake, H.)

  15. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals

    Science.gov (United States)

    Capel, P.D.; McCarthy, K.A.; Barbash, J.E.

    2008-01-01

    This paper is an introduction to the following series of papers that report on in-depth investigations that have been conducted at five agricultural study areas across the United States in order to gain insights into how environmental processes and agricultural practices interact to determine the transport and fate of agricultural chemicals in the environment. These are the first study areas in an ongoing national study. The study areas were selected, based on the combination of cropping patterns and hydrologic setting, as representative of nationally important agricultural settings to form a basis for extrapolation to unstudied areas. The holistic, watershed-scale study design that involves multiple environmental compartments and that employs both field observations and simulation modeling is presented. This paper introduces the overall study design and presents an overview of the hydrology of the five study areas. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  16. Transport and fate of Herbaspirillum chlorophenolicum FA1 in saturated porous media

    Science.gov (United States)

    Li, X.; Xu, H.; Wu, J.

    2016-12-01

    For the bioremediation of contaminated groundwater, sufficient dispersal of functional microorganisms is one of the most important factors that determine the remediation efficiency. There are extensive studies on the transport of microbes in porous media, while most of them focus on pathogenic bacteria and little attention has been given toward functional bacteria that being used in bioremediation process. Therefore, accurate knowledge of the mechanisms that govern the transport and distribution of such bacteria in groundwater is needed to develop efficient treatment techniques. Herbaspirillum chlorophenolicum FA1, a pure bacterial strain capable of absorbing heavy metals and degrading polycyclic aromatic hydrocarbons (PAHs), was selected as the representative functional bacterium in this study. A series of batch and column experiments were conducted to investigate the transport and deposition behavior of strain FA1 in saturated porous media. The effects of physical (grain size), chemical (ionic strength, humic acid), and biological factors (living/dead cells) were studied in detail. In addition, numerical simulations of breakthrough curve (BTC) data were also performed for information gathering. Results of this study could advance our understanding of functional bacteria transport and help to develop successful bioremediation strategies. This work was financially supported by the National Natural Science Foundation of China -Xinjiang Project (U1503282), the National Natural Science Foundation of China (41030746, 41102148), and the Natural Science Foundation of Jiangsu Province (BK20151385). Keywords: Herbaspirillum chlorophenolicum FA1, bacteria, porous media, transport, modeling

  17. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    by using substance inherent properties, following an approach commonly used in large-scale MP multimedia fate and transport models. The chosen level of complexity ensures a low data requirement and minimizes the need for field measurements. Next to a synthesis of model applications, a didactic example......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...... Wastewater and Stormwater system (IUWS – including drainage network, stormwater treatment units, wastewater treatment plants, sludge treatment, and the receiving water body). The models are developed by considering the high temporal variability of the processes taking place in the IUWS, providing a basis...

  18. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results

    International Nuclear Information System (INIS)

    Fenner, Kathrin; Scheringer, Martin; Hungerbuehler, Konrad

    2004-01-01

    The hazard indicators persistence (P) and long-range transport potential (LRTP) are used in chemicals assessment to characterize chemicals with regard to the temporal and spatial extent of their environmental exposure. They are often calculated based on the results of multimedia fate models. The environmental and substance-specific input parameters of such models are subject to a range of methodological uncertainties and also influenced by natural variability. We employed probabilistic uncertainty analysis to quantify variance in P and LRTP predictions for chemicals with different partitioning and transport behavior. Variance found in the results is so large that it prevents a clear distinction between chemicals. Additionally, only small improvements are observed when evaluating the results relative to a benchmark chemical. This can be explained by the dominance of substance-specific parameters and the only small direct influence of environmental parameters on P and LRTP as model outcomes. The findings underline the importance of learning how environmental conditions cause variability in substance behavior for improved substance ranking and classification. - Environmental conditions cause variability in substance behavior which need to be considered in chemical ranking schemes

  19. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  20. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-09-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or dispersion. Additionally during the transport of parent and daughter radionuclides in soil, radionuclide decay may occur. This version of CASCADER called CASCADR9 starts with the concepts presented in volumes one and three of this series. For a proper understanding of how the model works, the reader should read volume one first. Also presented in this volume is a set of realistic scenarios for buried sources of radon gas, and the input and output file structure for CASCADER9

  1. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Cawlfield, D.E.; Been, K.B.; Emer, D.F.; Lindstrom, F.T.; Shott, G.J.

    1993-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and/or diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. This is volume two to the CASCADER series, titled CASCADR8. It embodies the concepts presented in volume one of this series. To properly understand how the CASCADR8 model works, the reader should read volume one first. This volume presents the input and output file structure for CASCADR8, and a set of realistic scenarios for buried sources of radon gas

  2. Fate and transport of selected estrogen compounds in Hawaii soils: Effect of soil type and macropores

    Science.gov (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K.; Ray, Chittaranjan

    2014-10-01

    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii.

  3. Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores.

    Science.gov (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K; Ray, Chittaranjan

    2014-10-01

    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Remote sensing for water quality and biological measurements in coastal waters

    International Nuclear Information System (INIS)

    Johnson, R.W.; Harriss, R.C.

    1980-01-01

    Recent remote sensing experiments in the United States' coastal waters indicate that certain biological and water quality parameters have distinctive spectral characteristics. Data outputs from remote sensors, to date, include: (1) high resolution measurements to determine concentrations and distributions of total suspended particulates, temperature, salinity, chlorophyll a, and phytoplankton color group associations from airborne and/or satellite platforms, and (2) low resolution measurements of total suspended solids, temperature, ocean color, and possibly chlorophyll from satellite platforms. A summary of platforms, sensors and parameters measured is given. Remote sensing, especially when combined with conventional oceanographic research methods, can be useful in such high priority research areas as estuarine and continental shelf sediment transport dynamics, transport and fate of marine pollutants, marine phytoplankton dynamics, and ocean fronts

  5. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  6. Scandinavian belief in fate

    Directory of Open Access Journals (Sweden)

    Åke Ström

    1967-02-01

    Full Text Available In point of principle, Christianity does not give room for any belief in fate. Astrology, horoscopes, divination, etc., are strictly rejected. Belief in fate never disappeared in Christian countries, nor did it in Scandinavia in Christian times. Especially in folklore we can find it at any period: People believed in an implacable fate. All folklore is filled up with this belief in destiny. Nobody can escape his fate. The future lies in the hands of fate, and the time to come takes its form according to inscrutable laws. The pre-Christian period in Scandinavia, dominated by pagan Norse religion, and the secularized epoch of the 20th century, however, show more distinctive and more widespread beliefs in fate than does the Christian period. The present paper makes a comparison between these forms of belief.

  7. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  8. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  9. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  10. Modeling Quantum Dot Nanoparticle Fate and Transport in Saturated Porous Media under Varying Flow Conditions

    Science.gov (United States)

    Becker, M. D.; Wang, Y.; Englehart, J.; Pennell, K. D.; Abriola, L. M.

    2010-12-01

    As manufactured nanomaterials become more prevalent in commercial and industrial applications, the development of mathematical models capable of predicting nanomaterial transport and retention in subsurface systems is crucial to assessing their fate and distribution in the environment. A systematic modeling approach based on a modification of clean-bed filtration theory was undertaken to elucidate mechanisms governing the transport and deposition behavior of quantum dots in saturated quartz sand as a function of grain size and flow velocity. The traditional deposition governing equation, which assumes irreversible attachment by a first-order rate (katt), was modified to include a maximum or limiting retention capacity (Smax) and first-order detachment of particles from the solid phase (kdet). Quantum dot mobility experiments were performed in columns packed with three size fractions of Ottawa sand (d50 = 125, 165, and 335 μm) at two different pore-water velocities (0.8 m/d and 7.6 m/d). The CdSe quantum dots in a CdZnS shell and polyacrylic acid coating were negatively charged (zeta potential measured ca. -35 mV) with a hydrodynamic diameter of approximately 30 nm. Fitted values of katt, Smax, and kdet were obtained for each transport and deposition experiment through the implementation of a nonlinear least-squares routine developed to fit the model to experimental breakthrough and retention data via multivariate optimization. Fitted attachment rates and retention capacities increased exponentially with decreasing grain size at both flow rates, while no discernable trend was apparent for the fitted detachment rates. Maximum retention capacity values were plotted against a normalized mass flux expression, which accounts for flow conditions and grain size. A power function fit to the data yielded a dependence that was consistent with a previous study undertaken with fullerene nanoparticles.

  11. Biologically inspired water purification through selective transport

    International Nuclear Information System (INIS)

    Freeman, E C; Soncini, R M; Weiland, L M

    2013-01-01

    Biologically inspired systems based on cellular mechanics demonstrate the ability to selectively transport ions across a bilayer membrane. These systems may be observed in nature in plant roots, which remove select nutrients from the surrounding soil against significant concentration gradients. Using biomimetic principles in the design of tailored active materials allows for the development of selective membranes for capturing and filtering targeted ions. Combining this biomimetic transport system with a method for reclaiming the captured ions will allow for increased removal potential. To illustrate this concept, a device for removing nutrients from waterways to aid in reducing eutrophication is outlined and discussed. Presented is a feasibility study of various cellular configurations designed for this purpose, focusing on maximizing nutrient uptake. The results enable a better understanding of the benefits and obstacles when developing these cellularly inspired systems. (paper)

  12. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    Science.gov (United States)

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  13. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.

    Science.gov (United States)

    Boulange, Julien; Malhat, Farag; Thuyet, Dang Quoc; Watanabe, Hirozumi

    2017-12-01

    The PCPF-1 model was improved for forecasting the fate and transport of metabolites in addition to parent compounds in rice paddies. In the new PCPF-M model, metabolites are generated from the dissipation of pesticide applied in rice paddies through hydrolysis, photolysis and biological degradations. The methodology to parameterize the model was illustrated using two scenarios for which uncertainty and sensitivity analyses were also conducted. In a batch degradation experiment, the hourly forecasted concentrations of fipronil and its metabolites in paddy water were very accurate. In a field-scale experiment, the hourly forecasted concentrations of fipronil in paddy water and paddy soil were accurate while the corresponding daily forecasted concentrations of metabolites were adequate. The major contributors to the variation of the forecasted metabolite concentrations in paddy water and paddy soil were the formation fractions of the metabolites. The influence of uncertainty included in input parameters on the forecasted metabolite concentration was high during the peak concentration of metabolite in paddy water. In contrast, in paddy soil, the metabolite concentrations forecasted several days after the initial pesticide application were sensitive to the uncertainty incorporated in the input parameters. The PCPF-M model simultaneously forecasts the concentrations of a parent pesticide and up to three metabolites. The model was validated using fipronil and two of its metabolites in paddy water and paddy soil. The model can be used in the early stage of the pesticide registration process and in risk assessment analysis for the evaluation of pesticide exposure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Prevention of biological transport of radioactivity in the Hanford 200 areas

    International Nuclear Information System (INIS)

    Conklin, A.W.; Wheeler, R.E.; Elder, R.E.; Osborne, W.L.

    1985-01-01

    Environmental surveillance in the Hanford 200 Areas is conducted, in part, to determine the potential impact on the environment following biological intrusion into, and transport from, radioactive waste containment systems; and to initiate mitigative action to decontaminate the environment, eliminate the source term, and/or prevent future intrusion. Biological transport incidents have included assimilation by Russian thistle via physiological plant processes and subsequent dispersal by winds, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating, source terms, thus preventing such incidents from recurring. Approximately 60% of source-term acreage requiring stabilization or decontamination has been completed. 5 references, 3 tables

  15. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    Science.gov (United States)

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  16. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives

    Science.gov (United States)

    Graham, Thomas G. W.; Tabei, S. M. Ali; Dinner, Aaron R.; Rebay, Ilaria

    2010-01-01

    A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks. PMID:20570936

  17. Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers

    Science.gov (United States)

    Ferrari, Mauro

    2010-01-01

    The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance to a prescribed logic. These are referred to as Logic-Embedded Vectors “(LEV)” in the following. Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for the lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the blood stream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed ‘transport oncophysics’ unveils a new promising frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects. PMID:20079548

  18. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  19. Howard Brenner's Legacy for Biological Transport Processes

    Science.gov (United States)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  20. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: ioannis.liagkouridis@ivl.se [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Ian T. [ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden)

    2014-09-01

    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  1. Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site

    Science.gov (United States)

    Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne

    2017-12-01

    Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses ( μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.

  2. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  3. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  4. The Fate of Dissolved Creosote Compounds in an Intact Fratured Clay Column

    DEFF Research Database (Denmark)

    Broholm, Kim; Arvin, Erik; Hansen, Asger

    1995-01-01

    The fate of 16 different organics typical for creosote was studied under aerobic conditions in a large intact fractured clay column experiment. Some of the organics (benzene, toluene, o-xylene, phenol, and o-cresol) were transported at the same rate as bromide through the fractured clay, whereas ...

  5. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s.

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  6. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    experimentation and modeling and is defined, in the context of Biological Systems Science research programs under DOE's Office of Biological and Environmental Research (BER), as ''the holistic, multidisciplinary study of complex interactions that specify the function of an entire biological system - whether single cells or a multicellular organism - rather than the reductionist study of individual components.'' In August 2009, BER held the Subsurface Complex System Science Relevant to Contaminant Fate and Transport workshop to assess the merits and limitations of complex systems science approaches to subsurface systems controlled by coupled hydrological, microbiological, and geochemical processes.

  7. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    International Nuclear Information System (INIS)

    2010-01-01

    modeling and is defined, in the context of Biological Systems Science research programs under DOE's Office of Biological and Environmental Research (BER), as ''the holistic, multidisciplinary study of complex interactions that specify the function of an entire biological system - whether single cells or a multicellular organism - rather than the reductionist study of individual components.'' In August 2009, BER held the Subsurface Complex System Science Relevant to Contaminant Fate and Transport workshop to assess the merits and limitations of complex systems science approaches to subsurface systems controlled by coupled hydrological, microbiological, and geochemical processes.

  8. Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat

    Directory of Open Access Journals (Sweden)

    Barrefelt A

    2013-08-01

    Full Text Available Åsa Barrefelt,1,2,* Maryam Saghafian,2,* Raoul Kuiper,3 Fei Ye,4 Gabriella Egri,5 Moritz Klickermann,5 Torkel B Brismar,1 Peter Aspelin,1 Mamoun Muhammed,4 Lars Dähne,5 Moustapha Hassan2,6 1Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, and Department of Radiology, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 2Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; 3Karolinska Institute Core Facility for Morphologic Phenotype Analysis, Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden; 4Division of Functional Materials, Department of Materials and Nano Physics, Royal Institute of Technology, Stockholm, Sweden; 5Surflay Nanotec GmbH, Berlin, Germany; 6Clinical Research Center, Karolinska University Hospital-Huddinge, Stockholm, Sweden *These authors contributed equally to this work Background: In the present investigation, we studied the kinetics and biodistribution of a contrast agent consisting of poly(vinyl alcohol (PVA microbubbles containing superparamagnetic iron oxide (SPION trapped between the PVA layers (SPION microbubbles. Methods: The biological fate of SPION microbubbles was determined in Sprague-Dawley rats after intravenous administration. Biodistribution and elimination of the microbubbles were studied in rats using magnetic resonance imaging for a period of 6 weeks. The rats were sacrificed and perfusion-fixated at different time points. The magnetic resonance imaging results obtained were compared with histopathologic findings in different organs. Results: SPION microbubbles could be detected in the liver using magnetic resonance imaging as early as 10 minutes post injection. The maximum signal was detected between 24 hours and one week post injection. Histopathology showed the presence of clustered SPION microbubbles predominantly in the lungs from

  9. Emerging organic contaminants in sludges. Analysis, fate and biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vicent, Teresa [Univ. Autonoma de Barcelona, Bellaterra (Spain). Chemical Engineering Dept.; Eljarrat, Ethel [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Caminal, Gloria [IQAC-CSIC, Barcelona (Spain). Grupo de biocatalisis Aplicada y biodegradacion; Barcelo, Damia (eds.) [IDAEA-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry; Girona Univ. (Spain). Catalan Inst. for Water Research

    2013-07-01

    A comprehensive review. Written by experts. Richly illustrated. There are a growing number of new chemicals in the environment that represent an ascertained or potential risk. Many of them can be found in sewage sludge and are the subject of this volume. Experts in the field highlight their occurrence and fate, risks of biosolid use, advanced chemical analysis methods, and degradation techniques with a special focus on biodegradation using fungi. In the final chapter conclusions and trends are offered as a point of departure for future studies. The double-disciplinary approach combining environmental analysis and engineering makes the book a valuable and comprehensive source of information for a broad audience, such as environmental chemists and engineers, biotechnologists, ecotoxicologists and professionals responsible for waste and water management.

  10. Fate and transport of fragrance materials in principal environmental sinks.

    Science.gov (United States)

    Zhang, Xiaolei; Brar, Satinder Kaur; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2013-10-01

    Fragrance materials are widely present in the environment, such as air, water, and soil. Concerns have been raised due to the increasing utilization and suspected impact on human health. The bioaccumulating property is considered as one of the causes of the toxicity to human beings. The removal of fragrance materials from environmental sinks has not been paid enough attention due to the lack of regulation and research on their toxicity. This paper provides systematic information on how fragrance materials are transferred to the environment, how do they affect human lives, and what is their fate in water, wastewater, wastewater sludge, and soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  12. Implementing atmospheric fate in regulatory risk assessment of pesticides: (How) can it be done?

    NARCIS (Netherlands)

    Bakker, D.J.; Gilbert, A.J.; Gottschild, D.; Kuchnicki, T.; Laane, R.W.P.M.; Linders, J.B.H.J.; Meent, D. van de; Montforts, M.H.M.M.; Pino, J.; Pol, J.W.; Straalen, N.M. van

    1999-01-01

    Atmospheric fate of pesticides and their possible effects in ecosystems beyond the immediate surrounding of the application site are not actively considered in currently used regulatory, risk assessment schemes. Concern with respect to atmospheric transport and subsequent deposition of pesticides in

  13. Implementing atmospheric fate in regulatory risk assessment of pesticides: (how) can it be done?

    NARCIS (Netherlands)

    Bakker, D.J.; Gilbert, A.J.; Gottschild, D.; Kuchnicki, T.; Laane, R.W.P.M.; Linders, J.B.H.J.; van de Meent, D.; Montforts, M.H.M.M.; Pino, J.; Pol, J.W.; van Straalen, N.M.

    1999-01-01

    Atmospheric fate of pesticides and their possible effects in ecosystems beyond the immediate surrounding of the application site are not actively considered in currently used regulatory, risk assessment schemes. Concern with respect to atmospheric transport and subsequent deposition of pesticides in

  14. A simulation of the transport and fate of radon-220 derived from thorium-232 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1992-07-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessment of all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Mathematical models, which point out data needs and therefore drive site characterization, provide a logical means of performing the required flux estimations. Thorium-232 Waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992), was used to simulate the transport and fate of radon-220 from its source of origin nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release to the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport

  15. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry.

    Science.gov (United States)

    Joy, Stacey R; Bartelt-Hunt, Shannon L; Snow, Daniel D; Gilley, John E; Woodbury, Bryan L; Parker, David B; Marx, David B; Li, Xu

    2013-01-01

    Due to the use of antimicrobials in livestock production, residual antimicrobials and antimicrobial resistance genes (ARGs) could enter the environment following the land application of animal wastes and could further contaminate surface and groundwater. The objective of this study was to determine the effect of various manure land application methods on the fate and transport of antimicrobials and ARGs in soil and runoff following land application of swine manure slurry. Swine manure slurries were obtained from facilities housing pigs that were fed chlortetracyline, tylosin or bacitracin and were land applied via broadcast, incorporation, and injection methods. Three rainfall simulation tests were then performed on amended and control plots. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antimicrobials in runoff. However, among the three application methods tested broadcast resulted in the highest total mass loading of antimicrobials in runoff from the three rainfall simulation tests. The aqueous concentrations of chlortetracyline and tylosin in runoff decreased in consecutive rainfall events, although the trend was only statistically significant for tylosin. For ARGs, broadcast resulted in significantly higher erm genes in runoff than did incorporation and injection methods. In soil, the effects of land application methods on the fate of antimicrobials in top soil were compound specific. No clear trend was observed in the ARG levels in soil, likely because different host cells may respond differently to the soil environments created by various land application methods.

  16. A review of the fate of engineered nanomaterials in municipal solid waste streams.

    Science.gov (United States)

    Part, Florian; Berge, Nicole; Baran, Paweł; Stringfellow, Anne; Sun, Wenjie; Bartelt-Hunt, Shannon; Mitrano, Denise; Li, Liang; Hennebert, Pierre; Quicker, Peter; Bolyard, Stephanie C; Huber-Humer, Marion

    2018-05-01

    Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Waste management practices to control biological transport of radioactivity at the Hanford Site

    International Nuclear Information System (INIS)

    Conklin, A.W.

    1985-01-01

    One of the goals of waste management in the Hanford Site 200 Areas is to prevent biological intrusion into, and transport from, waste storage and disposal sites. Practices established to achieve these goals include the elimination of deep-rooted vegetation on waste sites to prevent plant root intrusion into radioactivity, selective herbicide application to prevent regrowth of these plants, planting of shallow-rooted plants to successfully compete with deep-rooted plants for moisture, surface stabilization, and environmental surveillance. Past biological transport incidents have included transport by Russian thistle by way of physiological plant processes, bird access into exposed contamination, and animals burrowing into radioactive waste disposal sites. Rockwell Hanford Operations, through mitigative actions and continued surveillance, has made significant progress in eliminating, or better isolating source terms, thus preventing or inhibiting problems from recurring. Approximately 60% of source term acreage requiring stabilization or decontamination has been completed

  18. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    International Nuclear Information System (INIS)

    Zuo, Yanan; Chen, Guiqiu; Zeng, Guangming; Li, Zhongwu; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; Tan, Qiong

    2015-01-01

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag + and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag + to AgNPs

  19. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Zhongwu; Yan, Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Guo, Zhi; Huang, Zhenzhen; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-03-21

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag{sup +} and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag{sup +} to AgNPs.

  20. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    Science.gov (United States)

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  2. Modeling the fate and transport of bacteria in agricultural and pasture lands using APEX

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a whole farm to small watershed scale continuous simulation model developed for evaluating various land management strategies. The current version, APEX0806, does not have the modeling capacity for fecal indicator bacteria fate and trans...

  3. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  4. A multiscale description of growth and transport in biological tissues

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2007-01-01

    Full Text Available We study a growing biological tissue as an open biphasic mixture with mass exchange between phases. The solid phase is identified with the matrix of a porous medium, while the fluid phase is comprised of water, together with all the dissolved chemical substances coexisting in the pore space. We assume that chemical substances evolve according to transport mechanisms determined by kinematical and constitutive relations, and we propose to consider growth as a process able to influence transport by continuously varying the thermo-mechanic state of the tissue. By focusing on the case of anisotropic growth, we show that such an influence occurs through a continuous rearrangement of the tissue material symmetries. In order to illustrate this interaction, we restrict ourselves to diffusion-dominated transport, and we assume that the time-scales associated with growth and the transport process of interest are largely separated. This allows for performing an asymptotic analysis of the "field equations" of the system. In this framework, we provide a formal solution of the transport equation in terms of its associated Green's function, and we show how the macroscopic concentration of a given chemical substance is "modulated" by anisotropic growth. .

  5. Characterization and simulation of fate and transport of selected volatile organic compounds in the vicinities of the Hadnot Point Industrial Area and landfill: Chapter A Supplement 6 in Analyses and historical reconstruction of groundwater flow, contaminant fate and transport, and distribution of drinking water within the service areas of the Hadnot Point and Holcomb Boulevard Water Treatment Plants and vicinities, U.S. Marine Corps Base Camp Lejeune, North Carolina

    Science.gov (United States)

    Jones, L. Elliott; Suárez-Soto, René J.; Anderson, Barbara A.; Maslia, Morris L.

    2013-01-01

    This supplement of Chapter A (Supplement 6) describes the reconstruction (i.e. simulation) of historical concentrations of tetrachloroethylene (PCE), trichloroethylene (TCE), and benzene3 in production wells supplying water to the Hadnot Base (USMCB) Camp Lejeune, North Carolina (Figure S6.1). A fate and transport model (i.e., MT3DMS [Zheng and Wang 1999]) was used to simulate contaminant migration from source locations through the groundwater system and to estimate mean contaminant concentrations in water withdrawn from water-supply wells in the vicinity of the Hadnot Point Industrial Area (HPIA) and the Hadnot Point landfill (HPLF) area.4 The reconstructed contaminant concentrations were subsequently input into a flow-weighted, materials mass balance (mixing) model (Masters 1998) to estimate monthly mean concentrations of the contaminant in finished water 5 at the HPWTP (Maslia et al. 2013). The calibrated fate and transport models described herein were based on and used groundwater velocities derived from groundwater-flow models that are described in Suárez-Soto et al. (2013). Information data pertinent to historical operations of water-supply wells are described in Sautner et al. (2013) and Telci et al. (2013).

  6. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  7. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    DEFF Research Database (Denmark)

    Giacometti, Simone; Benbahouche, Nour El Houda; Domanski, Michal

    2017-01-01

    The nuclear cap-binding complex (CBC) stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC......-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis....

  8. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  9. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  10. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend

  11. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between

  12. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    Science.gov (United States)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  13. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    Science.gov (United States)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  14. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  15. Evaluating biological transport of radionuclides at low-level waste burial sites

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Kennedy, W.E.; McKenzie, D.H.

    1983-08-01

    The purpose of the work reported here is to develop and demonstrate methods for evaluating the long-term impact of biological processes at low-level waste (LLW) disposal sites. As part of this effort, we developed order-of-magnitude estimates of dose-to-man resulting from animal burrowing activity and plant translocation of radionuclides. Reference low-level waste sites in both arid and humid areas of the United States were examined. The results of our evaluation for generalized arid LLW burial site are presented here. Dose-to-man estimates resulting from biotic transport are compared with doses calculated from human intrusion exposure scenarios. Dose-to-man estimates, as a result of biotic transport, are of the same order of magnitude as those resulting from a more commonly evaluated human intrusion scenario. The reported lack of potential importance of biotic transport at LLW sites in earlier assessment studies is not confirmed by our findings. These results indicate that biotic transport has the long-term potential to mobilize radionuclides. Therefore, biotic transport should be carefully evaluated during burial site assessment

  16. Fixable or Fate? Perceptions of the Biology of Depression

    Science.gov (United States)

    Lebowitz, Matthew S.; Ahn, Woo-Kyoung; Nolen-Hoeksema, Susan

    2013-01-01

    Objective: Previous research has shown that biological (e.g., genetic, biochemical) accounts of depression--currently in ascendancy--are linked to the general public's pessimism about the syndrome's prognosis. This research examined for the first time whether people with depressive symptoms would associate biological accounts of depression with…

  17. "Fate: The short film"

    OpenAIRE

    Maya Quintana, Jennifer

    2014-01-01

    "Fate: The Short Film" is a four minute short film which reflects the idea that nobody can escape from the fate. It has a good picture and sound quality with an understandable message for all public and with the collaboration of actors, filmmaker, stylist, script advisor and media technician.

  18. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    Science.gov (United States)

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Characterization of the fate and transport of nitroaromatic compounds at a former DoD ordnance depot site

    Energy Technology Data Exchange (ETDEWEB)

    Klausmeier, M.E.; Yoon, J.

    1999-07-01

    The 975-acre Former Nansemond Ordnance Depot (FNOD) in Suffolk, Virginia was used by the Department of Defense (DoD) from 1917 until the mid-1950's for preparation, storage, transportation, inspection and demilitarization of many classes of ammunition and ordnance. Approximately 28 areas of Concern (AOC) have been identified by the EPA as areas that could pose potential risk to human health or the environment. The primary contaminants of concern are some trace metals and explosive compounds. During a summer 1987 field investigation, a slab of crystalline TNT was found which was estimated to weigh several tons. An enhanced MODFLOW model is being used to identify subsurface flow patterns. The calibrated model will be used to identify contaminant fate and transport behavior at the site. Enhancements to the MODFLOW model include an updated block-centered flow package (BCF4) and an updated recharge-seepage face boundary package (RSF4) to utilize for the FNOD site flow characterization. BCF4 package accurately delineates the water table without relying on an ad hoc rewetting procedure. This is accomplished by calculating the hydraulic head value required to transmit recharging water through the unsaturated zone without inactivating dry cells. The recharge-seepage face package eliminates the projection of heads above the ground surface by adjusting recharge to a cell when a user supplied ponding depth is reached. Using a regional model, a telescoping grid refinement technique was implemented to calculate the boundary conditions around the area of interest and to model quantity and quality interactions between surface and subsurface water regimes in a realistic manner.

  20. Nutrient Loading Impacts on Culturable E. coli and other Heterotrophic Bacteria Fate in Simulated Stream Mesocosms

    Science.gov (United States)

    Understanding fecal indicator bacteria persistence in aquatic environments is important when making management decisions to improve instream water quality. Routinely, bacteria fate and transport models that rely on published kinetic decay constants are used to inform such decision making. The object...

  1. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    Energy Technology Data Exchange (ETDEWEB)

    Verbyla, M.E., E-mail: verbylam@mail.usf.edu [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States); Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M. [Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba (Bolivia, Plurinational State of); Mihelcic, J.R. [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States)

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g{sup −1} for coliphage, between 1 and 100 mL g{sup −1} for Giardia and Cryptosporidium, and between 100 and 1000 mL g{sup −1} for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in

  2. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    International Nuclear Information System (INIS)

    Verbyla, M.E.; Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M.; Mihelcic, J.R.

    2016-01-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g"−"1 for coliphage, between 1 and 100 mL g"−"1 for Giardia and Cryptosporidium, and between 100 and 1000 mL g"−"1 for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in ponds may limit

  3. Selection of distribution coefficients for contaminant fate and transport calculations: Strontium as a case study

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Krupka, K.M.; Serne, R.J.

    1997-01-01

    As part of an ongoing project funded by a cooperative effort involving the Office of Radiation and Indoor Air (ORIA) of the U.S. Environmental Protection Agency (EPA), the Office of Environmental Restoration (EM-40) of the Department of Energy (DOE), and the Nuclear Regulatory Agency (NRC), distribution coefficient (K d ) values are being compiled from the literature to develop provisional tables for cadmium, cesium, chromium, lead, plutonium, strontium, thorium, and uranium. The tables are organized according to important aqueous- and solid-phase parameters affecting the sorption of these contaminants. These parameters, which vary with contaminant, include pH and redox conditions; cation exchange capacity (CEC); presence of iron-oxide, aluminum-oxide, clay, and mica minerals; organic matter content; and solution concentrations of contaminants, competing ions, and complexing ligands. Sorption information compiled for strontium is used to illustrate our approach. The strontium data show how selected geochemical parameters (i.e., CEC, pH, and clay content) affect Strontium K d values and the selection of open-quote default close-quote K d values needed for modeling contaminant transport and risks at sites for which site specific data are lacking. Results of our evaluation may be used by site management and technical staff to assess contaminant fate, migration, and risk calculations in support of site remediation and waste management decisions

  4. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale.

    Science.gov (United States)

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J

    2014-02-01

    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  5. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  6. Transcriptional control of stem cell fate by E2Fs and pocket proteins

    Science.gov (United States)

    Julian, Lisa M.; Blais, Alexandre

    2015-01-01

    E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892

  7. Transcriptional control of stem cell fate by E2Fs and Pocket Proteins

    Directory of Open Access Journals (Sweden)

    Lisa Marie Julian

    2015-04-01

    Full Text Available E2F transcription factors and their regulatory partners, the pocket proteins (PPs, have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.

  8. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  9. Impacts of soil redistribution on the transport and fate of organic carbon in loess soils

    NARCIS (Netherlands)

    Wang, X.

    2014-01-01

    Soil erosion is an important environmental process leading to loss of topsoil including carbon (C) and nutrients, reducing soil quality and loss of biomass production. So far, the fate of soil organic carbon (SOC) in eroding landscapes is not yet fully understood and remains an important uncertainty

  10. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has established an ongoing effort to identify the major perfluorocarboxylic acid (PFCA) sources in nonoccupational indoor environments and characterize their transport and fate. This study determined the concentrations of perfluorote...

  11. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    Science.gov (United States)

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  12. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  13. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kate L. Loveland

    2015-01-01

    Full Text Available Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.

  14. Biological transport of curium-243 in dairy animals

    International Nuclear Information System (INIS)

    Sutton, W.W.; Patzer, R.G.; Hahn, P.B.; Potter, G.D.

    1979-04-01

    Lactating cows and goats were used to examine the biological transport of curium-243 in dairy animals. After either single oral or intravenous nuclide doses were administered, samples of milk, urine, blood, and feces were taken over a 144-hr priod, and the curium concentrations were determined by gamma counting. Gastrointestinal uptake of curium was estimated to be 0.02 and 0.006% of the oral dose for cows and goats, respectively. The cumulative percentage of oral dose transported to milk and urine was 4.6 x 10 -4 and 1.9 x 10 -3 , respectively, for a cow and 2.7 x 10 -4 and 1.6 x 10 -4 , respectively, for goats. Plasma concentrations of curium decreased rapidly following all intravenous injections. The average percentage of injected curium transferred to milk, urine, and feces was 2, 8, and 1, respectively, for a cow and 2, 5, and 5, respectively, for goats. All animals were sacrificed one week after dosing. Bovine bone retained the greatest fraction of the administered dose and the next highest was the liver. However, in all three intravenously dosed goats the liver contained the greatest amount of curium. Nuclide deposition in bone and liver was essentially equal for two of the three orally dosed goats while the skeleton contained the most curium in the other animal. Comparisons are presented between curium-243 and americium-241 transport in dairy cows

  15. The Fate of Mengovirus on Fiberglass Filter of Air Handling Units.

    Science.gov (United States)

    Bandaly, Victor; Joubert, Aurélie; Le Cann, Pierre; Andres, Yves

    2017-12-01

    One of the most important topics that occupy public health problems is the air quality. That is the reason why mechanical ventilation and air handling units (AHU) were imposed by the different governments in the collective or individual buildings. Many buildings create an artificial climate using heating, ventilation, and air-conditioning systems. Among the existing aerosols in the indoor air, we can distinguish the bioaerosol with biological nature such as bacteria, viruses, and fungi. Respiratory viral infections are a major public health issue because they are usually highly infective. We spend about 90% of our time in closed environments such as homes, workplaces, or transport. Some studies have shown that AHU contribute to the spread and transport of viral particles within buildings. The aim of this work is to study the characterization of viral bioaerosols in indoor environments and to understand the fate of mengovirus eukaryote RNA virus on glass fiber filter F7 used in AHU. In this study, a set-up close to reality of AHU system was used. The mengovirus aerosolized was characterized and measured with the electrical low pressure impact and the scanner mobility particle size and detected with RT-qPCR. The results about quantification and the level of infectivity of mengovirus on the filter and in the biosampler showed that mengovirus can pass through the filter and remain infectious upstream and downstream the system. Regarding the virus infectivity on the filter under a constant air flow, mengovirus was remained infectious during 10 h after aerosolization.

  16. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    Science.gov (United States)

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  17. Choice of pesticide fate models

    International Nuclear Information System (INIS)

    Balderacchi, Matteo; Trevisan, Marco; Vischetti, Costantino

    2006-01-01

    The choice of a pesticide fate model at field scale is linked to the available input data. The article describes the available pesticide fate models at a field scale and the guidelines for the choice of the suitable model as function of the data input requested [it

  18. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field

    International Nuclear Information System (INIS)

    Wilkinson, John; Hooda, Peter S.; Barker, James; Barton, Stephen; Swinden, Julian

    2017-01-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  19. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport

  20. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.; Rogers, L.E.

    1979-10-01

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major role in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.

  1. Structural Biology Meets Drug Resistance: An Overview on Multidrug Resistance Transporters

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Iqbal, Mazhar; Mirza, Osman

    2017-01-01

    . Research on the underlying causes of multidrug resistance in cancerous cells and later on in infectious bacteria revealed the involvement of integral membrane transporters, capable of recognizing a broad range of structurally different molecules as substrates and exporting them from the cell using cellular...... superfamilies, viz., ATP-binding cassette superfamily, major facilitator superfamily and resistance nodulation division superfamily are presented. Further, the future role of structural biology in improving our understanding of drug-transporter interactions and in designing novel inhibitors against MDR pump...... century, mankind has become aware and confronted with the emergence of antibiotic-resistant pathogens. In parallel to the failure of antibiotic therapy against infectious pathogens, there had been continuous reports of cancerous cells not responding to chemotherapy with increase in the duration of therapy...

  2. Vadose Zone Contaminant Fate and Transport Analysis for the 216-B-26 Trench

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.

    2004-10-14

    The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial

  3. Formation and fate of marine snow: small-scale processes with large- scale implications

    Directory of Open Access Journals (Sweden)

    Thomas Kiørboe

    2001-12-01

    Full Text Available Marine snow aggregates are believed to be the main vehicles for vertical material transport in the ocean. However, aggregates are also sites of elevated heterotrophic activity, which may rather cause enhanced retention of aggregated material in the upper ocean. Small-scale biological-physical interactions govern the formation and fate of marine snow. Aggregates may form by physical coagulation: fluid motion causes collisions between small primary particles (e.g. phytoplankton that may then stick together to form aggregates with enhanced sinking velocities. Bacteria may subsequently solubilise and remineralise aggregated particles. Because the solubilization rate exceeds the remineralization rate, organic solutes leak out of sinking aggregates. The leaking solutes spread by diffusion and advection and form a chemical trail in the wake of the sinking aggregate that may guide small zooplankters to the aggregate. Also, suspended bacteria may enjoy the elevated concentration of organic solutes in the plume. I explore these small-scale formation and degradation processes by means of models, experiments and field observations. The larger scale implications for the structure and functioning of pelagic food chains of export vs. retention of material will be discussed.

  4. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  5. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  6. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

    Science.gov (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S

    2018-04-01

    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Transport and transfer rates in the waters of the continental shelf. Annual report

    International Nuclear Information System (INIS)

    Biscaye, P.E.; Broecker, W.S.; Feely, H.W.; Gerard, R.D.

    1976-04-01

    The report is to the Energy Research and Development Administration on accomplishments of the Lamont-Doherty Geological Observatory geochemistry and physical oceanography groups during the 1975-1976 funding period on grant E(11-1)2185. Goals are to obtain detailed, quantitative knowledge of the rates of mixing within coastal waters of the New York Bight and across the continental slope and the exchange of water masses and species transported within them between shelf and Atlantic Ocean waters. The research is aimed at understanding the chemical, physical, and biological processes which control the origin, dispersal, and fate of particulate matter and trace metals, and to ultimately model the impact of energy related pollutants on the continental shelf

  8. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  9. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  10. Investigating Particle Transport and Fate in the Sacramento–San Joaquin Delta Using a Particle-Tracking Model

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-02-01

    Full Text Available Movements of pelagic organisms in the tidal freshwater regions of estuaries are sensitive to the movements of water. In the Sacramento-San Joaquin Delta—the tidal freshwater reach of the San Francisco Estuary—such movements are key to losses of fish and other organisms to entrainment in large water-export facilities. We used the Delta Simulation Model-2 hydrodynamic model and its particle tracking model to examine the principal determinants of entrainment losses to the export facilities and how movement of fish through the Delta may be influenced by flow. We modeled 936 scenarios for 74 different conditions of flow, diversions, tides, and removable barriers to address seven questions regarding hydrodynamics and entrainment risk in the Delta. Tide had relatively small effects on fate and residence time of particles. Release location and hydrology interacted to control particle fate and residence time. The ratio of flow into the export facilities to freshwater flow into the Delta (export:inflow or EI ratio was a useful predictor of entrainment probability if the model were allowed to run long enough to resolve particles’ ultimate fate. Agricultural diversions within the Delta increased total entrainment losses and altered local movement patterns. Removable barriers in channels of the southern Delta and gates in the Delta Cross Channel in the northern Delta had minor effects on particles released in the rivers above these channels. A simulation of losses of larval delta smelt showed substantial cumulative losses depending on both inflow and export flow. A simulation mimicking mark–recapture experiments on Chinook salmon smolts suggested that both inflow and export flow may be important factors determining survival of salmon in the upper estuary. To the extent that fish behave passively, this model is probably suitable for describing Delta-wide movement, but it is less suitable for smaller scales or alternative configurations of the Delta.

  11. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  12. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  13. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  14. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  15. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  16. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  17. Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Regnier, Pierre; Meile, Christof; Van Cappellen, Philippe

    2007-06-01

    A 1D reactive transport model (RTM) is used to obtain a mechanistic understanding of the fate of phosphorus (P) in the saturated zone of two contrasting aquifer systems. We use the field data from two oxic, electron donor-poor, wastewater-impacted, sandy Canadian aquifers, (Cambridge and Muskoka sites) as an example of a calcareous and non-calcareous groundwater system, respectively, to validate our reaction network. After approximately 10 years of wastewater infiltration, P is effectively attenuated within the first 10 m downgradient of the source mainly through fast sorption onto calcite and Fe oxides. Slow, kinetic sorption contributes further to P removal, while precipitation of phosphate minerals (strengite, hydroxyapatite) is quantitatively unimportant in the saturated zone. Nitrogen (N) dynamics are also considered, but nitrate behaves essentially as a conservative tracer in both systems. The model-predicted advancement of the P plume upon continued wastewater discharge at the calcareous site is in line with field observations. Model results suggest that, upon removal of the wastewater source, the P plume at both sites will persist for at least 20 years, owing to desorption of P from aquifer solids and the slow rate of P mineral precipitation. Sensitivity analyses for the non-calcareous scenario (Muskoka) illustrate the importance of the sorption capacity of the aquifer solids for P in modulating groundwater N:P ratios in oxic groundwater. The model simulations predict the breakthrough of groundwater with high P concentrations and low N:P ratios after 17 years at 20 m from the source for an aquifer with low sorption capacity (< 0.02% w/w Fe(OH) 3). In this type of system, denitrification plays a minor role in lowering the N:P ratios because it is limited by the availability of labile dissolved organic matter.

  18. A simulation of the transport and fate of radon-222 derived from thorium-230 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessments on all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Data needs pointed out by mathematical models drive site characterization. They provide a logical means of performing the required flux estimations. Thorium-230 waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992b), was used to simulate the transport and fate of radon-222 from its source of origin, nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release into the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport. CASCADR8 uses both reversible and irreversible sorption kinetic rules as well as the usual classical Bateman (1910) M-chain decay rules for its kinetic processes. Worst case radon-222 gas-phase concentrations, as well as surface fluxes, were estimated over 40 days. The maximum flux was then used in an exposure assessment model to estimate the total annual dose equivalent received by a person residing in a standard 2500-square-foot house with 10-foot walls. Results are described

  19. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi-nist Viewpoint%An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    陈静; 何泠静

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  20. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    Science.gov (United States)

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  2. Fate of oil determinations under Arctic conditions: The Komi Pipeline oil spill experience

    International Nuclear Information System (INIS)

    Nadeau, R.J.; Hansen, O.

    1995-01-01

    The rationale developed by a United Nations team to estimate the fate and transport of spilled oil remaining on the ground in the Pechora River basin in Russia following the Komi Pipeline spill disaster, was presented. The team consisted of experts from Norway, Canada, the United States and the European Union. Detailed background of the spill event, petroleum industry setting, geographic setting and hydrology of the regions was presented. Nine contaminated sites were identified. A worst case scenario was developed for the fate of the spilled oil. It was estimated that 93 000 - 97 000 tonnes of oil remained on the ground. Further pollution of the environment outside of Russia was considered unlikely under the circumstances, but petroleum contamination of the drinking water, tar balls and residual oil were expected to continue to persist in the affected area for many months. The UN team concluded that chronic pollution posed a significant threat to the region's natural resources. 4 refs., 3 figs

  3. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling

    International Nuclear Information System (INIS)

    Cheyns, K.; Mertens, J.; Diels, J.; Smolders, E.; Springael, D.

    2010-01-01

    Pesticide transport models commonly assume first-order pesticide degradation kinetics for describing reactive transport in soil. This assumption was assessed in mini-column studies with associated batch degradation tests. Soil mini-columns were irrigated with atrazine in two intermittent steps of about 30 days separated by 161 days application of artificial rain water. Atrazine concentration in the effluent peaked to that of the influent concentration after initial break-through but sharply decreased while influx was sustained, suggesting a degradation lag phase. The same pattern was displayed in the second step but peak height and percentage of atrazine recovered in the effluent were lower. A Monod model with biomass decay was successfully calibrated to this data. The model was successfully evaluated against batch degradation data and mini-column experiments at lower flow rate. The study suggested that first-order degradation models may underestimate risk of pesticide leaching if the pesticide degradation potential needs amplification during degradation. - Population dynamics of pesticide degrading population should be taken into account when predictions of pesticide fate are made to avoid underestimation of pesticide break-through towards groundwater.

  4. Estimates of direct biological transport of radioactive waste in the deep sea with special reference to organic carbon budgets

    International Nuclear Information System (INIS)

    Rowe, G.T.; Shepherd, J.; Needler, G.; Hargrave, B.; Marietta, M.

    1986-01-01

    Calculations can be made for the maximum theoretical transport of pollutants such as radionuclides by movement of organisms out of a deep-sea benthic boundary layer dump site based on a presumption of a steady state organic carbon budget and estimated biological concentration factors. A calculated flux rate depends on the difference between a limiting input of organic matter and that carbon used by the biota or accumulating in the sediment. On average, the potential biological mass transport is low compared to physical transport. Exceptions to this generalization are possible in the far field after spatial gradients are obliterated or if natural mass migrations or periodic spawning concentrations occur in the near field. Biologically mediated fluxes of contaminants due to mixing of sediments by bioturbation or vertical flux due to scavenging by sinking particles are significant for movements of pollutants to and from sediments. These pathways contribute to the direct input of contaminants into food webs which may contain harvestable species. These fluxes are unimportant for mass transfers in the ocean but they determine the exposure of critical groups to contaminants

  5. Biological fate of 32P malathion in gallus domesticus (Desi poultry birds)

    International Nuclear Information System (INIS)

    Gupta, P.K.; Paul, B.S.

    1977-01-01

    During this study, a minor surgical technique was developed for the separation of urine and faeces in birds and fate of 32 P malathion was studied, following a single oral dose of 394 mg/kg. The birds showed characteristic signs and symptoms of organophosphorus poisoning and the results suggested that the compound is rapidly absorbed from the gastro-intestinal tract, significant quantities being detected in plasma after 0.5 h of ingestion. Highest concentration of 32 P in various organs decreased and at 48 h, it was not detected except in liver, kidney, lung and spleen when only traces were observed. The cumulative urinary and faecal excretion study revealed that within 24 h 90% is rapidly excreted mainly via the urine and only small amounts in the faeces. Metabolism studies showed that the compound is quickly metabolised. Because of the rapid turnover of the compound, this study indicated that the accumulation of this compound is unlikely in the body system

  6. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    , such as might be encountered in the Gulf of Mexico; and (4) a very deep (1,000 m) environment, such as might be encountered on the Atlantic slope. The focus of the modeling effort was on the connection of a reasonable representation of physical fate to the biological responses of populations, rather than on highly detailed representations of individual processes. For example, the calculations of physical fate are not as detailed as those in the recently published model of Brandsma et al. (1983). The value of the model described herein is in the broad scope of processes that are explicitly represented and linked together. The model cannot be considered to produce reliable predictions of the quantitative impacts of discharged drilling fluids and cuttings on biological populations at a particular site. Limitations of the model in predicting integrated fate and effects can be traced to three general areas: level of refinement of the algorithms used in the model; lack of understanding of the processes determining fate and effects; and parameter and data values. Despite the limitations, several qualitative conclusions concerning both potential impacts and the importance of various remaining data gaps can be drawn from the modeling effort. These include: (1) Simple, unequivocal conclusions about fate and effects across geographical regions and drilling operations are difficult, if not misleading, due to the large amount of variability in characteristics of discharged materials (e.g., oil content and toxicity), discharge conditions (e.g., duration of drilling operations), physical environments (e.g., water depth, current direction, and sediment disturbance regimes), and biological communities (e.g., intrinsic growth rates). Different combinations of these characteristics can result in substantial differences in simulated environmental fate and biological effects. For examples, simulated recovery in some high-energy environments occurs within months after the cessation of

  7. Numerical modelling on fate and transport of petroleum ...

    Indian Academy of Sciences (India)

    present work is to understand the simultaneous mass transfer as well as transport processes fol- lowing the surface spill of benzene in the unsatu- rated zone, aiming at better concentration profiles, which can be useful in risk-based decision mak- ing. The study domain is limited to near-surface environment where soil pores ...

  8. Implication of two in-stream processes in the fate of nutrients discharged by sewage system into a temporary river.

    Science.gov (United States)

    David, Arthur; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Picot, Bernadette; Tournoud, Marie-George

    2011-10-01

    The aim of this study was to better understand the fate of nutrients discharged by sewage treatment plants into an intermittent Mediterranean river, during a low-flow period. Many pollutants stored in the riverbed during the low-flow period can be transferred to the downstream environments during flood events. The study focused on two processes that affect the fate and the transport of nutrients, a physical process (retention in the riverbed sediments) and a biological process (denitrification). A spatial campaign was carried out during a low-flow period to characterize the nutrient contents of both water and sediments in the Vène River. The results showed high nutrient concentrations in the water column downstream of the treated wastewater disposal (up to 13,315 μg N/L for ammonium and 2,901 μg P/L for total phosphorus). Nutrient concentrations decreased rapidly downstream of the disposal whereas nutrient contents in the sediments increased (up to 1,898 and 784 μg/g for total phosphorus and Kjeldahl nitrogen, respectively). According to an in situ experiment using sediment boxes placed in the riverbed for 85 days, we estimated that the proportion of nutrients trapped in the sediments represents 25% (respectively 10%) of phosphorus (respectively nitrogen) loads lost from the water column. In parallel, laboratory tests indicated that denitrification occurred in the Vène River, and we estimated that denitrification likely coupled to nitrification processes during the 85 days of the experiment was significantly involved in the removal of nitrogen loads (up to 38%) from the water column and was greater than accumulation processes.

  9. The Melanocyte Fate in Neural Crest is Triggered by Myb Proteins through Activation of c-kit

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Pajer, Petr; Čermák, Vladimír; Dvořák, Michal

    2007-01-01

    Roč. 64, č. 21 (2007), s. 2975-2984 ISSN 1420-682X R&D Projects: GA MŠk(CZ) LC06061; GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb proto-oncogene * v-mybAMV oncogene * neural crest * cell fate determination * melanocytes * c-kit signal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.239, year: 2007

  10. Lithium transport across biological membranes

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1990-01-01

    Li+ is actively transported out of cells, and across different epithelia of both mammalian and amphibian origin. Due to the low affinity of the Na+/K(+)-ATPase for Li+, the transport is most likely energized by exchange and/or cotransport processes. The detailed mechanism by which Li+ is reabsorb...

  11. Suitability of Commercial Transport Media for Biological Pathogens under Nonideal Conditions

    Directory of Open Access Journals (Sweden)

    Kyle Hubbard

    2011-01-01

    Full Text Available There is extensive data to support the use of commercial transport media as a stabilizer for known clinical samples; however, there is little information to support their use outside of controlled conditions specified by the manufacturer. Furthermore, there is no data to determine the suitability of said media for biological pathogens, specifically those of interest to the US military. This study evaluates commercial off-the-shelf (COTS transport media based on sample recovery, viability, and quality of nucleic acids and peptides for nonpathogenic strains of Bacillus anthracis, Yersinia pestis, and Venezuelan equine encephalitis virus, in addition to ricin toxin. Samples were stored in COTS, PBST, or no media at various temperatures over an extended test period. The results demonstrate that COTS media, although sufficient for the preservation of nucleic acid and proteinaceous material, are not capable of maintaining an accurate representation of biothreat agents at the time of collection.

  12. Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.; Danmowa, N.

    2012-12-01

    The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 d

  13. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  14. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fate of pollutants

    International Nuclear Information System (INIS)

    Chapta, S.C.; Boyer, J.M.

    1990-01-01

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides

  16. The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    DEFF Research Database (Denmark)

    Douglas, Thomas A.; Loseto, Lisa L.; MacDonald, Robie W.

    2012-01-01

    the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between...... into non-biological archives is also addressed. The review concludes by identifying major knowledge gaps in our understanding, including: (1) the rates of Hg entry into marine and terrestrial ecosystems and the rates of inorganic and MeHg uptake by Arctic microbial and algal communities; (2...

  17. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554 ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  18. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    CERN Document Server

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  19. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  20. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  1. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    International Nuclear Information System (INIS)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van

    2010-01-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ( 238 U and 234 U) and phosphogypsum as an amendment ( 226 Ra and 210 Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  2. Environmental fate of natural radioactive contaminants in fertilizers and phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Marcia Salamoni; Genuchten, Martinus Theodorus van, E-mail: msbatalha@oi.com.b, E-mail: rvangenuchten@yahoo.co [Federal University of Rio de Janeiro (LTTC/COPPE/UFRJ), RJ (Brazil). Dept. of Mechanical Engineering. Lab. de Transmissao e Tecnologia do Calor; Bezerra, Camila Rosa, E-mail: camila.rosabz@gmail.co [Federal University of Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Dept. of Civil Engineering; Pontedeiro, Elizabeth May, E-mail: bettymay@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    Agricultural soils often require the use of fertilizers and soil conditioners for optimal production. Phosphate fertilizers produced from igneous phosphate rock often contain small amounts of natural radionuclides (notably uranium and thorium), while the byproduct phosphogypsum (dihydrated calcium sulfate) is typically enriched in radium and lead. It is important to understand the long-term fate of these radionuclides when routinely applied via fertilizers ({sup 238}U and {sup 234}U) and phosphogypsum as an amendment ({sup 226}Ra and {sup 210}Pb) to agricultural lands. This study addresses the results of modeling their transport in a typical Cerrado soil profile. The HYDRUS-1D code was used to compare possible soil and groundwater pollution scenarios following the long term use of fertilizers and phosphogypsum in agricultural operations. Results using the equilibrium transport approach suggest that radionuclide concentrations originating from the use of phosphate fertilizers and phosphogypsum are relatively modest and will not pose a major risk to polluting underlying groundwater resources. (author)

  3. Phenomenological and Spectroscopic Analysis on the Effects of Sediment Ageing and Organic Carbon on the Fate of a PCB Congener Spiked to Sediment

    Science.gov (United States)

    This study assesses the full cycle transport and fate of a polychlorinated biphenyl (PCB) congener spiked to sediment to empirically and spectroscopically investigate the effects of sediment ageing and organic carbon on the adsorption, desorption, and reaction of the PCB. Caesar ...

  4. Differential gene expression in notochord and nerve cord fate segregation in the Ciona intestinalis embryo.

    Science.gov (United States)

    Kobayashi, Kenji; Yamada, Lixy; Satou, Yutaka; Satoh, Nori

    2013-09-01

    During early embryogenesis, embryonic cells gradually restrict their developmental potential and are eventually destined to give rise to one type of cells. Molecular mechanisms underlying developmental fate restriction are one of the major research subjects within developmental biology. In this article, this subject was addressed by combining blastomere isolation with microarray analysis. During the 6th cleavage of the Ciona intestinalis embryo, from the 32-cell to the 64-cell stage, four mother cells divide into daughter cells with two distinct fates, one giving rise to notochord precursor cells and the other to nerve cord precursors. Approximately 2,200 each of notochord and nerve cord precursor cells were isolated, and their mRNA expression profiles were compared by microarray. This analysis identified 106 and 68 genes, respectively, that are differentially expressed in notochord and nerve cord precursor cells. These included not only genes for transcription factors and signaling molecules but also those with generalized functions observed in many types of cells. In addition, whole-mount in situ hybridization showed dynamic spatial expression profiles of these genes during segregation of the two fates: partitioning of transcripts present in the mother cells into either type of daughter cells, and initiation of preferential gene expression in either type of cells. Copyright © 2013 Wiley Periodicals, Inc.

  5. The environmental fate of polybrominated diphenyl ethers in the Great Lakes Basin

    Science.gov (United States)

    Gouin, Todd William

    Semi-volatile organic compounds, such as the polybrominated diphenyl ethers (PBDEs) have the potential to undergo long-range atmospheric transport (LRAT) to remote locations, which can increase the exposure of sensitive ecosystems to potentially harmful substances. Regulatory instruments, such as the Stockholm Convention on persistent organic pollutants (POPs), have been implemented to limit and/or prevent this exposure. Through the acquisition of scientific data, knowledge can be gained about the environmental fate and human exposure of chemical substances, and the risks associated with using those substances assessed. PBDEs are a class of flame retardants that are used in a wide range of commercial products. In response to growing concern over the detection of PBDEs in remote regions, a number of regulatory bodies have implemented measures to restrict the use of PBDEs. Using a suite of environmental fate models it is shown that PBDEs will most likely partition to organic carbon in soil and sediment, and that their persistence in the environment will be strongly influenced by their reactivity in those compartments. The transport potential of the PBDEs is investigated using the transport and persistence level III model TaPL3, using model environments with and without vegetation. It is suggested that the LRAT potential of the PBDEs is likely to be greater for the more volatile lower brominated congeners than for the higher brominated congeners, and that the LRAT may be sensitive to seasonal changes in the environment, such as temperature, vegetation and changes in precipitation. Furthermore, model results suggest that the PBDEs may be subject to a "spring pulse" effect, whereby concentrations are elevated in air during the early spring. Field studies support the theory of a "spring pulse" effect, where concentrations were observed to be five times greater during the period between snowmelt and bud burst than the average concentration before and after, but conclude

  6. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  7. Plant root absorption and metabolic fate of technetium in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1984-10-01

    Root absorption characteristics for the pertechnetate ion (TcO 4 - ) were determined using hydroponically grown soybean seedlings (Glycine max, cv. Williams). Absorption of TcO 4 - was found to be linear with time, sensitive to metabolic inhibitors, and exhibit multiple absorption isotherms over the concentration range 0.02 to 10 μM. The isotherms had calculated K/sub s/ values of 0.09, 8.9, and 54 μM for intact seedlings. The uptake of TcO 4 - (0.25 μM) was inhibited by a fourfold concentration excess of sulfate, phosphate, and selenate, but not by borate, nitrate, tungstate, perrhenate, iodate or vanadate. Kinetic studies demonstrated that sulfate, phosphate, and selenate were competitive inhibitors of TcO 4 - absorption. Once absorbed, Tc was readily transported as TcO 4 - to shoot tissues of soybean and subsequently associated with protein constituents. The chemical fate of Tc in plants varies with plant species. Plants high in nonprotein sulfhydryl compounds (Allium species) exhibited markedly different root/shoot distribution and protein incorporation patterns from species with low sulfur requirements (soybean, alfalfa, mustard). Based on these differences, Tc/S/Se tracer studies were employed to resolve the comparative fate of these probable analogs. 20 references, 5 figures, 5 tables

  8. Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.

    Science.gov (United States)

    McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A

    2010-07-15

    Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.

  9. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    Directory of Open Access Journals (Sweden)

    Simone Giacometti

    2017-03-01

    Full Text Available The nuclear cap-binding complex (CBC stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC partners known to impact different RNA species. ARS2 stimulates 3′-end formation/transcription termination of several transcript types, ZC3H18 stimulates degradation of a diverse set of RNAs, and PHAX functions in pre-small nuclear RNA/small nucleolar RNA (pre-snRNA/snoRNA transport. Surprisingly, these proteins all bind capped RNAs without strong preferences for given transcripts, and their steady-state binding correlates poorly with their function. Despite this, PHAX and ZC3H18 compete for CBC binding and we demonstrate that this competitive binding is functionally relevant. We further show that CBC-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis.

  10. Role of Marine Snows in Microplastic Fate and Bioavailability.

    Science.gov (United States)

    Porter, Adam; Lyons, Brett P; Galloway, Tamara S; Lewis, Ceri

    2018-06-01

    Microplastics contaminate global oceans and are accumulating in sediments at levels thought sufficient to leave a permanent layer in the fossil record. Despite this, the processes that vertically transport buoyant polymers from surface waters to the benthos are poorly understood. Here we demonstrate that laboratory generated marine snows can transport microplastics of different shapes, sizes, and polymers away from the water surface and enhance their bioavailability to benthic organisms. Sinking rates of all tested microplastics increased when incorporated into snows, with large changes observed for the buoyant polymer polyethylene with an increase in sinking rate of 818 m day -1 and for denser polyamide fragments of 916 m day -1 . Incorporation into snows increased microplastic bioavailability for mussels, where uptake increased from zero to 340 microplastics individual -1 for free microplastics to up to 1.6 × 10 5 microplastics individual -1 when incorporated into snows. We therefore propose that marine snow formation and fate has the potential to play a key role in the biogeochemical processing of microplastic pollution.

  11. Nanoparticle-nanoparticle interactions in biological media by Atomic Force Microscopy

    Science.gov (United States)

    Pyrgiotakis, Georgios; Blattmann, Christoph O.; Pratsinis, Sotiris; Demokritou, Philip

    2015-01-01

    Particle-particle interactions in physiological media are important determinants for nanoparticle fate and transport. Herein, such interactions are assessed by a novel Atomic Force Microscopy (AFM) based platform. Industry-relevant CeO2, Fe2O3, and SiO2 nanoparticles of various diameters were made by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES). The nanoparticles were fully characterized structurally and morphologically and their properties in water and biological media were also assessed. The nanoparticles were attached on AFM tips and deposited on Si substrates to measure particle–particle interactions. The corresponding force was measured in air, water and biological media that are widely used in toxicological studies. The presented AFM based approach can be used to assess the agglomeration potential of nanoparticles in physiological fluids. The agglomeration potential of CeO2 nanoparticles in water and RPMI 1640 (Roswell Park Memorial Institute formulation 1640) was inversely proportional to their primary particle (PP) diameter, but for Fe2O3 nanoparticles, that potential is independent of PP diameter in these media. Moreover, in RPMI+10% Fetal Bovine Serum (FBS) the corona thickness and dispersibility of the CeO2 is independent of PP diameter while for Fe2O3, the corona thickness and dispersibility were inversely proportional to PP diameter. The present method can be combined with (dynamic light scattering (DLS), proteomics, and computer simulations to understand the nano-bio interactions, with emphasis on the agglomeration potential of nanoparticles and their transport in physiological media. PMID:23978039

  12. Environmental fate and transport of nitroglycerin from propellant residues at firing positions in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Bellavance-Godin, A. [Institut National de la Recherche Scientifique, Quebec, PQ (Canada). Eau, Terre et Environnement; Martel, R. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Eau, Terre et Environnement, Earth Sciences

    2008-07-01

    In response to environmental concerns, the Canadian Forces Base (CFB) have initiated studies to better evaluate the impact of various military activities. This paper presented the results of a study in which the fate of propellant residues on large soil columns was investigated. The sites selected for the study were the antitank ranges at Garrison Valcartier, Quebec and those at the CFB Petawawa, Ontario. The shoulder rockets fired on those ranges were propelled by solid propellants based on a nitrocellulose matrix in which nitroglycerine and ammonium perchlorate were dispersed as oxidizer and energetic materials. Propellant residues accumulated in the surface soils because the combustion processes in the rockets was incomplete. This study evaluated the contaminants transport through the unsaturated zone. Sampling was conducted in 2 steps. The first involved collecting uncontaminated soil samples representative of the geological formations of the 2 sites. The second step involved collecting soils containing high levels of propellant residues behind antitank firing positions, which was later spread across the surface of the uncontaminated soil columns and which were representative of the contaminated zone. The soils were watered in the laboratory following the precipitation patterns of the respective regions and interstitial water output of the columns was also sampled. The compounds of interest were nitroglycerine and its degradation metabolites, dinitroglycerine, mononitroglycerine and nitrates as well as perchlorate and bromides. Results presented high concentrations of nitrites, nitrates and perchlorates. Both the NG and its degradation products were monitored using a newly developed analytical method that provides for a better understanding of NG degradation pathways in anaerobic conditions. 12 refs., 3 tabs., 12 figs.

  13. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate.

    Science.gov (United States)

    Ahrens, Lutz

    2011-01-01

    The occurrence and fate of polyfluoroalkyl compounds (PFCs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. PFCs comprise a diverse group of chemicals that are widely used as processing additives during fluoropolymer production and as surfactants in consumer applications for over 50 years. PFCs are known to be persistent, bioaccumulative and have possible adverse effects on humans and wildlife. As a result, perfluorooctane sulfonate (PFOS) has been added to the persistent organic pollutants (POPs) list of the Stockholm Convention in May 2009. However, their homologues, neutral precursor compounds and new PFCs classes continue to be produced. In general, several PFCs from different classes have been detected ubiquitously in the aqueous environment while the concentrations usually range between pg and ng per litre for individual compounds. Sources of PFCs into the aqueous environment are both point sources (e.g., wastewater treatment plant effluents) and nonpoint sources (e.g., surface runoff). The detected congener composition in environmental samples depends on their physicochemical characteristics and may provide information to their sources and transport pathways. However, the dominant transport pathways of individual PFCs to remote regions have not been conclusively characterised to date. The objective of this article is to give an overview on existing knowledge of the occurrence, fate and processes of PFCs in the aquatic environment. Finally, this article identifies knowledge gaps, presents conclusions and recommendations for future work.

  14. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  15. The fate of ammonium-nitrogen in leachate contaminated groundwater system

    Science.gov (United States)

    M, Atta; W, Yaacob W. Z.

    2015-09-01

    Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

  16. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S

    2005-11-16

    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  17. Quantification of Hydrological, Geochemical, and Mineralogical Processes Governing the Fate and Transport of Uranium over Multiple Scales in Hanford Sediments

    International Nuclear Information System (INIS)

    Fendorf, Scott; Mayes, Melanie A.; Perfect, Edmund; van den Berg, Elmer; Parker, Jack C.; Jardine, Philip M.; Tang, Guoping

    2006-01-01

    A long-term measure of the DOE Environmental Remediation Sciences Division is to provide sufficient scientific understanding to allow a significant fraction of DOE sites to incorporate coupled biological, chemical, and physical processes into decision making for environmental remediation and long-term stewardship by 2015. Our research targets two related, major obstacles to understanding and predicting contaminant transport at DOE sites: the heterogeneity of subsurface geologic media, and the scale dependence of experimental and modeled results

  18. Spatiotemporal sensitivity analysis of vertical transport of pesticides in soil

    Science.gov (United States)

    Environmental fate and transport processes are influenced by many factors. Simulation models that mimic these processes often have complex implementations, which can lead to over-parameterization. Sensitivity analyses are subsequently used to identify critical parameters whose un...

  19. Investigating undergraduate students' ideas about the fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-12-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101) at three institutions. We also examine students' postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N =264 ), postinstruction exam questions (N =59 ), and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with "I don't know" when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a "big chill" scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe's expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students' responses shift toward greater degrees of completeness and correctness.

  20. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  1. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.

  2. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  3. Getting the measure of things: the physical biology of stem cells.

    Science.gov (United States)

    Lowell, Sally

    2013-10-01

    In July 2013, the diverse fields of biology, physics and mathematics converged to discuss 'The Physical Biology of Stem Cells', the subject of the third annual symposium of the Cambridge Stem Cell Institute, UK. Two clear themes resonated throughout the meeting: the new insights gained from advances in the acquisition and interpretation of quantitative data; and the importance of 'thinking outside the nucleus' to consider physical influences on cell fate.

  4. Theoretical Analysis of the Influence of Process Parameters on Pathogen Transport and Fate in a Recreational Beach

    Science.gov (United States)

    Liu, L.; Fu, X.

    2010-12-01

    The US has very long shorelines (95,471 miles) contributing remarkable yearly revenue to the country by providing numerous recreational beaches. The beaches of both inland lakes and marine regions must be closed when the level of waterborne pathogens indicated by fecal indicator bacteria (FIB) including total coliform (TC), fecal coli form (FC, or Escherichia coli, E. coli) and Enterococcus exceed microbial water quality standards. Beach closures are of mounting concern to beach managers and the public due to the increasing risk to human health from waterborne pathogens. Monitoring FIB with laboratory analysis usually takes at least 18 hours during which beach goers may have been unintentionally exposed to the contaminated water. Therefore a water quality model to quickly and precisely forecast FIB has been a very effective tool for beach management to help beach managers in making decisions if beaches are safe enough to open to the public. The fate and transport of pathogens in the surf-zone of a beach area is a complex process involving various factors of hydrodynamics, hydrology, chemistry, microbiology. These factors including dispersion coefficient, wind velocity, particle settling velocity, fraction of bacteria attached, solar insolation, discharges to the beach, geometry of the beach, etc, are the essential components for a mechanistic model to describe the inactivation of FIB. To better understand the importance of these factors and their roles in impacting inactivation, transport and removal of FIB is extremely important to enhance the effectiveness and preciseness of a predictive model. The aim of this paper is to report the sensitivity analysis results of these factors in the surf zone of a creational beach using a verified water quality model system. The relative importance of these parameters is being ranked. For instance, the current sensitivity analysis shows that sunlight insolation has greater impact on pathogen inactivation than water temperature

  5. An illusion of control modulates the reluctance to tempt fate

    Directory of Open Access Journals (Sweden)

    Chloe L. Swirsky

    2011-10-01

    Full Text Available The tempting fate effect is that the probability of a fateful outcome is deemed higher following an action that ``tempts'' the outcome than in the absence of such an action. In this paper we evaluate the hypothesis that the effect is due to an illusion of control induced by a causal framing of the situation. Causal frames require that the action make a difference to an outcome and that the action precedes the outcome. If an illusion of control modulates the reluctance to tempt fate, then actions that make a difference to well-being and that occur prior to the outcome should tempt fate most strongly. In Experiments 1--3 we varied whether the action makes a difference and the temporal order of action and outcome. In Experiment 4 we tested whether an action can tempt fate if all outcomes are negative. The results of all four experiments supported our hypothesis that the tempting fate effect depends on a causal construal that gives rise to a false sense of control.

  6. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  7. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  8. Investigating undergraduate students’ ideas about the fate of the Universe

    Directory of Open Access Journals (Sweden)

    Mallory Conlon

    2017-11-01

    Full Text Available As astronomers further develop an understanding of the fate of the Universe, it is essential to study students’ ideas on the fate of the Universe so that instructors can communicate the field’s current status more effectively. In this study, we examine undergraduate students’ preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101 at three institutions. We also examine students’ postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N=264, postinstruction exam questions (N=59, and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with “I don’t know” when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a “big chill” scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe’s expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students’ responses shift toward greater degrees of completeness and correctness.

  9. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  10. Fate and origin of 1,2-dichloropropane in an unconfined shallow aquifer.

    Science.gov (United States)

    Tesoriero, A J; Löffler, F E; Liebscher, H

    2001-02-01

    A shallow aquifer with different redox zones overlain by intensive agricultural activity was monitored for the occurrence of 1,2-dichloropropane (DCP) to assess the fate and origin of this pollutant. DCP was detected more frequently in groundwater samples collected in aerobic and nitrate-reducing zones than those collected from iron-reducing zones. Simulated DCP concentrations for groundwater entering an iron-reducing zone were calculated from a fate and transport model that included dispersion, sorption, and hydrolysis but not degradation. Simulated concentrations were well in excess of measured values, suggesting that microbial degradation occurred in the iron-reducing zone. Microcosm experiments were conducted using aquifer samples collected from iron-reducing and aerobic zones to evaluate the potential for microbial degradation of DCP and to explain field observations. Hydrogenolysis of DCP and production of monochlorinated propanes in microcosm experiments occurred only with aquifer materials collected from the iron-reducing zone, and no dechlorination was observed in microcosms established with aquifer materials collected from the aerobic zones. Careful analyses of the DCP/1,2,2-trichloropropane ratios in groundwater indicated that older fumigant formulations were responsible for the high levels of DCP present in this aquifer.

  11. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  12. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Ying Guangguo; Yu Xiangyang; Kookana, Rai S.

    2007-01-01

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  13. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guangguo, Ying [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)], E-mail: guang-guo.ying@gig.ac.cn; Xiangyang, Yu [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia); Food Safety Research Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Kookana, Rai S [CSIRO Land and Water, Adelaide Laboratory, PMB2, Glen Osmond SA 5064 (Australia)

    2007-12-15

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil.

  14. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field.

    Science.gov (United States)

    Wilkinson, John; Hooda, Peter S; Barker, James; Barton, Stephen; Swinden, Julian

    2017-12-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  15. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: jskocean@snu.ac.kr [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)

    2013-02-15

    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  16. THE INTERPLAY BETWEEN GEOCHEMICAL REACTIONS AND ADVECTION-DISPERSION IN CONTAMINANT TRANSPORT AT A URANIUM MILL TAILINGS SITE

    Science.gov (United States)

    It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...

  17. An Comparative Study of Jane Eyre's Fate and Tess's Fate from Femi?nist Viewpoint

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; HE Ling-jing

    2017-01-01

    In"Jane Eyre", Charlotte Bronte's masterpiece the heroine, Jane Eyre has fully reflected her self-esteem, equality, and pure personality, which are also reflected in her concept of love vividly. However, Thomas Hardy's Tess is poor and kind, but she does not have a complete love like Jane Eyre, and she is described by his criticism of the old moral character with good vir-tues in the traditional sense. She is a new image of modern feminism who suffered from the old moral sense and gradually has re-volt consciousness. From the feminism viewpoint, this paper attempts to analysis the causes of their different fate from different points and reveal the impact of social background on their fates.

  18. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  19. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  20. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Minghua

    2009-01-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  1. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  2. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  3. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning 'Hazardous Materials in Aquatic Environments of the Mississippi River Basin.' The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl

  4. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Liu, Zengrong

    2014-01-01

    P53 and E2F1 are critical transcription factors involved in the choices between different cell fates including cell differentiation, cell cycle arrest or apoptosis. Recent experiments have shown that two families of microRNAs (miRNAs), p53-responsive miR34 (miRNA-34 a, b and c) and E2F1-inducible miR449 (miRNA-449 a, b and c) are potent inducers of these different fates and might have an important role in sensitizing cancer cells to drug treatment and tumor suppression. Identifying the mechanisms responsible for the combinatorial regulatory roles of these two transcription factors and two miRNAs is an important and challenging problem. Here, based in part on the model proposed in Tongli Zhang et al. (2007), we developed a mathematical model of the decision process and explored the combinatorial regulation between these two transcription factors and two miRNAs in response to DNA damage. By analyzing nonlinear dynamic behaviors of the model, we found that p53 exhibits pulsatile behavior. Moreover, a comparison is given to reveal the subtle differences of the cell fate decision process between regulation and deregulation of miR34 on E2F1. It predicts that miR34 plays a critical role in promoting cell cycle arrest. In addition, a computer simulation result also predicts that the miR449 is necessary for apoptosis in response to sustained DNA damage. In agreement with experimental observations, our model can account for the intricate regulatory relationship between these two transcription factors and two miRNAs in the cell fate decision process after DNA damage. These theoretical results indicate that miR34 and miR449 are effective tumor suppressors and play critical roles in cell fate decisions. The work provides a dynamic mechanism that shows how cell fate decisions are coordinated by two transcription factors and two miRNAs. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology and Clinical Implications. Guest Editor: Yudong Cai

  5. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  6. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  7. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

    Science.gov (United States)

    Li, Yang; Roberts, Julie; AkhavanAghdam, Zohreh; Hao, Nan

    2017-12-15

    In the yeast Saccharomyces cerevisiae , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Sources, Fate and Distribution of Organic Matter on the Western Adriatic Continental Shelf, Italy

    International Nuclear Information System (INIS)

    Tesi, Tommaso; Miserocchi, Stefano; Langone, Leonardo; Boni, Laurita; Guerrini, Franca

    2006-01-01

    In the framework of the EUROSTRATAFORM projects, a multidisciplinary research was focused on processes that involve transport and deposition of riverine material in the Adriatic Sea. The aim of our contribution was to increase a more complete understanding of organic matter deposition on the Adriatic shelf, also taking into account the role of Apennine rivers beyond the Po influence. In order to characterize origin, fate and variability of sedimentary organic carbon we utilized elemental and stable carbon isotope data in surficial sediments along shallow cross-shelf transects on the western Adriatic shelf

  9. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  10. Fate of indicator microorganisms under nutrient management plan conditions.

    Science.gov (United States)

    Bradford, Scott A; Segal, Eran

    2009-01-01

    Nutrient management plans (NMPs) for application of wastewater from concentrated animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was implemented on a field plot to test this assumption by monitoring the fate of several fecal indicator microorganisms (Enterococcus, fecal coliforms, somatic coliphage, and total Escherichia coli). When well-water and wastewater were applied to meet measured evapotranspiration (ET), little advective transport of the indicator microorganisms occurred below the root zone and the remaining microorganisms rapidly died-off (within 1 mo). Additional experiments were conducted in the laboratory to better quantify microorganism transport and survival in the field soil. Batch survival experiments revealed much more rapid die-off rates for the bacterial indicator microorganisms in native than in sterilized soil, suggesting that biotic factors controlled survival. Saturated column experiments with packed field soil, demonstrated much greater transport potential for somatic coliphage than bacterial indicators (Enterococcus and total E. coli) and that the retention rates for the indicator microorganisms were not log-linear with depth. A worst case transport scenario of ponded infiltration on a large undistributed soil column from the field was also initiated and indicator microorganisms were not detected in the column outflow or in the soil at a depth of 65 cm. All of these observations support the hypothesis that a NMP at this site will protect groundwater supplies from microorganism contamination, especially when applied water and wastewater meet ET.

  11. Distribution of biologic, anthropogenic, and volcanic constituents as a proxy for sediment transport in the San Francisco Bay Coastal System

    Science.gov (United States)

    McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.

  12. Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater.

    Science.gov (United States)

    Greskowiak, Janek; Prommer, Henning; Massmann, Gudrun; Nützmann, Gunnar

    2006-11-01

    Reactive multicomponent transport modeling was used to investigate and quantify the factors that affect redox zonation and the fate of the pharmaceutical residue phenazone during artificial recharge of groundwater at an infiltration site in Berlin, Germany. The calibrated model and the corresponding sensitivity analysis demonstrated thattemporal and spatial redox zonation at the study site was driven by seasonally changing, temperature-dependent organic matter degradation rates. Breakthrough of phenazone at monitoring wells occurred primarily during the warmer summer months, when anaerobic conditions developed. Assuming a redox-sensitive phenazone degradation behavior the model results provided an excellent agreement between simulated and measured phenazone concentrations. Therefore, the fate of phenazone was shown to be indirectly controlled by the infiltration water temperature through its effect on the aquifer's redox conditions. Other factors such as variable residence times appeared to be of less importance.

  13. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  14. Dispersion and transport of atmospheric pollutants

    International Nuclear Information System (INIS)

    Cieslik, S.

    1991-01-01

    This paper presents the physical mechanisms that govern the dispersion and transport of air pollutant; the influence of the state of the 'carrying fluid', i.e. the role of meteorology; and finally, outlines the different techniques of assessing the process. Aspects of physical mechanisms and meteorology covered include: fate of an air pollutant; turbulence and dispersion; transport; wind speed and direction; atmospheric stability; and the role of atmospheric water. Assessment techniques covered are: concentrations measurements; modelling meteorological observations; and tracer releases. It is concluded that the only way to reduce air pollution is to pollute less. 10 refs., 12 figs., 2 tabs

  15. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?

    Science.gov (United States)

    Lavieu, Gregory; Scarlatti, Francesca; Sala, Giusy; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2007-01-01

    Sphingolipids are major constituents of biological membrane and some of them behave as second messengers involved in the cell fate decision. Ceramide and sphingosine 1-phosphate (S1P) constitute a rheostat system in which ceramide promotes cell death and S1P increases cell survival. We have shown that both sphingolipids are able to trigger autophagy with opposing outcomes on cell survival. Here we discuss and speculate on the diverging functions of the autophagic pathways induced by ceramide and S1P, respectively.

  16. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior

    International Nuclear Information System (INIS)

    Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R.

    1991-01-01

    A review has been written to assess the sources, fate and behavior of polycyclic aromatic hydrocarbons (PAH) in the atmosphere. PAH are formed mainly by anthropogenic processes, especially the combustion of organic fuels. PAH concentration in air will reflect the location of source emitters, with high concentrations corresponding with urban and industrial areas. PAH are however ubiquitous contaminants of the environment having been detected in remote areas of the world. This is thought to be due to long term transport in the atmosphere. PAH can also be subjected to chemical and/or photochemical change whilst resident in the atmosphere prior to their removal by either wet or dry deposition. 146 refs., 5 tabs

  17. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  18. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  19. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water.

    Science.gov (United States)

    Carter, Janet M; Moran, Michael J; Zogorski, John S; Price, Curtis V

    2012-08-07

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  20. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  1. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  2. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  3. Investigating Undergraduate Students' Ideas about the Fate of the Universe

    Science.gov (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.

    2017-01-01

    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long…

  4. Metal-like transport in proteins: A new paradigm for biological electron transfer

    Science.gov (United States)

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  5. A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity.

    Science.gov (United States)

    Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A

    2018-04-13

    Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Parameters for the Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments

    Science.gov (United States)

    2007-07-01

    Anal. Bering/Chukchi, accessed 3 January 2007, http://www.osdpd.noaa.gov/PSB/EPS/SST/data/beringst.c.gif. RE-2 15 Brewer , P. G.; Glover, D. M...Highly Purified Mustard Gas and its Action on Yeast , ” J. Am. Chem. Soc., 1947, 69(7), 1808-1809. 135 Redemann, C. E.; Chaikin, S. W.; Fearing, R. B...171 MacNaughton, M. G.; Brewer , J. H., Environmental Chemistry and Fate of Chemical Warfare Agents, Southwest Research Institute, San Antonio TX, 1994

  7. Transport and fate of hexachlorocyclohexanes in the oceanic air and surface seawater

    Directory of Open Access Journals (Sweden)

    Z. Xie

    2011-09-01

    Full Text Available Hexachlorocyclohexanes (HCHs are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (α-, γ- and β-HCH in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. ΣHCHs concentrations (the sum of α-, γ- and β-HCH in the lower atmosphere ranged from 12 to 37 pg m−3 (mean: 27 ± 11 pg m−3 in the Northern Hemisphere (NH, and from 1.5 to 4.0 pg m−3 (mean: 2.8 ± 1.1 pg m−3 in the Southern Hemisphere (SH, respectively. Water concentrations were: α-HCH 0.33–47 pg l−1, γ-HCH 0.02–33 pg l−1 and β-HCH 0.11–9.5 pg l−1. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987–1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2–3 orders of magnitude. Air-water exchange gradients suggested net deposition for α-HCH (mean: 3800 pg m−2 day−1 and γ-HCH (mean: 2000 pg m−2 day−1, whereas β-HCH varied between equilibrium (volatilization: <0–12 pg m−2 day−1 and net deposition (range: 6–690 pg m−2 day−1. Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains and drive long-range transport from sources to deposition in the open oceans. Biological productivities may

  8. Evaporation as the transport mechanism of metals in arid regions

    NARCIS (Netherlands)

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high

  9. Specifying pancreatic endocrine cell fates.

    Science.gov (United States)

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  10. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.

    2003-10-01

    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  11. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  12. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  13. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    Science.gov (United States)

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  14. Sorption, mobility, and fate of 1,4,7,8-tetrachlorodibenzo-p-dioxin in soils

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Hakk, H. [USDA ARS Biosciences Research Lab., Fargo (United States); Fan, Z.; Casey, F. [North Dakota State Univ., Fargo (United States)

    2004-09-15

    Most dioxins are released into the environment through low temperature combustion processes, which include waste incineration and metal refining. Incineration of medical and municipal wastes in the early 1990s was estimated to generate 0.7g -5 kg dioxin Toxic Equivalents (TEQ)/yr and 2-3 kg TEQ/yr of polychlorinated dibenzo-p-dioxins (PCDDs)/polychlorinated dibenzofurans (PCDFs) emissions, respectively. Governmental regulatory controls on waste incinerators have resulted in an annual decrease of dioxins/furans emissions from 13.5 kg TEQ/yr to 2.8 kg TEQ/yr from 1987 to 1995. Recently backyard burning of household waste has been shown to produce more PCDDs/PCDFs per mass burned than a typical modern municipal waste incinerator and has been estimated to account for 22% of the dioxin emissions in North America from 1996-1997. These combustion processes result in direct deposition of dioxins on soil. While degradation studies of PCDDs/PCDFs have been conducted on contaminated soils, little is known about the sorption, transport, and fate of dioxins in various soil types. 1,4,7,8- Tetrachlorodibenzo-p-dioxin (1478-TCDD) was also found to be a significant congener of the dioxins in ball clay.7 Ball clay had been used as an anti-caking agent in soybean meal of animal feed but its use has subsequently been discontinued. The main goal of this study was to identify the fate and transport of 1478-TCDD in various soils and sand through the use of laboratory batch and soil column experiments.

  15. General guidelines for safe and expeditious international transport of samples subjected to biological dosimetry assessment.

    Science.gov (United States)

    Di Giorgio, Marina; Radl, Analía; Taja, María R; Bubniak, Ruth; Deminge, Mayra; Sapienza, Carla; Vázquez, Marina; Baciu, Florian; Kenny, Pat

    2014-06-01

    It has been observed that victims of accidental overexposures show better chance of survival if they receive medical treatment early. The increased risk of scenarios involving mass casualties has stimulated the scientific community to develop tools that would help the medical doctors to treat victims. The biological dosimetry has become a routine test to estimate the dose, supplementing physical and clinical dosimetry. In case of radiation emergencies, in order to provide timely and effectively biological dosimetry assistance it is essential to guarantee an adequate transport of blood samples in principal, for providing support to countries that do not have biodosimetry laboratories. The objective of the present paper is to provide general guidelines, summarised in 10 points, for timely and proper receiving and sending of blood samples under National and International regulations, for safe and expeditious international transport. These guidelines cover the classification, packaging, marking, labelling, refrigeration and documentation requirements for the international shipping of blood samples and pellets, to provide assistance missions with a tool that would contribute with the preparedness for an effective biodosimetric response in cases of radiological or nuclear emergencies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Effect of composting on the fate of steroids in beef cattle manure

    Science.gov (United States)

    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary...

  17. Comparison of Atmospheric Travel Distances of Several PAHs Calculated by Two Fate and Transport Models (The Tool and ELPOS with Experimental Values Derived from a Peat Bog Transect

    Directory of Open Access Journals (Sweden)

    Sabine Thuens

    2014-05-01

    Full Text Available Multimedia fate and transport models are used to evaluate the long range transport potential (LRTP of organic pollutants, often by calculating their characteristic travel distance (CTD. We calculated the CTD of several polycyclic aromatic hydrocarbons (PAHs and metals using two models: the OECD POV& LRTP Screening Tool (The Tool, and ELPOS. The absolute CTDs of PAHs estimated with the two models agree reasonably well for predominantly particle-bound congeners, while discrepancies are observed for more volatile congeners. We test the performance of the models by comparing the relative ranking of CTDs with the one of experimentally determined travel distances (ETDs. ETDs were estimated from historical deposition rates of pollutants to peat bogs in Eastern Canada. CTDs and ETDs of PAHs indicate a low LRTP. To eliminate the high influence on specific model assumptions and to emphasize the difference between the travel distances of single PAHs, ETDs and CTDs were analyzed relative to the travel distances of particle-bound compounds. The ETDs determined for PAHs, Cu, and Zn ranged from 173 to 321 km with relative uncertainties between 26% and 46%. The ETDs of two metals were shorter than those of the PAHs. For particle-bound PAHs the relative ETDs and CTDs were similar, while they differed for Chrysene.

  18. RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...

  19. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  20. The impact of organochlorines cycling in the cryosphere on their global distribution and fate – 1. Sea ice

    International Nuclear Information System (INIS)

    Guglielmo, Francesca; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without a dynamic sea ice compartment. The MPI-MCTM is based on coupled ocean and atmosphere general circulation models. Sea ice hosts 7–9% of the burden of the surface ocean. Without cycling in sea ice the geographic distributions are shifted from land to sea. This shift of burdens exceeds the sea ice burden by a factor of ≈8 for γ-HCH and by a factor of ≈15 for DDT. As regional scale seasonal sea ice melting may double surface ocean contamination, a neglect of cycling in sea ice (in an otherwise unchanged model climate) would underestimate ocean exposure in high latitudes. Furthermore, it would lead to overestimates of the residence times in ocean by 40% and 33% and of the total environmental residence times, τ overall , of γ-HCH and DDT by 1.6% and 0.6%, respectively. - Highlights: ► Sea ice hosts 7–9% of the burden of γ-HCH and DDT in the surface ocean. ► Without cycling in sea ice the distributions are shifted from land to sea. ► A neglect of cycling in sea ice would underestimate ocean exposure in high latitudes. ► Persistence of γ-HCH and DDT expected enhanced in climate without sea ice. - The inclusion of cycling in sea ice is found relevant for POPs fate and transport modelling on the global scale.

  1. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  2. Organoarsenicals in poultry litter: detection, fate, and toxicity.

    Science.gov (United States)

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee

    2015-02-01

    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi

    1986-01-01

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  4. Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil

    Science.gov (United States)

    Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.

    2012-12-01

    In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60

  5. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  6. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    Science.gov (United States)

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (pRemoval efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Environmental fate of tungsten from military use

    International Nuclear Information System (INIS)

    Clausen, Jay L.; Korte, Nic

    2009-01-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use

  8. Fate and transport of radionuclides in soil-water environment. Review.

    Science.gov (United States)

    Konoplev, Aleksei

    2017-04-01

    is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  9. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  10. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  11. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    Science.gov (United States)

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Fate of chemical warfare agents and toxic industrial chemicals in landfills.

    Science.gov (United States)

    Bartelt-Hunt, Shannon L; Barlaz, Morton A; Knappe, Detlef R U; Kjeldsen, Peter

    2006-07-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in MSW landfills was predicted with a mathematical model. Five blister agents [sulfur mustard (HD), nitrogen mustard (HN-2), lewisite (L), ethyldichloroarsine (ED), and phosgene oxime (CX)], eight nerve agents [tabun (GA), sarin (GB), soman (GD), GE, GF, VX, VG, and VM], one riot-control agent [CS], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis half-lives. Monte Carlo simulations were performed to assess the influence of uncertainty in model input parameters on CWA/TIC fate predictions. Correlation analyses showed that uncertainty in hydrolysis rate constants was the primary contributor to variance of CWA fate predictions, while uncertainty in the Henry's Law constant and landfill gas-production rate accounted for most of the variance of TIC fate predictions. CWA hydrolysates were more persistent than the parent CWAs, but limited information is available on abiotic or biotic transformation rates for these chemicals.

  13. State-of-the-art and research needs for oil spill impact assessment modelling

    Energy Technology Data Exchange (ETDEWEB)

    French-McCay, D. [Applied Science Associates Inc., South Kingstown, RI (United States)

    2009-07-01

    Many oil spill models focus on trajectory and fate in aquatic environments. Models designed to address subsurface oil concentrations typically overlay fates model concentration results on maps or grids of biological distributions to assess impacts. This paper discussed a state-of-the-art biological effects model designed to evaluate the impacts and dose of oil spill hydrocarbons on aquatic biota including birds, mammals, reptiles, fish, invertebrates and plants. The biological effects model was coupled to an oil trajectory and fates spill impact model application package (SIMAP) in order to obtain accurate spatial and temporal quantifications of oil distributions and hydrocarbon component concentrations. Processes simulated in the model included slick spreading, evaporation of volatiles from surface oil, transport on the water surface, and various types of oil dispersion and emulsification. The design of the model was discussed, as well as strategies used for applying the model for hindcasts and risk assessments. 204 refs., 3 tabs., 5 figs.

  14. State-of-the-art and research needs for oil spill impact assessment modelling

    International Nuclear Information System (INIS)

    French-McCay, D.

    2009-01-01

    Many oil spill models focus on trajectory and fate in aquatic environments. Models designed to address subsurface oil concentrations typically overlay fates model concentration results on maps or grids of biological distributions to assess impacts. This paper discussed a state-of-the-art biological effects model designed to evaluate the impacts and dose of oil spill hydrocarbons on aquatic biota including birds, mammals, reptiles, fish, invertebrates and plants. The biological effects model was coupled to an oil trajectory and fates spill impact model application package (SIMAP) in order to obtain accurate spatial and temporal quantifications of oil distributions and hydrocarbon component concentrations. Processes simulated in the model included slick spreading, evaporation of volatiles from surface oil, transport on the water surface, and various types of oil dispersion and emulsification. The design of the model was discussed, as well as strategies used for applying the model for hindcasts and risk assessments. 204 refs., 3 tabs., 5 figs

  15. Influence of microemulsion-mucin interaction on the fate of microemulsions diffusing through pig gastric mucin solutions.

    Science.gov (United States)

    Zhang, Jianbin; Lv, Yan; Wang, Bing; Zhao, Shan; Tan, Mingqian; Lv, Guojun; Ma, Xiaojun

    2015-03-02

    Mucus layer, a selective diffusion barrier, has an important effect on the fate of drug delivery systems in the gastrointestinal tract. To study the fate of microemulsions in the mucus layer, four microemulsion formulations with different particle sizes and lipid compositions were prepared. The microemulsion-mucin interaction was demonstrated by the fluorescence resonance energy transfer (FRET) method. Moreover, the microemulsions were observed aggregated into micron-sized emulsions by laser confocal microscopy. We concluded the microemulsion-mucin interaction not only led to microemulsions closely adhered to mucins but also destroyed the structure of microemulsions. At last, the diffusion of blank microemulsions and microemulsion-carried drugs (resveratrol and hymecromone) through mucin solutions was determined by the fluorescence recovery after photobleaching (FRAP) method and the Franz diffusion cell method. The results demonstrated the diffusion of microemulsions was significantly hindered by mucin solutions. The particle size of microemulsions had a negligible effect on the diffusion coefficients. However, the type of lipid played an important role, which could form hydrophobic interactions with mucins. Interestingly, microemulsion-carried drugs with different core/shell locations seemed to suffer different fates in the mucin solutions. The drug incorporated in the oil core of microemulsions, resveratrol, was transported through the mucus layer by the carriers, while the drug incorporated in the surfactant shell of microemulsions, hymecromone, was separated from the carriers and diffused toward the epithelium in the form of free molecules.

  16. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV

  17. The biological transport of radionuclides in grassland and freshwater ecosystems

    International Nuclear Information System (INIS)

    Rudge, S.A.

    1989-12-01

    This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)

  18. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    Science.gov (United States)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  19. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  20. Ultimate fate of constrained voters

    International Nuclear Information System (INIS)

    Vazquez, F; Redner, S

    2004-01-01

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed

  1. Ultimate fate of constrained voters

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, F [Department of Physics, Center for BioDynamics, Boston University, Boston, MA 02215 (United States); Redner, S [Department of Physics, Center for Polymer Studies, Boston University, Boston, MA 02215 (United States)

    2004-09-03

    We examine the ultimate fate of individual opinions in a socially interacting population of leftists, centrists and rightists. In an elemental interaction between agents, a centrist and a leftist can both become centrists or both become leftists with equal rates (and similarly for a centrist and a rightist). However leftists and rightists do not interact. This interaction step between pairs of agents is applied repeatedly until the system can no longer evolve. In the mean-field limit, we determine the exact probability that the system reaches consensus (either leftist, rightist or centrist) or a frozen mixture of leftists and rightists as a function of the initial composition of the population. We also determine the mean time until the final state is reached. Some implications of our results for the ultimate fate in a limit of the Axelrod model are discussed.

  2. Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...

  3. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  4. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  5. Veterinary antibiotic sorption and transport through agroforestry buffer, grass buffer and cropland soils

    Science.gov (United States)

    Veterinary antibiotics (VAs), such as sulfamethazine (SMZ) are released into the environment by application of manure to agricultural fields. Understanding the fate and transport of VAs is important for assessing and mitigating possible environmental hazards. To study the effects of dissolved organi...

  6. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  7. Estimating fate and transport of multiple contaminants in the vadose zone using a multi-layered soil column and three-phase equilibrium partitioning model

    International Nuclear Information System (INIS)

    Rucker, Gregory G.

    2007-01-01

    Soils at waste sites must be evaluated for the potential of residual soil contamination to leach and migrate to the groundwater beneath the disposal area. If migration to the aquifer occurs, contaminants can travel vast distances and pollute drinking water wells, thus exposing human receptors to harmful levels of toxins and carcinogens. To prevent groundwater contamination, a contaminant fate and transport analysis is necessary to assess the migration potential of residual soil contaminants. This type of migration analysis is usually performed using a vadose zone model to account for complex geotechnical and chemical variables including: decay processes, infiltration rate, soil properties, vadose zone thickness, and chemical behavior. The distinct advantage of using a complex model is that less restrictive, but still protective, soil threshold levels may be determined avoiding the unnecessary and costly remediation of marginally contaminated soils. However, the disadvantage of such modeling is the additional cost for data collection and labor required to apply these models. In order to allay these higher costs and to achieve a less restrictive but still protective clean-up level, a multiple contaminant and multi layered soil column equilibrium partitioning model was developed which is faster, simpler and less expensive to use. (authors)

  8. Plastic fragments in the environment: Origin, dispersion, consequences

    International Nuclear Information System (INIS)

    Beone, G.; De Simone, R.

    1989-01-01

    An overview of data on plastic pollution remarks a lake on its environmental fate, but debris, created by photodegradation, seems to have high hazard. In this paper, distribution and transport of plastic in ecological system and biological significance are discussed. (author)

  9. Plastic fragments in the environment: Origin, dispersion, consequences; Frammenti plastici nell'ambiente: origine, diffusione, effetti

    Energy Technology Data Exchange (ETDEWEB)

    Beone, G [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy); De Simone, R [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia Ambiente S. Teresa, La Spezia (Italy)

    1989-01-15

    An overview of data on plastic pollution remarks a lake on its environmental fate, but debris, created by photodegradation, seems to have high hazard. In this paper, distribution and transport of plastic in ecological system and biological significance are discussed. (author)

  10. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.

    2006-01-01

    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  11. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kayla C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effort reported herein.

  12. Quantitative Modeling of Membrane Transport and Anisogamy by Small Groups Within a Large-Enrollment Organismal Biology Course

    Directory of Open Access Journals (Sweden)

    Eric S. Haag

    2016-12-01

    Full Text Available Quantitative modeling is not a standard part of undergraduate biology education, yet is routine in the physical sciences. Because of the obvious biophysical aspects, classes in anatomy and physiology offer an opportunity to introduce modeling approaches to the introductory curriculum. Here, we describe two in-class exercises for small groups working within a large-enrollment introductory course in organismal biology. Both build and derive biological insights from quantitative models, implemented using spreadsheets. One exercise models the evolution of anisogamy (i.e., small sperm and large eggs from an initial state of isogamy. Groups of four students work on Excel spreadsheets (from one to four laptops per group. The other exercise uses an online simulator to generate data related to membrane transport of a solute, and a cloud-based spreadsheet to analyze them. We provide tips for implementing these exercises gleaned from two years of experience.

  13. [The tragic fate of physicians].

    Science.gov (United States)

    Ohry, Avi

    2013-10-01

    Physicians and surgeons were always involved in revolutions, wars and political activities, as well as in various medical humanities. Tragic fate met these doctors, whether in the Russian prisons gulags, German labor or concentration camps, pogroms or at the hands of the Inquisition.

  14. Occurrence, fate and effects of Di (2-ethylhexyl) Phthalate in wastewater treatment plants: a review.

    Science.gov (United States)

    Zolfaghari, M; Drogui, P; Seyhi, B; Brar, S K; Buelna, G; Dubé, R

    2014-11-01

    Phthalates, such as Di (2-ethylhexyl) Phthalate (DEHP) are compounds extensively used as plasticizer for long time around the world. Due to the extensive usage, DEHP is found in many surface waters (0.013-18.5 μg/L), wastewaters (0.716-122 μg/L), landfill leachate (88-460 μg/L), sludge (12-1250 mg/kg), soil (2-10 mg/kg). DEHP is persistent in the environment and the toxicity of the byproducts resulting from the degradation of DEHP sometime exacerbates the parent compound toxicity. Water/Wastewater treatment processes might play a key role in delivering safe, reliable supplies of water to households, industry and in safeguarding the quality of water in rivers, lakes and aquifers. This review addresses state of knowledge concerning the worldwide production, occurrence, fate and effects of DEHP in the environment. Moreover, the fate and behavior of DEHP in various treatment processes, including biological, physicochemical and advanced processes are reviewed and comparison (qualitative and quantitative) has been done between the processes. The trends and perspectives for treatment of wastewaters contaminated by DEHP are also analyzed in this review. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  16. Fate of polybrominated diphenyl ethers in the environment of the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Guan Yufeng; Sojinu, O.S. Samuel; Li Shaomeng; Zeng, Eddy Y.

    2009-01-01

    Ninety-six riverine runoff samples collected at eight major outlets in the Pearl River Delta (PRD), South China, during 2005-2006 were analyzed for 17 brominated diphenyl ether (BDE) congeners (defined as Σ 17 PBDE). Fourteen and 15 congeners were detected, respectively, in the dissolved and particulate phases. These data were further used to elucidate the partitioning behavior of BDE congeners in riverine runoff. Several related fate processes, i.e. air-water exchange, dry and wet deposition, degradation, and sedimentation, within the Pearl River Estuary (PRE), were examined to estimate the inputs of Σ 10 PBDE (sum of the target BDE congeners, BDE-28, -47, -66, -85, -99, -100, -138, -153, -154, and -183) and BDE-209 from the PRD to the coastal ocean based on mass balance considerations. The results showed that annual outflows of Σ 10 PBDE and BDE-209 were estimated at 126 and 940 kg/year, respectively from the PRE to coastal ocean. Besides sedimentation and degradation, the majority of Σ 10 PBDE and BDE-209 discharged into the PRE via riverine runoff was transported to the coastal ocean. - Fate of polybrominated diphenyl ethers in the environment the Pearl River Estuary, South China.

  17. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  18. A polynomial based model for cell fate prediction in human diseases.

    Science.gov (United States)

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  19. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  20. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D. [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  1. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge

  2. Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Bjørn-Yoshimoto, Walden Emil; Jørgensen, Trine Nygaard

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of released dopamine and is the target for psychostimulants, such as cocaine and amphetamine. DAT undergoes marked constitutive endocytosis, but little is known about the fate and sorting of the endocytosed transporter. To study DAT sorting in cells...... lines, we fused the one-transmembrane segment protein Tac to DAT, thereby generating a transporter (TacDAT) with an extracellular antibody epitope suited for trafficking studies. TacDAT was functional and endocytosed constitutively in HEK293 cells. According to an ELISA-based assay, TacDAT intracellular...

  3. Simulation of biological flow and transport in complex geometries using embedded boundary/volume-of-fluid methods

    International Nuclear Information System (INIS)

    Trebotich, David

    2007-01-01

    We have developed a simulation capability to model multiscale flow and transport in complex biological systems based on algorithms and software infrastructure developed under the SciDAC APDEC CET. The foundation of this work is a new hybrid fluid-particle method for modeling polymer fluids in irregular microscale geometries that enables long-time simulation of validation experiments. Both continuum viscoelastic and discrete particle representations have been used to model the constitutive behavior of polymer fluids. Complex flow environment geometries are represented on Cartesian grids using an implicit function. Direct simulation of flow in the irregular geometry is then possible using embedded boundary/volume-of-fluid methods without loss of geometric detail. This capability has been used to simulate biological flows in a variety of application geometries including biomedical microdevices, anatomical structures and porous media

  4. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.

    1985-06-01

    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  5. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  6. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Science.gov (United States)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  7. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  8. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  9. Hematopoietic stem cell fate through metabolic control.

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  10. Chemical Contaminants in the Wadden Sea: sources, transport, fate and effects

    NARCIS (Netherlands)

    Laane, R.W.P.M.; Vethaak, A.D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M.M.; Strand, J.

    2013-01-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane

  11. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  12. Aspects of neptunium behavior in plants; absorption, distribution, and fate

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1984-03-01

    The availability of Np(V) for absorption by plants and its subsequent transport and fate are described. Plant uptake of Np from solutions containing 7 x 10 -7 to 473 μg Np/ml is proportional to concentration, exhibiting some saturation at higher concentrations. Soil studies using Np concentrations of 5.2 x 10 -7 to 4.1 μg/g soil show CR values to be constant at approx. 2 at soil concentrations below 4 x 10 -4 μg/g, and increase to 12 at higher soil levels. Soil/plant CR values vary with plant species and range from 0.5 to 4; seed concentrations are a factor of 10 lower than vegetative tissues. Fractionation of plant tissues show Np to be substantially more soluble than Pu, with approx. 50% of the soluble Np being associated with plant ligands of < 5000 MW. 6 references, 5 figures, 1 table

  13. Assessing the fate of organic micropollutants during riverbank filtration utilizing field studies and laboratory test systems

    Science.gov (United States)

    Schmidt, C. K.; Lange, F. T.; Sacher, F.; Baus, C.; Brauch, H.-J.

    2003-04-01

    In Germany and other highly populated countries, several waterworks use riverbank filtration as a first step in the treatment of river water for water supplies. Unfortunately, industrial and municipal discharges and the influence of agriculture lead to the pollution of rivers and lakes by a number of organic chemicals. In order to assess the impact of those organic micropollutants on the quality of drinking water, it is necessary to clarify their fate during infiltration and underground passage. The fate of organic micropollutants in a river water-groundwater infiltration system is mainly determined by adsorption mechanisms and biological transformations. One possibility to simulate the microbial degradation of single compounds during riverbank filtration is the use of laboratory test filter systems, that are operated as biological fixed-bed reactors under aerobic conditions. The benefit and meaningfulness of those test filters was evaluated on the basis of selected target compounds by comparing the results derived from test filter experiments with field studies under environmental conditions at the River Rhine. Samples from the river and from groundwater of a well characterized aerobic infiltration pathway were analyzed over a time period of several years for a spectrum of organic micropollutants. Target compounds comprised several contaminants relevant for the aquatic environment, such as complexing agents, aromatic sulfonates, pharmaceuticals (including iodinated X ray contrast media), and MTBE. Furthermore, the behaviour of some target compounds during aerobic riverbank filtration was compared to their fate along a section of an anaerobic (oxygen-depleted) aquifer at the River Ruhr that is characterized by a transition state between sulfate reduction and methane production. While some organic micropollutants showed no major differences, the elimination of others turned out to be clearly dependent on the underlying redox processes in the groundwater. The

  14. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail: Jay.L.Clausen@erdc.usace.army.mil; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  15. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  16. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment

    NARCIS (Netherlands)

    Huijbregts, M.A.J.; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A.; Van De Meent, Dik

    2005-01-01

    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393

  17. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Won-Jin; Lee, Ji-Woo [Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Jeong-Eun, E-mail: jeoh@pusan.ac.k [Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2010-05-15

    We measured 25 pharmaceuticals in ten municipal wastewater treatment plants (WWTPs), one hospital WWTP and five rivers in Korea. In the municipal WWTP influents, acetaminophen, acetylsalicylic acid and caffeine showed relatively high concentrations. The occurrence of pharmaceuticals in the wastewater seems to be influenced by production and consumption of pharmaceuticals. The hospital WWTP influent showed higher total concentrations of pharmaceuticals than the municipal WWTPs, and caffeine, ciprofloxacin and acetaminophen were dominant. In the rivers, caffeine was dominant, and the distribution of pharmaceuticals was related to the inflow of the wastewater. In the municipal WWTPs, the concentrations of acetaminophen, caffeine, acetylsalicylic acid, ibuprofen and gemfibrozil decreased by over 99%. The decrease of these pharmaceuticals occurred mainly during the biological processes. In the physico-chemical processes, the decrease of pharmaceuticals was insignificant except for some cases. In the hospital WWTP, ciprofloxacin, acetylsalicylic acid, acetaminophen and carbamazepine showed the decrease rates of over 80%. - We investigated distribution and fate of pharmaceuticals in rivers and WWTPs including various biological and physico-chemical processes.

  18. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea

    International Nuclear Information System (INIS)

    Sim, Won-Jin; Lee, Ji-Woo; Oh, Jeong-Eun

    2010-01-01

    We measured 25 pharmaceuticals in ten municipal wastewater treatment plants (WWTPs), one hospital WWTP and five rivers in Korea. In the municipal WWTP influents, acetaminophen, acetylsalicylic acid and caffeine showed relatively high concentrations. The occurrence of pharmaceuticals in the wastewater seems to be influenced by production and consumption of pharmaceuticals. The hospital WWTP influent showed higher total concentrations of pharmaceuticals than the municipal WWTPs, and caffeine, ciprofloxacin and acetaminophen were dominant. In the rivers, caffeine was dominant, and the distribution of pharmaceuticals was related to the inflow of the wastewater. In the municipal WWTPs, the concentrations of acetaminophen, caffeine, acetylsalicylic acid, ibuprofen and gemfibrozil decreased by over 99%. The decrease of these pharmaceuticals occurred mainly during the biological processes. In the physico-chemical processes, the decrease of pharmaceuticals was insignificant except for some cases. In the hospital WWTP, ciprofloxacin, acetylsalicylic acid, acetaminophen and carbamazepine showed the decrease rates of over 80%. - We investigated distribution and fate of pharmaceuticals in rivers and WWTPs including various biological and physico-chemical processes.

  19. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: Results from thirteen studies across the United States

    Science.gov (United States)

    Puckett, L.J.

    2004-01-01

    During the last two decades there has been growing interest in the capacity of riparian buffer zones to remove nitrate from ground waters moving through them. Riparian zone sediments often contain organic carbon, which favors formation of reducing conditions that can lead to removal of nitrate through denitrification. Over the past decade the National Water Quality Assessment (NAWQA) Program has investigated the transport and fate of nitrate in ground and surface waters in study areas across the United States. In these studies riparian zone efficiency in removing nitrate varied widely as a result of variations in hydrogeologic factors. These factors include (1) denitrification in the up-gradient aquifer due to the presence of organic carbon or other electron donors, (2) long residence times (>50 years) along ground-water flow paths allowing even slow reactions to completely remove nitrate, (3) dilution of nitrate enriched waters with older water having little nitrate, (4) bypassing of riparian zones due to extensive use of drains and ditches, and (5) movement of ground water along deep flow paths below reducing zones. By developing a better understanding of the hydrogeologic settings in which riparian buffer zones are likely to be inefficient we can develop improved nutrient management plans. ?? US Government 2004.

  20. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems

    Science.gov (United States)

    Bochet, E.

    2015-01-01

    Since seeds are the principle means by which plants move across the landscape, the final fate of seeds plays a fundamental role in the assemblage, functioning and dynamics of plant communities. Once seeds land on the soil surface after being dispersed from the parent plant, they can be moved horizontally by surface runoff. In arid and semiarid patchy ecosystems, where seeds are scattered into a very heterogeneous environment and intense rainfalls occur, the transport of seeds by runoff to new sites may be an opportunity for seeds to reach more favourable sites for seed germination and seedling survival. Although seed transport by runoff may be of vital importance for the recruitment of plants in these ecosystems, it has received little attention in the scientific literature, especially among soil scientists. The main goals of this review paper are (1) to offer an updated conceptual model of seed fate with a focus on seed destiny in and on the soil; (2) to review studies on seed fate in overland flow and the ecological implications seed transport by runoff has for the origin, spatial patterning and maintenance of patches in arid and semiarid patchy ecosystems; and finally (3) to point out directions for future research. This review shows that seed fate in overland flow may result either in the export of seeds from the system (seed loss) or in the spatial redistribution of seeds within the system through short-distance seed movements (seed displacement). Seed transport by runoff depends on rainfall, slope and soil characteristics. Susceptibility of seed removal varies highly between species and is mainly related to seed traits, including seed size, seed shape, presence of appendages, and ability of a seed to secrete mucilage. Although initially considered as a risk of seed loss, seed removal by runoff has recently been described as an ecological driver that shapes plant composition from the first phases of the plant life by favouring species with seeds able to resist

  1. Charge transport problem

    International Nuclear Information System (INIS)

    Lee, E.P.

    1977-01-01

    In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop

  2. Synthetic Biology: Life, Jim, but Not As We Know It

    Science.gov (United States)

    Hallinan, Jennifer

    Frankenstein, Mary Shelley's classic tale of horror, warns of the perils of hubris: of the terrible fate that awaits when Man plays God and attempts to create life. Molecular biologists are clearly not listening. Not content with merely inserting the occasional gene into the genome of an existing organism. they are developing a whole new field, Synthetic Biology, which aims to engineer from first principles organisms with desirable, controllable qualities.

  3. Rainfall-induced fecal indicator organisms transport from animal waste applied fields: model sensitivity analysis

    Science.gov (United States)

    The microbial quality of surface waters warrants attention because of associated food- and waterborne-disease outbreaks, and fecal indicator organisms (FIOs) are commonly used to evaluate levels of microbial pollution. Models that predict the fate and transport of FIOs are required for designing and...

  4. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    Science.gov (United States)

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    denitrification were limited, particularly where reducing conditions did not extend throughout the entire thickness of the surficial aquifer allowing NO3 to pass conservatively beneath a wetland along deeper groundwater flow paths. The complexity of N fate and transport associated with depressional wetlands complicates the understanding of their importance to water quality in adjacent streams. Although depressional wetlands often contribute low NO3 water to local streams, their effectiveness as landscape sinks, for N from adjacent agriculture varies with natural conditions, such as the thickness of the aquifer and the extent of reducing conditions. Measurement of such natural geologic, hydrologic, and geochemical conditions are therefore fundamental to understanding N mitigation in individual wetlands.

  5. Posttranscriptional (Re)programming of Cell Fate: Examples in Stem Cells, Progenitor, and Differentiated Cells.

    Science.gov (United States)

    Kanellopoulou, Chrysi; Muljo, Stefan A

    2018-01-01

    How a single genome can give rise to many different transcriptomes and thus all the different cell lineages in the human body is a fundamental question in biology. While signaling pathways, transcription factors, and chromatin architecture, to name a few determinants, have been established to play critical roles, recently, there is a growing appreciation of the roles of non-coding RNAs and RNA-binding proteins in controlling cell fates posttranscriptionally. Thus, it is vital that these emerging players are also integrated into models of gene regulatory networks that underlie programs of cellular differentiation. Sometimes, we can leverage knowledge about such posttranscriptional circuits to reprogram patterns of gene expression in meaningful ways. Here, we review three examples from our work.

  6. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  7. Molecular dynamics simulation studies of transmembrane transport of chemical components in Chinese herbs and the function of platycodin D in a biological membrane

    Directory of Open Access Journals (Sweden)

    Shufang Yang

    2017-04-01

    Conclusion: The Martini force field was successfully applied to the study of the interaction between herbal compounds and a biological membrane. By combining the dynamics equilibrium morphology, the distribution of drugs inside and outside the biomembrane, and the interaction sites of drugs on the DPPC bilayer, factors influencing transmembrane transport of drugs were elucidated and the function of platycodin D in a biological membrane was reproduced.

  8. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Peyton, Brent M. [Montana State Univ., Bozeman, MT (United States); Apel, William A. [Idaho National Lab., Idaho Falls, ID (United States)

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  9. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    International Nuclear Information System (INIS)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-01

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in

  10. Study of reactive solutes transport and PAH migration in unsaturated soils

    International Nuclear Information System (INIS)

    Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.

    2005-01-01

    Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy

  11. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  13. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  14. Modeling fates and impacts for bio-economic analysis of hypothetical oil spill scenarios in San Francisco Bay

    International Nuclear Information System (INIS)

    French McCay, D.; Whittier, N.; Sankaranarayanan, S.; Jennings, J.; Etkin, D.S.

    2002-01-01

    The oil spill risks associated with four submerged rock pinnacles near Alcatraz Island in San Francisco Bay are being evaluated by the United States Army Corps of Engineers. Oil spill modeling has been conducted for a hypothetical oil spill to determine biological impacts, damages to natural resources and response costs. The scenarios are hypothetical vessel grounding on the pinnacles. The SIMAP modeling software by the Applied Science Associates was used to model 3 spill sizes (20, 50 and 95 percentile by volume) and 4 types of oil (gasoline, diesel, heavy fuel oil, and crude oil). The frequency distribution of oil fates and impacts was determined by first running each scenario in stochastic mode. The oil fates and biological effects of the spills were the focus of this paper. It was shown that diesel and crude oil spills would have greater impacts in the water column than heavy fuel or gasoline because gasoline is more volatile and less toxic and because heavy oil spills would be small in volume. It was determined that the major impacts and damage to birds would be low due to the high dilution potential of the bay. It was also noted that dispersants would be very effective in reducing impacts on wildlife and the shoreline. These results are being used to evaluate the cost-benefit analysis of removing the rocks versus the risk of an oil spill. The work demonstrates a statistically quantifiable method to estimate potential impacts that could be used in ecological risk assessment and cost-benefit analysis. 15 refs., 13 tabs., 11 figs

  15. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, July 1, 1994--September 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This document references information pertaining to the presence of hazardous materials in the Mississippi River Basin. Topics discussed include: The biological fate, transport, and ecotoxicity of toxic and hazardous wastes; biological uptake and metabolism; sentinels of aquatic contamination; bioremediation; microorganisms; biomarkers of exposure and ecotoxicity; expert geographical information systems for assessing hazardous wastes in aquatic environments; and enhancement of environmental education at Tulane and Xavier

  16. In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Chen, Feng; Goel, Shreya; Valdovinos, Hector F; Luo, Haiming; Hernandez, Reinier; Barnhart, Todd E; Cai, Weibo

    2015-08-25

    Traditional chelator-based radio-labeled nanoparticles and positron emission tomography (PET) imaging are playing vital roles in the field of nano-oncology. However, their long-term in vivo integrity and potential mismatch of the biodistribution patterns between nanoparticles and radio-isotopes are two major concerns for this approach. Here, we present a chelator-free zirconium-89 ((89)Zr, t1/2 = 78.4 h) labeling of mesoporous silica nanoparticle (MSN) with significantly enhanced in vivo long-term (>20 days) stability. Successful radio-labeling and in vivo stability are demonstrated to be highly dependent on both the concentration and location of deprotonated silanol groups (-Si-O(-)) from two types of silica nanoparticles investigated. This work reports (89)Zr-labeled MSN with a detailed labeling mechanism investigation and long-term stability study. With its attractive radio-stability and the simplicity of chelator-free radio-labeling, (89)Zr-MSN offers a novel, simple, and accurate way for studying the in vivo long-term fate and PET image-guided drug delivery of MSN in the near future.

  17. Transport and fate of nitrate in headwater agricultural streams in Illinois.

    Science.gov (United States)

    Royer, Todd V; Tank, Jennifer L; David, Mark B

    2004-01-01

    Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.

  18. Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

    1998-01-01

    The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport

  19. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2016-09-01

    Full Text Available The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4 in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  20. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    Science.gov (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  2. Transport and fate of ammonium and its impact on uranium and other trace elements at a former uranium mill tailing site

    International Nuclear Information System (INIS)

    Miao, Ziheng; Akyol, Hakan N.; McMillan, Andrew L.; Brusseau, Mark L.

    2013-01-01

    Highlights: • Nitrification of ammonium evidenced by stable isotopes of nitrate at a mining site. • Concentrations of uranium and other trace elements related to ammonium conc. • Observed impact of ammonium on redox, pH, and possibly complexation. • Proposed impact of transformation of NO 3 and NH 4 on trace elements. - Abstract: The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium–nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site

  3. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  4. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  5. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    OpenAIRE

    Hansen , K. M.; Christensen , J. H.; Brandt , J.; Frohn , L. M.; Geels , C.

    2004-01-01

    International audience; The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of...

  6. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  7. SIMAP oil and Orimulsion fate and effects model

    International Nuclear Information System (INIS)

    French, D.P.; Mendelsohn, D.; Rines, H.

    1995-01-01

    SIMAP, ASA's Spill Impact MAPping model system, simulates the physical fates and biological effects of spilled oils and fuels in 3-dimensional space, allow evaluation of the effectiveness of spill response activities, and evaluate probabilities of trajectories and resulting impacts. It may be used for real-time spill simulation, contingency planning, and ecological risk assessments. SIMAP has been verified for oil spills using data from the Exxon Valdez, the August 1993 No. 6 fuel spill in Tampa Bay, the North Cape No. 2 oil spill in RI January 1996, and others. SIMAP has been extended to apply to the alternative fuel Orimulsion trademark by development of algorithms describing the characteristics of this fuel and mechanisms of dispersion if it is spilled. Orimulsion is a mixture of approximately70% bitumen, surfactant, and water (about 30%). This emulsion readily mixes into the water column when it is spilled, as opposed to remaining as a surface slick as do oils. Thus, Orimulsion is tracked in the model as two fractions dispersed in an initial water volume: (1) fuel (bitumen) droplets with attached surfactant, and (2) dissolved low molecular weight aromatics. The toxicity of each component is considered separately and as additive. The model evaluates exposure, toxicity, mortality, and sublethal losses of biota resulting from the spill. Toxic effects are a function of time and temperature of exposure to concentrations, exposure to surface slicks and shoreline oil, and physiological response based on biological classifications. Losses of fish, shellfish, and wildlife are evaluated in the context of natural and harvest mortality rates in the absence of the spill

  8. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  9. Cell fate control in the developing central nervous system

    International Nuclear Information System (INIS)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-01-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  10. Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials

    DEFF Research Database (Denmark)

    Baun, Anders; Sayre, Phil; Steinhäuser, Klaus Günter

    2017-01-01

    The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs,...... data. Gaps do however exist in test methods for environmental fate, such as methods to estimate heteroagglomeration and the tendency for MNs to transform in the environment.......The widespread use of manufactured nanomaterials (MN) increases the need for describing and predicting their environmental fate and behaviour. A number of recent reviews have addressed the scientific challenges in disclosing the governing processes for the environmental fate and behaviour of MNs......, however there has been less focus on the regulatory adequacy of the data available for MN. The aim of this paper is therefore to review data, testing protocols and guidance papers which describe the environmental fate and behaviour of MN with a focus on their regulatory reliability and relevance. Given...

  11. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    Science.gov (United States)

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com © The Author(s) 2015. Published by Oxford University Press.

  12. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    Science.gov (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  13. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  14. Large area synchrotron X-ray fluorescence mapping of biological samples

    International Nuclear Information System (INIS)

    Kempson, I.; Thierry, B.; Smith, E.; Gao, M.; De Jonge, M.

    2014-01-01

    Large area mapping of inorganic material in biological samples has suffered severely from prohibitively long acquisition times. With the advent of new detector technology we can now generate statistically relevant information for studying cell populations, inter-variability and bioinorganic chemistry in large specimen. We have been implementing ultrafast synchrotron-based XRF mapping afforded by the MAIA detector for large area mapping of biological material. For example, a 2.5 million pixel map can be acquired in 3 hours, compared to a typical synchrotron XRF set-up needing over 1 month of uninterrupted beamtime. Of particular focus to us is the fate of metals and nanoparticles in cells, 3D tissue models and animal tissues. The large area scanning has for the first time provided statistically significant information on sufficiently large numbers of cells to provide data on intercellular variability in uptake of nanoparticles. Techniques such as flow cytometry generally require analysis of thousands of cells for statistically meaningful comparison, due to the large degree of variability. Large area XRF now gives comparable information in a quantifiable manner. Furthermore, we can now image localised deposition of nanoparticles in tissues that would be highly improbable to 'find' by typical XRF imaging. In addition, the ultra fast nature also makes it viable to conduct 3D XRF tomography over large dimensions. This technology avails new opportunities in biomonitoring and understanding metal and nanoparticle fate ex-vivo. Following from this is extension to molecular imaging through specific anti-body targeted nanoparticles to label specific tissues and monitor cellular process or biological consequence

  15. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  16. Dynamic positional fate map of the primary heart-forming region.

    Science.gov (United States)

    Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J

    2009-08-15

    Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

  17. Hydrodynamic impacts on biogenic stabilisation and the fate of extracellular polymeric substances (EPS) in mixed sediment bedforms.

    Science.gov (United States)

    Hope, J. A.; Aspden, R.; Schindler, R.; Parsons, D. R.; Ye, L.; Baas, J.; Paterson, D. M.

    2014-12-01

    The stability and morphology of bedforms have traditionally been treated as a function of mean flow velocity/non-dimensional bed shear stress and sediment particle size, despite the known influence of key biological components such as extracellular polymeric substances (EPS). EPS is produced by microbial communities and can increase erosion thresholds by more than 300%. However, the mechanisms behind the influence of EPS on sediment transport and bedform dynamics is poorly understood, as is the fate of EPS and exchange of EPS between the sediment bed and water column during ripple formation. The exchange of EPS between the sediment bed and water column is dynamic, with important implications for a range of physical and geochemical processes, with the spatio-temporal variation in EPS content, from source to eventual fate, being extremely important for determining the behaviour and natural variability of sedimentary systems. This paper reports on a series of flume experiments where a tripartite mixture of sand, clay and model EPS (xanthan gum) was used to create a sediment substrate, which was subject to a unidirectional current (0.8 ms-1 for 10.5 hrs, n=6). For each run the spatio-temporal changes in concentration, distribution, and effect of EPS, on the evolving bed of mixed sediment was monitored throughout, with complete 3D bed morphology scans also acquired at ~360 s intervals. The various substrate mixtures produced bedforms varying from ripples to dunes and biochemical analysis of EPS concentration across the formed bedforms, suggest EPS is winnowed from the sediment - water interface, particularly at the bedform crests. The depth of winnowing in each run was found to be related to the bedform size, with variation in the stoss, crest and trough of the bedforms identified. The loss of EPS was also significantly correlated with the depth to which clay was winnowed, presumably due to a close association between the clay mineral and EPS fractions. The paper will

  18. Nitrapyrin in streams: The first study documenting off-field transport of a nitrogen stabilizer compound

    Science.gov (United States)

    Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.

    2016-01-01

    Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.

  19. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.

    Science.gov (United States)

    Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang

    2018-05-07

    Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Biological transport of persistent organic pollutants (POPs) to Lake Ellasjoeen, Bjoernoeya (Bear Island), Norway

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, A.; Christensen, G. [Akvaplan-niva, Tromso (Norway); Kallenborn, R. [Norwegian Inst. for Air Research, Kjeller (Norway); Herzke, D. [Norwegian Inst. for Air Research, Tromso (Norway)

    2004-09-15

    During recent years, multidisciplinary studies have been carried out on Bjoernoeya (Bear Island, Norway), elucidating the fate and the presence of persistent organic pollutants (POPs) in this pristine Arctic environment. High concentrations of POPs, like polychlorinated biphenyls (PCBs), dichloro-diphenyl-dichlorethane (DDE) and polybrominated diphenyl ethers (PBDEs) have been measured in sediment and biota from Ellasjoeen, a lake located in the southern, mountainous part of Bjoernoeya. In Lake Oeyangen, located only 6 km north of Ellasjoeen on the central plains of the island, levels of POPs are several times lower than in Ellasjoeen. One reason for the different POP contamination levels in Ellasjoeen and Oeyangen is probably differences in precipitation regime between the southern mountainous part of the island and the central plains further north, leading to differences in the deposition of air transported contaminants. Another possible source for contaminants to Ellasjoeen is the large colonies of seabirds (mainly kittiwake (Rissa tridactyla), little auk (Alle alle) and glaucous gull (Larus hyperboreus)), which are situated close to the lake during the ice-free period (early June - October). These seabirds feed in the marine environment, and deposit large amounts of guano (excrements) directly into the lake or in the catchment area of the lake. Oeyangen is not influenced by seabirds. There are two ways in which input from seabirds can lead to higher levels of POPs in Ellasjoeen: direct input of POPs through allochthonous material (guano, bird remains) a change in trophic state of the lake as a result of nutrient loadings from the seabirds. The aim of the present study was to investigate the role of guano as a transport medium for POPs to Ellasjoeen. Two main approaches were followed: an investigation of the trophic status of Ellasjoeen, as well as the reference lake, Oeyangen, through analyses of stable isotopes of carbon and nitrogen, analyses of selected

  1. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A multiscale analysis of nutrient transport and biological tissue growth in vitro

    KAUST Repository

    O'Dea, R. D.

    2014-10-15

    © The authors 2014. In this paper, we consider the derivation of macroscopic equations appropriate to describe the growth of biological tissue, employing a multiple-scale homogenization method to accommodate explicitly the influence of the underlying microscale structure of the material, and its evolution, on the macroscale dynamics. Such methods have been widely used to study porous and poroelastic materials; however, a distinguishing feature of biological tissue is its ability to remodel continuously in response to local environmental cues. Here, we present the derivation of a model broadly applicable to tissue engineering applications, characterized by cell proliferation and extracellular matrix deposition in porous scaffolds used within tissue culture systems, which we use to study coupling between fluid flow, nutrient transport, and microscale tissue growth. Attention is restricted to surface accretion within a rigid porous medium saturated with a Newtonian fluid; coupling between the various dynamics is achieved by specifying the rate of microscale growth to be dependent upon the uptake of a generic diffusible nutrient. The resulting macroscale model comprises a Darcy-type equation governing fluid flow, with flow characteristics dictated by the assumed periodic microstructure and surface growth rate of the porous medium, coupled to an advection-reaction equation specifying the nutrient concentration. Illustrative numerical simulations are presented to indicate the influence of microscale growth on macroscale dynamics, and to highlight the importance of including experimentally relevant microstructural information to correctly determine flow dynamics and nutrient delivery in tissue engineering applications.

  3. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    International Nuclear Information System (INIS)

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables

  4. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  5. Developing climatic scenarios for pesticide fate modelling in Europe

    International Nuclear Information System (INIS)

    Blenkinsop, S.; Fowler, H.J.; Dubus, I.G.; Nolan, B.T.; Hollis, J.M.

    2008-01-01

    A climatic classification for Europe suitable for pesticide fate modelling was constructed using a 3-stage process involving the identification of key climatic variables, the extraction of the dominant modes of spatial variability in those variables and the use of k-means clustering to identify regions with similar climates. The procedure identified 16 coherent zones that reflect the variability of climate across Europe whilst maintaining a manageable number of zones for subsequent modelling studies. An analysis of basic climatic parameters for each zone demonstrates the success of the scheme in identifying distinct climatic regions. Objective criteria were used to identify one representative 26-year daily meteorological series from a European dataset for each zone. The representativeness of each series was then verified against the zonal classifications. These new FOOTPRINT climate zones provide a state-of-the-art objective classification of European climate complete with representative daily data that are suitable for use in pesticide fate modelling. - The FOOTPRINT climatic zones provide an objective climatic classification and daily climate series that may be used for the modelling of pesticide fate across Europe

  6. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  7. Fate control and well-being in Chinese rural people living with HIV: mediation effect of resilience.

    Science.gov (United States)

    Yu, Nancy Xiaonan; Zhang, Jianxin; Chow, Amy Y M; Chan, Celia H Y; Chan, Cecilia L W

    2017-01-01

    Fate control has been often misconceptualized as a superstitious belief and overlooked in health psychology. It is not known how this cultural belief might impact the well-being of Chinese people living with HIV. This study examined the protective role of fate control for well-being and the potential mediation effect of resilience. Participants in this study were rural patients who contracted HIV via commercial blood donation. In this cross-sectional survey, 250 participants completed measures of fate control, well-being, and resilience. The results showed that fate control and resilience were positively associated with well-being. Resilience mediated the association between fate control and well-being. Our findings provide insight into the adaptive function of fate control as a cognitive defensive mechanism and highlight the need to incorporate this cultural belief in developing culturally sensitive intervention programs for resilience enhancement tailored for this understudied population infected with HIV living in rural China.

  8. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  9. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    Science.gov (United States)

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  10. PGDP Trichloroethene Biodegradation Investigation Summary Report: Regional Gravel Aquifer & Northwest Plume

    Energy Technology Data Exchange (ETDEWEB)

    Hampson, Steve [Univ. of Kentucky, Lexington, KY (United States). Kentucky Research Consortium for Energy and Environment

    2008-09-01

    The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 (99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probes (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.

  11. Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes

    Science.gov (United States)

    Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.

    2014-12-01

    A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from

  12. Transport of Iodine Species in the Terrestrial Environment

    International Nuclear Information System (INIS)

    Hu, Q; Moran, J E; Zhao, P

    2003-01-01

    The fate and transport of iodine in the environment is of interest because of the large production and release of 129 I from anthropogenic sources. 129 I has a long half-life (1.57 x 10 7 years) and exhibits complex geochemical behavior. The main source of 129 I in the environment is from nuclear fuel reprocessing facilities; about 2,600 kg from facilities in England and France. During 1944-1972, the Hanford Site in Washington state released about 260 kg 129 I. Iodine has a unique and complex chemistry in the environment, and its fate and transport in aqueous environments is dictated by its chemical speciation. In reducing environments, aqueous iodine usually occurs as the highly mobile iodide anion (I - ). Under more oxidizing conditions, iodine may be present as the more reactive iodate anion (IO 3 - ), which could lead to retarded transport through interaction with clays and organic matter. Co-existing iodine species (I - , IO 3 - , I 2 , and organoiodine compounds), in different proportions, has been reported in various terrestrial environments. However, there are conflicting reports regarding the environmental behavior of the different types of inorganic iodine and few publications on organic iodine compounds. This work examines the sorption and transport behavior of both inorganic and organic iodine species in geological samples from several complexes of the U.S. Department of Energy, where transport of radionuclides, including 129 I, may occur. Experiments on soils and sediments from the Savannah River Site in South Carolina, Oak Ridge Site in Tennessee, Hanford Site in Washington, Livermore Site 300 in California, and a surface soil from Santa Fe in New Mexico near Los Alamos were carried out. Samples from Savannah River Site and Livermore Site 300 are available from different depths. In addition, a surface soil of Wisconsin with a high amount of organic matter is utilized. This wide variety of sample types provides opportunities to examine the influence of

  13. INFLUENCE OF SERVICE FACTORS IN THE MODEL OF PUBLIC TRANSPORT MODE: A BANJARMASIN – BANJARBARU ROUTE CASE STUDY

    OpenAIRE

    Iphan F. Radam; Agus T. Mulyono; Bagus H. Setiadji

    2015-01-01

    This research is aimed to examine the extent to which the service factors will affect the probability of people choice on public transports offered. The service factors are essential since the habits in the planning of new public transport at developing cities tend to prioritizes “travel time” and “travel cost” only. Consequently, there will be more than a small number of new public transports that will meet the same fate as the previous ones, i.e. unable to attract the users’ interest. The r...

  14. Tracking of Short Distance Transport Pathways in Biological Tissues by Ultra-Small Nanoparticles

    Science.gov (United States)

    Segmehl, Jana S.; Lauria, Alessandro; Keplinger, Tobias; Berg, John K.; Burgert, Ingo

    2018-03-01

    In this work, ultra-small europium-doped HfO2 nanoparticles were infiltrated into native wood and used as trackers for studying penetrability and diffusion pathways in the hierarchical wood structure. The high electron density, laser induced luminescence, and crystallinity of these particles allowed for a complementary detection of the particles in the cellular tissue. Confocal Raman microscopy and high-resolution synchrotron scanning wide-angle X-ray scattering (WAXS) measurements were used to detect the infiltrated particles in the native wood cell walls. This approach allows for simultaneously obtaining chemical information of the probed biological tissue and the spatial distribution of the integrated particles. The in-depth information about particle distribution in the complex wood structure can be used for revealing transport pathways in plant tissues, but also for gaining better understanding of modification treatments of plant scaffolds aiming at novel functionalized materials.

  15. Influence of pH on the Transport of Silver Nanoparticles in Saturated Porous Media: Laboratory Experiments and Modeling

    Science.gov (United States)

    Given the ubiquity of silver nanoparticles (AgNPs), the largest and fastest growing category of nanomaterials, and their potential for toxic effects to both humans and the environment, it is important to understand their environmental fate and transport. The purpose of this stud...

  16. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.

    Science.gov (United States)

    Fohrer, Nicola; Dietrich, Antje; Kolychalow, Olga; Ulrich, Uta

    2014-01-01

    This study aims to assess the environmental fate of the commonly used herbicides flufenacet and metazachlor in the Northern German Lowlands with the ecohydrological Soil and Water Assessment Tool (SWAT model) and to test the sensitivity of pesticide-related input parameters on the modeled transport dynamics. The river discharge of the Kielstau watershed was calibrated (Nash-Sutcliffe efficiency [NSE], 0.83; = 0.84) and validated (NSE, 0.76; = 0.77) for a daily time step. The environmental fate of metazachlor (NSE, 0.68; = 0.62) and flufenacet (NSE, 0.13; = 0.51) was simulated adequately. In comparison to metazachlor, the simulated flufenacet concentration and loads show a lower model efficiency due to the weaker simulation of the stream flow. The in-stream herbicide loads were less than 0.01% of the applied amount in the observed time period and thus not in conflict with European Environmental Legislation. The sensitivity analysis showed that, besides the accurate simulation of stream flow, the parameterization of the temporal and spatial distribution of the herbicide application throughout the watershed is the key factor for appropriate modeling results, whereas the physicochemical properties of the pesticides play a minor role in the modeling process. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  18. Coulombic interactions during advection-dominated transport of ions in porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-01-01

    bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2......Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect...... on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory...

  19. Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lou

    2016-06-01

    Full Text Available Nonsense-mediated RNA decay (NMD is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

  20. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  1. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  2. Analyzing the influence of ‘knowledge technologies’ in transport planning

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    , but models also share with other knowledge technologies the fate of being sometimes used politically, rather than analytically, perhaps even distortively rather than supportively, or not being used at all. The ‘actual’ influence that transport models and other tools exert over planning processes and outcomes...... to characterize and analyze the use and influence of ‘knowledge technologies’ in the transport sector. The paper is not primarily about models per se or particular model applications, but will try to situate simulation models in a wider ‘use and influence’ landscape of transport planning knowledge technologies...... of the paper is thus to seek is to systematize previous research on ‘knowledge use’, discuss its applicability to context of transport policy and planning technologies, and critically reflect on ways to research the use and influence ‘pathways’ of knowledge technologies - such as models - in this sector. • One...

  3. Atrazine fate and transport within the coastal zone in southeastern Puerto Rico

    Science.gov (United States)

    Herbicide transport from crop-land to coastal waters may adversely impact water quality. This work examined potential atrazine impact from use on a farm field adjacent to the Jobos Bay National Estuarine Research Reserve on Puerto Rico’s southeastern coast. Atrazine application was linked to residu...

  4. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    International Nuclear Information System (INIS)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  5. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  6. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  7. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    Science.gov (United States)

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-06

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds.

  8. Physical and biological parameters that determine the fate of p-chlorophenol in laboratory test systems

    International Nuclear Information System (INIS)

    Pritchard, P.H.; O'Neill, E.J.; Spain, C.M.; Ahearn, D.G.

    1987-01-01

    Shake-flask and microcosm studies were conducted to determine the fate of para-chlorophenol (p-CP) in water and sediment systems and the role of sediment and nonsediment surfaces in the biodegradation process. Biodegradation of p-CP in estuarine water samples in shake flasks was slow over incubation periods of 300 h. The addition of detrital sediment resulted in immediate and rapid degradation evidence by the production of 14 CO 2 from [ 14 C]p-CP. The addition of sterile sediment, glass beads, or sand resulted in approximately four to six times more CO 2 evolution than observed in the water alone. Densities of p-CP-degrading bacteria associated with the detrital sediment were 100 times greater than those enumerated in water. Bacteria in the water and associated with the sediment after preexposure of both water and sediment of p-CP demonstrated enhanced biodegradation. In some microcosms, p-CP was degraded completely in the top 1.0 cm of intact sediment beds. Sediment reworking activities by benthic invertebrates from one site were sufficient to mix p-CP deep into the sediment bed faster than biodegradation or molecular diffusion. p-CP was persistent at lower depths of the sediment, possibly a result of reduced oxygen conditions preventing aerobic biodegradation

  9. Challenges in assessing the environmental fate and exposure of nano silver

    International Nuclear Information System (INIS)

    Whiteley, Cherrie M; Jones, Kevin C; Sweetman, Andy J; Dalla Valle, Matteo

    2011-01-01

    There are significant challenges in assessing the fate and exposure of nano particles (NPs) owing to the lack of information on their use and potential pathways and sinks in the environment. This paper discusses these issues using nanosilver as a case study. The approach taken is to assess the production of nanosilver, the range of products that utilise its properties, potential environmental release pathways and subsequent fate. Estimates of UK nanosilver released into the environment have been made and sewage sludge identified as an important receiving compartment. This work aims to highlight the on-going challenges faced when assessing NPs in the environment. Using nanosilver as an example, difficulties in assessing production, use and release are discussed. The study also recommends a potential approach to assess the fate and behaviour assessment of nanosilver in the environment.

  10. Insights into bird wing evolution and digit specification from polarizing region fate maps.

    Science.gov (United States)

    Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-08-09

    The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.

  11. Natural resource damage assessment models for Great Lakes, coastal, and marine environments

    International Nuclear Information System (INIS)

    French, D.P.; Reed, M.

    1993-01-01

    A computer model of the physical fates, biological effects, and economic damages resulting from releases of oil and other hazardous materials has been developed by Applied Science Associates to be used in Type A natural resource damage assessments under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Natural resource damage assessment models for great lakes environments and for coastal and marine environments will become available. A coupled geographical information system allows gridded representation of complex coastal boundaries, variable bathymetry, shoreline types, and multiple biological habitats. The physical and biological models are three dimensional. Direct mortality from toxic concentrations and oiling, impacts of habitat loss, and food web losses are included in the model. Estimation of natural resource damages is based both on the lost value of injured resources and on the costs of restoring or replacing those resources. The models are implemented on a personal computer, with a VGA graphical user interface. Following public review, the models will become a formal part of the US regulatory framework. The models are programmed in a modular and generic fashion, to facilitate transportability and application to new areas. The model has several major components. Physical fates and biological effects submodels estimate impacts or injury resulting from a spill. The hydrodynamic submodel calculates currents that transport contaminant(s) or organisms. The compensable value submodel values injuries to help assess damages. The restoration submodel determines what restoration actions will most cost-effectively reduce injuries as measured by compensable values. Injury and restoration costs are assessed for each of a series of habitats (environments) affected by the spill. Environmental, chemical, and biological databases supply required information to the model for computing fates and effects (injury)

  12. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  13. Transport phenomena and kinetic theory applications to gases, semiconductors, photons, and biological systems

    CERN Document Server

    Gabetta, Ester

    2007-01-01

    The study of kinetic equations related to gases, semiconductors, photons, traffic flow, and other systems has developed rapidly in recent years because of its role as a mathematical tool in many applications in areas such as engineering, meteorology, biology, chemistry, materials science, nanotechnology, and pharmacy. Written by leading specialists in their respective fields, this book presents an overview of recent developments in the field of mathematical kinetic theory with a focus on modeling complex systems, emphasizing both mathematical properties and their physical meaning. The overall presentation covers not only modeling aspects and qualitative analysis of mathematical problems, but also inverse problems, which lead to a detailed assessment of models in connection with their applications, and to computational problems, which lead to an effective link of models to the analysis of real-world systems. "Transport Phenomena and Kinetic Theory" is an excellent self-study reference for graduate students, re...

  14. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    Science.gov (United States)

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment.

    Science.gov (United States)

    Stromsoe, Nicola; Marx, Samuel K; McGowan, Hamish A; Callow, Nikolaus; Heijnis, Henk; Zawadzki, Atun

    2015-02-01

    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate

  16. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    Science.gov (United States)

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Synthesis and biological evaluation of trans-3-phenyl-1-indanamines as potential norepinephrine transporter imaging agents

    International Nuclear Information System (INIS)

    McConathy, Jonathan; Owens, Michael J.; Kilts, Clinton D.; Malveaux, Eugene J.; Votaw, John R.; Nemeroff, Charles B.; Goodman, Mark M.

    2005-01-01

    The development of radioligands suitable for studying the central nervous system (CNS) norepinephrine transporter (NET) in vivo will provide important new tools for examining the pathophysiology and pharmacotherapy of a variety of neuropsychiatric disorders including major depression. Towards this end, a series of trans-3-phenyl-1-indanamine derivatives were prepared and evaluated in vitro. The biological properties of the most promising compound, [ 11 C]3-BrPA, were investigated in rat biodistribution and nonhuman primate PET studies. Despite high in vitro affinity for the human NET, the uptake of [ 11 C]3-BrPA in the brain and the heart was not displaceable with pharmacological doses of NET antagonists

  18. Biological Recovery of Platinum Complexes from Diluted Aqueous Streams by Axenic Cultures.

    Directory of Open Access Journals (Sweden)

    Synthia Maes

    Full Text Available The widespread use of platinum in high-tech and catalytic applications has led to the production of diverse Pt loaded wastewaters. Effective recovery strategies are needed for the treatment of low concentrated waste streams to prevent pollution and to stimulate recovery of this precious resource. The biological recovery of five common environmental Pt-complexes was studied under acidic conditions; the chloro-complexes PtCl42- and PtCl62-, the amine-complex Pt(NH34Cl2 and the pharmaceutical complexes cisplatin and carboplatin. Five bacterial species were screened on their platinum recovery potential; the Gram-negative species Shewanella oneidensis MR-1, Cupriavidus metallidurans CH34, Geobacter metallireducens, and Pseudomonas stutzeri, and the Gram-positive species Bacillus toyonensis. Overall, PtCl42- and PtCl62- were completely recovered by all bacterial species while only S. oneidensis and C. metallidurans were able to recover cisplatin quantitatively (99%, all in the presence of H2 as electron donor at pH 2. Carboplatin was only partly recovered (max. 25% at pH 7, whereas no recovery was observed in the case of the Pt-tetraamine complex. Transmission electron microscopy (TEM revealed the presence of both intra- and extracellular platinum particles. Flow cytometry based microbial viability assessment demonstrated the decrease in number of intact bacterial cells during platinum reduction and indicated C. metallidurans to be the most resistant species. This study showed the effective and complete biological recovery of three common Pt-complexes, and estimated the fate and transport of the Pt-complexes in wastewater treatment plants and the natural environment.

  19. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  20. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    Science.gov (United States)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.